EP0738572B1 - Method for orienting monocrystals for cutting in a cutting machine and device for performing the method - Google Patents

Method for orienting monocrystals for cutting in a cutting machine and device for performing the method Download PDF

Info

Publication number
EP0738572B1
EP0738572B1 EP96105699A EP96105699A EP0738572B1 EP 0738572 B1 EP0738572 B1 EP 0738572B1 EP 96105699 A EP96105699 A EP 96105699A EP 96105699 A EP96105699 A EP 96105699A EP 0738572 B1 EP0738572 B1 EP 0738572B1
Authority
EP
European Patent Office
Prior art keywords
single crystal
cutting
plane
support
geometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96105699A
Other languages
German (de)
French (fr)
Other versions
EP0738572A1 (en
Inventor
Charles Hauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Switzerland SARL
Original Assignee
HCT Shaping Systems SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH113695A external-priority patent/CH690423A5/en
Priority claimed from CH113595A external-priority patent/CH690422A5/en
Application filed by HCT Shaping Systems SA filed Critical HCT Shaping Systems SA
Publication of EP0738572A1 publication Critical patent/EP0738572A1/en
Application granted granted Critical
Publication of EP0738572B1 publication Critical patent/EP0738572B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work
    • B28D5/0088Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work the supporting or holding device being angularly adjustable

Definitions

  • the present invention relates to a method for the orientation of a single crystal for cutting in a cutting machine according to a cutting plan predetermined, according to which the single crystal is oriented by means of a positioning device outside the machine cutting according to a predetermined orientation with respect to a cutting support, the single crystal is fixed in accordance at said predetermined orientation on the cutting support whose placement in the cutting machine is geometrically defined with respect to a cutting plane perpendicular to a work plane of the machine cutting, and we have the cutting support after fixing of the single crystal in the cutting machine according to said geometrically defined positioning.
  • Monocrystals generally for optical uses or semiconductors require that they be cut according to very precise orientations in relation to the axes of the crystal lattice.
  • their manufacture does not allow perfectly control the orientation of the axes of the network crystalline with respect to the geometric axes. It is therefore necessary to that the cut is correct correct on the one hand the error of manufacturing and secondly take into account the angles formed between the cutting plane and the crystalline plane chosen or imposed by the subsequent uses or processes. Since the cutting is done from a geometric single crystal, it will position and hold it in space so that the movement of the cutting system is parallel to the plane desired cutting. There are endless possible positions, however there are only four that additionally place the single crystal in a plane perpendicular to the cutting plane of the machine. The positioning of single crystals according to one of these four positions therefore makes it possible to cut not only in the desired orientation but also minimize the cutting time therefore improve the productivity of the cutting device.
  • Single crystal orientation devices are already known and used in the semiconductor industry on internal diameter chainsaws or wire saws.
  • the positioning is done using an adjustable table y '' ', z' '' mounted directly on the machine. Adjustment is done after measurement optical or x-ray. The correction is then introduced according to y '' ', z' ''.
  • This way of practicing has the disadvantage on the one hand to have an inclined position of the single crystal with respect to advance of the cutting element, which is very unfavorable in the case of a wire saw where the wire ply must be parallel to the geometric single crystal, and secondly not to minimize the cutting length, which is then unfavorable for internal diameter saws by reducing their productivity.
  • this way of practicing requires regulating the machine table before each cut very precise and in an often dirty industrial environment therefore not very favorable for this type of operation. The setting time of the machine also contributes to lower productivity.
  • Document DE-A-27 52 925 describes a device orientation of single crystals with a frame on which is mounted a geometric head allowing movements of rotation around three perpendicular axes of the single crystal fixed on this geometric head and the approximation of the single crystal and a cutting support on which this single crystal will be fixed.
  • the device described in this document allows the orientation of a single crystal outside the machine cutting, however, it does not reveal how the orientation process should be carried out to avoid inclined position of the single crystal with respect to the direction of the advancement of the cutting elements of the machine.
  • the object of the present invention is to remedy the disadvantages mentioned above and it is characterized for this purpose in that that said predetermined orientation is obtained by disposing the single crystal on the positioning device so that a of its geometric axes of the geometric shape of the single crystal is included in a reference plane corresponding to the cutting machine work plan, by rotating the single crystal by a first angle predetermined d around said geometric axis to bring the normal to the cutting plane of the single crystal in said plane of reference, and by performing a relative rotation between the support and the single crystal of a second angle predetermined around an axis perpendicular to said plane of reference so that the normal to the cutting plane is oriented in a reference direction corresponding to the normal to the cutting plane of the machine, said axis geometric and normal to the cutting plane of the single crystal being included in said reference plane.
  • the process is characterized in that defines the orientation of the cutting plane of the single crystal by relation to the crystal lattice, in that we measure the orientation of the crystal lattice with respect to the geometric shape of the single crystal, and in that we calculate the first and second angles of rotation taking into account the orientation of the plane of cutting with respect to the crystal lattice and with respect to the geometric shape of the single crystal.
  • the method according to the invention is particularly applicable advantageously to the use of a single crystal whose shape geometric is substantially cylindrical circular, said axis geometric corresponding to the main axis of the single crystal and by placing the single crystal on two rotating cylinders axes of the positioning device, the axes of the two cylinders being parallel to said reference plane.
  • the invention also relates to a device for implementation of the process as defined by Features set out in the independent claim 6.
  • Figure 1 illustrates in perspective an example of single crystal with its geometric and crystallographic axes and the chosen cutting plane.
  • Figures 2A and 2B illustrate in two views orthogonal the position of the single crystal obtained by a process known and commonly used.
  • Figures 3A and 3B show two views orthogonal the position of the single crystal obtained in accordance with the present invention.
  • Figure 4 shows a vector diagram of the different repositories used.
  • Figures 5A, 5B, 5C illustrate the occupied positions by the single crystal following the orientation process according to the invention.
  • Figure 6 is a perspective view of a mode of execution of the device for implementing the method.
  • the invention gives the possibility to install single crystals on the cutting machine preoriented whose cutting plane is oriented parallel on the cutting plane of the machine and turned according to a perpendicular axis (normal to the cutting plane), so to minimize the cutting length.
  • This determination will be done mathematically from the measurements to determine the error of the geometric single crystal with respect to the crystal lattice including the requirements of the subsequent process in relation to the axes crystalline.
  • the mounting of the single crystal on its support can then be done using a positioning device which allows the exact measurement of rotation angles of the geometric single crystal, and to mount it as which on a cutting support which is a piece with indexing belonging to the cutting machine.
  • the single crystal can be clamped or preferably glued to the support, support which once transferred to the cutting machine will present a perfectly pre-oriented single crystal ready to be sawn without subsequent adjustment.
  • the cutting precision will be independent of the machine used or the operator in the case of production chains.
  • the positioning device will appear under the shape of a table or frame with a turntable having its vertical axis of rotation z '' 'on which is put the support of the single crystal on which it will be later fixed.
  • This support has an indexing system identical to that of the cutting machine.
  • the support of the single crystal is an interface piece between the device positioning and cutting machine. He will therefore have the same position on the positioning device and on the cutting machine.
  • Above the turntable but fixed relative to the table is a mechanism allowing the single crystal to be held and to rotate it along its horizontal axis x.
  • This system is composed in the case of cylindrical single crystals of two cylinders on which rests the single crystal. The single crystal can then rotate along its x axis.
  • Plate movement and rotation of the single crystal x allow to position it in any orientation.
  • the value of the two angles of rotation will be determined by the requirements of the finished product and calculated mathematically.
  • a mechanism brings the support with the single crystal itself while retaining their relative position. This can be done either by elevation of the turntable either by lowering the single crystal. Once brought into contact the single crystal will be clamped or glued in position.
  • the single crystal support can then be transferred to the cutting machine.
  • the single crystal is then oriented, ready to be cut. Angles of rotation according to x and z '' 'are measured by devices integrated electronics such as encoders or mechanical by verniers for example.
  • Figure 1 shows an example of a single crystal to be cut 2 which has a cylindrical geometric shape with geometric axes x, y, z, the x axis being the axis main.
  • the axes x ', y', z 'of the crystal lattice of this single crystal are not parallel to the geometric axes.
  • the angles a and f between the axes y ', y and z', z are determined by optical or X-ray measurement and define generally the manufacturing error of the single crystal.
  • the Figure 1 also shows the cutting plane 16 chosen or imposed single crystal with its inclined y '' and z '' axes angular values p and t with respect to the axes y ', z' of the crystal lattice and the normal x '' to the cutting plane.
  • the angular values p and t are generally defined according to the needs of the subsequent use of the cut single crystal. It is understood that these angles p and t could for example be equal to zero in the case where want to get parallel silicon wafers to the plan.
  • FIGS. 2A and 2B show in side view and in plan, the position of the single crystal 2 obtained by the process known and commonly used before the present invention by performing an orientation of the single crystal by rotation around the geometric axes y and z.
  • the single crystal 2 is then not parallel to the plane of the layer of wires 17 when using a wire saw as cutting means.
  • the machine plan x '' ', y' '' of the cutting machine is not parallel to the geometric axis x of the single crystal 1.
  • the direction of advancement according to z '' 'of the ply of wires 17 is not perpendicular to the single crystal, which is detrimental to the quality of the cut.
  • Figures 3A and 3B illustrate the orientation of the single crystal obtained by the process in accordance with this invention by performing an orientation of the single crystal by rotation around the geometric axes x and z '' '.
  • the tablecloth of wire 17 of the saw used as cutting machine lies in the plane x '' 'y' '' and the geometrical axis x of the monocrystal is parallel to this plane x '' ', y' ''.
  • the single crystal is therefore in an optimal position with respect to to the cutting means, so as to obtain a cutting very precise.
  • the vector diagram of the various reference systems used for positioning is shown in Figure 4 and includes the referential x, y, z linked to the geometric shape of the single crystal, the reference frame x ', y', z 'linked to the network lens of the single crystal, the corresponding reference x '', y '', z '' to the cutting plane of the single crystal and the frame of reference x '' ', y' '', z ''' 'used for the positioning device and the cutting machine.
  • the cutting plane corresponds to the plane y '', z '' and its normal corresponds to the direction x ''.
  • Misalignment of the geometric shape of the single crystal 2 with the network lens is determined by the angles a and f, corresponding at the angles y'y and z'z.
  • the corresponding angles p and t at the angles y''y 'and z''z' determine the orientation cutting plans chosen in relation to the repository of the crystal lattice.
  • the normal x '' in the plane of cutting y''z '' defines a vector x '' (x, y, z) which makes a angle g with the geometric axis x and the projection of the vector X '' (x, y, z) on the y plane, z makes an angle d with y.
  • the angle d therefore corresponds to the angle of rotation around from the geometric axis x to bring the normal x '' to the plane cutting y '', z '' in a corresponding reference plane on the work plan x '' ', y' '' of the machine.
  • the angle g corresponds to the angle of rotation around the vertical axis z '' 'so that the normal x' 'to the plane of cutting is oriented in a reference direction corresponding to the normal x '' 'to the cutting plane y '' 'z' '' of the machine to make the cutting plane coincide desired with the cutting plan of the machine cutting.
  • FIGS. 5A, 5B and 5C illustrating three successive positions.
  • the single crystal is placed on the positioning device and its geometric axes x, y, z are aligned with the axes x '' ', y' '', z '' 'of the alignment device and the machine cutting.
  • the resulting sawing will have well the angles t and p with respect to the crystallographic axes y 'and z'. It is understood that the second rotation can also be done by turning the support cutting an angle -g, the single crystal remaining motionless as is done in the embodiment illustrated in figure 6.
  • the latter consists of a positioning device 1 which makes it possible to orient the single crystal 2 outside a cutting machine according to an orientation predetermined with respect to a cutting support is having the form of a support 3 on which the single crystal will be fixed after proper orientation.
  • the device positioning 1 includes for this purpose a table or a frame 5 with an upper part 6 and a part lower 7.
  • the single crystal 2 is carried by two support cylinders 8 mounted rotating on the upper part 6 with their main axis oriented parallel to the x axis.
  • a angular measuring device in the form of an encoder 10 used to measure the angle of rotation d of the single crystal around the x axis.
  • a rotary plate 12 is mounted to rotate about the axis z '' 'on the lower part 7 of the chassis.
  • a system of angular measurement integrated in the turntable 12 allows measure the angle of rotation g around the z axis' ''.
  • the support 3 is maintained in a predetermined orientation precise on the turntable 12.
  • the rotary plate 12 is also slidably mounted in the direction z '''on the lower part 7 of the chassis in order to be able to bring the support 3 closer to the single crystal 2 by means of a lifting mechanism 14 to fix the single crystal 2 on the support 3.
  • the support 3 and the single crystal 2 can be placed in the cutting machine according to a predetermined geometric position so that the reference plane x ''' s , y''' s of the support 3 corresponds to the plane x ''',y''' of the cutting machine and so that the perpendicular x '''to the cutting plane of the machine is parallel to the reference direction x''' s of the support.
  • the process and the device described allow positioning of a single crystal on a support outside the cutting machine in such a way that the single crystal, once mounted with its support on a cutting, or cut with a given orientation of crystalline axes with respect to the saw plane.
  • the position of a cylindrical single crystal is such that the generators of it are placed parallel to the ply of wires 17 in the case of a wire saw or parallel to the direction of movement defining the thickness slices if it is a cam cut.
  • the orientation of the crystal lattice is measured by relation to the geometric shape of the single crystal optically or by means of X-rays.
  • the positioning device or the cutting support can advantageously for this purpose be arranged to be able to be mounted on a generator X-rays so that the positioning of the single crystal can be carried out and checked simultaneously.
  • the orientation of the cutting plane y '', z '' relative to the crystal lattice x ', y,' z 'being imposed by the application the values of the two angles of rotation of the single crystal d along the x axis and g along the z axis' '' of the positioning device are determined mathematically. Once the two rotations performed according to the values calculated, the single crystal will be in the position sought for the cutting machine, namely perpendicular to the cutting advance having in addition its cutting plane parallel to that of the machine.
  • the positioning device will allow the fixing of the single crystal either by clamping or by gluing on a support pre-indexed in relation to the cutting machine.
  • the orientation given by the process minimizes in the case of cylindrical single crystals sawing length.
  • the cutting machine therefore requires no device adjustment to ensure cutting according to specifications required after transfer of the single crystal on its cutting support and this one in the cutting machine.
  • the wire table of a wire saw remains parallel to the geometric single crystal throughout cutting while ensuring proper orientation of slices thus produced. Likewise, the saw blade of a blade machine remains perpendicular to the single crystal.
  • the embodiment described above is in no way limiting and that can receive any desirable modifications inside of the framework as defined by claim 1.
  • the two angles of rotation around the x axes and z '' 'could be replaced by angles taken and calculated in relation to other geometric reference systems and crystallographic, but which lead to the same result than normal to the cutting plane of the single crystal is oriented in a corresponding reference direction normal to the cutting plane of the machine and that predetermined geometric axis of the single crystal and the normal on the cutting plane are included in a reference plane corresponding to the work plan of the machine.
  • the cutting plane can be determined by others angles that p and t with respect to the crystal lattice and the offset of the crystal lattice from the geometric shape of the single crystal may be indicated by others angles measured as a and f.
  • the two support cylinders 8 could be replaced by other means to support the single crystal and to rotate the single crystal such as by example a single support in or on which the single crystal is temporarily fixed and which is rotatably mounted on the table or chassis.
  • This rotation support could be arranged at one or two opposite ends of the single crystal.
  • the relative rotation between the single crystal and the support cutting around the z axis "'could also be obtained by rotating the single crystal with respect to to the cutting support which would remain stationary on the table or chassis of the positioning device.
  • the rotary table would then be replaced by a rotary member according to z "'and carrying the temporary support of the single crystal.
  • the angular measurement organs could be electronic, optical or mechanical.
  • the approximation or bringing into contact of the single crystal and cutting support could be made by from the bottom or from the top and by moving either the cutting is the single crystal.
  • Rotations around the two horizontal and vertical axes x, z "'could be inverted over time by first performing the rotation around the z axis "'and then rotation around the horizontal axis x.
  • the method and the device could also be used for the oriented cutting of single crystals any other geometric shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

La présente invention concerne un procédé pour l'orientation d'un monocristal en vue d'une découpe dans une machine de découpage selon un plan de découpe prédéterminé, selon lequel on oriente le monocristal au moyen d'un dispositif de positionnement hors de la machine de découpage selon une orientation prédéterminée par rapport à un support de découpage, on fixe le monocristal conformément à ladite orientation prédéterminée sur le support de découpage dont la mise en place dans la machine de découpage est géométriquement définie par rapport à un plan de découpage perpendiculaire à un plan de travail de la machine de découpage, et on dispose le support de découpage après fixation du monocristal dans la machine de découpage selon ladite mise en place géométriquement définie.The present invention relates to a method for the orientation of a single crystal for cutting in a cutting machine according to a cutting plan predetermined, according to which the single crystal is oriented by means of a positioning device outside the machine cutting according to a predetermined orientation with respect to a cutting support, the single crystal is fixed in accordance at said predetermined orientation on the cutting support whose placement in the cutting machine is geometrically defined with respect to a cutting plane perpendicular to a work plane of the machine cutting, and we have the cutting support after fixing of the single crystal in the cutting machine according to said geometrically defined positioning.

Les monocristaux généralement à usages optiques ou semiconducteurs nécessitent que ceux-ci soient découpés selon des orientations très précises par rapport aux axes du réseau cristallin. De plus, leur fabrication ne permet pas de contrôler de manière parfaite l'orientation des axes du réseau cristallin par rapport aux axes géométriques. Il faut donc pour que la découpe soit correcte corriger d'une part l'erreur de fabrication et d'autre part tenir compte des angles formés entre le plan de découpe et le plan cristallin choisi ou imposé par les utilisations ou procédés subséquents. Etant donné que la découpe se fait à partir d'un monocristal géométrique, il faudra le positionner et le maintenir dans l'espace de telle manière que le déplacement du système de découpe soit parallèle au plan de découpe désiré. Il existe une infinité de positions possibles, toutefois il n'en n'existe que quatre qui en plus place le monocristal dans un plan perpendiculaire au plan de découpe de la machine. Le positionnement des monocristaux selon l'une de ces quatre positions permet donc de découper non seulement dans l'orientation désirée mais également de minimiser le temps de la découpe donc d'améliorer la productivité du dispositif de découpe.Monocrystals generally for optical uses or semiconductors require that they be cut according to very precise orientations in relation to the axes of the crystal lattice. In addition, their manufacture does not allow perfectly control the orientation of the axes of the network crystalline with respect to the geometric axes. It is therefore necessary to that the cut is correct correct on the one hand the error of manufacturing and secondly take into account the angles formed between the cutting plane and the crystalline plane chosen or imposed by the subsequent uses or processes. Since the cutting is done from a geometric single crystal, it will position and hold it in space so that the movement of the cutting system is parallel to the plane desired cutting. There are endless possible positions, however there are only four that additionally place the single crystal in a plane perpendicular to the cutting plane of the machine. The positioning of single crystals according to one of these four positions therefore makes it possible to cut not only in the desired orientation but also minimize the cutting time therefore improve the productivity of the cutting device.

Des dispositifs d'orientation de monocristaux sont déjà connus et utilisés dans l'industrie des semiconducteurs sur des tronçonneuses à diamètre intérieur ou sur des scies à fils. Le positionnement se fait à l'aide de table orientable y''', z''' montée directement sur la machine. L'ajustement se fait après mesure optique ou aux rayons x. La correction est alors introduite selon y''', z'''. Cette manière de pratiquer a le désavantage d'une part d'avoir une position du monocristal inclinée par rapport à l'avance de l'élément de découpe, ce qui est très défavorable dans le cas d'une scie à fils où la nappe de fils doit être parallèle au monocristal géométrique, et d'autre part de ne pas minimiser la longueur de découpe, ce qui est alors défavorable pour les scies à diamètre intérieur en diminuant leur productivité. De plus, cette manière de pratiquer oblige à régler la table de la machine avant chaque découpe de manière très précise et dans un environnement industriel souvent sale donc peu propice à ce type d'opération. Le temps de réglage de la machine contribue également à la baisse de la productivité.Single crystal orientation devices are already known and used in the semiconductor industry on internal diameter chainsaws or wire saws. The positioning is done using an adjustable table y '' ', z' '' mounted directly on the machine. Adjustment is done after measurement optical or x-ray. The correction is then introduced according to y '' ', z' ''. This way of practicing has the disadvantage on the one hand to have an inclined position of the single crystal with respect to advance of the cutting element, which is very unfavorable in the case of a wire saw where the wire ply must be parallel to the geometric single crystal, and secondly not to minimize the cutting length, which is then unfavorable for internal diameter saws by reducing their productivity. In addition, this way of practicing requires regulating the machine table before each cut very precise and in an often dirty industrial environment therefore not very favorable for this type of operation. The setting time of the machine also contributes to lower productivity.

Le document DE-A-27 52 925 décrit un dispositif d'orientation de monocristaux comportant un cadre sur lequel est montée une tête géométrique autorisant des mouvements de rotation autour de trois axes perpendiculaires du monocristal fixé sur cette tête géométrique et le rapprochement du monocristal et d'un support de découpage sur lequel ce monocristal sera fixé. Le dispositif décrit dans ce document permet l'orientation d'un monocristal hors de la machine de découpage, il ne révèle cependant pas de quelle manière le procédé d'orientation devra être effectué pour éviter une position inclinée du monocristal par rapport à la direction de l'avancement des éléments de découpage de la machine.Document DE-A-27 52 925 describes a device orientation of single crystals with a frame on which is mounted a geometric head allowing movements of rotation around three perpendicular axes of the single crystal fixed on this geometric head and the approximation of the single crystal and a cutting support on which this single crystal will be fixed. The device described in this document allows the orientation of a single crystal outside the machine cutting, however, it does not reveal how the orientation process should be carried out to avoid inclined position of the single crystal with respect to the direction of the advancement of the cutting elements of the machine.

La présente invention a pour but de remédier aux inconvénients précités et elle est caractérisée à cet effet en ce que ladite orientation prédéterminée est obtenue en disposant le monocristal sur le dispositif de positionnement de façon qu'un de ses axes géométriques de la forme géométrique du monocristal soit compris dans un plan de référence correspondant au plan de travail de la machine de découpage, en effectuant une rotation du monocristal d'un premier angle prédéterminé d autour dudit axe géométrique pour amener la normale au plan de découpe du monocristal dans ledit plan de référence, et en effectuant une rotation relative entre le support de découpage et le monocristal d'un second angle prédéterminé autour d'un axe perpendiculaire audit plan de référence de façon que la normale au plan de découpe soit orientée suivant une direction de référence correspondant à la normale au plan de découpage de la machine, ledit axe géométrique et la normale au plan de découpe du monocristal étant compris dans ledit plan de référence.The object of the present invention is to remedy the disadvantages mentioned above and it is characterized for this purpose in that that said predetermined orientation is obtained by disposing the single crystal on the positioning device so that a of its geometric axes of the geometric shape of the single crystal is included in a reference plane corresponding to the cutting machine work plan, by rotating the single crystal by a first angle predetermined d around said geometric axis to bring the normal to the cutting plane of the single crystal in said plane of reference, and by performing a relative rotation between the support and the single crystal of a second angle predetermined around an axis perpendicular to said plane of reference so that the normal to the cutting plane is oriented in a reference direction corresponding to the normal to the cutting plane of the machine, said axis geometric and normal to the cutting plane of the single crystal being included in said reference plane.

On remédie ainsi de façon précise au désavantage d'avoir une position du monocristal inclinée par rapport à la direction de l'avancement des éléments de découpage de la machine, ce qui est particulièrement défavorable dans les scies à fils. L'axe géométrique principal du monocristal peut ainsi être orienté parfaitement parallèlement au plan de travail ou à la nappe de fils, on obtient donc une découpe optimale tout en minimisant la longueur de découpe. Il est en outre possible d'obtenir un positionnement et une orientation précise du monocristal dans un environnement de mesure propice, sans qu'il soit nécessaire d'effectuer aucun réglage de positionnement sur la machine de découpe. Les temps d'arrêt de cette dernière peuvent donc être diminués considérablement de manière à augmenter la productivité.This precisely remedies the disadvantage to have an inclined position of the single crystal with respect to the direction of advancement of the cutting elements of the machine, which is particularly unfavorable in saws to son. The main geometric axis of the single crystal can thus be oriented perfectly parallel to the worktop or layer of threads, we therefore obtain an optimal cut while minimizing the cutting length. It is also possible obtain precise positioning and orientation of the single crystal in a suitable measurement environment, without that no adjustment of positioning on the cutting machine. Downtime of the latter can therefore be considerably reduced so as to increase productivity.

Favorablement, le procédé est caractérisé en ce qu'on définit l'orientation du plan de découpe du monocristal par rapport au réseau cristallin, en ce qu'on mesure l'orientation du réseau cristallin par rapport à la forme géométrique du monocristal, et en ce qu'on calcule les premier et second angles de rotation en tenant compte de l'orientation du plan de découpe par rapport au réseau cristallin et par rapport à la forme géométrique du monocristal.Favorably, the process is characterized in that defines the orientation of the cutting plane of the single crystal by relation to the crystal lattice, in that we measure the orientation of the crystal lattice with respect to the geometric shape of the single crystal, and in that we calculate the first and second angles of rotation taking into account the orientation of the plane of cutting with respect to the crystal lattice and with respect to the geometric shape of the single crystal.

Par ces caractéristiques, on obtient une grande précision du positionnement et une rapidité de montage considérable.By these characteristics, great precision is obtained positioning and considerable assembly speed.

Le procédé selon l'invention s'applique particulièrement avantageusement à l'utilisation d'un monocristal dont la forme géométrique est sensiblement cylindrique circulaire, ledit axe géométrique correspondant à l'axe principal du monocristal et en disposant le monocristal sur deux cylindres tournants parallèles du dispositif de positionnement, les axes des deux cylindres étant parallèles audit plan de référence.The method according to the invention is particularly applicable advantageously to the use of a single crystal whose shape geometric is substantially cylindrical circular, said axis geometric corresponding to the main axis of the single crystal and by placing the single crystal on two rotating cylinders axes of the positioning device, the axes of the two cylinders being parallel to said reference plane.

L'invention concerne également un dispositif pour la mise en oeuvre du procédé tel que défini par les caractéristiques figurant à la revendication indépendante 6.The invention also relates to a device for implementation of the process as defined by Features set out in the independent claim 6.

Ces caractéristiques permettent une construction du dispositif de positionnement particulièrement simple et peu onéreuse, tout en assurant une grande précision de découpe.These characteristics allow a construction of the particularly simple and little positioning device expensive, while ensuring high cutting precision.

D'autres avantages ressortent des caractéristiques exprimées dans les revendications dépendantes et de la description exposant ci-après l'invention plus en détail à l'aide de dessins qui représentent schématiquement et à titre d'exemple un mode d'exécution.Other advantages emerge from the characteristics expressed in the dependent claims and the description setting out the invention below in more detail using of drawings which schematically represent example of an execution mode.

La figure 1 illustre en perspective un exemple de monocristal avec ses axes géométriques et cristallographiques et le plan de découpe choisi.Figure 1 illustrates in perspective an example of single crystal with its geometric and crystallographic axes and the chosen cutting plane.

Les figures 2A et 2B illustrent selon deux vues orthogonales la position du monocristal obtenue par un procédé connu et couramment utilisé. Figures 2A and 2B illustrate in two views orthogonal the position of the single crystal obtained by a process known and commonly used.

Les figures 3A et 3B représentent selon deux vues orthogonales la position du monocristal obtenu conformément à la présente invention.Figures 3A and 3B show two views orthogonal the position of the single crystal obtained in accordance with the present invention.

La figure 4 représente un schéma vectoriel des différents référentiels utilisés.Figure 4 shows a vector diagram of the different repositories used.

Les figures 5A, 5B, 5C illustrent les positions occupée par le monocristal en suivant le procédé d'orientation conformément à l'invention.Figures 5A, 5B, 5C illustrate the occupied positions by the single crystal following the orientation process according to the invention.

La figure 6 est une vue en perspective d'un mode d'exécution du dispositif pour la mise en oeuvre du procédé.Figure 6 is a perspective view of a mode of execution of the device for implementing the method.

De façon générale, l'invention donne la possibilité d'installer sur la machine de découpage des monocristaux préorientés dont le plan de découpe est orienté parallèlement au plan de découpage de la machine et tourné selon un axe perpendiculaire (normale au plan de découpage), de manière à minimiser la longueur de découpe. Cette détermination se fera mathématiquement à partir des mesures effectuées pour déterminer l'erreur du monocristal géométrique par rapport au réseau cristallin en y incluant les exigences du procédé subséquent en relation avec les axes cristallins. Le montage du monocristal sur son support pourra se faire alors à l'aide d'un dispositif de positionnement qui autorise la mesure exacte des angles de rotation du monocristal géométrique, et de le monter tel quel sur un support de découpage qui est une pièce avec indexation appartenant à la machine de découpage. Le monocristal peut être bridé ou de préférence collé sur le support, support qui une fois transféré sur la machine de découpage présentera un monocristal parfaitement préorienté prêt à être scier sans ajustement subséquent. De plus, la précision de la découpe sera indépendante de la machine utilisée ou de l'opérateur dans le cas de chaínes de production.In general, the invention gives the possibility to install single crystals on the cutting machine preoriented whose cutting plane is oriented parallel on the cutting plane of the machine and turned according to a perpendicular axis (normal to the cutting plane), so to minimize the cutting length. This determination will be done mathematically from the measurements to determine the error of the geometric single crystal with respect to the crystal lattice including the requirements of the subsequent process in relation to the axes crystalline. The mounting of the single crystal on its support can then be done using a positioning device which allows the exact measurement of rotation angles of the geometric single crystal, and to mount it as which on a cutting support which is a piece with indexing belonging to the cutting machine. The single crystal can be clamped or preferably glued to the support, support which once transferred to the cutting machine will present a perfectly pre-oriented single crystal ready to be sawn without subsequent adjustment. In addition, the cutting precision will be independent of the machine used or the operator in the case of production chains.

Le dispositif de positionnement se présentera sous la forme d'une table ou d'un châssis avec un plateau rotatif ayant son axe de rotation z''' vertical sur lequel est posé le support du monocristal sur lequel il sera ultérieurement fixé. Ce support a un système d'indexation identique à celui de la machine de découpage. Le support du monocristal est une pièce interface entre le dispositif de positionnement et la machine de découpage. Il aura donc la même position sur le dispositif de positionnement et sur la machine de découpage. Au dessus du plateau rotatif mais fixe par rapport à la table se trouve un mécanisme permettant la tenue du monocristal et de le faire tourner selon son axe horizontal x. Ce système est composé dans le cas de monocristaux cylindriques de deux cylindres sur lesquels repose le monocristal. Le monocristal peut alors tourner selon son axe x. Le mouvement du plateau et la rotation du monocristal x permettent de le positionner dans n'importe quelle orientation. La valeur des deux angles de rotation sera déterminée par les exigences du produit terminé et calculé mathématiquement. Une fois les deux rotations effectuées, un mécanisme fait mettre en présence le support avec le monocristal lui-même tout en conservant leur position relative. Ceci peut se faire soit par l'élévation du plateau rotatif soit par l'abaissement du monocristal. Une fois mis en contact le monocristal sera bridé ou collé en position. Le support de monocristal pourra alors être transféré sur la machine de découpage. Le monocristal est alors orienté, prêt à être découpé. Les angles de rotation selon x et z''' sont mesurés par des dispositifs électroniques intégrés tels qu'encodeurs ou mécaniques par verniers par exemple.The positioning device will appear under the shape of a table or frame with a turntable having its vertical axis of rotation z '' 'on which is put the support of the single crystal on which it will be later fixed. This support has an indexing system identical to that of the cutting machine. The support of the single crystal is an interface piece between the device positioning and cutting machine. He will therefore have the same position on the positioning device and on the cutting machine. Above the turntable but fixed relative to the table is a mechanism allowing the single crystal to be held and to rotate it along its horizontal axis x. This system is composed in the case of cylindrical single crystals of two cylinders on which rests the single crystal. The single crystal can then rotate along its x axis. Plate movement and rotation of the single crystal x allow to position it in any orientation. The value of the two angles of rotation will be determined by the requirements of the finished product and calculated mathematically. Once the two rotations performed, a mechanism brings the support with the single crystal itself while retaining their relative position. This can be done either by elevation of the turntable either by lowering the single crystal. Once brought into contact the single crystal will be clamped or glued in position. The single crystal support can then be transferred to the cutting machine. The single crystal is then oriented, ready to be cut. Angles of rotation according to x and z '' 'are measured by devices integrated electronics such as encoders or mechanical by verniers for example.

La figure 1 représente un exemple de monocristal à découper 2 qui possède une forme géométrique cylindrique avec des axes géométriques x,y,z, l'axe x étant l'axe principal. Les axes x',y',z' du réseau cristallin de ce monocristal ne sont pas parallèles aux axes géométriques. Les angles a et f entre les axes y',y et z',z sont déterminés par mesure optique ou aux rayons X et définissent généralement l'erreur de fabrication du monocristal. La figure 1 montre également le plan de découpe 16 choisi ou imposé du monocristal avec ses axes y'' et z'' inclinés des valeurs angulaires p et t par rapport aux axes y', z' du réseau cristallin et la normale x'' au plan de découpe. Les valeurs angulaires p et t sont généralement définies en fonction des nécessités de l'utilisation ultérieure du monocristal découpé. Il est bien entendu que ces angles p et t pourront par exemple être égaux à zéro au cas où l'on désire obtenir des plaquettes de silicium découpées parallèlement au plan.Figure 1 shows an example of a single crystal to be cut 2 which has a cylindrical geometric shape with geometric axes x, y, z, the x axis being the axis main. The axes x ', y', z 'of the crystal lattice of this single crystal are not parallel to the geometric axes. The angles a and f between the axes y ', y and z', z are determined by optical or X-ray measurement and define generally the manufacturing error of the single crystal. The Figure 1 also shows the cutting plane 16 chosen or imposed single crystal with its inclined y '' and z '' axes angular values p and t with respect to the axes y ', z' of the crystal lattice and the normal x '' to the cutting plane. The angular values p and t are generally defined according to the needs of the subsequent use of the cut single crystal. It is understood that these angles p and t could for example be equal to zero in the case where want to get parallel silicon wafers to the plan.

Les figures 2A et 2B représentent en vue latérale et en plan, la position du monocristal 2 obtenue par le procédé connu et couramment utilisé avant la présente invention en effectuant une orientation du monocristal par rotation autour des axes géométriques y et z. Le monocristal 2 n'est alors pas parallèle au plan de la nappe des fils 17 dans le cas de l'utilisation d'une scie à fils comme moyen de découpage. Le plan de machines x''',y''' de la machine de découpage n'est pas parallèle à l'axe géométrique x du monocristal 1. La direction d'avancement selon z''' de la nappe de fils 17 n'est pas perpendiculaire au monocristal, ce qui est préjudiciable pour la qualité de la découpe. FIGS. 2A and 2B show in side view and in plan, the position of the single crystal 2 obtained by the process known and commonly used before the present invention by performing an orientation of the single crystal by rotation around the geometric axes y and z. The single crystal 2 is then not parallel to the plane of the layer of wires 17 when using a wire saw as cutting means. The machine plan x '' ', y' '' of the cutting machine is not parallel to the geometric axis x of the single crystal 1. The direction of advancement according to z '' 'of the ply of wires 17 is not perpendicular to the single crystal, which is detrimental to the quality of the cut.

Les figures 3A et 3B illustrent l'orientation du monocristal obtenu par le procédé conformément à la présente invention en effectuant une orientation du monocristal par rotation autour des axes géométriques x et z'''. La nappe de fils 17 de la scie utilisée comme machine de découpage se trouve dans le plan x'''y''' et l'axe géométrique x du monocristal est parallèle à ce plan x''',y'''. Le monocristal se trouve donc dans une position optimale par rapport aux moyens de découpage, de façon à obtenir une découpe très précise.Figures 3A and 3B illustrate the orientation of the single crystal obtained by the process in accordance with this invention by performing an orientation of the single crystal by rotation around the geometric axes x and z '' '. The tablecloth of wire 17 of the saw used as cutting machine lies in the plane x '' 'y' '' and the geometrical axis x of the monocrystal is parallel to this plane x '' ', y' ''. The single crystal is therefore in an optimal position with respect to to the cutting means, so as to obtain a cutting very precise.

Le schéma vectoriel des divers référentiels utilisés pour le positionnement est représenté à la figure 4 et comprend le référentiel x,y,z lié à la forme géométrique du monocristal, le référentiel x' ,y' ,z' lié au réseau cristallin du monocristal, le référentiel x'',y'',z'' correspondant au plan de découpe du monocristal et le référentiel x''',y''',z''' utilisé pour le dispositif de positionnement et la machine de découpage.The vector diagram of the various reference systems used for positioning is shown in Figure 4 and includes the referential x, y, z linked to the geometric shape of the single crystal, the reference frame x ', y', z 'linked to the network lens of the single crystal, the corresponding reference x '', y '', z '' to the cutting plane of the single crystal and the frame of reference x '' ', y' '', z '' 'used for the positioning device and the cutting machine.

Le plan de découpe correspond au plan y'',z'' et sa normale correspond à la direction x''. Le défaut d'alignement de la forme géométrique du monocristal 2 avec le réseau cristallin est déterminé par les angles a et f, correspondant aux angles y'y et z'z. Les angles p et t correspondant aux angles y''y' et z''z' déterminent l'orientation des plans de découpe choisis par rapport au référentiel du réseau cristallin. La normale x'' au plan de découpe y''z'' définit un vecteur x''(x,y,z) qui fait un angle g avec l'axe géométrique x et la projection du vecteur X''(x,y,z) sur le plan y,z fait un angle d avec y. The cutting plane corresponds to the plane y '', z '' and its normal corresponds to the direction x ''. Misalignment of the geometric shape of the single crystal 2 with the network lens is determined by the angles a and f, corresponding at the angles y'y and z'z. The corresponding angles p and t at the angles y''y 'and z''z' determine the orientation cutting plans chosen in relation to the repository of the crystal lattice. The normal x '' in the plane of cutting y''z '' defines a vector x '' (x, y, z) which makes a angle g with the geometric axis x and the projection of the vector X '' (x, y, z) on the y plane, z makes an angle d with y.

L'angle d correspond donc à l'angle de rotation autour de l'axe géométrique x pour amener la normale x'' au plan de découpe y'',z'' dans un plan de référence correspondant au plan de travail x''',y''' de la machine.The angle d therefore corresponds to the angle of rotation around from the geometric axis x to bring the normal x '' to the plane cutting y '', z '' in a corresponding reference plane on the work plan x '' ', y' '' of the machine.

L'angle g correspond à l'angle de rotation autour de l'axe vertical z''' de façon que la normale x'' au plan de découpe soit orientée suivant une direction de référence correspondant à la normale x''' au plan de découpage y'''z''' de la machine pour faire coïncider le plan de découpe souhaité avec le plan de découpage de la machine de découpage.The angle g corresponds to the angle of rotation around the vertical axis z '' 'so that the normal x' 'to the plane of cutting is oriented in a reference direction corresponding to the normal x '' 'to the cutting plane y '' 'z' '' of the machine to make the cutting plane coincide desired with the cutting plan of the machine cutting.

Les angles d et g peuvent être calculés et la solution mathématique se présentera sous la forme suivante : X' = M(a,f)X avec M(a,f) matrice de rotation pour les angles a,f et X'' = M(t,p)X' avec M(t,p) matrice de rotation pour les angles p,t.The angles d and g can be calculated and the mathematical solution will appear in the following form: X '= M (a, f) X with M (a, f) rotation matrix for angles a, f and X '' = M (t, p) X ' with M (t, p) rotation matrix for the angles p, t.

On en déduit que les deux angles d et g que l'on fera effectuer au monocristal géométrique selon x et z''' seront obtenus par les composantes X''x, X''y, X''z de X'' (x,y,z) dans le repère x''',y''',z''' où X'' est le vecteur normal au plan y'',z'' dans le référentiel machine. d = arctang (X''z/X''y) g = arctang ((sqrt(X"y**2+X"z**2))/X"x) We deduce that the two angles d and g that we will make with the geometric single crystal according to x and z '''will be obtained by the components X''x, X''y, X''z of X''( x, y, z) in the reference x ''',y''', z '''whereX''is the vector normal to the plane y'',z''in the machine reference system. d = arctang (X''z / X''y) g = arctang ((sqrt (X "y ** 2 + X" z ** 2)) / X "x)

Le procédé de positionnement pour obtenir l'orientation optimale représentée aux figures 3A et 3B est décrit plus précisément en référence aux figures 5A, 5B et 5C illustrant trois positions successives. En figure 5A, le monocristal est placé sur le dispositif de positionnement et ses axes géométriques x,y,z sont alignés avec les axes x''',y''',z''' du dispositif d'alignement et de la machine de découpage.The positioning process to obtain orientation optimal shown in Figures 3A and 3B is described more specifically with reference to FIGS. 5A, 5B and 5C illustrating three successive positions. In Figure 5A, the single crystal is placed on the positioning device and its geometric axes x, y, z are aligned with the axes x '' ', y' '', z '' 'of the alignment device and the machine cutting.

On effectue alors une rotation autour de l'axe géométrique X''' ou x de la valeur angulaire d pour amener le vecteur X'' dans le plan x''',y''' (figure 5B). Une rotation d'un angle g du monocristal géométrique selon l'axe z"' amène le vecteur X'' dans une position colinéaire avec l'axe x''' (figure 5C). Après ces deux rotations, le monocristal géométrique x,y,z est orienté parallèlement au plan x''',y''' avec un angle g par rapport à la normale X''' au plan de découpage correspondant aux nécessités du procédé utilisé ultérieurement. Le sciage résultant aura bien les angles t et p par rapport aux axes cristallographies y' et z'. Il est bien entendu que la seconde rotation pourra également être effectuée en tournant le support de découpage d'une angle -g, le monocristal restant immobile comme cela est réalisé dans le mode d'exécution illustré à la figure 6.We then rotate around the geometric axis X '' 'or x of the angular value d to bring the vector X '' in the plane x '' ', y' '' (Figure 5B). A rotation of an angle g of the geometric single crystal along the axis z "'brings the vector X' 'in a collinear position with the x axis' '' (Figure 5C). After these two rotations, the geometric single crystal x, y, z is oriented parallel to the plane x '' ', y' '' with an angle g from the normal X '' 'on the cutting plan corresponding to the needs of the process used later. The resulting sawing will have well the angles t and p with respect to the crystallographic axes y 'and z'. It is understood that the second rotation can also be done by turning the support cutting an angle -g, the single crystal remaining motionless as is done in the embodiment illustrated in figure 6.

Ce dernier est constitué par un dispositif de positionnement 1 qui permet d'orienter le monocristal 2 hors d'une machine de découpage conformément à une orientation prédéterminée par rapport à un support de découpage se présentant sous forme d'un support 3 sur lequel le monocristal sera fixé après orientation adéquate. Le dispositif de positionnement 1 comprend à cet effet une table ou un châssis 5 avec une partie supérieure 6 et une partie inférieure 7.The latter consists of a positioning device 1 which makes it possible to orient the single crystal 2 outside a cutting machine according to an orientation predetermined with respect to a cutting support is having the form of a support 3 on which the single crystal will be fixed after proper orientation. The device positioning 1 includes for this purpose a table or a frame 5 with an upper part 6 and a part lower 7.

Le monocristal 2 est porté par deux cylindres de support 8 montés tournant sur la partie supérieure 6 avec leur axe principal orienté parallèlement à l'axe x. Un organe de mesure angulaire, sous forme d'une encodeur 10 permet de mesurer l'angle de rotation d du monocristal autour de l'axe x.The single crystal 2 is carried by two support cylinders 8 mounted rotating on the upper part 6 with their main axis oriented parallel to the x axis. A angular measuring device, in the form of an encoder 10 used to measure the angle of rotation d of the single crystal around the x axis.

Un plateau rotatif 12 est monté tournant selon l'axe z''' sur la partie inférieure 7 du châssis. Un système de mesure angulaire intégré dans le plateau rotatif 12 permet de mesurer l'angle de rotation g autour de l'axe z'''. Le support 3 est maintenu dans une orientation prédéterminée précise sur le plateau rotatif 12.A rotary plate 12 is mounted to rotate about the axis z '' 'on the lower part 7 of the chassis. A system of angular measurement integrated in the turntable 12 allows measure the angle of rotation g around the z axis' ''. The support 3 is maintained in a predetermined orientation precise on the turntable 12.

Le plateau rotatif 12 est également monté de façon coulissante suivant la direction z''' sur la partie inférieure 7 du châssis afin de pouvoir rapprocher le support 3 du monocristal 2 au moyen d'un mécanisme de levage 14 pour fixer le monocristal 2 sur le support 3. Après fixation, le support 3 et le monocristal 2 peuvent être placés dans la machine de découpage selon une position géométrique prédéterminée de façon que le plan de référence x'''s,y'''s du support 3 corresponde au plan de travail x''',y''' de la machine de découpage et de façon que la perpendiculaire x''' au plan de découpage de la machine soit parallèle à la direction de référence x'''s du support.The rotary plate 12 is also slidably mounted in the direction z '''on the lower part 7 of the chassis in order to be able to bring the support 3 closer to the single crystal 2 by means of a lifting mechanism 14 to fix the single crystal 2 on the support 3. After fixing, the support 3 and the single crystal 2 can be placed in the cutting machine according to a predetermined geometric position so that the reference plane x ''' s , y''' s of the support 3 corresponds to the plane x ''',y''' of the cutting machine and so that the perpendicular x '''to the cutting plane of the machine is parallel to the reference direction x''' s of the support.

Ainsi le procédé et le dispositif décrits permettent le positionnement d'un monocristal sur un support hors de la machine de découpage de telle manière que le monocristal, une fois monté avec son support sur une machine de découpage, soit découpé avec une orientation donnée des axes cristallins par rapport au plan de sciage. De plus, la position d'un monocristal cylindrique est telle que les génératrices de celui-ci se trouvent placées parallèlement à la nappe de fils 17 dans le cas d'une scie à fils ou parallèlement à la direction du mouvement définissant l'épaisseur des tranches s'il s'agit d'une découpe avec came. On mesure pour ceci l'orientation du réseau cristallin par rapport à la forme géométrique du monocristal optiquement ou au moyen de rayons X. Le dispositif de positionnement ou le support de découpage pourront à cet effet avantageusement être agencés pour pouvoir être montés sur un générateur de rayons X de façon que le positionnement du monocristal puisse être effectué et contrôlé simultanément. L'orientation du plan de découpe y'',z'' par rapport au réseau cristallin x',y,'z' étant imposée par l'application ultérieure, les valeurs des deux angles de rotation du monocristal d selon l'axe x et g selon l'axe z''' du dispositif de positionnement sont déterminés mathématiquement. Une fois les deux rotations réalisées selon les valeurs calculées, le monocristal se trouvera dans la position recherchée pour la machine de découpage, à savoir perpendiculairement à l'avance de la découpe ayant en plus son plan de découpe parallèle à celui de la machine. Le dispositif de positionnement permettra la fixation du monocristal soit par bridage soit par collage sur un support préindexé par rapport à la machine de découpage. En outre, l'orientation donnée par le procédé minimise dans le cas de monocristaux cylindriques la longueur de sciage. La machine de découpage ne nécessite donc aucun dispositif de réglage pour assurer une découpe selon les spécifications angulaires requises après le transfert du monocristal sur son support de découpage et de celui-ci dans la machine de découpage. La nappe de fils d'une scie à fils demeure parallèle au monocristal géométrique durant toute la découpe tout en assurant une orientation adéquate des tranches ainsi produites. De même, la lame de scie d'une machine à lames demeure perpendiculaire au monocristal.Thus the process and the device described allow positioning of a single crystal on a support outside the cutting machine in such a way that the single crystal, once mounted with its support on a cutting, or cut with a given orientation of crystalline axes with respect to the saw plane. Moreover, the position of a cylindrical single crystal is such that the generators of it are placed parallel to the ply of wires 17 in the case of a wire saw or parallel to the direction of movement defining the thickness slices if it is a cam cut. For this, the orientation of the crystal lattice is measured by relation to the geometric shape of the single crystal optically or by means of X-rays. The positioning device or the cutting support can advantageously for this purpose be arranged to be able to be mounted on a generator X-rays so that the positioning of the single crystal can be carried out and checked simultaneously. The orientation of the cutting plane y '', z '' relative to the crystal lattice x ', y,' z 'being imposed by the application the values of the two angles of rotation of the single crystal d along the x axis and g along the z axis' '' of the positioning device are determined mathematically. Once the two rotations performed according to the values calculated, the single crystal will be in the position sought for the cutting machine, namely perpendicular to the cutting advance having in addition its cutting plane parallel to that of the machine. The positioning device will allow the fixing of the single crystal either by clamping or by gluing on a support pre-indexed in relation to the cutting machine. In moreover, the orientation given by the process minimizes in the case of cylindrical single crystals sawing length. The cutting machine therefore requires no device adjustment to ensure cutting according to specifications required after transfer of the single crystal on its cutting support and this one in the cutting machine. The wire table of a wire saw remains parallel to the geometric single crystal throughout cutting while ensuring proper orientation of slices thus produced. Likewise, the saw blade of a blade machine remains perpendicular to the single crystal.

Il est bien entendu que le mode de réalisation décrit ci-dessus ne présente aucun caractère limitatif et qu'il peut recevoir toutes modifications désirables à l'intérieur du cadre tel que défini par la revendication 1. En particulier, les deux angles de rotation autour des axes x et z''' pourraient être remplacés par des angles pris et calculés par rapport à d'autres référentiels géométriques et cristallographiques, mais qui aboutissent au même résultat que la normale au plan de découpe du monocristal est orientée dans une direction de référence correspondant à la normale au plan de découpage de la machine et qu'un axe géométrique prédéterminé du monocristal et la normale au plan de découpe sont compris dans un plan de référence correspondant au plan de travail de la machine. De même, le plan de découpe pourra être déterminé par d'autres angles que p et t par rapport au réseau cristallin et le décalage du réseau cristallin par rapport à la forme géométrique du monocristal pourra être indiqué par d'autres angles mesurés que a et f.It is understood that the embodiment described above is in no way limiting and that can receive any desirable modifications inside of the framework as defined by claim 1. In particular, the two angles of rotation around the x axes and z '' 'could be replaced by angles taken and calculated in relation to other geometric reference systems and crystallographic, but which lead to the same result than normal to the cutting plane of the single crystal is oriented in a corresponding reference direction normal to the cutting plane of the machine and that predetermined geometric axis of the single crystal and the normal on the cutting plane are included in a reference plane corresponding to the work plan of the machine. Likewise, the cutting plane can be determined by others angles that p and t with respect to the crystal lattice and the offset of the crystal lattice from the geometric shape of the single crystal may be indicated by others angles measured as a and f.

Les deux cylindres de support 8 pourraient être remplacés par d'autres moyens pour supporter le monocristal et pour effectuer une rotation du monocristal tel que par exemple un seul support dans ou sur lequel le monocristal est fixé temporairement et qui est monté tournant sur la table ou le châssis. Ce support de rotation pourrait être agencé à une ou à deux extrémités opposées du monocristal. La rotation relative entre le monocristal et le support de découpage autour de l'axe z"' pourrait également être obtenu en effectuant une rotation du monocristal par rapport au support de découpage qui resterait immobile sur la table ou le châssis du dispositif de positionnement. Le plateau rotatif serait alors remplacé par un organe rotatif selon z"' et portant le support temporaire du monocristal.The two support cylinders 8 could be replaced by other means to support the single crystal and to rotate the single crystal such as by example a single support in or on which the single crystal is temporarily fixed and which is rotatably mounted on the table or chassis. This rotation support could be arranged at one or two opposite ends of the single crystal. The relative rotation between the single crystal and the support cutting around the z axis "'could also be obtained by rotating the single crystal with respect to to the cutting support which would remain stationary on the table or chassis of the positioning device. The rotary table would then be replaced by a rotary member according to z "'and carrying the temporary support of the single crystal.

Les organes de mesures angulaires pourraient être électroniques, optiques ou mécaniques.The angular measurement organs could be electronic, optical or mechanical.

Le rapprochement ou la mise en contact du monocristal et du support de découpage pourraient être effectués par le bas ou par le haut et en déplaçant soit le support de découpage soit le monocristal.The approximation or bringing into contact of the single crystal and cutting support could be made by from the bottom or from the top and by moving either the cutting is the single crystal.

Les rotations autour des deux axes horizontal et vertical x,z"' pourraient être interverties dans le temps en effectuant d'abord la rotation autour de l'axe z"' et ensuite la rotation autour de l'axe horizontal x.Rotations around the two horizontal and vertical axes x, z "'could be inverted over time by first performing the rotation around the z axis "'and then rotation around the horizontal axis x.

Le procédé et le dispositif pourraient également être utilisés pour le découpage orienté de monocristaux de toute autre forme géométrique.The method and the device could also be used for the oriented cutting of single crystals any other geometric shape.

Claims (7)

  1. A process for the orientation of a single crystal (2) for its cutting in a cutting machine (17) along a predetermined cutting plane (y",z"), comprising orienting a single crystal (2) by means of a positioning device (1) outside the cutting machine according to a predetermined orientation relative to a cutting support (3), securing the single crystal (2) in said predetermined orientation on the cutting support (3) whose emplacement in the cutting machine (17) is geometrically defined relative to a cutting plane (y"',z"') perpendicular to a working plane (x"',y"') of the cutting machine (17), and placing the cutting support (3) after securement of the single crystal in the cutting machine (17) according to said geometrically defined position, characterized by the fact that said predetermined orientation is obtained by positioning the single crystal (2) on the positioning device (1) such that one of its geometric axes (x) of the geometric shape (x,y,z) of the single crystal is included in a reference plane corresponding to the working plane (x"',y"') of the cutting machine (17), by causing a rotation of the single crystal through a first predetermined angle (d) about said geometric axis (x) to bring the normal (x") to the cutting plane (y",z") of the single crystal into said reference plane, and by effecting a relative rotation between the cutting support (3) and the single crystal through a second predetermined angle (g) about an axis (z"') perpendicular to said reference plane such that the normal (x") to the cutting plane (y",z") is oriented in a reference direction corresponding to the normal to the cutting plane (y"',z"') of the machine, said geometric axis (x) and the normal (x") to the cutting plane of the single crystal (2) lying in said reference plane.
  2. A process according to claim 1, characterized by the fact that the first and second angles of rotation (d,g) are determined mathematically.
  3. A process according to claim 2, characterized by the fact that the orientation of the cutting plane (y",z") of the single crystal is defined relative to the crystal lattice (x',y',z'), the orientation of the crystal lattice (x',y',z') relative to the geometric shape (x,y,z) of the single crystal is measured, and the first and second angles of rotation (d,g) are calculated having regard for the orientation of the cutting plane (y",z") relative to the crystal lattice (x',y',z') and relative to the geometric shape (x,y,z) of the single crystal.
  4. A process according to claim 4, characterized by the fact that the orientation of the crystal lattice (x',y',z') relative to the geometric shape (x,y,z) is determined optically or by means of X-rays.
  5. A process according to one of the claims 1 to 4, characterized by the fact that a single crystal (2) is used whose geometric shape is substantially circular cylindrical, said geometric axis (x) corresponding to the principal axis of the single crystal, and by the fact that the single crystal is placed on two parallel rotating cylinders (8) of the positioning device (1), the axes of the two cylinders (8) being parallel to said reference plane.
  6. A device for implementing the process according to one of the preceding claims, characterized by the fact that it comprises
    a positioning set with a cutting support (3) and a positioning device (1) adapted to orient the single crystal (2) outside the cutting machine according to a predetermined orientation relative to the cutting support (3) to which the single crystal is adapted to be secured and whose emplacement in the cutting machine is geometrically defined and whose principal axis (x"'s,y"'s) are parallel to the axes (x"',y"') of the cutting machine,
    first means (8) to support the single crystal and to effect a rotation of the single crystal,
    second means (12) to effect a relative rotation between the cutting support (3) and the single crystal (2),
    third means (14) to effect a relative translatory movement between the single crystal (2) and the cutting support (3) adapted to approach the cutting support (3) and the single crystal (2) so as to secure the latter on the cutting support in said predetermined orientation,
    said first means comprising two parallel cylindrical supports rotatably mounted on a frame (5) of the positioning device (1) and arranged so as to support the single crystal (2), and a first angular measurement member (10) adapted to determine a first predetermined angle of rotation (d),
    said second means comprising a rotatable plate (12) mounted rotatably relative to said frame (5) and whose principal plane is parallel to said axes of said cylindrical supports (8), this rotatable plate (12) being arranged to maintain the cutting support (3) in a defined geometric position, a second angular measurement member being provided to determine a second predetermined angle of rotation (g),
    said third means comprising a translatory mechanism (14) permitting bringing together the cutting support (3) and the single crystal (2),
    said first means permitting to support the single crystal in such an orientation that one of the geometric axes (x) of the geometric shape (x,y,z) of the single crystal is included in a reference plane corresponding to the working plane (x"',y"') of the cutting machine,
    said first means permitting to effect a rotation of the single crystal through a first predetermined angle (d) about said geometric axis (x) to bring the normal (x") to the cutting plane (y",x") of the single crystal into said reference plane,
    said second means permitting to effect a relative rotation between the cutting support and the single crystal through a second predetermined angle (g) about an axis (z"') perpendicular to said reference plane such that the normal (x") to the cutting plane (y",z") is oriented in a reference direction corresponding to the normal to the cutting plane (y"',z"') of the machine,
    said first angular measuring member being adapted to determine the first predetermined angle of rotation (d),
    said second angular measuring member being provided to determine said second angle of rotation (g),
    said cutting support (3) being so shaped that its positioning within the cutting machine is achieved according to a predetermined geometric position corresponding to the geometric position defined on said rotatable plate such that the reference plane and the reference direction correspond to the working plane (x"',y"') and to the normal (x"') of the cutting plane of the machine.
  7. A device according to claim 6, characterized by the fact that the cutting support (3) or the positioning device (1) are adapted to be mounted on an X-ray generator.
EP96105699A 1995-04-22 1996-04-11 Method for orienting monocrystals for cutting in a cutting machine and device for performing the method Expired - Lifetime EP0738572B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH113695 1995-04-22
CH113695A CH690423A5 (en) 1995-04-22 1995-04-22 Monocrystal positioning procedure for cutting, e.g. for optical applications or semi-conductors
CH113595A CH690422A5 (en) 1995-04-22 1995-04-22 Monocrystal positioning procedure for cutting, e.g. for optical applications or semi-conductors
CH113595 1995-04-22
CH1136/95 1995-04-22
CH1135/95 1995-04-22

Publications (2)

Publication Number Publication Date
EP0738572A1 EP0738572A1 (en) 1996-10-23
EP0738572B1 true EP0738572B1 (en) 2004-01-21

Family

ID=25686755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96105699A Expired - Lifetime EP0738572B1 (en) 1995-04-22 1996-04-11 Method for orienting monocrystals for cutting in a cutting machine and device for performing the method

Country Status (4)

Country Link
US (1) US5720271A (en)
EP (1) EP0738572B1 (en)
JP (1) JPH08294914A (en)
DE (1) DE69631353T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581976B (en) * 2012-03-14 2015-04-29 浙江昀丰新能源科技有限公司 Crystal processing orientation device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW355151B (en) * 1995-07-07 1999-04-01 Tokyo Seimitsu Co Ltd A method for cutting single chip material by the steel saw
US6024814A (en) * 1995-11-30 2000-02-15 Nippei Toyama Corporation Method for processing ingots
JP3397968B2 (en) * 1996-03-29 2003-04-21 信越半導体株式会社 Slicing method of semiconductor single crystal ingot
CH691045A5 (en) * 1996-04-16 2001-04-12 Hct Shaping Systems Sa A method for the orientation of several crystalline parts placed side by side on a cutting support for a simultaneous cutting in a cutting machine and device for
CH692331A5 (en) * 1996-06-04 2002-05-15 Tokyo Seimitsu Co Ltd Wire saw and cutting method using the same.
CA2220776A1 (en) * 1996-11-13 1998-05-13 Allen Sommers Eccentric grinder loading system
JPH10160688A (en) * 1996-12-04 1998-06-19 Rigaku Corp Method and device for x-ray topography of single crystal ingot
JP3137600B2 (en) * 1997-09-12 2001-02-26 株式会社日平トヤマ Workpiece crystal orientation adjustment method
DE19825050C2 (en) * 1998-06-04 2002-06-13 Wacker Siltronic Halbleitermat Method for arranging and orienting single crystals for cutting off wafers on a wire saw having a wire frame
DE19825051A1 (en) * 1998-06-04 1999-12-09 Wacker Siltronic Halbleitermat Method and device for producing a cylindrical single crystal and method for separating semiconductor wafers
US6055293A (en) * 1998-06-30 2000-04-25 Seh America, Inc. Method for identifying desired features in a crystal
US6106365A (en) * 1998-11-06 2000-08-22 Seh America, Inc. Method and apparatus to control mounting pressure of semiconductor crystals
JP4659326B2 (en) 2000-05-31 2011-03-30 エムイーエムシー・エレクトロニック・マテリアルズ・ソシエタ・ペル・アチオニ Wire saw and process for slicing multiple semiconductor ingots
DE10052154A1 (en) * 2000-10-20 2002-05-08 Freiberger Compound Mat Gmbh Method and device for separating single crystals, adjusting device and test method for determining an orientation of a single crystal for such a method
US6659976B2 (en) * 2001-04-16 2003-12-09 Zevek, Inc. Feeding set adaptor
US6760403B2 (en) 2001-10-25 2004-07-06 Seh America, Inc. Method and apparatus for orienting a crystalline body during radiation diffractometry
US7027557B2 (en) * 2004-05-13 2006-04-11 Jorge Llacer Method for assisted beam selection in radiation therapy planning
WO2006061043A1 (en) * 2004-12-10 2006-06-15 Freiberger Compound Materials Gmbh Workpiece holder and method for wire sawing
KR20100094484A (en) * 2007-12-19 2010-08-26 아사히 가라스 가부시키가이샤 Ether composition
DE102010010886A1 (en) * 2010-03-10 2011-09-15 Siltronic Ag Process for processing a semiconductor wafer
US8259901B1 (en) 2010-05-25 2012-09-04 Rubicon Technology, Inc. Intelligent machines and process for production of monocrystalline products with goniometer continual feedback
EP2520401A1 (en) * 2011-05-05 2012-11-07 Meyer Burger AG Method for fixing a single-crystal workpiece to be treated on a processing device
DE102012210047A1 (en) * 2012-06-14 2013-12-19 Crystal-N Gmbh Process for cutting a single crystal
CN103171059B (en) * 2013-03-07 2015-02-25 贵阳嘉瑜光电科技咨询中心 Clamp for real-time crystal orientation measurement of sapphire processing and measuring method thereof
US9682495B2 (en) * 2013-09-30 2017-06-20 Gtat Corporation Method and apparatus for processing sapphire
CN104493982A (en) * 2014-12-30 2015-04-08 南京铭品机械制造有限公司 Numerical control wire saw processing machine
CN107020706B (en) * 2017-04-27 2018-08-07 桂林电子科技大学 A kind of small size monocrystalline orientation fixture
DE102018221922A1 (en) * 2018-12-17 2020-06-18 Siltronic Ag Method for producing semiconductor wafers using a wire saw, wire saw and semiconductor wafer made of single-crystal silicon
CN110216801A (en) * 2019-07-09 2019-09-10 南通友拓新能源科技有限公司 A kind of method for cutting silicon chips of size adjustable
CN112760617B (en) * 2020-12-30 2023-04-07 上海埃延半导体有限公司 Non-metal reaction chamber for chemical vapor deposition and use method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL213347A (en) * 1955-12-30
DE2752925A1 (en) * 1977-11-26 1979-05-31 Philips Patentverwaltung Monocrystal alignment and securing equipment suspends in mounting above base aligned with chamber support axis
GB8325544D0 (en) * 1983-09-23 1983-10-26 Howe S H Orienting crystals
JP2673544B2 (en) * 1988-06-14 1997-11-05 株式会社日平トヤマ Cutting method for brittle materials
WO1990005053A1 (en) * 1988-11-03 1990-05-17 Photec Industrie S.A. Abrasion-type splitting unit
JP2883667B2 (en) * 1990-03-07 1999-04-19 理学電機株式会社 Single crystal ingot crystal orientation measurement system
JPH0820384B2 (en) * 1991-02-19 1996-03-04 信越半導体株式会社 Method and apparatus for detecting OF orientation of single crystal
JP2516717B2 (en) * 1991-11-29 1996-07-24 信越半導体株式会社 Wire saw and its cutting method
JP3205402B2 (en) * 1992-09-09 2001-09-04 東芝アイティー・コントロールシステム株式会社 Method and apparatus for determining crystal orientation
JPH06229953A (en) * 1993-02-04 1994-08-19 Rigaku Corp Device for measuring crystal lattice face of single-crystalline material
JP2755907B2 (en) * 1994-06-28 1998-05-25 信越半導体株式会社 Groove roller for wire saw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581976B (en) * 2012-03-14 2015-04-29 浙江昀丰新能源科技有限公司 Crystal processing orientation device

Also Published As

Publication number Publication date
US5720271A (en) 1998-02-24
EP0738572A1 (en) 1996-10-23
JPH08294914A (en) 1996-11-12
DE69631353T2 (en) 2004-12-09
DE69631353D1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
EP0738572B1 (en) Method for orienting monocrystals for cutting in a cutting machine and device for performing the method
EP0802029B1 (en) Method for orienting plural single crystal rods on a support in view of cutting up the rods simultaneously in a cutting machine and device for carrying out the method
FR2874263A1 (en) METHOD AND DEVICE FOR MEASURING, ORIENTATION AND FIXING AT LEAST ONE MONOCRYSTAL
FR2690012A1 (en) Method for adjusting a continuously tunable light source
EP0750172B1 (en) Caliper gage for calibrating a reading apparatus of a spectacle frame shape and calibrating method therefore
EP1095744A1 (en) Plates punching machine
TWM549782U (en) Ingot slicing apparatus and adjusting device thereof
EP0581671A1 (en) Method for coupling an optical fiber and an optical component on a single substrate
FR2962231A1 (en) METHOD FOR ALIGNING AND FIXING AN OPTICAL FIBER COUPLED WITH AN OPTOELECTRONIC COMPONENT
FR2902683A1 (en) PROCESS AND MACHINING MACHINE FOR OPTICAL OBJECT
EP1945995B1 (en) System for positioning a component, adjusting tooling and adjustment method
CH690422A5 (en) Monocrystal positioning procedure for cutting, e.g. for optical applications or semi-conductors
FR2685239A1 (en) Machine for machining workpieces from very long sections
FR2577318A1 (en) LAUNDRY ROOM
EP0334751B1 (en) Method and device for cleaving a silicon wafer
FR2596154A1 (en) DEVICE FOR MEASURING THE ORIENTATION OF MONOCRYSTALLINE MASSIVE MATERIALS BY THE LAUNE METHOD
EP0011012B1 (en) Device to centre an optical fibre in a ferrule and ferrule with an optical fibre centred by this device
CH690423A5 (en) Monocrystal positioning procedure for cutting, e.g. for optical applications or semi-conductors
EP1801627A2 (en) Assembly comprising an ophthalmic lens and a support, and method using same
FR2621667A1 (en) Device for adjusting the position of an intermediate (lay) shaft with respect to two end shafts, in particular for a step down/step up gear assembly
EP1062670B1 (en) Method for assembling an optical array comprising coaxial shells
JP2001272359A (en) Monocrystal ingot processing device and its method
FR2481980A1 (en) MACHINE FOR CORRECTING HARD MATERIALS, ESPECIALLY QUARTZ
FR2755298A1 (en) METHOD AND DEVICE FOR THE PRECISE POSITIONING OF SINGLE CRYSTALLINE OBJECTS IN RELATION TO OTHERS BASED ON THEIR CRYSTALLOGRAPHIC PLANS
FR3071327B1 (en) METHOD AND SYSTEM FOR ALIGNING THE OPTICAL AXIS OF AN OPTICAL CABLE WITH AN OPTOELECTRONIC COMPONENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19970121

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HCT SHAPING SYSTEMS SA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAUSER, CHARLES

17Q First examination report despatched

Effective date: 20010430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69631353

Country of ref document: DE

Date of ref document: 20040226

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041022

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110421

Year of fee payment: 16

Ref country code: FR

Payment date: 20110510

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110421

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110422

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120411

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69631353

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101