EP0702375B1 - Oberleitungsdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung - Google Patents

Oberleitungsdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP0702375B1
EP0702375B1 EP95113311A EP95113311A EP0702375B1 EP 0702375 B1 EP0702375 B1 EP 0702375B1 EP 95113311 A EP95113311 A EP 95113311A EP 95113311 A EP95113311 A EP 95113311A EP 0702375 B1 EP0702375 B1 EP 0702375B1
Authority
EP
European Patent Office
Prior art keywords
wire
cold working
alloy
component
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95113311A
Other languages
English (en)
French (fr)
Other versions
EP0702375A3 (de
EP0702375A2 (de
Inventor
Christian Dr. Kuhrt
Arno Fink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25940163&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0702375(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0702375A2 publication Critical patent/EP0702375A2/de
Publication of EP0702375A3 publication Critical patent/EP0702375A3/de
Application granted granted Critical
Publication of EP0702375B1 publication Critical patent/EP0702375B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the invention relates to a catenary wire of a high-speed electrical railway line with a tensile strength (R m ) of the wire of at least 550 MPa and an electrical conductivity ( ⁇ ) of at least 65%, based on that of annealed pure copper according to the International Annealed Copper Standard (IACS) .
  • the invention further relates to a method for producing such an overhead line wire.
  • Such an overhead line wire and a corresponding manufacturing method can be found in EP 0 569 036 A.
  • the contact wire material is therefore subject to the highest demands with regard to its mechanical tensile strength R m with high electrical conductivity ⁇ at the same time.
  • a CuAg alloy with an Ag content of 0.1% by weight Ag content is currently used for the contact wire of the Re250 control overhead line from Deutsche Bahn AG with a grooved profile and 120 mm 2 diameter.
  • This alloy has a tensile strength R m of about 350 MPa (N / mm 2 ) with a conductivity ⁇ of about 95%, based on that of annealed pure Cu according to IACS (International Annealed Copper Standard).
  • the contact wire is designed for regular operation at speeds of up to 250 km / h. Taking into account an unavoidable wear, it is prestressed at 125 MPa, ie with about 36% of its tensile strength ⁇ or a safety margin against breakage of about 2.8 (cf.
  • Such a high minimum tensile strength can e.g. with from the mentioned copper alloys can be achieved.
  • the selected composition of the alloy requires that one of the melted components obtained casting strand after hot rolling to an output wire either by immersion in a water or oil bath must be cooled very quickly or after a slower one Air cooling then an additional heat treatment (Solution annealing) with rapid cooling got to.
  • the preform obtained in this way then undergoes several cold deformations subjected to being interrupted by excretion annealing are. Because of the generally necessary rapid cooling of the preliminary product from the solution temperature (860 - 1000 ° C) the known method is relatively expensive and therefore not very suitable for commercial wire production.
  • An electrical wire is also made from US Pat. No. 4,755,235 a precipitation hardened Cu alloy with Cr (0.05 to 1.5 wt%), Zr (0.05 to 0.5 wt%) and Mg (0.005 to 0.1% by weight).
  • an alloy melt is said be cooled rapidly (within 1 to 2 minutes from about 1200 ° C to room temperature).
  • the object of the present invention is to provide a catenary wire made of a material which on the one hand meets the minimum requirements mentioned with regard to the mechanical tensile strength R m and the electrical conductivity K and which on the other hand enables the wire to be produced in a simplified manner compared to the known methods.
  • the catenary wire consists of an at least 5-component, hardenable Cu a Cr b Zr c Mg d X e alloy, where X is an element from the group of elements Al, P, S, Fe, Ni , Zn, Ag, Cd, In, Sn, Sb and Bi and should apply to the components (each in percent by weight): 0.2 ⁇ b ⁇ 0.8, 0.02 ⁇ c ⁇ 0.4, 0.01 ⁇ d ⁇ 0.2, 0.01 ⁇ e ⁇ 0.4, With a + b + c + d + e ⁇ 100 including unavoidable pollution elements.
  • the invention is based on the knowledge that with the Choice of the Mg component in combination with the proportions mentioned the other components advantageous to a special one Treatment of the wire intermediate in the form of rapid cooling waived from the melting or solution temperature can be.
  • a melted from the alloy according to the invention then normal in the usual way, e.g. from 1200 ° C to room temperature in 5 to 10 min, cooled and optionally still pre-deformed, for example, by hot rolling Starting product or wire intermediate product therefore only needs to be cold worked and outsourced to using a wire to get the desired properties.
  • the materials to be selected for the X component (5th component) advantageously increase the yield strength of the Cu alloy and improve the formability of the wire intermediate. These properties are particularly important when the production of the wire only a single cold forming to be provided.
  • the wire according to the invention has a Si-free Cu alloy. Because by avoiding it of an Si portion can be an undesirable reduction exclude the electrical conductivity ⁇ (cf. e.g. the book “Materials in Electrical Engineering", Page 172).
  • the manufacturing method according to the invention is characterized in that that a wire intermediate is first created, whereby the Cu alloy melted and then opposed a rapid cooling cooled comparatively more slowly is then the wire intermediate by means of at least one Cold working is converted into a wire intermediate, then the intermediate wire product of at least one age heat treatment is subjected and if necessary the Cold forming and / or aging steps can be repeated at least once, with the last cold deformation the final shape of the wire is generated.
  • the intermediate wire product can be produced directly from the melt of the Cu alloy. But it is also possible an initial product formed from the slowly solidified melt by means of at least one pre-deformation in the To transfer wire intermediate.
  • the melt with a comparatively lower cooling rate especially with at most 20 ° C / s in the important temperature range from Melting temperature to about 700 ° C, are cooled. Below of 700 ° C the cooling rate can be significantly lower and for example at 5 ° C / s. Let such cooling rates realize themselves without much effort, so that the invention
  • the method is correspondingly simple to carry out is.
  • the aging heat treatment is in itself known manner at elevated temperature and above such Period carried out that the hardening of the Precipitation of the material required with the cold forming trained dislocation structures.
  • the material from the individual components preferably in a protective gas atmosphere such as melted under Ar.
  • a protective gas atmosphere such as melted under Ar.
  • Oxygen content in the melt should be as possible be low and preferably below 100 ppm.
  • the melt is then with a Cooling rate or rate (in ° C / min) cooled, the in the for the formation of the precipitation hardened material important temperature range between the melting temperature and about 700 ° C well below that for a quick Cooling characteristic cooling rates of at least about 100 ° C / s.
  • Such cooling rates can be achieved, for example, by a simple one Pour into a water-cooled mold under air or in a protective gas atmosphere. On a scare So in a water or oil bath can be beneficial to be dispensed with.
  • the direct pouring of the melt into one Pre-wire with e.g. 20 to 30 mm diameter by pulling the melt through a water-cooled, horizontally stored Chill mold is particularly suitable here.
  • the one, if necessary, cast into blocks or bars Melting mass can then be remelted to get out of it a wire preliminary product more suitable with regard to the wire shape to accomplish.
  • the cooled melt mass can by hot rolling to a wire intermediate as one Process pre-wire. Hot rolling can also be done in one continuous step, a so-called casting roll, immediately connect to the melting of the Cu alloy.
  • the pre-wire cross-section should be set this way be that in the subsequent at least a cold forming a cross-sectional reduction of 50 to 99%, preferably from 60 to 95%, is done so as to achieve the desired one Obtain the final cross-section of the catenary wire.
  • the pre-wire (or the pre-wire) is then undergo a first cold working.
  • Such cold deformation can e.g. by pressing or rolling or hammering, especially by pulling.
  • the degree of deformation is generally between 20 and 80%, preferably between 40 and 70%.
  • the first cold-forming step is then followed by a first one Age heat treatment of the wire intermediate which is advantageous at a temperature between 350 ° C and 600 ° C, preferably between 450 ° C and 500 ° C, performed becomes.
  • This heat treatment will harden the material due to excretions on those with cold forming generated dislocation structures achieved.
  • the duration this heat treatment is generally between 10 minutes and 10 hours. Large batches are significant Heating and cooling times must be taken into account.
  • the processing steps of cold forming and / or hardening by heat treatment are advantageously repeated, advantageously completed with a cold working the desired end product of the catenary wire in the to get hard drawn condition. If this last cold working should be done in just one step, then should not exceed the cross-sectional reduction to be chosen here 20% to 22%. Of course, everyone can Cold forming, in particular also the last cold forming, Assemble from several cold forming steps.
  • An at least 5-component Cu alloy of the composition Cu a Cr b Zr c Mg d X e is provided for the catenary wire to be produced in this way.
  • This proportion ⁇ of impurity elements is generally less than 100 ppm per impurity element.
  • the following table shows the tensile strength R m , the microhardness HV, the conductivity ⁇ and the elongation at break ⁇ B for some wires made of Cu alloys according to the invention in comparison to the known CuAg0.1 alloy for different processing states.
  • the microhardness HV 50 was determined on cross sections perpendicular to the longitudinal direction of the wire.
  • the electrical conductivity ⁇ was measured with 0.2 to 1 A alternating current in lock-in technology at 370 Hz using a four-point method.
  • the conductivity values determined apply to a temperature of 20 ° C.
  • the specified properties are the same for corresponding catenary wires.
  • the 5-component alloy according to the invention represents only a basic alloy for a catenary wire for high speed electric railways to which if necessary, at least one other element proportionate to one small proportion of less than 0.1 wt .-% added can be.
  • additional elements are particularly selected from the elements provided for the X component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Contacts (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electric Cable Installation (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Switches (AREA)

Description

Die Erfindung bezieht sich auf einen Oberleitungsdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke mit einer Zugfestigkeit (Rm) des Drahtes von mindestens 550 MPa und einer elektrischen Leitfähigkeit (κ) von mindestens 65 %, bezogen auf die von geglühtem reinen Kupfer gemäß International Annealed Copper Standard (IACS). Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Oberleitungsdrahtes.Ein derartiger Oberleitungsdraht und ein entsprechendes Herstellungsverfahren gehen aus der EP 0 569 036 A hervor.
Auf Hochgeschwindigkeitsbahnstrecken ist für eine sichere Energiezufuhr über ein Oberleitungssystem eine hohe mechanische Vorspannung des Fahrdrahtes eine unverzichtbare Voraussetzung. An den Fahrdrahtwerkstoff werden somit höchste Anforderungen bezüglich seiner mechanischen Zugfestigkeit Rm bei gleichzeitig hoher elektrischer Leitfähigkeit κ gestellt.
Gegenwärtig wird für den Fahrdraht der Regeloberleitung Re250 der Deutschen Bahn AG mit Rillenprofil und 120 mm2 Durchmesser eine CuAg-Legierung mit einem Ag-Anteil von 0,1 Gew.-% Ag-Anteil verwendet. Diese Legierung weist eine Zugfestigkeit Rm von etwa 350 MPa(N/mm2) auf bei einer Leitfähigkeit κ von etwa 95 %, bezogen auf die von geglühtem reinen Cu gemäß IACS (International Annealed Copper Standard). Der Fahrdraht ist für einen Regelbetrieb mit Fahrgeschwindigkeiten von höchstens 250 km/h ausgelegt. Er ist unter Berücksichtigung einer unvermeidbaren Abnutzung mit 125 MPa vorgespannt, d.h. mit etwa 36 % seiner Zugfestigkeit κ bzw. einer Sicherheitsmarge gegen Bruch von etwa 2,8 (vgl. "Elektrische Bahnen", 80. Jg., 1982, H. 4, Seiten 119 bis 125 oder "Eisenbahntechnische Rundschau", Bd. 35, H. 9, Sept. 1986, Seiten 593 bis 599). Diese Vorspannung wurde für eine Hochgeschwindigkeitsfahrt mit über 400 km/h kurzfristig auf 175 MPa erhöht ("Elektrische Bahnen", 86. Jg., 1988, H. 9, Seiten 268 bis 289).
Zur Auslegung der Oberleitung für einen Regelbetrieb mit Hochgeschwindigkeiten von über 300 km/h wird eine Fahrdrahtvorspannung von bis zu 200 MPa gefordert. Dies bedingt unter Zugrundelegung der vorgenannten Sicherheitsmarge eine Fahrdraht legierung mit einer Mindestzugfestigkeit κ von etwa 550 MPa. Die Zugfestigkeit wird dabei durch Zugversuche nach DIN 50145/46 bestimmt (vgl. das Buch "Werkstoffe in der Elektrotechnik" von H. Fischer, 3. Auflage, G. Hanser Verlag München Wien, 1987, Seiten 113 bis 121).
Eine derart hohe Mindestzugfestigkeit kann z.B. mit aus der genannten EP-A zu entnehmenden Cu-Legierungen erreicht werden. Gemäß einem speziellen Ausführungsbeispiel setzt sich eine dieser Legierungen aus den Komponenten Cr (0,1 bis 1 %), Zr (0,01 bis 0,3 %), Mg (0,001 bis 0,05 %), O (maximal 10 ppm) und Cu (Rest) unter Einschluß unvermeidbarer Verunreinigungen zusammen. Die gewählte Zusammensetzung der Legierung bedingt dabei, daß ein aus den erschmolzenen Komponenten gewonnener Gießstrang nach einem Warmwalzen zu einem Ausgangsdraht entweder durch Eintauchen in ein Wasser- oder Ölbad sehr rasch abgekühlt werden muß oder nach einer langsameren Luftabkühlung anschließend einer zusätzlichen Wärmebehandlung (Lösungsglühung) mit Raschabkühlung unterzogen werden muß. Der so gewonnene Vorkörper wird dann mehreren Kaltverformungen unterzogen, die von Ausscheidungsglühungen unterbrochen sind. Wegen der generell notwendigen raschen Abkühlung des Vorprodukts von der Lösungstemperatur (860 - 1000°C) ist das bekannte Verfahren verhältnismäßig aufwendig und deshalb für eine kommerzielle Drahtfertigung wenig geeignet.
Aus der US-PS 4,755,235 ist ferner ein elektrischer Draht aus einer ausscheidungsgehärteten Cu-Legierung mit Cr (0,05 bis 1,5 Gew.-%), Zr (0,05 bis 0,5 Gew.-%) und Mg (0,005 bis 0,1 Gew.-%) zu entnehmen. Auch hier soll eine Legierungsschmelze rasch abgekühlt werden (innerhalb 1 bis 2 Minuten von etwa 1200°C auf Raumtemperatur).
Aufgabe der vorliegenden Erfindung ist es, einen Oberleitungsdraht aus einem Material anzugeben, das einerseits die genannten Mindestanforderungen bezüglich der mechanischen Zugfestigkeit Rm und der elektrischen Leitfähigkeit K erfüllt und das andererseits eine gegenüber den bekannten Verfahren vereinfachte Herstellung des Drahtes ermöglicht.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Oberleitungsdraht aus einer wenigstens 5-komponentigen, aushärtbaren CuaCrbZrcMgdXe-Legierung besteht, wobei X ein Element aus der Gruppe der Elemente Al, P, S, Fe, Ni, Zn, Ag, Cd, In, Sn, Sb und Bi ist und für die Komponenten gelten soll (jeweils in Gewichtsprozent): 0,2 ≤ b ≤ 0,8, 0,02 ≤ c ≤ 0,4, 0,01 ≤ d ≤ 0,2, 0,01 ≤ e ≤ 0,4, mit a + b + c + d + e ≅ 100 unter Einschluß unvermeidbarer Verunreinigungselemente.
Die Erfindung geht dabei von der Erkennntnis aus, daß mit der Wahl der Mg-Komponente in Kombination mit den genannten Anteilen der übrigen Komponenten vorteilhaft auf eine besondere Behandlung des Draht-Vorproduktes in Form einer raschen Abkühlung von der Schmelz- bzw. Lösungstemperatur verzichtet werden kann. Ein aus der erfindungsgemäßen Legierung erschmolzenes, dann in üblicher Weise normal, z.B. von 1200°C auf Raumtemperatur in 5 bis 10 min, abgekühltes und gegebenenfalls noch beispielsweise durch Warmwalzen vorverformtes Ausgangsprodukt bzw. Drahtvorprodukt braucht also nur noch kaltverformt und ausgelagert zu werden, um einen Draht mit den gewünschten Eigenschaften zu erhalten. Es wurde erkannt, daß die für die X-Komponente (5. Komponente) zu wählenden Materialien vorteilhaft die Streckgrenze der Cu-Legierung erhöhen und die Umformbarkeit des Drahtvorproduktes verbessern. Diese Eigenschaften sind insbesondere von Bedeutung, wenn bei der Herstellung des Drahtes nur ein einmaliges Kaltverformen vorgesehen werden soll.
Besonders vorteilhaft wird als X-Komponente Al oder In gewählt. Die entsprechende Cu-Legierung zeichnet sich durch verhältnismäßig hohe Zugfestigkeitswerte Rm und verhältnismäßig hohe Werte der 0,01 %-Dehnungsgrenze (= technische Elastizitätsgrenze) aus.
Außerdem ist es vorteilhaft, wenn der erfindungsgemäße Draht eine Si-freie Cu-Legierung aufweist. Denn durch die Vermeidung eines Si-Anteils läßt sich so eine unerwünschte Verminderung der elektrischen Leitfähigkeit κ ausschließen (vgl. z.B. das genannte Buch "Werkstoffe in der Elektrotechnik", Seite 172).
Das erfindungsgemäße Herstellungsverfahren ist dadurch gekennzeichnet, daß zunächst ein Drahtvorprodukt erstellt wird, wobei die Cu-Legierung erschmolzen und anschließend gegenüber einer Raschabkühlung vergleichsweise langsamer abgekühlt wird, darauf das Drahtvorprodukt mittels mindestens einer Kaltverformung in ein Drahtzwischenprodukt überführt wird, dann das Drahtzwischenprodukt mindestens einer Auslagerungswärmebehandlung unterzogen wird und gegebenenfalls die Schritte der Kaltverformung und/oder der Auslagerungsbehandlung mindestens noch einmal wiederholt werden, wobei mit der letzten Kaltverformung die Endform des Drahtes erzeugt wird. Dabei kann das Drahtvorprodukt unmittelbar aus der Schmelze der Cu-Legierung gegossen werden. Es ist aber auch möglich, ein aus der langsam erstarrten Schmelze ausgebildetes Ausgangsprodukt mittels mindestens einer Vorverformung in das Drahtvorprodukt zu überführen. Da die für eine Raschabkühlung charakteristischen Abkühlraten bei etwa 100°C/s und höher liegen, soll bei dem erfindungsgemäßen Verfahren die Schmelze mit vergleichsweise kleinerer Abkühlrate, insbesondere mit höchstens 20°C/s in dem wichtigen Temperaturbereich von der Schmelztemperatur auf etwa 700°C, abgekühlt werden. Unterhalb von 700°C kann die Abkühlrate noch deutlich geringer sein und beispielsweise bei 5°C/s liegen. Solche Abkühlraten lassen sich ohne größeren Aufwand realisieren, so daß das erfindungsgemäße Verfahren vorteilhaft entsprechend einfach durchzuführen ist. Die Auslagerungswärmebehandlung wird in an sich bekannter Weise bei erhöhter Temperatur und über einen solchen Zeitraum durchgeführt, daß sich die für eine Härtung des Materials erforderlichen Ausscheidungen an den mit der Kaltverformung erzeugten Versetzungsstrukturen ausbilden.
Vorteilhafte Weiterbildungen des Oberleitungsdrahtes und des Verfahrens zu seiner Herstellung gehen aus den jeweils abhängigen Ansprüchen hervor.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen noch weiter erläutert.
Zur Herstellung eines Oberleitungsdrahtes aus einer Cu-Legierung mit der erfindungsgemäßen Zusammensetzung wird zunächst das Material aus den einzelnen Komponenten vorzugsweise in einer Schutzgasatmosphäre wie z.B. unter Ar erschmolzen. Der Sauerstoffgehalt in der Schmelze sollte nämlich möglichst niedrig sein und vorzugsweise unter 100 ppm liegen. Um eine gute Homogenität der Schmelze zu gewährleisten, muß über den Schmelzpunkt von Cu (1084°C), insbesondere auf mindestens 1200°C erhitzt werden. Gegebenenfalls kommen noch höhere Temperaturen in Frage. Deswegen wird vorteilhaft ein Induktionsschmelzen vorgesehen. Die Schmelze wird dann mit einer Abkühlgeschwindigkeit bzw. -rate (in °C/min) abgekühlt, die in dem für die Ausbildung des ausscheidungsgehärteten Materials wichtigen Temperaturbereich zwischen der Schmelztemperatur und etwa 700°C deutlich unterhalb der für eine rasche Abkühlung charakteristischen Abkühlraten von mindestens etwa 100°C/s liegt. So kommen insbesondere Abkühlraten von höchstens 20°C/s in dem genannten Temperaturbereich in Frage. Solche Abkühlraten lassen sich beispielsweise durch ein einfaches Abgießen in eine wassergekühlte Kokille unter Luft oder in einer Schutzgasatmosphäre realisieren. Auf ein Abschrecken in einem Wasser- oder Ölbad kann also vorteilhaft verzichtet werden. Das direkte Abgießen der Schmelze zu einem Vordraht mit z.B. 20 bis 30 mm Durchmesser mittels Abziehens der Schmelze durch eine wassergekühlte, horizontal gelagerte Kokille ist hier besonders geeignet.
Die gegebenenfalls zu Blöcken oder Barren abgegossene Schmelzmasse kann dann noch umgeschmolzen werden, um daraus ein hinsichtlich der Drahtform geeigneteres Drahtvorprodukt zu schaffen. Darüber hinaus läßt sich die abgekühlte Schmelzmasse durch ein Warmwalzen zu einem Drahtvorprodukt als ein Vordraht verarbeiten. Das Warmwalzen kann sich auch in einem kontinuierlichen Schritt, einem sogenannten Gießwalzen, unmittelbar an das Erschmelzen der Cu-Legierung anschließen. Ferner ist auch ein Umschmelzen der abgekühlten Schmelzmasse zu einem Barren möglich, der z.B. durch Strangpressen zu einem Vordraht verarbeitet wird. Aus einem entsprechenden Barren können auch stiftartige Körper herausgearbeitet werden, die dann z.B. durch Rundhämmern zu einem Vordraht verformt werden. Der Vordrahtquerschnitt sollte dabei so eingestellt werden, daß bei der sich anschließenden mindestens einen Kaltverformung eine Querschnittsreduktion von 50 bis 99 %, vorzugsweise von 60 bis 95 %, erfolgt, um so den gewünschten Endquerschnitt des Oberleitungsdrahtes zu erhalten.
Das Drahtvorprodukt (bzw. der Vordraht) wird anschließend einer ersten Kaltverformung unterzogen. Eine solche Kaltverformung kann z.B. durch Pressen oder Walzen oder Hämmern, insbesondere durch Ziehen, vorgenommen werden. Der Verformungsgrad liegt dabei im allgemeinen zwischen 20 und 80 %, vorzugsweise zwischen 40 und 70 %. Beispielsweise werden drei Ziehschritte mit einer Querschnittsreduktion von 38 % bis 34 % (1. Schritt) bzw. von 34 % bis 30 % (2. Schritt) bzw. von 26 % bis 24 % (3. Schritt) gewählt. Mit dieser Kaltverformung werden in dem so zu erhaltenden Drahtzwischenprodukt in bekannter Weise Versetzungsstrukturen erzeugt, die Voraussetzung für eine hinreichende Härtung des Materials sind.
Dem ersten Kaltverformungsschritt schließt sich dann eine erste Auslagerungswärmebehandlung des Drahtzwischenproduktes an, die vorteilhaft bei einer Temperatur zwischen 350°C und 600°C, vorzugsweise zwischen 450°C und 500°C, durchgeführt wird. Mit dieser Wärmebehandlung wird eine Härtung des Materials aufgrund von Ausscheidungen an den mit der Kaltverformung erzeugten Versetzungsstrukturen erreicht. Die Dauer dieser Wärmebehandlung liegt im allgemeinen zwischen 10 Minuten und 10 Stunden. Bei großen Chargen sind dabei erhebliche Aufheiz- und Abkühlzeiten zu berücksichtigen.
Die Verarbeitungsschritte der Kaltverformung und/oder Härtung durch Wärmebehandlung werden zweckmäßigerweise wiederholt, wobei vorteilhaft mit einer Kaltverformung abgeschlossen wird, um das gewünschte Endprodukt des Oberleitungsdrahtes im hartgezogenen Zustand zu erhalten. Wenn diese letzte Kaltverformung in nur einem Schritt vorgenommen werden soll, dann sollte die hier zu wählende Querschnittsreduktion nicht über 20 % bis 22 % betragen. Selbstverständlich kann sich aber jede Kaltverformung, also insbesondere auch die letzte Kaltverformung, aus mehreren Kaltverformungsschritten zusammensetzen.
Hinsichtlich einer möglichst einfachen Herstellung des Oberleitungsdrahtes kann man gegebenenfalls auch eine nur einstufige Kaltverformung vorsehen. Der Verformungsgrad liegt hier natürlich höher.
Für den so herzustellenden Oberleitungsdraht wird eine mindestens 5-komponentige Cu-Legierung der Zusammensetzung CuaCrbZrcMgdXe vorgesehen. Um eine Mindestfestigkeit Rm von 550 MPa und eine elektrische Leitfähigkeit κ von mindestens 65 % IACS gewährleisten zu können, werden für die einzelnen Komponenten erfindungsgemäß folgende Anteile (jeweils in Gew.-%) gewählt: 0,2 ≤ b ≤ 0,8, 0,02 ≤ c ≤ 0,4, 0,01 ≤ d ≤ 0,2, 0,01 ≤ e ≤ 0,4 und a + b + c + d + e = 100 - δ, wobei δ durch den Einschluß unvermeidbarer Verunreinigungselemente in der Legierung bestimmt ist. Dieser Anteil δ an Verunreinigungselementen liegt im allgemeinen unter 100 ppm pro Verunreinigungselement.
Im Hinblick auf die geforderten Materialeigenschaften und die verhältnismäßig einfache Verarbeitungsmöglichkeit zu einem Oberleitungsdraht ist es als besonders vorteilhaft anzusehen, wenn der Anteil d der Mg-Komponente mindestens 0,05 Gew.-% beträgt. Offenbar hält dann der Mg-Zusatz auch die beiden anderen Komponenten Cr und Zr während der verhältnismäßig langsamen Abkühlungsphase der Schmelze in Lösung. Zugleich wird vorteilhaft ein Anteil b der Cr-Komponente gewählt, der mindestens 0,3 Gew.-% beträgt und vorteilhaft unter 0,6 Gew.-% liegt. Ferner sollte der Anteil c der Zr-Komponente mindestens 0,15 Gew.-% betragen. Darüber hinaus soll die Cu-Legierung des erfindungsgemäßen Oberleitungsdrahtes zumindest eines der Elemente aus der Gruppe Al, P, S, Fe, Ni, Zn, Ag, Cd, In, Sn, Sb und Bi mit einem Anteil zwischen 0,01 und 0,4 Gew.-% enthalten. Diese Elemente, die im wesentlichen auch nach der Wärmebehandlung im Cu gelöst bleiben, sind insbesondere unter den folgenden zwei Gesichtspunkten von Vorteil:
  • 1) Das Material besitzt gegenüber der nur 4-komponentigen CuCrZrMg-Legierung eine verbesserte Kaltumformbarkeit.
  • 2) Der Kaltverfestigungsgrad während der abschließenden Kaltumformung ist vergleichsweise höher, so daß eine gegenüber der 4-komponentigen Legierung erhöhte Elastizitätsgrenze erreicht wird. Diese Vorteile kommen insbesondere bei einer nur einstufigen Kaltverformung zum Tragen.
  • Die genannten Anteile der einzelnen Komponenten gewährleisten eine gute Aushärtbarkeit und somit Zugfestigkeit der Legierung bei einer hinreichenden Leitfähigkeit und einer genügenden Bruchdehnung des Materials.
    Die nachfolgende Tabelle zeigt die Zugfestigkeit Rm, die Mikrohärte HV, die Leitfähigkeit κ und die Bruchdehnung εB für einige Drähte aus erfindungsgemäßen Cu-Legierungen im Vergleich zu der bekannten CuAg0.1-Legierung für verschiedene Verarbeitungszustände. Zur mechanischen Charakterisierung wurden standardmäßig die Zugfestigkeit Rm, die sogenannte 0,01 %-Dehngrenze (= technische Elastizitätsgrenze) Rp0,01 und die Bruchdehnung εB ≅ A100 bei Raumtemperatur bestimmt. Dies geschah in Zerreißversuchen an 100 mm langen Drahtstücken mit meist 1 mm  bei einer Dehngeschwindigkeit von 1 mm/min entsprechend 1,7 x 10-4 s-1. An Querschliffen senkrecht zur Draht längsrichtung wurde die Mikrohärte HV50 bestimmt. Die elektrische Leitfähigkeit κ wurde mit 0,2 bis 1 A Wechselstrom in Lock-in-Technik bei 370 Hz mit Hilfe einer Vierpunktmethode gemessen. Die ermittelten Leitfähigkeitswerte gelten für eine Temperatur von 20°C. Die angegebenen Eigenschaften sind bei entsprechenden Oberleitungsdrähten dieselben.
    Figure 00100001
    Zur Herstellung der in der Tabelle aufgeführten Legierungen wurde von hochreinen Elementen (99,99 %) der Komponenten ausgegangen. Mit den Elementen wurden in einer Ar-Schutzgasatmosphäre zylindrische Reguli (ca. 60 g) in einem MgO-Tiegel induktiv erschmolzen und anschließend in einem Lichtbogenofen zu Barren (Länge ca. 10 bis 15 cm) umgeschmolzen. Aus den Barren wurden funkenerosiv und durch Drehen Stifte mit kreisförmigem Querschnitt (typisch 3 mm Durchmesser ) herausgeschnitten, wobei der beim Schmelzen gebildete Schlackesack entfernt wurde. Die Stifte wurden zunächst auf ca. 2 mm  rundgehämmert und anschließend auf ca. 1,5 mm  gezogen. Die Kaltumformung wurde mit kleinen Stichabnahmen von 0,1 bis 0,05 mm durchgeführt. Eine relative Querschnittsreduktion beim Kaltziehen von ca. 75 %, entsprechend einer Längung von l/l0 = 44, d.h. einem Umformungsgrad ϕ = ln (l/l0)von 1,39, konnte bei allen untersuchten Legierungen aufgrund eines hohen Kaltverformungsvermögens ohne Materialfehler erzielt werden. Die Wärmebehandlungen wurden in einem Quarzrohr unter Ar-Atmosphäre durchgeführt. Nach Auslagerungsglühungen (450 bis 500°C) wurde das Material im Quarzrohr außerhalb des Ofens relativ langsam abgekühlt.
    Abweichend von den in der Tabelle aufgeführten Cu-Legierungen sind insbesondere auch mit den folgenden erfindungsgemäßen Legierungen die genannten Zugfestigkeits- und Leitfähigkeitsbedingungen zu erfüllen (Angaben jeweils in Gew.-%):
    CuCr 0,3 Zr 0,2 Mg 0,1 In 0,1
    CuCr 0,3 Zr 0,1 Mg 0,1 Al 0,05
    CuCr 0,3 Zr 0,05 Mg 0,05 In 0,15
    CuCr 0,3 Zr 0,2 Mg 0,05 Al 0,085
    CuCr 0,55 Zr 0,2 Mg 0,2 Sn 0,05
    CuCr 0,55 Zr 0,1 Mg 0,1 Zn 0,15
    CuCr 0,55 Zr 0,05 Mg 0,05 Ni 0,2
    CuCr 0,55 Zr 0,05 Mg 0,2 Cd 0,05
    CuCr 0,5 Zr 0,18 Mg 0,06 Ag 0,15
    CuCr 0,6 Zr 0,15 Mg 0,05 Bi 0,15
    CuCr 0,3 Zr 0,1 Mg 0,05 Fe 0,03
    CuCr 0,4 Zr 0,1 Mg 0,08 P 0,04
    CuCr 0,3 Zr 0,05 Mg 0,1 S 0,05
    CuCr 0,5 Zr 0,18 Mg 0,05 Sb 0,1
    Die erfindungsgemäße 5-komponentige Legierung stellt selbstverständlich nur eine Basislegierung für einen Oberleitungsdraht für elektrische Hochgeschwindigkeitsbahnen dar, zu der gegebenenfalls mindestens ein weiteres Element zu einem verhältnismäßig geringen Anteil von unter 0,1 Gew.-% hinzulegiert sein kann. Solche Zusatzelemente werden insbesondere aus den für die X-Komponente vorgesehenen Elementen ausgewählt.

    Claims (24)

    1. Oberleitungsdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke mit einer Zugfestigkeit (Rm) des Drahtes von mindestens 550 MPa und einer elektrischen Leitfähigkeit (κ), bezogen auf die von geglühtem reinen Cu (International Annealed Copper Standard), von mindestens 65 %, bestehend aus einer wenigstens 5-komponentigen, aushärtbaren CuacrbzrcmgdXe-Legierung,
      wobei X ein Element aus der Gruppe der Elemente Al, P, S, Fe, Ni, Zn, Ag, Cd, In, Sn, Sb und Bi ist und für die Komponenten (jeweils in Gew.-%) gilt: 0,2 ≤ b ≤ 0,8 0,02 ≤ c ≤ 0,4, 0,01 ≤ d ≤ 0,2, 0,01 ≤ e ≤ 0,4, mit a + b + c + d + e ≅ 100 unter Einschluß unvermeidbarer Verunreinigungselemente.
    2. Draht nach Anspruch 1, dadurch gekennzeichnet, daß daß für die Xe-Komponente gilt: 0,02 ≤ e ≤ 0,2.
    3. Draht nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für die Mgd-Komponente gilt: d ≥ 0,05 Gew.-%.
    4. Draht nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß für die Zrc-Komponente gilt: c ≤ 0,2 Gew.-%.
    5. Draht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß für die Crb-Komponente gilt: 0,3 Gew.-% ≤ b ≤ 0,6 Gew.-%.
    6. Draht nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Cu-Legierung mindestens ein weiteres Element aus der Gruppe der X-Elemente zu einem Anteil unter 0,1 Gew.-% hinzulegiert ist.
    7. Draht nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Cu-Legierung praktisch frei von Si ist.
    8. Draht nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Cu-Legierung als weitere Komponente Si mit einem Anteil von höchstens 0,1 Gew.-% enthält.
    9. Verfahren zur Herstellung des Oberleitungsdrahtes nach einem der Ansprüche 1 bis 8, gekennzeichnet, durch folgende Schritte:
      a) Es wird zunächst ein Drahtvorprodukt erstellt, wobei die Cu-Legierung erschmolzen und anschließend gegenüber einer Raschabkühlung vergleichsweise langsamer abgekühlt wird,
      b) darauf wird das Drahtvorprodukt mittels mindestens einer Kaltverformung in ein Drahtzwischenprodukt überführt,
      c) dann wird das Drahtzwischenprodukt mindestens einer Auslagerungswärmebehandlung unterzogen,
      d) gegebenenfalls werden die Schritte b) und/oder c) mindestens noch einmal wiederholt,
      wobei mit der letzten Kaltverformung die Endform des Drahtes erzeugt wird.
    10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Drahtvorprodukt dadurch ausgebildet wird, daß zunächst ein Ausgangsprodukt aus den Elementen der Cu-Legierung mittels Erschmelzens und anschließender Abkühlung erstellt wird und dann das Ausgangsprodukt mittels mindestens einer Vorverformung in das Drahtvorprodukt überführt wird.
    11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die mindestens eine Vorverformung bei erhöhter Temperatur vorgenommen wird.
    12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die mindestens eine Vorverformung mittels Pressens und/oder Walzens und/oder Hämmerns vorgenommen wird.
    13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß mittels der mindestens einen Vorverformung des Ausgangsproduktes ein Drahtvorprodukt gebildet wird, dessen Querschnitt eine Querschnittsreduktion durch das mindestens eine nachfolgende Kaltverformen von 50 bis 99 %, vorzugsweise von 60 bis 95 %, erforderlich macht, um den gewünschten Endquerschnitt des Drahtes zu erhalten.
    14. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Drahtvorprodukt aus der Schmelze der Cu-Legierung gegossen wird.
    15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß eine Abkühlung der Schmelze in Schritt a) im Temperaturbereich zwischen der Schmelztemperatur und 700°C mit einer Abkühlrate von unter 100°C/s, vorzugsweise von höchstens 20°C/s erfolgt.
    16. Verfahren nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, daß das Erschmelzen bei Schritt a) bei einer Temperatur von mindestens 1200°C vorgenommen wird.
    17. Verfahren nach einem der Ansprüche 9 bis 16, dadurch gekennzeichnet, daß mindestens zwei Kaltverformungen vorgesehen werden, wobei mit der letzten Kaltverformung eine vergleichsweise geringere Querschnittsreduktion erfolgt.
    18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß mit der ersten Kaltverformung eine Querschnittsreduktion zwischen 60 und 80 % und mit der letzten Kaltverformung eine Querschnittsreduktion zwischen 10 und 30 % erfolgt.
    19. Verfahren nach einem der Ansprüche 9 bis 18, dadurch gekennzeichnet, daß mit der letzten Kaltverformung das Endprodukt des Drahtes erhalten wird.
    20. Verfahren nach einem der Ansprüche 9 bis 16, dadurch gekennzeichnet, daß mit einer einzigen Kaltverformung des Drahtvorproduktes die Endform des Drahtes erzeugt wird.
    21. Verfahren nach einem der Ansprüche 9 bis 20, dadurch gekennzeichnet, daß wenigstens eine Kaltverformung mehrere Verformungsschritte umfaßt.
    22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die letzte Kaltverformung mehrere Verformungsschritte umfaßt.
    23. Verfahren nach einem der Ansprüche 9 bis 22, dadurch gekennzeichnet, daß die mindestens eine Kaltverformung mittels Pressens und/oder Walzens und/oder Hämmerns und/oder Ziehens vorgenommen wird.
    24. Verfahren nach einem der Ansprüche 9 bis 23, dadurch gekennzeichnet, daß die mindestens eine Auslagerungswärmebehandlung bei einer Temperatur zwischen 350°C und 600°C vorgenommen wird.
    EP95113311A 1994-09-15 1995-08-23 Oberleitungsdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung Revoked EP0702375B1 (de)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    DE4432929 1994-09-15
    DE4432929 1994-09-15
    DE19528259 1995-08-01
    DE19528259 1995-08-01

    Publications (3)

    Publication Number Publication Date
    EP0702375A2 EP0702375A2 (de) 1996-03-20
    EP0702375A3 EP0702375A3 (de) 1996-09-11
    EP0702375B1 true EP0702375B1 (de) 1998-10-28

    Family

    ID=25940163

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95113311A Revoked EP0702375B1 (de) 1994-09-15 1995-08-23 Oberleitungsdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung

    Country Status (4)

    Country Link
    EP (1) EP0702375B1 (de)
    AT (1) ATE172814T1 (de)
    DE (2) DE19530673A1 (de)
    ES (1) ES2123883T3 (de)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19539174C1 (de) * 1995-10-20 1997-02-27 Siemens Ag Oberleitungsfahrdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung
    ES2360718B1 (es) * 2009-11-24 2012-07-02 La Farga Lacambra, S.A.U. Aleación de cobre de altas prestaciones.
    EP2479299B1 (de) * 2011-01-24 2013-05-29 La Farga Lacambra, S.A. Rohrförmiges Kupferkabel für Leistungsleitungen
    CN102867595B (zh) * 2012-09-26 2015-12-09 江阴市电工合金有限公司 高耐磨铜银合金接触线及其生产方法
    CN104332221B (zh) * 2014-11-28 2016-08-17 国家电网公司 一种高强度电缆及其制备方法
    CN104361921B (zh) * 2014-11-28 2016-12-07 国家电网公司 一种铜合金单芯电缆及其制备方法

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0023362B2 (de) * 1979-07-30 1993-04-28 Kabushiki Kaisha Toshiba Verfahren zur Herstellung einer elektrisch leitfähigen Kupferlegierung
    JPS59117144A (ja) * 1982-12-23 1984-07-06 Toshiba Corp リ−ドフレ−ムおよびその製造方法
    DE69317323T2 (de) * 1992-05-08 1998-07-16 Mitsubishi Materials Corp Draht für elektrische Bahnstrecke und Verfahren zur Herstellung desselben
    DE4321921A1 (de) * 1993-07-01 1995-01-12 Abb Patent Gmbh Fahrdraht und Verfahren zu seiner Herstellung

    Also Published As

    Publication number Publication date
    EP0702375A3 (de) 1996-09-11
    ATE172814T1 (de) 1998-11-15
    DE19530673A1 (de) 1996-03-21
    ES2123883T3 (es) 1999-01-16
    EP0702375A2 (de) 1996-03-20
    DE59504054D1 (de) 1998-12-03

    Similar Documents

    Publication Publication Date Title
    DE112007002585B4 (de) Verfahren zur Herstellung eines Leiters und Leiter
    DE69327470T2 (de) Kupferlegierung mit hoher festigkeit und guter leitfähigkeit und verfahren zu deren herstellung
    DE2350389C2 (de) Verfahren zur Herstellung einer Kupfer-Nickel-Zinn-Legierung mit verbesserter Festigkeit bei gleichzeitiger hoher Duktilität
    DE2007516C2 (de) Legierung auf Kupferbasis
    DE69317323T2 (de) Draht für elektrische Bahnstrecke und Verfahren zur Herstellung desselben
    DE2623431A1 (de) Verfahren zur herstellung von elektrischen leitern
    DE2435456B2 (de) Leiter aus einer aluminiumlegierung
    DE2134393C2 (de) Verwendung einer Aluminiumlegierung für die Herstellung von elektrisch leitenden Gegenständen
    DE3852313T2 (de) Verfahren zur herstellung von nichtorientiertem stahlblech mit hohem siliziumgehalt.
    DE2704765A1 (de) Kupferlegierung, verfahren zu ihrer herstellung und ihre verwendung fuer elektrische kontaktfedern
    EP0702375B1 (de) Oberleitungsdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung
    DE2611252C2 (de) Verwendung einer Aluminiumlegierung für die Herstellung von elektrisch leitenden Gegenständen mit erhöhter Warmfestigkeit
    EP0779372B1 (de) Oberleitungsfahrdraht einer elektrischen Hochgeschwindigkeitsbahnstrecke und Verfahren zu dessen Herstellung
    DE69307236T2 (de) Verfahren zur Herstellung von einem leitenden Werkstoff auf Basis von Kupferlegierung
    DE2840419A1 (de) Verbesserung der elektrischen leitfaehigkeit von aluminiumlegierungen durch die zugabe von yttrium
    DE2751577A1 (de) Verfahren zur herstellung faellungsgehaerteter kupferlegierungen und deren verwendung fuer kontaktfedern
    DE2543899A1 (de) Elektrische leiter aus einer aluminiumlegierung
    DE2624976C2 (de) Verfahren zur Herstellung von elektrischen Leitern aus AlMgSi-Legierungen
    EP0302255B1 (de) Verwendung einer Kupferlegierung als Werkstoff für Stranggiesskokillen
    DE69007542T2 (de) Drahtelektrode für Elektroentladungsbearbeitung.
    DE4321921A1 (de) Fahrdraht und Verfahren zu seiner Herstellung
    DE3323429A1 (de) Hochfeste, hochleitende kupferlegierungen
    DE3634242C1 (en) Process for manufacturing a metallic semi-finished product
    DE531693C (de) Verfahren zur Herstellung von Aluminium hoher elektrischer Leitfaehigkeit und grosser Festigkeit
    DE2608538A1 (de) Verfahren zur herstellung eines waerme-resistenten elektrischen leiters

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19970307

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19980226

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19981028

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19981028

    REF Corresponds to:

    Ref document number: 172814

    Country of ref document: AT

    Date of ref document: 19981115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59504054

    Country of ref document: DE

    Date of ref document: 19981203

    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2123883

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990128

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990127

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 19990721

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 19990810

    Year of fee payment: 5

    Ref country code: GB

    Payment date: 19990810

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 19990819

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 19990824

    Year of fee payment: 5

    Ref country code: BE

    Payment date: 19990824

    Year of fee payment: 5

    26 Opposition filed

    Opponent name: ALCATEL KABEL BETEILIGUNGS-AG

    Effective date: 19990713

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 19991019

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 19991124

    Year of fee payment: 5

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000823

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000823

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000824

    RDAH Patent revoked

    Free format text: ORIGINAL CODE: EPIDOS REVO

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20000823

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20010301

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    27W Patent revoked

    Effective date: 20010125