EP0723080B1 - Vacuum pumping system - Google Patents

Vacuum pumping system Download PDF

Info

Publication number
EP0723080B1
EP0723080B1 EP95116395A EP95116395A EP0723080B1 EP 0723080 B1 EP0723080 B1 EP 0723080B1 EP 95116395 A EP95116395 A EP 95116395A EP 95116395 A EP95116395 A EP 95116395A EP 0723080 B1 EP0723080 B1 EP 0723080B1
Authority
EP
European Patent Office
Prior art keywords
vacuum
pump
line
vacuum pump
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95116395A
Other languages
German (de)
French (fr)
Other versions
EP0723080A1 (en
Inventor
Heinrich Amlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGI-PROZESS-TECHNIK GmbH
Original Assignee
SGI-PROZESS-TECHNIK GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGI-PROZESS-TECHNIK GmbH filed Critical SGI-PROZESS-TECHNIK GmbH
Publication of EP0723080A1 publication Critical patent/EP0723080A1/en
Application granted granted Critical
Publication of EP0723080B1 publication Critical patent/EP0723080B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows

Definitions

  • the invention relates to a vacuum pumping station for cyclical Pump down a container and maintain it an operating vacuum in the container, which is used for pumping the container a first and a second vacuum pump has which are arranged one behind the other in terms of flow and form a first and a second pump stage.
  • Pumping stations of the above type are used in technology used for example for the cyclical pumping out of adsorbers, regeneration of zeolites or other Negative pressure adsorbents in vacuum swing systems or pressure-vacuum swing systems for oxygen and Make nitrogen enrichment.
  • pumping stations which consist of multi-stage working Rotary lobe blowers are built. Satisfy such pumping stations from their function, but it works The experts strive to further increase their energy requirements decrease, since this is a big one in cyclical processes Role play.
  • pumping stations have been low recently Progress in reducing energy requirements been achieved.
  • US-A-4,699,570 describes a vacuum pumping station at which for pumping out first a piston pump with a downstream Water ring pump is used. At lower pressure you suck with the piston pump, one of these downstream second piston pump and the water ring pump. If the pressure drops even further, the water ring pump becomes no longer used and therefore a rotary vane pump downstream of the two piston pumps.
  • the one in the flow direction seen first piston pump is a valve for Release or shutdown of the suction line upstream.
  • the vacuum pumping station according to US-A-3,922,110 also exists from a positive displacement pump as the first pump and one of these downstream water ring pump. Of the In terms of flow, the positive displacement pump is a check valve upstream.
  • the invention is based on the problem, if possible simply constructed and inexpensive vacuum pumping station of the type mentioned at the beginning that its energy requirements are as low as possible.
  • the first vacuum pump has a radial fan with one in it Intake line switched, adjustable throttle and the second vacuum pump a rotary lobe blower or a water ring pump is that the second vacuum pump into a vacuum line parallel to an outlet line of the first Vacuum pump switched and with its input on a junction is connected to the outlet line and that in terms of flow behind the branch in the vacuum line and the outlet line each have a control part for steering of the delivery volume at higher pressures from the first vacuum pump immediately or at lower pressures of the first vacuum pump via the second vacuum pump to the outlet of the vacuum pumping station is arranged.
  • the second pump stage or further pump stages are according to the invention therefore designed as a rotary lobe blower because a radial blower in comparison as a second stage with an intake pressure between 1000 mbar and 600 mbar would have to work and therefore always in energetically unfavorable Working area for radial blowers would be.
  • the controllable upstream of the first vacuum pump Throttle could be a usual swirl regulator.
  • the throttle can also lead the line in which it is arranged to shut off so that when starting evacuating the pump line with the radial fan possible without arranging an additional shut-off device if, according to another development of the invention the adjustable one upstream of the first vacuum pump Throttle a motor-operated and up to the closed position is movable flap valve.
  • a flap valve enables large cross-sections to be changed quickly, so that low-inertia control is possible.
  • the invention permits numerous embodiments. For further clarification of its basic principle is one of them is shown schematically in the drawing and is described below. This shows a circuit diagram of a Pumping station according to the invention.
  • the drawing schematically shows a container to be pumped empty 1, from which an intake pipe 2 to an inlet 3 a first vacuum pump 4 leads.
  • This first vacuum pump 4 is according to the invention as a radial fan (turbocompressor) educated.
  • a radial fan turbocompressor
  • To make this work economically Suction pressures between 600 mbar and 1000 mbar in the tank
  • Throttle 5 a controllable in the intake line 2 Throttle 5 switched. This is shown on not shown however, in the usual way for the person skilled in the art, using two Pressure sensors 20, 21 controlled so that the inlet 3 of the first Vacuum pump 4 always has a suction pressure of not over There is 600 mbar as long as the pressure in tank 1 is higher is.
  • the first vacuum pump 4 has an outlet 6, one of which Outlet line 7 to a pulsation damper 8 and thus via a silencer 9 to an outlet 10 of the vacuum pumping station leads.
  • the outlet line 7 is at a branch 11 with a connected to the vacuum line 12 running parallel to it, which also leads into the pulsation damper 8 and into the a second vacuum pump 13 is connected.
  • this second vacuum pump 13 which forms the second pump stage, According to the invention, it is a rotary lobe blower (Root pump) or around a water ring pump.
  • control part 14 or 15 which is a non-return valve in both cases acts.
  • the check valve opens of the control part 14 to the second vacuum pump 13 and the Check valve of the control part 15 to the pulsation damper 8 out.
  • the second vacuum pump 13 is a bypass 16 with a Lock valve 17 assigned.
  • This bypass 16 can Connect output to the vacuum line 12 and allows it is therefore that the second vacuum pump 13 short-circuited and therefore with low energy consumption when idling can work under atmospheric pressure.
  • the vacuum line 12 allows you to start with the second Vacuum pump 13 with the throttle 5 closed, the first vacuum pump 4 and to evacuate the corresponding lines.
  • the vacuum pump designed as a radial fan can 4 at idle without pumping speed and pressure difference work in negative pressure with minimal energy consumption.
  • One of the vacuum line 12 can be shown in dash-dotted lines Suction line 18 to intake line 2 in front of the throttle 5 lead. In this suction line 18 is a check valve 19 switched, which to the second vacuum pump 13 opens.
  • Such a suction line 18 enables parallel operation of the first and second vacuum pumps 4, 13, which is advantageous if at the beginning of the Suction phase sucked a large volume from the container 1 must be, especially if then normal pressure in it prevails.
  • Prerequisite for such parallel operation is that the control part 14 can be actuated by a motor is so that it is not due to that of the second vacuum pump 13 generated negative pressure by itself, because then the second vacuum pump 13 on both sides of the first Vacuum pump 4 would suck.
  • the first work Vacuum pump 4 and the second vacuum pump 13 in parallel to each other, so that via the suction line 2 and the suction line 18 gas via the pulsation damper 8 to the outlet 10 is promoted.
  • the pumped by the first vacuum pump 4 The amount of gas becomes smaller than that of the second Vacuum pump 13 possible delivery volume, then sucks second vacuum pump 13 via the vacuum line 12 on Outlet 6 of the first vacuum pump 13 volume flow from.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

A vessel is evacuated and a vacuum maintained by a first, radial, pump and throttle valve and a second, rotary piston, pump in a pipe parallel, and connected, to that for the first pump. Control valves enable the first pump to extract at higher pressure and the second at lower pressure. The vessel (1), required to be evacuated, is connected to a radial pump (4) through a throttle valve (5) and a pipe (7). A rotary piston pump (13) is connected to the pipe (7) at a junction point (11). Control valves (14,15) determine whether the first pump alone or the second pump in series reduces the pressure in the vessel, according to the pressure value. The second pump alone can function through a back-pressure valve (19) in a pipe (18).

Description

Die Erfindung betrifft einen Vakuum-Pumpstand zum zyklischen Abpumpen eines Behälters und zum Aufrechterhalten eines Betriebsvakuums in dem Behälter, welcher zum Abpumpen des Behälters eine erste und zweite Vakuumpumpe hat, welche strömungsmäßig hintereinander angeordnet sind und eine erste und eine zweite Pumpstufe bilden.The invention relates to a vacuum pumping station for cyclical Pump down a container and maintain it an operating vacuum in the container, which is used for pumping the container a first and a second vacuum pump has which are arranged one behind the other in terms of flow and form a first and a second pump stage.

Pumpstände der vorstehenden Art werden in der Technik beispielsweise zum zyklischen Abpumpen von Adsorbern eingesetzt, um die Regeneration von Zeolithen oder sonstigen Adsorptionsmitteln im Unterdruck bei Vakuum-Swing-Anlagen oder Druck-Vakuum-Swing-Anlagen zur Sauerstoff- und Stickstoffanreicherung vorzunehmen. Bei solchen Anlagen kommt es darauf an, relativ rasch große Gasmengen aus einem Adsorber abzusaugen und anschließend in ihm einen Betriebsunterdruck aufrecht zu erhalten. Das geschieht derzeit mit Pumpständen, welche aus mehrstufig arbeitenden Drehkolbengebläsen aufgebaut sind. Solche Pumpstände befriedigen zwar von ihrer Funktion her, jedoch geht das Bemühen der Fachwelt dahin, ihren Energiebedarf weiter zu verringern, da dieser bei zyklischen Prozessen eine große Rolle spielt. Bei den aus Drehkolbengebläsen gebildeten Pumpständen sind jedoch in letzter Zeit nur noch geringe Fortschritte in Bezug auf eine Verminderung des Energiebedarfs erzielt worden.Pumping stations of the above type are used in technology used for example for the cyclical pumping out of adsorbers, regeneration of zeolites or other Negative pressure adsorbents in vacuum swing systems or pressure-vacuum swing systems for oxygen and Make nitrogen enrichment. With such systems the important thing is to get large amounts of gas out of one relatively quickly Vacuum adsorber and then an operating vacuum in it maintain. This is currently happening with pumping stations, which consist of multi-stage working Rotary lobe blowers are built. Satisfy such pumping stations from their function, but it works The experts strive to further increase their energy requirements decrease, since this is a big one in cyclical processes Role play. In the case of rotary lobe blowers However, pumping stations have been low recently Progress in reducing energy requirements been achieved.

Die US-A-4,699,570 beschreibt einen Vakuumpumpstand, bei welchem zum Abpumpen zunächst eine Kolbenpumpe mit nachgeschalteter Wasserringpumpe dient. Bei geringerem Druck saugt man mit der Kolbenpumpe, einer dieser nachgeschalteten zweiten Kolbenpumpe und der Wasserringpumpe ab. Sinkt der Druck noch weiter, danii wird die Wasserringpumpe nicht mehr benutzt und dafür eine Drehflügelpumpe den beiden Kolbenpumpen nachgeschaltet. Der in Strömungsrichtung gesehen ersten Kolbenpumpe ist ein Ventil zum Freigeben oder Absperren der Absaugleitung vorgeschaltet.US-A-4,699,570 describes a vacuum pumping station at which for pumping out first a piston pump with a downstream Water ring pump is used. At lower pressure you suck with the piston pump, one of these downstream second piston pump and the water ring pump. If the pressure drops even further, the water ring pump becomes no longer used and therefore a rotary vane pump downstream of the two piston pumps. The one in the flow direction seen first piston pump is a valve for Release or shutdown of the suction line upstream.

Auch der Vakuumpumpstand nach der US-A-3,922,110 besteht aus einer Verdrängerpumpe als erste Pumpe und einer dieser strömungsmäßig nachgeschalteten Wasserringpumpe. Der Verdrängerpumpe ist strömungsmäßig ein Rückschlagventil vorgeschaltet.The vacuum pumping station according to US-A-3,922,110 also exists from a positive displacement pump as the first pump and one of these downstream water ring pump. Of the In terms of flow, the positive displacement pump is a check valve upstream.

Der Erfindung liegt das Problem zugrunde, einen möglichst einfach aufgebauten und kostengünstig herstellbaren Vakuum-Pumpstand der eingangs genannten Art so auszubilden, daß sein Energiebedarf möglichst gering ist. The invention is based on the problem, if possible simply constructed and inexpensive vacuum pumping station of the type mentioned at the beginning that its energy requirements are as low as possible.

Dieses Problem wird erfindungsgemäß dadurch gelöst, daß die erste Vakuumpumpe ein Radialgebläse mit einer in ihre Ansaugleitung geschalteten, regelbaren Drossel und die zweite Vakuumpumpe ein Drehkolbengebläse oder eine Wasserringpumpe ist, daß die zweite Vakuumpumpe in eine Vakuumleitung parallel zu einer Auslaßleitung der ersten Vakuumpumpe geschaltet und mit ihrem Eingang an einer Abzweigung mit der Auslaßleitung verbunden ist und daß strömungsmäßig hinter der Abzweigung in der Vakuumleitung und der Auslaßleitung jeweils ein Steuerteil zum Lenken des Fördervolumens bei höheren Drücken von der ersten Vakuumpumpe unmittelbar oder bei geringeren Drücken von der ersten Vakuumpumpe über die zweite Vakuumpumpe zum Auslaß des Vakuum-Pumpstandes angeordnet ist.This problem is solved according to the invention in that The first vacuum pump has a radial fan with one in it Intake line switched, adjustable throttle and the second vacuum pump a rotary lobe blower or a water ring pump is that the second vacuum pump into a vacuum line parallel to an outlet line of the first Vacuum pump switched and with its input on a junction is connected to the outlet line and that in terms of flow behind the branch in the vacuum line and the outlet line each have a control part for steering of the delivery volume at higher pressures from the first vacuum pump immediately or at lower pressures of the first vacuum pump via the second vacuum pump to the outlet of the vacuum pumping station is arranged.

Der Einsatz eines Radialgebläses als erste Vakuumpumpe wurde bislang von der Fachwelt immer dann verworfen, wenn die Ansaugzustände für das Radialgebläse stark schwanken. Beispielsweise müssen bei Vakuum-Swing-Anlagen Adsorber zyklisch von einem absoluten Druck von jeweils etwa 1000 mbar auf etwa 300 mbar evakuiert werden. Die Energieaufnahme von Radialgebläsen ist bei 1000 mbar Ansaugzustand um den Faktor 3,9 höher als zum Beispiel bei einem Ansaugzustand von 600 mbar. Von 600 mbar an bis ca. 100 mbar ist das Saugvermögen von Radialgebläsen bei Ausnutzung des max. Druckverhältnisses nahezu konstant, die Energieaufnahme ist jedoch um den Wert der differenzdruckabhängigen, volumetrischen Verluste bei vergleichbaren Drehkolbengebläsen geringer. Radialgebläse haben aufgrund ihrer hohen Drehzahl von ca. 11.000 min-1 und mehr, kaum Gasrückströmung und dadurch einen volumetrischen Wirkungsgrad von nahezu 1. Bei gleichem Saugvermögen zwischen einem Radialgebläse und einem Drehkolbengebläse ist somit die Energieaufnahme bei vergleichbarem Differenzdruck zwischen Einlaß und Auslaß bei Radialgebläsen deutlich geringer. Dies bedeutet, daß bei einem Druck an der Ansaugseite von 600 mbar 18 % und bei einem Ansaugdruck von 300 mbar 23 % weniger Energieaufnahme unter Ausnutzung des maximalen Kompressionsverhältnisses bei diesen Betriebszuständen erreicht wird.Up to now, experts have rejected the use of a radial fan as the first vacuum pump when the suction conditions for the radial fan fluctuate greatly. For example, in vacuum swing systems, adsorbers have to be evacuated cyclically from an absolute pressure of approximately 1000 mbar to approximately 300 mbar. The energy consumption of radial fans is 1000 times higher with a suction state of 1000 mbar than, for example, with a suction state of 600 mbar. From 600 mbar up to approx. 100 mbar, the pumping speed of radial blowers is possible when the max. Pressure ratio almost constant, but the energy consumption is lower by the value of the differential pressure-dependent, volumetric losses with comparable rotary lobe blowers. Radial blowers have due to their high speed of approx. 11,000 min -1 and more, hardly any gas backflow and therefore a volumetric efficiency of almost 1. With the same pumping speed between a radial blower and a rotary lobe blower, the energy consumption with a comparable differential pressure between inlet and outlet is clear for radial blowers less. This means that at a pressure on the intake side of 600 mbar 18% and at an intake pressure of 300 mbar 23% less energy consumption is achieved using the maximum compression ratio in these operating conditions.

Gemäß der Erfindung ergibt sich dadurch eine Energieeinsparung, daß durch die regelbare Drossel das Saugvermögen des Radialgebläses bei maximalem Druckverhältnis in jedem Ansaugzustand konstant gehalten wird. Dieses Drosseln zwischen einem Atmosphärendruck von 1000 mbar auf 600 mbar so lange, bis durch das Absaugen ein absoluter Druck von 600 mbar saugseitig erreicht ist, bedingt natürlich einen relativ hohen Energieverlust im Vergleich zu einem Drehkolbengebläse, bei dem eine solche Drosselung unnötig ist. Überraschenderweise konnte jedoch für den zyklischen Betrieb, bei dem relativ rasch hintereinander von Normaldruck auf einen Betriebsunterdruck abgesaugt werden muß, festgestellt werden, daß durch den besonders wirtschaftlichen Betrieb, der sich durch die Kombination eines Radialgebläses mit einem Drehkolbengebläse bei Saugdrücken kleiner 600 mbar ergibt, dieser anfängliche höhere Energiebedarf mehr als kompensiert wird, so daß es insgesamt zu einer Energieersparnis kommt, wenn man die Verrohrung so vornimmt, wie das im Anspruch 1 gekennzeichnet wurde. Diese ermöglicht es nämlich, beim Starten des Pumpstandes mit dem Drehkolbengebläse den Pumpenstrang mit dem Radialgebläse zu evakuieren.According to the invention, this results in an energy saving, that through the adjustable throttle the pumping speed of the radial fan at maximum pressure ratio in each Suction state is kept constant. This throttling between an atmospheric pressure of 1000 mbar to 600 mbar until an absolute pressure is reached by suction of 600 mbar is reached on the suction side, of course a relatively high energy loss compared to one Rotary lobe blower, where such throttling is unnecessary is. Surprisingly, however, for the cyclical Operation in which relatively quickly in succession from normal pressure must be suctioned off to an operating negative pressure, be found that through the particularly economic Operation, which is due to the combination of a radial fan with a rotary lobe blower at suction pressures less than 600 mbar results in this initial higher energy requirement is more than compensated so that it is overall energy savings come from the piping performs as was characterized in claim 1. This makes it possible to start the pumping station with the rotary lobe blower the pump line with the radial blower to evacuate.

Die zweite Pumpstufe oder weitere Pumpstufen sind erfindungsgemäß deshalb als Drehkolbengebläse ausgeführt, weil ein im Vergleich als zweite Stufe ausgeführtes Radialgebläse mit einem Ansaugdruck zwischen 1000 mbar bis 600 mbar arbeiten müßte und somit immer im energetisch ungünstigen Arbeitsbereich für Radialgebläse liegen würde. The second pump stage or further pump stages are according to the invention therefore designed as a rotary lobe blower because a radial blower in comparison as a second stage with an intake pressure between 1000 mbar and 600 mbar would have to work and therefore always in energetically unfavorable Working area for radial blowers would be.

Vorteilhaft bei dem erfindungsgemäßen Pumpstand ist auch, daß sich mit im Handel derzeit erhältlichen Vakuumpumpen maximale Saugleistungen von über 90.000 m3/h erreichen lassen und daß die Herstellungskosten geringer sind als die vergleichbarer Pumpstände.It is also advantageous with the pumping station according to the invention that maximum suction capacities of over 90,000 m 3 / h can be achieved with vacuum pumps currently available on the market and that the production costs are lower than comparable pumping stations.

Wenn die erste und zweite Vakuumpumpe so geschaltet sind, daß sie ausschließlich hintereinander und nicht parallel arbeiten, dann kann die Steuerung der Volumenströme zwangsläufig erfolgen, ohne daß hierzu die Steuerteile motorisch betätigt werden müssen, so daß die Verlegung von Steuerleitungen unnötig wird, wenn gemäß einer vorteilhaften Weiterbildung der Erfindung das Steuerteil in der Auslaßleitung als eine zum Auslaß des Vakuum-Pumpstandes hin öffnende Rückschlagklappe und das Steuerteil in der Vakuumleitung als eine zum Einlaß der zweiten Pumpstufe hin öffnende Rückschlagklappe ausgebildet ist.When the first and second vacuum pumps are switched that they are only in a row and not in parallel work, then the control of the volume flows inevitably take place without this the control parts must be operated by motor, so that the laying of control lines becomes unnecessary if according to an advantageous Development of the invention in the control part the outlet line as one to the outlet of the vacuum pumping station non-return valve and the control unit in the vacuum line as one to the inlet of the second Pump stage opening check valve is formed.

Bei der der ersten Vakuumpumpe vorgeschalteten regelbaren Drossel könnte es sich um einen üblichen Drallregler handeln. Die Drossel vermag jedoch zugleich die Leitung, in der sie angeordnet ist, abzusperren, so daß beim Anfahren ein Evakuieren des Pumpenstranges mit dem Radialgebläse ohne Anordnung eines zusätzlichen Absperrorgans möglich wird, wenn gemäß einer anderen Weiterbildung der Erfindung die der ersten Vakuumpumpe vorgeschaltete, regelbare Drossel ein motorisch betätigbares und bis in Schließstellung bewegbares Klappenventil ist. Ein solches Klappenventil ermöglicht es, große Querschnitte rasch zu verändern, so daß eine trägheitsarme Regelung möglich wird.With the controllable upstream of the first vacuum pump Throttle could be a usual swirl regulator. However, the throttle can also lead the line in which it is arranged to shut off so that when starting evacuating the pump line with the radial fan possible without arranging an additional shut-off device if, according to another development of the invention the adjustable one upstream of the first vacuum pump Throttle a motor-operated and up to the closed position is movable flap valve. Such a flap valve enables large cross-sections to be changed quickly, so that low-inertia control is possible.

Beim Anfahren und während Leerlaufphasen kann das die zweite Pumpenstufe bildende Drehkolbengebläse besonders verlustarm weiterlaufen, wenn die zweite Vakuumpumpe einen ihre Auslaßseite und Einlaßseite miteinander verbindenden Bypass mit einem motorisch betätigbaren Sperrventil hat.When starting off and during idle phases, this can be the case second-stage rotary lobe blowers in particular Continue running with little loss when the second vacuum pump a connecting their outlet side and inlet side together Bypass with a motorized shut-off valve Has.

Wenn zu Beginn des Absaugens in dem abzusaugenden Behälter Normaldruck herrscht, dann ist es vorteilhaft, daß zu Beginn des Abpumpens beide Vakuumpumpen parallel zueinander arbeiten können, weil dann möglichst rasch das notwendige Gasvolumen abgesaugt werden kann. Das läßt sich auf einfache Weise dadurch erreichen, daß von der den Auslaß der ersten Vakuumpumpe mit dem Einlaß der zweiten Vakuumpumpe verbindenden Vakuumleitung eine Saugleitung zur Ansaugleitung der ersten Vakuumpumpe strömungsmäßig bis vor die Drossel führt und das Steuerteil motorisch gesteuert ist.If at the beginning of the suction in the container to be extracted Normal pressure prevails, then it is advantageous that too Start pumping both vacuum pumps parallel to each other can work, because then the necessary as quickly as possible Gas volume can be sucked off. That can be easily achieved by the fact that the Outlet of the first vacuum pump with the inlet of the second Vacuum pump connecting vacuum line to a suction line for the suction line of the first vacuum pump in terms of flow leads up to the throttle and the control part motor is controlled.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon schematisch in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt einen Schaltplan eines Pumpstandes nach der Erfindung.The invention permits numerous embodiments. For further clarification of its basic principle is one of them is shown schematically in the drawing and is described below. This shows a circuit diagram of a Pumping station according to the invention.

Die Zeichnung zeigt schematisch einen leerzupumpenden Behälter 1, von dem eine Ansaugleitung 2 zu einem Einlaß 3 einer ersten Vakuumpumpe 4 führt. Diese erste Vakuumpumpe 4 ist erfindungsgemäß als Radialgebläse (Turboverdichter) ausgebildet. Um diesem ein wirtschaftliches Arbeiten bei Ansaugdrücken zwischen 600 mbar und 1000 mbar im Behälter 1 zu ermöglichen, ist in die Ansaugleitung 2 eine regelbare Drossel 5 geschaltet. Diese wird auf nicht gezeigte, jedoch für den Fachmann übliche Weise mit Hilfe von zwei Drucksensoren 20, 21 so geregelt, daß am Einlaß 3 der ersten Vakuumpumpe 4 immer ein Ansaugdruck von nicht über 600 mbar herrscht, solange der Druck im Behälter 1 höher ist. The drawing schematically shows a container to be pumped empty 1, from which an intake pipe 2 to an inlet 3 a first vacuum pump 4 leads. This first vacuum pump 4 is according to the invention as a radial fan (turbocompressor) educated. To make this work economically Suction pressures between 600 mbar and 1000 mbar in the tank To enable 1 is a controllable in the intake line 2 Throttle 5 switched. This is shown on not shown however, in the usual way for the person skilled in the art, using two Pressure sensors 20, 21 controlled so that the inlet 3 of the first Vacuum pump 4 always has a suction pressure of not over There is 600 mbar as long as the pressure in tank 1 is higher is.

Die erste Vakuumpumpe 4 hat einen Auslaß 6, von dem eine Auslaßleitung 7 zu einem Pulsationsdämpfer 8 und damit über einen Schalldämpfer 9 zu einem Auslaß 10 des Vakuum-Pumpstandes führt.The first vacuum pump 4 has an outlet 6, one of which Outlet line 7 to a pulsation damper 8 and thus via a silencer 9 to an outlet 10 of the vacuum pumping station leads.

Die Auslaßleitung 7 ist an einer Abzweigung 11 mit einer parallel zu ihr verlaufenden Vakuumleitung 12 verbunden, die ebenfalls in den Pulsationsdämpfer 8 führt und in die eine zweite Vakuumpumpe 13 geschaltet ist. Bei dieser zweiten Vakuumpumpe 13, welche die zweite Pumpstufe bildet, handelt es sich erfindungsgemäß um ein Drehkolbengebläse (Rootspumpe) oder um eine Wasserringpumpe.The outlet line 7 is at a branch 11 with a connected to the vacuum line 12 running parallel to it, which also leads into the pulsation damper 8 and into the a second vacuum pump 13 is connected. At this second vacuum pump 13, which forms the second pump stage, According to the invention, it is a rotary lobe blower (Root pump) or around a water ring pump.

Vom Auslaß 6 der ersten Vakuumpumpe 4 aus gesehen ist hinter der Abzweigung 11 in der Auslaßleitung 7 und der Vakuumleitung 12 jeweils ein Steuerteil 14 bzw. 15 angeordnet, bei dem es sich in beiden Fällen um eine Rückschlagklappe handelt. Dabei öffnet die Rückschlagklappe des Steuerteils 14 zur zweiten Vakuumpumpe 13 und die Rückschlagklappe des Steuerteils 15 zum Pulsationsdämpfer 8 hin.Is seen from the outlet 6 of the first vacuum pump 4 behind the branch 11 in the outlet line 7 and the Vacuum line 12 each have a control part 14 or 15, which is a non-return valve in both cases acts. The check valve opens of the control part 14 to the second vacuum pump 13 and the Check valve of the control part 15 to the pulsation damper 8 out.

Der zweiten Vakuumpumpe 13 ist ein Bypass 16 mit einem Sperrventil 17 zugeordnet. Dieser Bypass 16 vermag ihren Ausgang mit der Vakuumleitung 12 zu verbinden und ermöglicht es deshalb, daß die zweite Vakuumpumpe 13 kurzgeschlossen und deshalb mit geringem Energiebedarf im Leerlauf unter atmosphärishem Druck arbeiten kann. Die Vakuumleitung 12 erlaubt es, beim Anfahren mit der zweiten Vakuumpumpe 13 bei geschlossener Drossel 5 die erste Vakuumpumpe 4 und die entsprechenden Leitungen zu evakuieren. Dadurch kann die als Radialgebläse ausgebildete Vakuumpumpe 4 im Leerlauf ohne Saugvermögen und Druckdifferenz im Unterdruck bei minimalster Energieaufnahme arbeiten. Von der Vakuumleitung 12 kann eine strichpunktiert dargestellte Saugleitung 18 zur Ansaugleitung 2 vor die Drossel 5 führen. In diese Saugleitung 18 ist eine Rückschlagklappe 19 geschaltet, welche zur zweiten Vakuumpumpe 13 hin öffnet. Eine solche Saugleitung 18 ermöglicht einen Parallelbetrieb der ersten und zweiten Vakuumpumpe 4, 13, was vorteilhaft ist, wenn zu Beginn der Absaugphase aus dem Behälter 1 ein großes Volumen abgesaugt werden muß, insbesondere wenn dann in ihm Normaldruck herrscht. Voraussetzung für einen solchen Parallelbetrieb ist, daß das Steuerteil 14 motorisch betätigbar ist, so daß es nicht infolge des von der zweiten Vakuumpumpe 13 erzeugten Unterdrucks von selbst öffnet, weil dann die zweite Vakuumpumpe 13 an beiden Seiten der ersten Vakuumpumpe 4 ansaugen würde.The second vacuum pump 13 is a bypass 16 with a Lock valve 17 assigned. This bypass 16 can Connect output to the vacuum line 12 and allows it is therefore that the second vacuum pump 13 short-circuited and therefore with low energy consumption when idling can work under atmospheric pressure. The vacuum line 12 allows you to start with the second Vacuum pump 13 with the throttle 5 closed, the first vacuum pump 4 and to evacuate the corresponding lines. As a result, the vacuum pump designed as a radial fan can 4 at idle without pumping speed and pressure difference work in negative pressure with minimal energy consumption. One of the vacuum line 12 can be shown in dash-dotted lines Suction line 18 to intake line 2 in front of the throttle 5 lead. In this suction line 18 is a check valve 19 switched, which to the second vacuum pump 13 opens. Such a suction line 18 enables parallel operation of the first and second vacuum pumps 4, 13, which is advantageous if at the beginning of the Suction phase sucked a large volume from the container 1 must be, especially if then normal pressure in it prevails. Prerequisite for such parallel operation is that the control part 14 can be actuated by a motor is so that it is not due to that of the second vacuum pump 13 generated negative pressure by itself, because then the second vacuum pump 13 on both sides of the first Vacuum pump 4 would suck.

Wenn schon zu Beginn des Absaugens des Behälters 1 in diesem ein relativ geringer Druck herrscht, beispielsweise 700 mbar, dann kann man zur Vereinfachung des Pumpstandes auf diese Saugleitung 18 verzichten.If at the beginning of the suction of the container 1 in there is a relatively low pressure, for example 700 mbar, then you can to simplify the pumping station do without this suction line 18.

Zu Beginn des Absaugens des Behälters 1 arbeiten die erste Vakuumpumpe 4 und die zweite Vakuumpumpe 13 parallel zueinander, so daß über die Ansaugleitung 2 und die Saugleitung 18 Gas über den Pulsationsdämpfer 8 zum Auslaß 10 gefördert wird. Wenn die von der ersten Vakuumpumpe 4 geförderte Gasmenge kleiner wird als das von der zweiten Vakuumpumpe 13 mögliche Fördervolumen, dann saugt die zweite Vakuumpumpe 13 über die Vakuumleitung 12 den am Auslaß 6 der ersten Vakuumpumpe 13 anfallenden Volumenstrom ab. At the beginning of the suction of the container 1, the first work Vacuum pump 4 and the second vacuum pump 13 in parallel to each other, so that via the suction line 2 and the suction line 18 gas via the pulsation damper 8 to the outlet 10 is promoted. When the pumped by the first vacuum pump 4 The amount of gas becomes smaller than that of the second Vacuum pump 13 possible delivery volume, then sucks second vacuum pump 13 via the vacuum line 12 on Outlet 6 of the first vacuum pump 13 volume flow from.

BezugszeichenlisteReference list

11
Behältercontainer
22nd
AnsaugleitungSuction pipe
33rd
EinlaßInlet
44th
erste Vakuumpumpefirst vacuum pump
55
regelbare Drosseladjustable throttle
66
AuslaßOutlet
77
AuslaßleitungExhaust pipe
88th
PulsationsdämpferPulsation damper
99
SchalldämpferSilencer
1010th
AuslaßOutlet
1111
AbzweigungJunction
1212th
VakuumleitungVacuum line
1313
zweite Vakuumpumpesecond vacuum pump
1414
SteuerteilControl section
1515
SteuerteilControl section
1616
Bypassbypass
1717th
SperrventilCheck valve
1818th
SaugleitungSuction line
1919th
RückschlagklappeCheck valve
2020th
DrucksensorPressure sensor
2121
DrucksensorPressure sensor

Claims (5)

  1. Vacuum pumping unit for cyclically pumping out a vessel and for maintaining an operating vacuum in the vessel, which has first and second vacuum pumps arranged one downstream of the other and forming first and second pumping stages for pumping out the vessel, characterized in that the first vacuum pump (4) is a radial fan with an adjustable throttle (5) installed in its intake line (2) and the second vacuum pump (13) is a rotary piston pump or water ring pump, in that the second vacuum pump (13) is installed in a vacuum line (12) parallel with an outlet line (7) of the first vacuum pump (4) and has its inlet connected to the outlet line (7) by a branch (11) and in that control elements (14, 15) are arranged in the vacuum line (12) and outlet line (7) respectively, downstream of the branch (11), to route the delivery from the first vacuum pump (4) directly to the outlet (10) of the vacuum pumping unit when pressure is relatively high, and via the second vacuum pump (13) to the outlet (10) when pressure is relatively low.
  2. Vacuum pumping unit according to Claim 1, characterized in that the control element (15) in the outlet line (7) is configured as a check valve opening towards the outlet (10) of the vacuum pumping unit and the control element (14) in the vacuum line (12) is configured as a check valve opening towards the inlet of the second pumping stage (13).
  3. Vacuum pumping unit according to Claim 1 or Claim 2, characterized in that the adjustable throttle (5) upstream of the first vacuum pump (4) is a power operated flap valve operable to a closed position.
  4. Vacuum pumping unit according to at least one of the preceding claims, characterized in that the second vacuum pump (13) has a bypass (16), with a power operated shut-off valve (17), connecting its inlet side to its outlet side.
  5. Vacuum pumping unit according to at least one of the preceding claims, characterized in that from the vacuum line (12) connecting the outlet of the first vacuum pump (4) to the inlet of the second vacuum pump (13) a suction line (18) runs to the intake line (2) of the first vacuum pump (4), terminating upstream of the throttle (5), and the control element (14) is power operated.
EP95116395A 1995-01-13 1995-10-18 Vacuum pumping system Expired - Lifetime EP0723080B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19500823A DE19500823A1 (en) 1995-01-13 1995-01-13 Vacuum pumping station
DE19500823 1995-01-13

Publications (2)

Publication Number Publication Date
EP0723080A1 EP0723080A1 (en) 1996-07-24
EP0723080B1 true EP0723080B1 (en) 1999-09-22

Family

ID=7751409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95116395A Expired - Lifetime EP0723080B1 (en) 1995-01-13 1995-10-18 Vacuum pumping system

Country Status (6)

Country Link
US (1) US5595477A (en)
EP (1) EP0723080B1 (en)
JP (1) JPH08232870A (en)
AT (1) ATE184963T1 (en)
DE (2) DE19500823A1 (en)
ES (1) ES2136232T3 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE504483C2 (en) * 1995-06-26 1997-02-17 Tetra Laval Holdings & Finance Procedure for controlling the vacuum level in a milking plant and milking plant
DE19524609A1 (en) * 1995-07-06 1997-01-09 Leybold Ag Device for the rapid evacuation of a vacuum chamber
DE19630264A1 (en) * 1996-07-26 1998-01-29 Klein Schanzlin & Becker Ag Method for switching devices or machines in a flow system
RU2113636C1 (en) * 1997-06-16 1998-06-20 Сергей Анатольевич Попов Pump ejector plant (versions)
JP3763193B2 (en) * 1997-09-22 2006-04-05 アイシン精機株式会社 Multistage vacuum pump
DE10018526A1 (en) * 2000-04-13 2001-10-25 Tbs Tech Betr Schmidt Gmbh Coating machine for furniture or structural components has pressure chamber, heat radiator with metal plate, and cover
DE10144210A1 (en) * 2001-09-08 2003-03-27 Sgi Prozess Technik Gmbh pump system
US6589023B2 (en) * 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption
DE10225774C1 (en) * 2002-06-10 2003-12-11 Vacuubrand Gmbh & Co Kg Vacuum pump, for condensing and aggressive gases, is a dry pump with a membrane pump stage and a spiral scroll pump stage
US7021888B2 (en) * 2003-12-16 2006-04-04 Universities Research Association, Inc. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump
GB0418771D0 (en) * 2004-08-20 2004-09-22 Boc Group Plc Evacuation of a load lock enclosure
DE102005042451B4 (en) * 2005-09-06 2007-07-26 Vacuubrand Gmbh + Co Kg Vacuum pump device
DE102008009715A1 (en) * 2008-02-19 2009-08-20 Oerlikon Leybold Vacuum Gmbh Vacuum pumping system and use of a multi-stage vacuum pump
KR101012581B1 (en) * 2009-01-19 2011-02-07 김재선 A water pump
KR101506026B1 (en) * 2009-12-24 2015-03-25 스미토모 세이카 가부시키가이샤 Double vacuum pump apparatus, gas purification system provided with double vacuum pump apparatus, and exhaust gas vibration suppressing device in double vacuum pump apparatus
CN101982658B (en) * 2010-09-01 2012-02-15 中国科学院广州地球化学研究所 Small scale/minitype ultrahigh vacuum device
DE102011015464B4 (en) * 2010-11-30 2012-09-06 Von Ardenne Anlagentechnik Gmbh Vacuum pumping device and method for dusty gases
CH706231B1 (en) * 2012-03-05 2016-07-29 Ateliers Busch Sa pumping system and method for controlling such an installation.
FR2998010A1 (en) * 2012-11-09 2014-05-16 Centre Nat Rech Scient PUMPING DEVICE, COMPRISING A SET OF SERIES PUMPS AND A COMMON SWITCHING ELEMENT
GB2510829B (en) 2013-02-13 2015-09-02 Edwards Ltd Pumping system
DE102013108090A1 (en) * 2013-07-29 2015-01-29 Hella Kgaa Hueck & Co. pump assembly
FR3017425A1 (en) * 2014-02-12 2015-08-14 Adixen Vacuum Products PUMPING SYSTEM AND PRESSING DESCENT METHOD IN LOADING AND UNLOADING SAS
US20160319810A1 (en) * 2015-04-30 2016-11-03 Atlas Copco Comptec, Llc Gas handling system and method for efficiently managing changes in gaseous conditions
CN105545783B (en) * 2016-02-26 2018-07-27 武汉艾德沃泵阀有限公司 Vacuum keeps system
EP3491243A1 (en) * 2016-07-12 2019-06-05 Dr.-ing. K. Busch GmbH Evacuation system
WO2020101973A1 (en) 2018-11-15 2020-05-22 Flowserve Management Company Apparatus and method for evacuating very large volumes
US11815095B2 (en) * 2019-01-10 2023-11-14 Elival Co., Ltd Power saving vacuuming pump system based on complete-bearing-sealing and dry-large-pressure-difference root vacuuming root pumps
US11492020B2 (en) 2020-05-05 2022-11-08 Flowserve Management Company Method of intelligently managing pressure within an evacuated transportation system
US11619231B1 (en) * 2021-12-28 2023-04-04 Elvac Co., Ltd Complete bearing-sealed root vacuum pump system capable of promoting vacuum ability of condenser of power plant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1711902A (en) * 1924-11-11 1929-05-07 Neumann Fritz Water-ring pump
US3642384A (en) * 1969-11-19 1972-02-15 Henry Huse Multistage vacuum pumping system
US3922110A (en) * 1974-01-28 1975-11-25 Henry Huse Multi-stage vacuum pump
DE2430314C3 (en) * 1974-06-24 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Liquid ring vacuum pump with upstream compressor
DE2462187A1 (en) * 1974-06-24 1976-09-02 Siemens Ag Vacuum pump with preceeding side channel ring compressor - drive of ring compressor is controllable by output requirements in terms of revolutions
US4505647A (en) * 1978-01-26 1985-03-19 Grumman Allied Industries, Inc. Vacuum pumping system
US4699570A (en) * 1986-03-07 1987-10-13 Itt Industries, Inc Vacuum pump system
US4850806A (en) * 1988-05-24 1989-07-25 The Boc Group, Inc. Controlled by-pass for a booster pump
WO1989012751A1 (en) * 1988-06-24 1989-12-28 Siemens Aktiengesellschaft Multi-stage vacuum-pump set
DE4136950A1 (en) * 1991-11-11 1993-05-13 Pfeiffer Vakuumtechnik MULTI-STAGE VACUUM PUMP SYSTEM

Also Published As

Publication number Publication date
US5595477A (en) 1997-01-21
ATE184963T1 (en) 1999-10-15
DE59506893D1 (en) 1999-10-28
EP0723080A1 (en) 1996-07-24
JPH08232870A (en) 1996-09-10
ES2136232T3 (en) 1999-11-16
DE19500823A1 (en) 1996-07-18

Similar Documents

Publication Publication Date Title
EP0723080B1 (en) Vacuum pumping system
EP0848981B1 (en) Pressure swing adsorption plant to separate oxygen from the air and process to operate the same
DE1628144C3 (en) Suction throttle control device
EP0847791A1 (en) Pressure swing adsorption plant to seperate oxygen from the air and process to operate the same
DE4213763A1 (en) Process for evacuating a vacuum chamber and a high vacuum chamber, and high vacuum system for carrying it out
DE4331589C2 (en) Vacuum pumping system
EP1434896B1 (en) Multi-chamber installation for treating objects under vacuum, method for evacuating said installation and evacuation system therefor
EP2227636B1 (en) Multi-level membrane suction pump
EP0714482B2 (en) Vacuum pump with oil separator
WO2000058629A1 (en) Side channel compressor
EP0972938B1 (en) Gas ballast device for a multistage positive displacement pump
EP0682751B1 (en) Vacuum pump device
WO2010119121A2 (en) Roughing pump method for a positive displacement pump
EP1600630B1 (en) Multistage gas compressor and its control method
WO2001083990A1 (en) Device for delivering moist gases
DE10249062A1 (en) Multi-stage piston vacuum pump and method for its operation
CH641877A5 (en) METHOD FOR MULTI-STAGE COMPRESSION OF GASES AND MULTI-STAGE COMPRESSOR FOR CARRYING OUT THE METHOD.
EP0373229A1 (en) Mechanical vacuum pump with a spring loaded return valve
EP0603698B1 (en) Rolling piston vacuum pump
DE102009023507A1 (en) Screw type compressor aggregate i.e. pressurized air compressor aggregate, has pressure line exhibiting trap, where proportion between common geometrical chamber volumes in front of trap is larger than dimension of operating chamber
DE284768C (en)
DE202022101276U1 (en) compressed air system
DE102004002772A1 (en) Screw compressor refrigeration system has a controlled economizer connection situated between an intermediate pressure separator and the compressor
DE19725678A1 (en) Pressure change system for extracting oxygen from the air and method for operating such
CH343578A (en) Mechanical pump combination designed for vacuum drying and degassing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19961102

17Q First examination report despatched

Effective date: 19980914

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990922

REF Corresponds to:

Ref document number: 184963

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PPS POLYVALENT PATENT SERVICE AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991027

Year of fee payment: 5

Ref country code: IE

Payment date: 19991027

Year of fee payment: 5

REF Corresponds to:

Ref document number: 59506893

Country of ref document: DE

Date of ref document: 19991028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991029

Year of fee payment: 5

Ref country code: AT

Payment date: 19991029

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991103

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19991105

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991115

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2136232

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

BERE Be: lapsed

Owner name: SGI-PROZESS-TECHNIK G.M.B.H.

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 95116395.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020910

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020917

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021017

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021217

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051018