EP0723106A1 - Verfahren zur Herstellung von kaltem Gas - Google Patents

Verfahren zur Herstellung von kaltem Gas Download PDF

Info

Publication number
EP0723106A1
EP0723106A1 EP19950108739 EP95108739A EP0723106A1 EP 0723106 A1 EP0723106 A1 EP 0723106A1 EP 19950108739 EP19950108739 EP 19950108739 EP 95108739 A EP95108739 A EP 95108739A EP 0723106 A1 EP0723106 A1 EP 0723106A1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
heat exchange
liquid
exchange unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19950108739
Other languages
English (en)
French (fr)
Other versions
EP0723106B1 (de
Inventor
Georg Veranneman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0723106A1 publication Critical patent/EP0723106A1/de
Application granted granted Critical
Publication of EP0723106B1 publication Critical patent/EP0723106B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/061Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure

Definitions

  • the invention relates to a method for producing temperature-defined, cold gas by indirect heat exchange with a cryogenic, liquefied medium.
  • a problem here is that especially when using low-cost liquid nitrogen as a cooling medium - the liquid nitrogen temperature at 2 bar pressure is approximately - 190 ° C - other gases (Ar, O 2 , air, ..) and also Nitrogen can be liquefied even in unfavorable operating situations, e.g. at higher consumption gas pressures or at times the gas consumption is at a standstill, and malfunctions based on this can occur during operation.
  • the cold gas to be produced is cooled by indirect heat exchange, in particular with its cryogenic liquefied form, the gas being set beforehand to a fixed base pressure p B and brought to the same pressure level in indirect heat exchange with the liquefied form , the liquid state in turn being kept at a second pressure p 2 , which is higher than the base pressure, and the associated boiling temperature.
  • liquid oxygen set at 12 bar is at the boiling point at 123 K (-150 ° C), while O 2 gas set at 10 bar only liquefies at 120 K (-153 ° C).
  • the cooling is preferably carried out to such an extent that the gas assumes the temperature of the cooling liquid phase. In this way, a very precise maintenance of the intended cold gas temperature is achieved.
  • the liquid gas that is also used as the cold gas is used as the coolant. This results in the possibility of adding the coolant to the gas to be cooled after its use in cooling the gas and ultimately its evaporation, and thus to achieve double use.
  • the liquid gas which has the highest liquefaction point in the mixture must be used for the cooling process by indirect heat exchange.
  • a nitrogen-oxygen mixture for example, oxygen.
  • a particular advantage of the invention is that it can easily be used to produce a cold gas which is directly adjacent to the vapor pressure curve of the respective medium with regard to its temperature.
  • the p 2 pressure level is to be set, for example, only 0.5 bar, but preferably 1 to 3 bar, above the base pressure level. Even in this operating situation there is no risk of liquefaction of the gas to be cooled.
  • the O 2 cold gas supply system shown in FIG. 1 has a liquid oxygen tank 1, which is connected via a connecting line 2 connected to the bottom to a heat exchange unit 4, consisting of a container with an internal pipe coil 7.
  • a valve 3 for switching the flow of liquid oxygen from the storage tank 1 to the heat exchange unit 4 is arranged in the connecting line 2.
  • the valve 3 is connected to a level meter 5 located on the container of the heat exchange unit 4 and both elements, ie valve 3 and level meter 5, keep the level of the liquid oxygen in the heat exchange unit 4 at a desired level.
  • a pressure regulator 6, which regulates the pressure in the heat exchange unit 4, is connected to the gas space of the heat exchange unit 4 that arises above.
  • the gas to be removed from the heat exchange unit 4 at excess pressure is fed to the coil 7, for which purpose a connecting line 9 is provided between the pressure regulator 6 and the coil 7.
  • the pipe coil 7, on the other hand, is supplied with gaseous (!) Oxygen via a feed line 10, a pressure regulator 8 arranged therein setting the base pressure p B required according to the invention, which is lower than the pressure in the heat exchange unit.
  • the oxygen gas supplied via line 10 can be of different origins in accordance with the system diagram shown; it can either also have been removed from the storage container 1 and brought into the gaseous state by means of an evaporator 11, or it can also come from another oxygen source - for example an adsorptive or permeative air separator.
  • a pressure level of 2 bar is set in the pipe coil 7 by means of the pressure regulator 8.
  • this pressure is referred to as the base pressure p B.
  • the liquefaction point of oxygen is at a temperature of 97 K (-176 ° C).
  • a suitable pressure setting for the heat exchanger unit 4, starting from this base pressure P B is a pressure p 2 , which is 1 to approx. 20 bar higher for example in a pressure setting of 12 bar. This pressure setting is carried out by means of the control valve 6.
  • the condensing temperature of oxygen at 2 bar pressure is - as already stated - 97 K, and with this setting of the heat exchange unit 7 it is therefore only possible to reach a temperature of 123 K (-150 ° C) (123 K is the cooling limit at 12 bar ).
  • the liquefaction temperature of the oxygen would be 125 K and the consumption gas thus provided could be one Heat exchanger temperature of 123 K thus condensed and thus an operational malfunction can be caused. This is very advantageously avoided with the system presented here and the settings mentioned.
  • the method can also be used with pure media other than oxygen, e.g. with nitrogen and argon.
  • oxygen as the cooling medium
  • any other gas which boils deeper than oxygen, and in particular also low-boiling oxygen-containing gas mixtures with settings such as those associated with oxygen, are advantageously and reliably cooled can.
  • Corresponding media are, for example, nitrogen, argon, but also dry air, helium, hydrogen and mixtures thereof. The same possibilities as with oxygen - but at a higher temperature level - also arise with cryogenic and liquid carbon dioxide. The temperature range that can be achieved is -25 to -56 ° C.
  • Cold gas obtained in this way can be used for all known applications such as blown film and strip cooling, cold gas polishing and therapeutic purposes (see documents mentioned at the beginning) as well as for new possibilities - such as cold gas freshening for the present invention, for which a patent has been applied for, or for flame cutting workpieces with cold oxygen.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von temperaturdefiniertem, kaltem Gas durch indirekten Wärmetausch mit einem tiefkalten, verflüssigt vorliegenden Medium. Das Verfahren weist das Kennzeichen auf, daß das herzustellende, kalte Gas durch indirekten Wärmetausch insbesondere mit seiner tiefkalt verflüssigten Form abgekühlt wird, wobei das Gas vorab auf einen festgelegten Basisdruck pB eingestellt wird und auf eben diesem Druckniveau in indirekten Wärmetausch mit der verflüssigten Form gebracht wird, wobei wiederum die flüssige Zustandsform auf einem zweiten, im Vergleich zum Basisdruck erhöhten Druck p2 und der zugehörigen Siedetemperatur gehalten wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von temperaturdefiniertem, kaltem Gas durch indirekten Wärmetausch mit einem tiefkalten, verflüssigt vorliegenden Medium.
  • Es ist beispielsweise bekannt, kaltes Gas aus dem zugehörigen tiefkalten Flüssiggas durch verdampfen und partielles Anwärmen bereitzustellen (siehe DE-PS 41 34 108, insbes. Figur). Hierbei ist es schwierig, die Temperatur des erhaltenen Gases in engeren Grenzen einzustellen, da sich beispielsweise abhängig von der Verbrauchsmenge oder der Umgebungstemperatur die Verdampfungs- und Erwärmungsbedingungen ändern.
    Ebenso bekannt ist es, kaltes Gas durch Vermischen mit tiefkaltem Flüssiggas herzustellen (DE-OS 32 42 881). Eine bekannte Möglichkeit insbesondere auch zur Erzeugung tiefkalter Gasströme besteht auch in einer Abkühlung in indirektem Wärmetausch mit einem tiefkalten Flüssiggas (vgl. DE-PS 38 27 417). Ein Problem dabei besteht darin, daß gerade bei der Anwendung von besonders preiswert verfügbarem, tiefkaltem Flüssigstickstoff als Kühlmedium - die Flüssigstickstofftemperatur bei 2 bar Druck beträgt ca. - 190°C - andere Gase (Ar, O2, Luft,..) und auch Stickstoff selbst in ungünstigen Betriebssituationen, z.B. bei höheren Verbrauchsgasdrücken oder zeitweise ruhendem Gasverbrauch, verflüssigt werden und somit darauf begründete Störungen im Betrieb auftreten können.
  • Aufgabenstellung der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung von kaltem Gas auf der Basis eines indirekten Wärmetausches mit einem tiefkalten Flüssiggas anzugeben, das auf möglichst aufwandsarme und einfache Weise eine betriebssichere und auch temperaturgenaue Bereitstellung von Kaltgas ergibt.
  • Diese Aufgabenstellung wird erfindungsgemäß dadurch gelöst, daß das herzustellende, kalte Gas durch indirekten Wärmetausch insbesondere mit seiner tiefkalt verflüssigten Form abgekühlt wird, wobei das Gas vorab auf einen festgelegten Basisdruck pB eingestellt wird und auf eben diesem Druckniveau in indirekten Wärmetausch mit der verflüssigten Form gebracht wird, wobei wiederum die flüssige Zustandsform auf einem zweiten, im Vergleich zum Basisdruck erhöhten Druck p2 und der zugehörigen Siedetemperatur gehalten wird.
  • Durch die erfindungsgemäße Maßgabe für die Drücke von Gas und Flüssiggas der selben Art wird verhindert, daß in irgendeiner Betriebssituation eine Verflüssigung des gasförmigen Mediums beim Wärmetausch auftreten kann. Solange der flüssige Zustand des Mediums auf einem höheren Druckniveau als der gasförmige ist, kann das entsprechende, am Siedepunkt befindliche Flüssiggas das niedriger gespannte Gas nicht kondensieren. Beispielsweise befindet sich auf 12 bar eingestellter Flüssigsauerstoff bei 123 K (-150°C) am Siedepunkt, während auf 10 bar eingestelltes O2-Gas sich erst bei 120 K (-153°C) verflüssigt.
  • Bevorzugt wird erfindungsgemäß die Abkühlung soweit geführt, daß das Gas die Temperatur der kühlenden Flüssigphase annimmt. Auf diese Weise wird eine sehr genaue Einhaltung der beabsichtigen Kaltgastemperatur erzielt.
  • Generell ergibt sich gemäß der Erfindung der Umstand, daß als Kühlmittel dasjenige Flüssiggas eingesetzt wird, das auch als Kaltgas zur Anwendung kommt. Daraus ergibt sich die Möglichkeit, das Kühlmittel nach seinem Einsatz beim Abkühlen des Gases und letzlich seiner Verdampfung dem abzukühlenden Gas hinzuzufügen und so eine Doppelnutzung zu erzielen.
  • Handelt es sich um ein Gasgemisch aus dem Kaltgas gebildet werden soll, so ist für den Abkühlprozeß durch indirekten Wärmetausch dasjenige Flüssiggas einzusetzen, das im Gemisch den höchsten Verflüssigungspunkt besitzt. Im Falle eines Stickstoff-Sauerstoff-Gemisches also beispielsweise Sauerststoff.
  • Ein besonderer Vorteil der Erfindung besteht darin, daß es mit ihr problemlos gelingt, ein Kaltgas, das hinsichtlich seiner Temperatur unmittelbar benachbart zur Dampfdruckkurve des jeweiligen Mediums liegt, herzustellen. Hierzu ist das p2-Druckniveau beispielsweise lediglich 0,5 bar, vorzugsweise jedoch 1 bis 3 bar, über dem Basisdruckniveau einzustellen. Auch in dieser Betriebssituation ist keinerlei Gefahr einer Verflüssigung des abzukühlenden Gases vorhanden.
  • Eine erfindungsgemäße Vorrichtung ist gekennzeichnet durch
    • einen Flüssiggasspeichertank, der über eine Flüssiggasleitung mit einer, aus einem Behälter mit innenliegendem Wärmetauscher bestehenden, Wärmetauscheinheit verbunden ist,
    • einen Pegelstandsregler für Flüssiggas am Behälter der Wärmetauscheinheit,
    • einem am Behälter der Wärmetauscheinheit kopfseitig angeschlossenen Druckregler,
    • eine Gaszuleitung, die den innenliegenden Wärmetauscher mit einer Gasquelle verbindet, und durch einen Druckregler, der sich in dieser Gaszuleitung befindet.
  • Im folgenden wird die Erfindung an einem Ausführungsbeispiel und in Verbindung mit den Figuren näher erläutert. Es zeigt:
  • Figur 1
    eine erfindungsgemäße Anlage zur Herstellung von tiefkaltem Sauerstoffgas;
    Figur 2
    einen Ausschnitt aus der Dampfdruckkurve von Sauerstoff.
  • Die in Figur 1 gezeigte O2-Kaltgasversorgungsanlage besitzt einen Flüssigsauerstofftank 1, der über eine bodenseitig angeschlossene Verbindungsleitung 2 mit einer Wärmetauscheinheit 4, bestehend aus einem Behälter mit innenliegender Rohrschlange 7, verbunden ist. In der Verbindungsleitung 2 ist ein Ventil 3 zur Schaltung des Flüssigsauerstoffzuflusses vom Speichertank 1 zur Wärmetauscheinheit 4 angeordnet. Das Ventil 3 steht in Verbindung mit einem am Behälter der Wärmetauscheinheit 4 befindlichen Pegelstandsmesser 5 und beide Elemente, also Ventil 3 und Pegelstandsmesser 5, halten den Pegel des Flüssigsauerstoffs in der Wärmetauscheinheit 4 auf einem gewünschten Niveau.
  • Am oben entstehenden Gasraum der Wärmetauscheinheit 4 ist ein Druckregler 6 angeschlossen, der den Druck in der Wärmetauscheinheit 4 regelt. Das bei Überdruck aus der Wärmetauscheinheit 4 abzuführende Gas wird der Rohrschlange 7 zugeführt, wozu eine Verbindungsleitung 9 zwischen dem Druckregler 6 und der Rohrschlange 7 vorgesehen ist. Die Rohrschlange 7 wird andererseits über eine Zuleitung 10 mit gasförmigem (!) Sauerstoff versorgt, wobei ein darin angeordneter Druckregler 8 den erfindungsgemäß geforderten, im Vergleich zum Druck in der Wärmetauscheinheit niedrigeren Basisdruck pB einstellt. Das über die Leitung 10 zugeführte Sauerstoffgas kann gemäß gezeigtem Anlagenschema unterschiedlicher Herkunft sein; es kann entweder ebenfalls aus dem Speicherbehälter 1 entnommen und mittels eines Verdampfers 11 in den gasförmigen Zustand gebracht worden sein, oder es kann auch aus einer sonstigen Sauerstoffquelle - beispielsweise einem adsorptiven oder permeativen Luftzerleger - stammen.
  • Zur weiteren Verdeutlichung der Erfindung werden im folgenden Zahlenbeispiele für die geschilderte Anlage vorgestellt, wobei die als Figur 2 beigefügte Dampfdruckkurve von Sauerstoff weitere Informationen liefert.
  • Besteht also beispielsweise die Zielsetzung darin, ein kaltes O2-Gas auf einem Druckniveau von etwa 2 bar bereitzustellen, so resultiert, daß in der Rohrschlange 7 mittels des Druckreglers 8 ein Druckniveau von 2 bar eingestellt wird. Dieser Druck wird erfindungsgemäß als Basisdruck pB bezeichnet. Bei 2 bar liegt der Verflüssigungspunkt von Sauerstoff bei einer Temperatur von 97 K (-176°C).Eine geeignete Druckeinstellung für die Wärmetauschereinheit 4 besteht, ausgehend von diesem Basisdruck PB in einem 1 bis ca. 20 bar höheren Druck p2, also beispielsweise in einer Druckeinstellung von 12 bar. Diese Druckeinstellung wird mittels des Regelventils 6 vorgenommen.
  • Die Verflüssigungs- bzw. Siedetemperatur von Sauerstoff bei 12 bar liegt höher als bei 2 bar, nämlich bei 123 K (=-150 °C - siehe Punkt B in Figur 2). Daraus folgt, daß das Temperaturniveau in der Wärmetauschereinheit 4 so ist, daß keine Verflüssigung des 2-bar-Verbrauchsgases in der Rohrschlange 7 auch bei einem zeitweise auf Null sinkenden Gasverbrauch eintreten kann (siehe Punkt C in Fig. 2). Die Verflüssigungstemperatur von Sauerstoff bei 2 bar Druck beträgt - wie bereits ausgeführt - 97 K, und es kann bei dieser Einstellung der Wärmetauscheinheit 7 also lediglich eine Temperatur von 123 K (-150°C) erreicht werden (123 K ist die Kühlgrenze bei 12 bar).
  • Vergleicht man damit die naheliegendste Ausgestaltung einer derartigen Kaltgasbereitstellung, nämlich daß das Verbrauchsgas auf dem höherliegenden Druckniveau p1 des Speicherbehälters 1 bereitgestellt wird, also beispielsweise etwa mit 14 bar, so läge die Verflüssigungstemperatur des Sauerstoffs bei 125 K und das so bereitgestellte Verbrauchsgas könnte bei einer Wärmetauschertemperatur von 123 K also kondensiert und somit eine Betriebsstörung verursacht werden. Dies wird mit der hier vorgestellten Anlage und den genannten Einstellungen sehr vorteilhaft vermieden.
  • Mit der beschriebenen Anlage ist es ferner problemlos möglich, auch andere, deutlich höher liegende Verbrauchsgasdrücke als 2 bar anzubieten, so lange nur der Basisgasdruck wenigstens 0,5 bar, vorzugsweise 1 bis 3 bar, unterhalb der Druckeinstellung in der Wärmetauschereinheit 4 - also dem Druck p2 - verbleibt. Es ist im oben geschilderten Beispiel also ohne weiteres möglich, Verbrauchsgas mit ca. 10 bar anzubieten. Bei 10 bar weist Sauerstoff eine Verflüssigungstemperatur von 120 K auf und dieser kann daher - obwohl bereits sehr nahe an der Dampfdruckkurve des Sauerstoffs liegend - bei einer Wärmetauschereinstellung von 12 bar und einer daraus folgenden Temperatureinstellung der Wärmetauscheinheit 4 von 123 K noch völlig betriebssicher geliefert werden (siehe Punkt A in Figur 2).
  • Somit ist - bei der in der Praxis ohne Schwierigkeiten möglichen Bereitstellung von Flüssiggas in einem Speichertank auf einem Druckniveau von bis zu 25 bar - erfindungsgemäß die Zurverfügungstellung von Kaltgas auch auf höheren Drücken und mit Temperaturen unterhalb von -130 °C - unter sehr genauer Einhaltung des Temperaturniveaus - problemlos möglich.
  • Selbstverständlich ist die Anwendung des Verfahrens auch bei anderen Reinmedien als Sauerstoff möglich, z.B. bei Stickstoff und Argon. Darüber hinaus liegt es auch im Rahmen der Erfindung, daß beim Einsatz von beispielsweise Sauerstoff als Kühlmedium neben Sauerstoff auch jedes andere, tiefer als Sauerstoff siedende Gas und insbesondere auch tiefersiedende, sauerstoffhaltige Gasgemische mit Einstellungen, wie sie zu Sauerstoff gehören, vorteilhaft und betriebssicher abgekühlt werden können. Entsprechende Medien sind beispielsweise Stickstoff, Argon, aber auch trockene Luft, Helium, Wasserstoff und Gemische davon. Ebensolche Möglichkeiten wie mit Sauerstoff - jedoch auf höherem Temperaturniveau - ergeben sich ferner auch mit tiefkaltem und flüssigem Kohlendioxid. Der erreichbare Temperaturbereich ist hierbei -25 bis -56°C.
  • So gewonnenes Kaltgas kann für alle bekannten Anwendungen wie Blasfolien- und Bandkühlen, Kaltgaspolieren und Therapiezwecke eingesetzt werden (siehe eingangs genannte Dokumente) sowie auch für neue Möglichkeiten - etwa das gleichzeitig zum zu vorliegender Erfindung zum Patent angemeldete Kaltgasfrischen oder zum Brennschneiden von Werkstücken mit Kaltsauerstoff.

Claims (9)

  1. Verfahren zur Herstellung von temperaturdefiniertem, kaltem Gas durch indirekten Wärmetausch mit einem tiefkalten, verflüssigt vorliegenden Medium, dadurch gekennzeichnet, daß das herzustellende, kalte Gas durch indirekten Wärmetausch insbesondere mit seiner tiefkalt verflüssigten Form abgekühlt wird, wobei das Gas vorab auf einen festgelegten Basisdruck pB eingestellt wird und auf eben diesem Druckniveau in indirekten Wärmetausch mit der verflüssigten Form gebracht wird, wobei wiederum die flüssige Zustandsform auf einem zweiten, im Vergleich zum Basisdruck erhöhten Druck p2 und der zugehörigen Siedetemperatur gehalten wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Abkühlung soweit geführt wird, daß das Gas die Temperatur der kühlenden Flüssigphase annimmt
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das p2-Druckniveau lediglich 1 bis 3 bar höher als das Basisdruckniveau eingestellt wird.
  4. Verfahren nach einem der Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das verflüssigte Medium nach seinem Einsatz beim Abkühlen des Gases und letztlich seiner Verdampfung dem abzukühlenden Gas hinzugefügt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß - wenn aus einem Gasgemisch ein Kaltgas gebildet werden soll - für den indirekten Wärmetausch dasjenige Flüssiggas eingesetzt wird, das im Gemisch den höchsten Verflüssigungspunkt besitzt.
  6. Vorrichtung zur Herstellung von kaltem Gas, gekennzeichnet durch
    - einen Flüssiggasspeichertank (1), der über eine Flüssiggasleitung mit einer, aus einem Behälter mit innenliegendem Wärmetauscher (7) bestehenden, Wärmetauscheinheit (4) verbunden ist,
    - einem Pegelstandsregler (5) für Flüssiggas am Behälter der Wärmetauscheinheit,
    - einem am Behälter der Wärmetauscheinheit oben angeschlossenen Druckregler (6),
    - eine Gaszuleitung (10), die den innenliegenden Wärmetauscher mit einer oder mehreren Gasquellen verbindet,
    und durch einen Druckregler (8), der sich in dieser Gaszuleitung befindet.
  7. Vorrichtung nach Anspruch 6,dadurch gekennzeichnet, daß der Druckregler (6) an der Wärmetauscheinheit (4) auf einen höheren Druck als der Druckregler (8) in der Gaszuleitung (10) eingestellt ist.
  8. Vorrichtung nach einem der Ansprüche 6 bis 7, dadurch gekennzeichnet, daß die Gaszuleitung (10) mit dem Flüssiggasspeichertank (1) verbunden ist, wobei in der Verbindung ein Verdampfer (11) angeordnet ist.
  9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Ausgangsseite des Druckreglers (6) an der Wärmetauscheinheit mit dem Wärmetauscher (7) verbunden ist.
EP19950108739 1995-01-23 1995-06-07 Verfahren zur Herstellung von kaltem Gas Expired - Lifetime EP0723106B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19501872 1995-01-23
DE1995101872 DE19501872A1 (de) 1995-01-23 1995-01-23 Verfahren zur Herstellung von kaltem Gas

Publications (2)

Publication Number Publication Date
EP0723106A1 true EP0723106A1 (de) 1996-07-24
EP0723106B1 EP0723106B1 (de) 1998-12-23

Family

ID=7752064

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950108739 Expired - Lifetime EP0723106B1 (de) 1995-01-23 1995-06-07 Verfahren zur Herstellung von kaltem Gas

Country Status (3)

Country Link
EP (1) EP0723106B1 (de)
AT (1) ATE175016T1 (de)
DE (2) DE19501872A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2120475A5 (en) * 1971-01-05 1972-08-18 Air Liquide Liquid purification by evaporation - using closed circuit heat exchange system
DE2438194A1 (de) * 1974-08-08 1976-02-19 Messer Griesheim Gmbh Verfahren zum herstellen eines gemisches aus propan und methan
DE3242881A1 (de) 1982-11-19 1984-05-24 Sauerstoffwerk Westfalen AG, 4400 Münster Verfahren und vorrichtung zur erzeugung eines kaltgasstroms
DE3827417C1 (de) 1988-08-12 1989-08-31 Messer Griesheim Gmbh, 6000 Frankfurt, De
DE4134108C1 (en) 1991-10-15 1993-05-06 Linde Ag, 6200 Wiesbaden, De Steel strip metal coating - by passing through melt container, then up between two slot nozzles fed with e.g. liq. nitrogen@ to accelerate cooling
US5255525A (en) * 1991-10-22 1993-10-26 Mg Industries System and method for atomization of liquid metal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2120475A5 (en) * 1971-01-05 1972-08-18 Air Liquide Liquid purification by evaporation - using closed circuit heat exchange system
DE2438194A1 (de) * 1974-08-08 1976-02-19 Messer Griesheim Gmbh Verfahren zum herstellen eines gemisches aus propan und methan
DE3242881A1 (de) 1982-11-19 1984-05-24 Sauerstoffwerk Westfalen AG, 4400 Münster Verfahren und vorrichtung zur erzeugung eines kaltgasstroms
DE3827417C1 (de) 1988-08-12 1989-08-31 Messer Griesheim Gmbh, 6000 Frankfurt, De
EP0354350A2 (de) * 1988-08-12 1990-02-14 Messer Griesheim Gmbh Verfahren zum autogenen Brennschneiden mit Flüssigsauerstoff
DE4134108C1 (en) 1991-10-15 1993-05-06 Linde Ag, 6200 Wiesbaden, De Steel strip metal coating - by passing through melt container, then up between two slot nozzles fed with e.g. liq. nitrogen@ to accelerate cooling
US5255525A (en) * 1991-10-22 1993-10-26 Mg Industries System and method for atomization of liquid metal

Also Published As

Publication number Publication date
DE19501872A1 (de) 1996-07-25
DE59504630D1 (de) 1999-02-04
EP0723106B1 (de) 1998-12-23
ATE175016T1 (de) 1999-01-15

Similar Documents

Publication Publication Date Title
EP0895045B1 (de) Verfahren zur Luftzerlegung
EP0130284B1 (de) Verfahren zur Gewinnung von reinem Kohlenmonoxid
EP0399197B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE1267236B (de) Verfahren zur Verfluessigung von Naturgas
DE3146335C2 (de) Verfahren zum Erzeugen von Sauerstoff-Produktgas
WO1997004279A1 (de) Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
DE1229561B (de) Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
DE2646690A1 (de) Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
DE60308778T2 (de) Verfahren für die kurzzeitige Lieferung eines Ersatzgases zur Aufrechterhaltung des Produktionsniveaus eines Gases aus einer Tieftemperaturzerlegungsanlage
DE1167857B (de) Verfahren und Einrichtung zum Abtrennen von Wasserstoff aus einem Gemisch von Stickstoff und Wasserstoff
DE1234747B (de) Verfahren zur Herstellung von mit Sauerstoff angereicherter Luft
EP0723106B1 (de) Verfahren zur Herstellung von kaltem Gas
DE60108579T2 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturdestillation
DE60028160T2 (de) Verfahren zur Herstellung von Sauerstoff unter mittlerem Druck
WO2021165123A1 (de) Vorrichtung und verfahren zur erzeugung eines temperierten, kalten gasstroms
DE60113211T2 (de) Vorrichtung und Verfahren zur Herstellung von gasförmigem Sauerstoff unter niedrigem Druck
DE60020500T2 (de) Verfahren zur Luftzerlegung durch Tieftemperaturdestillation
DE3408997A1 (de) Verfahren zum abtrennen schwerer komponenten aus verfluessigten gasen
DE676616C (de) Verfahren zur Erzeugung von unter Druck stehendem gasfoermigem Sauerstoff
DE102021117030B4 (de) Gasgemisch-Zerlegungsanlage sowie Verfahren zum Abtrennen von wenigstens einem Hauptfluid aus einem Gasgemisch
EP1001236A2 (de) Verfahren zur Gewinnung von ultrareinem Stickstoff
DE1911765A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE2553700C3 (de) Verfahren zum Betreiben einer Gasturbinenanlage mit geschlossenem Kreislauf
EP1030135B1 (de) Verfahren zur geregelten Kühlung durch Verdampfen flüssigen Stickstoffs
DE19518085C2 (de) Flüssigchlor als Kältemittel in der Chlorverflüssigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17Q First examination report despatched

Effective date: 19971125

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981223

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981223

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981223

REF Corresponds to:

Ref document number: 175016

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59504630

Country of ref document: DE

Date of ref document: 19990204

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990610

Year of fee payment: 5

Ref country code: FR

Payment date: 19990610

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990614

Year of fee payment: 5

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19981223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19990630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000607

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020612

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050607