EP0694008B1 - Hydroptere a voile - Google Patents

Hydroptere a voile Download PDF

Info

Publication number
EP0694008B1
EP0694008B1 EP94913156A EP94913156A EP0694008B1 EP 0694008 B1 EP0694008 B1 EP 0694008B1 EP 94913156 A EP94913156 A EP 94913156A EP 94913156 A EP94913156 A EP 94913156A EP 0694008 B1 EP0694008 B1 EP 0694008B1
Authority
EP
European Patent Office
Prior art keywords
hydrofoil
plane
rudder blade
vertical
centre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94913156A
Other languages
German (de)
English (en)
Other versions
EP0694008A1 (fr
Inventor
André SOURNAT
Alain De Bergh
Alain Thebault
Philippe Perrier
Vincent Lauriot-Prevost
Marc Van Peteghem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DE BERGH, ALAIN
PERRIER, PHILIPPE
SOURNAT, ANDRE
THEBAULT, ALAIN
Dassault Aviation SA
Architecture Navale MVPVLP
Original Assignee
Dassault Aviation SA
Architecture Navale MVPVLP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dassault Aviation SA, Architecture Navale MVPVLP filed Critical Dassault Aviation SA
Publication of EP0694008A1 publication Critical patent/EP0694008A1/fr
Application granted granted Critical
Publication of EP0694008B1 publication Critical patent/EP0694008B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • B63B1/28Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type with movable hydrofoils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/14Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected resiliently or having means for actively varying hull shape or configuration

Definitions

  • the present invention relates to a sailing hydrofoil of the type having a front assembly comprising at least partially submerged front bearing planes, and a fully submerged rear plane.
  • CROCCO and RICALDONI operated a monoplane device fitted with V-shaped wings piercing the surface.
  • the submerged surface varies automatically depending on the weight and speed, which gives the machine a given heaving characteristic as well as operating stability.
  • This arrangement of V-shaped wings piercing the surface which has been used very widely on so-called first generation hydrofoils, has the defect of giving the wings a tendency to follow the undulations of the swell, which makes such a ship uncomfortable.
  • the swell exceeds hollows by 1.5 m, it is necessary to reduce the speed of the hydrofoil in very significant proportions.
  • US Patents 5,054,410 SCARBOROUGH
  • US 3,789,789 (CLEARY) describe hydrofoils with sail having a partially submerged front plane and a rear plane, and a dynamic compensation device, which means that these hydrofoils are not inherently stable.
  • the rear support plane is completely submerged, and the hydrofoil is not intrinsically stable, the stability being obtained in a purely dynamic manner.
  • the rear support plane is not completely submerged, which means that when operating on foils, it comes to the surface of the water and no longer works as a bearing wing, but as a skate or water ski, imposing a fixed flight altitude at the rear.
  • a hydrofoil with dynamic stabilization is also known from the article by Neil BOSE "Model Tests for a wind-propelled hydrofoil trimaran” published in HIGH-SPEED SURFACE CRAFT vol. 20, No. 10, Oct. 1981, London p28-31.
  • This hydrofoil is equipped with a rear foil which, like the front foils, has a V shape, the tips of the V crossing the surface, which means that it is not completely submerged.
  • the present invention aims to achieve a hydrofoil sail which is intrinsically stable.
  • the basic idea of the invention consists of a known type of hydrofoil with a front assembly comprising front bearing planes which are at least partially submerged, and a fully submerged rear plane, the latter not having therefore, heaving characteristic.
  • the object of the present invention is the recognition of the fact that a particular arrangement of the elements of a sail hydrofoil of this type is capable of ensuring its longitudinal stability, and more particularly a longitudinal stability compatible with heavy swell conditions.
  • condition of stability ensures that, from an equilibrium position, any deviation from this position, any combination of a pitching movement and a heaving movement, produces a variation in the hydrodynamic forces which tends to return the machine to its equilibrium position.
  • the hydrofoil is advantageously of the multihull type, with a central hull and two lateral floats, the front bearing planes being supported by the lateral floats and converging symmetrically in the direction of the central hull.
  • the hydrofoil can then comprise beams connecting the central hull and the lateral floats which are supported by tie rods fixed on the central hull and it includes steps extending from the bow of the central hull to at least the point of fixing of each tie rod to the central shell, said point of attachment of each tie rod being disposed above the base of the step.
  • the rear plane is advantageously mounted at the lower end of a rudder disposed vertically.
  • the rear plane can be symmetrical on either side of the rudder.
  • the rear plane is mounted on a vertical axis of rotation linked to a trigger system so that it is liable to fade in rotation when it is subjected to a torque greater than a value nominal given.
  • the mounting of the rear plane can be carried out by means of a torsion tube held by a roller, which is capable of being erased by compressing a spring so as to limit the torsional forces to said nominal value.
  • the hydrofoil may also include a device for rotating the rudder comprising a drive lever controlling a movable flap mechanically linked to one end of the rudder opposite its axis of rotation. It may comprise, between the drive lever and the movable flap, a drive device comprising a connecting rod-crank mechanism for lever arm amplification, as well as a torsion tube connecting the connecting rod-crank mechanism or lever training. It may also include a spring box disposed between the drive lever and the rudder, so that the torsion tube only transmits force when the resistant force of the rudder exceeds the setting of the spring box. In this way, when the resistance force of the rudder is less than the setting of the spring box, the drive lever directly drives the rudder, while the connecting rod-crank mechanism of amplification and the movable flap come into action for higher values.
  • a device for rotating the rudder comprising a drive lever controlling a movable flap mechanically linked to one end of the rudder opposite its axis of
  • An advantageous embodiment of the hydrofoil consists in being able to adjust the setting of the plane aft around a horizontal transverse axis so as to choose the attitude and sink conditions of the hydrofoil which allow the best performance to be obtained. This adjustment does not directly contribute to stability since the position of said horizontal plane is usually fixed and is only subject to ad hoc adjustments according to changes in navigation conditions.
  • the hydrofoil can also include a device for lifting the rudder and / or the front carrier planes, which makes it possible to put the hydrofoil in a configuration which is that of a conventional trimaran.
  • the hydrofoil may also include a ballast of water intended to move the center of gravity rearward when sailing at high speed.
  • an advantageous embodiment of the filling system consists of a tube dipping below the surface of the water and the lower orifice of which is oriented towards the front so that the ballast fills automatically under the effect of the dynamic pressure of the water.
  • a submerged tube can fill a tank located 1.30 m above the surface of the water from a speed of 10 knots.
  • an advantageous embodiment of the invention consists in placing this tube inside the rudder so that its lower orifice is located in the lower part of the edge d attack of the saffron, part which is always submerged when the hydrofoil operates by hydrodynamic lift.
  • FIG. 1 represents a diagram of a hydrofoil of the type RHS 160 of the firm CANTIERE NAVAL TECNICA SpA. which has V-shaped front wings 21, a front plane 23 and a vertical support element 22.
  • a rear assembly comprises two wings 24 of vertical support elements 25 and support arms 26.
  • This boat has two diesel engines 29 , a gearbox 30, transmission shafts 28 and propeller propellers 27 located at the base of the reinforcements 25.
  • the presence of V-wings at the front and the 'aft of the hydrofoil has the effect that the submerged surface automatically varies according to the weight and speed, which means that the wings follow the undulations of the swell and that the ship is particularly uncomfortable in heavy seas.
  • a second generation hydrofoil designed by the firm BOEING is represented in FIG. 2.
  • the fore plane 14 is connected to the hull of the ship by a vertical cross member 12 and the aft plane 7 is connected to the hull by a central cross member 16 and two lateral crosspieces 15.
  • the crosspieces 15 are used to control the rear fins.
  • the device comprises a vertical accelerometer 1, a rear junction box 2, a rear drift control 3, a direction control 4, a front junction box, a front drift control 6, a lateral accelerometer 7, probes 8 of wave height detection, an ACS automatic control panel 9, a computer 10, and a position control panel 11. All the supporting planes of such a hydrofoil do not have their own stability, this being only obtained dynamically by the regulation system mentioned above.
  • the hydrofoil according to the present invention is in the form of a trimaran having a central hull 40 and two lateral floats 41 and 42 connected to the central hull by beams 37 and 38, which are divide, in the vicinity of the hull 40, into two arms 61 and 63 for the beam 37, and 62 and 64 for the beam 38.
  • the front bearing planes consist of two foils 43 and 44 fixed to the internal edges of the floats 41 and 42 and which are directed towards each other in the direction of the hull central (see also Figure 5b).
  • the rear support plane 46 is a horizontal profile fixed to the lower part of a rudder 45 constituting the rudder of the hydrofoil.
  • the reference 60 designates the cockpit, the references 65 and 66, the spaces located between the arms, respectively 61, 63 and 62, 64.
  • the water line of the hydrofoil at rest has been represented by the reference 50.
  • the front foils 43 and 44 have, from their root, a first trapezoidal part flaring from the floats 41 and 42 to a maximum width portion located approximately at waterline level 50 when the hydrofoil is at rest. Then, the foils are continued downwards by a second trapezoidal part which narrows and are extended by carrying planes of small dimensions or fins 47 and 48 arranged horizontally.
  • These fins 47, 48 advantageously have a cord c 'less than or equal to that (c) of the distal end of the foils 43 and 44 and whose span e is at least three times this rope c', this span e extending in a substantially horizontal direction towards the plane of symmetry of the hydrofoil (see fig. 4 and 5b).
  • the beams 37 and 38 are supported by twin reinforcement arms 51 and 52 situated below the arms 61 to 64 and which are fixed between a part of the hull situated above of the waterline 50 and the distal end relative to the shell of the arms 61 to 64, and so as to clear the spaces 65 and 66.
  • D denotes the horizontal component of the distance between the transverse axis of the rear plane 46 and the heaving center which is located in line with the front foils 43 and 44.
  • r the radius of gyration of the hydrofoil which is defined as the length whose square is equal to the ratio between the moment of inertia of the hydrofoil in a rotation around a transverse axis passing through the center of gravity , and the mass of the hydrofoil.
  • heave focus P designates the point of application of the variations in vertical forces generated by a vertical translational movement of the hydrofoil without variation in speed or attitude from an equilibrium state.
  • F the heaving characteristic which is the ratio between the variation of the resultant of the vertical forces and the length of the vertical displacement which generates this variation. In other words, it is the derivative of the lift of the hydrofoil as a function of its sinking.
  • the heaving characteristic is counted positive for a result of the vertical forces pointing downwards, when the machine undergoes an upward movement.
  • the heaving characteristic F is due solely to the presence of the foils before 43 and 44 and it results from the hitting center P being located in the mean vertical plane of these front foils 43 and 44.
  • the bearing characteristic A of a bearing plane is defined as the ratio between the variation of the result of the vertical forces generated by a rotational movement around a transverse axis and the corresponding angle of rotation expressed in radians. In other words, it is the derivative of lift depending on the base.
  • the incidence characteristic A is counted positive for a variation in the result of vertical forces oriented upwards for a nose-up movement.
  • the front bearing surfaces or foils 43 and 44 have a result of the vertical forces which decrease when the front assembly is subjected to a vertical translation upwards, this result having a characteristic of heaving F positive.
  • the result of the vertical forces increases when said front assembly is subjected to a pitching movement to pitch up.
  • the front assembly has an incidence characteristic A.
  • the rear plane also has an incidence characteristic R, but has a characteristic of zero heave.
  • the condition of stability according to the invention ensures that, from an equilibrium position, any deviation from this position, any combination of a pitching movement and a heaving movement, produces a variation in the hydrodynamic forces which tends to return the machine to its equilibrium position.
  • the rear support plane compensates or overcompensates this phenomenon, and the increase in its lift has the effect of counteracting the nose-up of the front of the hydrofoil, hence limitation by compensation for the pitching effect.
  • the stabilizing effect which it provides is such that the hydrofoil is not led to follow the movements of the swell. This drawback of first generation hydrofoils is therefore avoided.
  • front bearing planes having a heaving characteristic as well as nose up, and a rear plane having only a nose up characteristic made it possible to define conditions of stability which could not have been obtained with d '' other known configurations.
  • the size of the rear foil 46 is limited to the higher values by the drag it produces and the resulting consequences for the performance of the boat.
  • hydrodynamic characteristics of wings submerged or semi-submerged or crossing the surface of the water can be determined by known means, in particular by measurements in the hull basin on models on a reduced scale or not, by computer flow calculations, by force measurements on a prototype.
  • S.F. HOERNER entitled “Resistance to advancement in fluids” published in 1965 by Gautier-Villard in Paris.
  • the evaluation of the mass, of the position of the center of gravity of the moments of inertia of the hydrofoil can also be carried out by known methods.
  • the invention does not relate to a particular type of carrier planes, but a relative arrangement of said carrier planes between themselves and especially with respect to the center of gravity of the machine, which ensures that the balancing of the mass of the hydrofoil and propulsion efforts by hydrodynamic lift efforts is stable and allows the hydrofoil to remain in a state of equilibrium without a regulation system.
  • An advantageous embodiment of the hydrofoil consists in being able to adjust the setting of the rear plane around a transverse horizontal axis so as to choose the attitude and sink conditions of the hydrofoil which allow the best performance to be obtained .
  • This adjustment does not directly contribute to stability since the position of said horizontal plane is usually fixed and is only subject to ad hoc adjustments according to changes in navigation conditions.
  • the hydrofoil is composed of a set of two carrier planes 43 and 44 located symmetrically with respect to the plane of symmetry of the craft and called “front foils” and a rear carrier plane 46 completely submerged and called “rear foil” .
  • the radius of gyration r of the machine in running order around the pitch axis is 2.1 m.
  • the mass of the machine in running order is 400 kg.
  • the rear foil being adjustable in incidence by the pilot of the craft, the incidence b is independent of the attitude a of the craft but it must be considered that their instantaneous variations are identical.
  • the condition is therefore satisfied in the two immersion cases, for any value of the base a.
  • the numerical value of the term C decreases when the immersion increases. In other words, and this is valid in all cases, if the condition is satisfied for the maximum immersion (that is to say during the planing) it is always satisfied whatever the immersion and therefore the speed of the machine.
  • the condition is not satisfied.
  • the dynamic behavior of the beam assembly 37, 38 and main foils 43, 44 is very sensitive to the stiffness in bending and torsion of this beam (see fig. 4)
  • the solution chosen consists of using this beam 37, 38, on each side of the main hull 40, by two fittings support 57, 58 at the level of the hull 40 and two tie rods 51, 52 taken up just above the water line 50.
  • This attachment principle has the disadvantage that, if these tie rods 51, 52 come into contact with water, there is significant braking. It is therefore little used on classic multihulls but is, on the other hand, well suited to the hydrofoil which takes its hull out of the water at high speed and can therefore keep the tie rods 51 and 52 out of contact with water, except if the sea is very rough, conditions in which these dangerous brakes, which are likely to result, are dangerous.
  • the shell 40 has, on either side, steps 53 and 54, substantially horizontal.
  • the arms 51 and 52 for holding the beams 37 and 38 are fixed to the shell 40 at points 57 and 58 which are arranged above the planes of the steps 53 and 54 and protected by the steps 55, 56.
  • steps 53 and 54 deflect the sea packets from the support fittings 57 and 58, which prevents the insertion forces of the hydrofoil which are likely to brake suddenly and to destabilize it.
  • the principle of the T-shaped rear support plane 46 can cause an instant stability problem at high speed in rough seas.
  • the speed increases the hull 40 rises more and more above the surface of the water, and the rear support plane 46 is likely to approach it dangerously.
  • the lift force which it is able to exert when it is sufficiently submerged may suddenly disappear.
  • this type of balance is only to be used under certain navigation conditions, there is provided at the rear of the boat a ballast 80 fed by a retractable refueling pole 81 so as to be able to empty and fill with water by sea, ballast 80 which makes it possible to avoid compromising the performance of the boat at low speed.
  • ballasting is known per se but has not so far been associated with the conditions of stability of a rear support plane. More particularly, since the value of the term C of the stability condition increases with speed, the rearward displacement of the center of gravity G at high speed does not have any drawback as long as C remains positive.
  • an advantageous embodiment of the filling system consists of a tube dipping below the surface of the water and the lower orifice of which is oriented towards the front so that the ballast fills automatically under the effect of the dynamic pressure of the water.
  • a submerged tube makes it possible to fill a tank disposed at 1.30 m above the surface of the water from a speed of 10 knots.
  • an embodiment advantageous of the invention consists in placing this tube inside the rudder so that its lower orifice is located in the lower part of the leading edge of the rudder, part which is always submerged when the hydrofoil is operating by lift hydrodynamic.
  • the step structure 53 and 54 plays, in addition to the role of fairing of the arm fixing fittings 51, 52 the role of an additional lift by dynamic lift effect and by an effect of 'increase in hull volume.
  • the rudder assembly 45-aft carrier 46 is normally fixed to the transom of the boat by four fasteners A with quick dismantling, a horizontal axis of articulation B allowing the lifting. After dismantling the fasteners A, this lifting can be carried out by pulling on a balancine B ', the locking in the high position being able to be ensured by two connecting rods D arranged in V. At low speed, the assembly is raised and an annex rudder small time is set up on the transom.
  • a mechanism for erasing the rear carrier plane 46 in the event of its engagement in a ropeway or any other obstacle. This erasure takes place around a vertical axis of rotation E.
  • the rear support plane 46 is held in position by a friction trigger system linked to the rear support plane 46 by a tube F '(torsion tube).
  • this system comprises a cam G 'kept in rotation by a roller H which is erased by compressing one or more springs I limiting the torsional forces to the chosen values.
  • the return to the axis is obtained by the natural rotational stability of the rear carrier plane 46 which is due to the symmetry of its nominal position which is stable due to hydrodynamic forces, or else manually, by acting on the cam G if the boat speed is insufficient.
  • the device also includes a rudder assistance system allowing it to be maneuvered beyond a given effort threshold.
  • the helm or the autopilot drives the rudder 45-rear carrier 46 around its vertical axis O via a connecting rod J attacking a free lever K in rotation about the axis O.
  • This lever K drives in rotation the rudder 45 via a spring box L.
  • the resistant force of the rudder 45 is less than the setting of the spring box L, the drive is carried out directly.
  • the resistant force of the rudder exceeds the setting of the spring box, a differential moment appears between the lever K and the rudder 45.
  • This rotation is transmitted to a flap V situated vertically at the lower rear end of the rudder 45 and above the bearing plane 46, by means of a torsion tube P.
  • This moment of rotation is amplified in the ratio of the lever arm produced by a rod-crank system NQ. This results in a deflection of the flap V which is articulated on the rudder 45 and rotates it so as to cancel the differential moment between the lever K and the rudder 45, which constitutes a controlled mechanical system.
  • the main foils 43, 44 which are articulated on the respective main beams 37 and 38, are supported on a breaker strut 73, 74.
  • the operation of this strut is ensured by a hydraulic cylinder 71, 72 which rests on a fitting attached to the foil main as well as on one of the uprights of the strut.
  • the end 47, 48 of the main foils 43, 44 is housed in the spaces 65 and 66 (see fig. 4).
  • the rear support plane which remains completely submerged under normal navigation conditions, has a support plane whose two outer arms 46, 46 ′ form a V directed downwards, at an angle a for example equal to 10 °.
  • the V shape directed downwards of the two arms 46, 46 ′ aims to avoid a sudden disappearance of the lift of the carrier plane 46 ′ when it accidentally crosses the surface of the water.
  • it is completely submerged and has no heaving characteristic.
  • FIG. 9a there is shown a vertical fin 100 directed vertically and disposed at the lower end of the front foils 43, 44 at the birth of the horizontal fins 47, 48.
  • These vertical fins 100 have the function of allowing self- laterally stabilize the hydrofoil at high speed, when the front foils are very little submerged.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un hydroptère à voile présentant un ensemble avant comportant des plans porteurs avant qui sont au moins partiellement immergés et un plan arrière totalement immergé. Les plans porteurs avant (43, 44) sont tels que la résultante des efforts verticaux: diminuent lorsque ledit ensemble est soumis à une translation verticale vers le haut, avec une caractéristique de pilonnement F; augmentent lorsque ledit ensemble avant est soumis à un mouvement de tangage à cabrer, avec une caractéristique d'incidence A. Le plan arrière (46) présente une caractéristique d'incidence R telle que: R (d-g) - Ag + F(g2+r2) > 0, d désignant la distance entre le plan arrière (46) et le foyer de pilonnement, g désignant la distance entre le centre de gravité et le foyer de pilonnement, et r désignant le rayon de giration de l'hydroptère.

Description

  • La présente invention a pour objet un hydroptère à voile du type présentant un ensemble avant comportant des plans porteurs avant au moins partiellement immergés, et un plan arrière totalement immergé.
  • Le principe consistant à assurer l'équilibrage du poids d'un bateau par un effet de portance hydrodynamique produit par la vitesse de l'eau agissant sur des éléments en forme d'aile immergées, semi-immergées ou traversant la surface ae l'eau, par opposition à la seule utilisation de l'effet archimédien des volumes immergés, est assez ancien, et on a vu naviguer dès le début du vingtième siècle des bateaux à moteur équipés de ce genre de dispositif.
  • Le premier dépôt de brevet concernant un hydroptère remonte à 1869 et est dû à l'inventeur français FARCOT.
  • En 1909, un engin à moteur, le "motoscaphe" est construit par Roger RAVAUD.
  • En 1911, un autre bateau à moteur et à foils est construit par l'italien FORLANINI et présente des plans porteurs disposés en échelle.
  • En 1907, CROCCO et RICALDONI ont fait fonctionner un appareil monoplan muni d'ailes en V perçant la surface. La surface immergée varie automatiquement en fonction du poids et de la vitesse, ce qui procure à l'engin une caractéristique donnée de pilonnement ainsi qu'une stabilité de fonctionnement. Cette disposition d'ailes en V perçant la surface qui a été employée très largement sur les hydroptères dits de première génération, présente le défaut de donner aux ailes une tendance à suivre les ondulations de la houle, ce qui rend un tel navire inconfortable. En outre, dès que la houle dépasse des creux de 1,5 m, il est nécessaire de réduire la vitesse de l'hydroptère dans des proportions très importantes.
  • Ce principe d'ailes en V a donc été abandonné dans les hydroptères dits de deuxième génération qui présentent des ailes simples totalement immergées et à incidence variable, et qui sont commandés par un système automatique en fonction de la vitesse de l'assiette et de la hauteur de l'engin, un système de régulation envoyant les corrections nécessaires aux ailes portantes. De tels hydroptères à moteur dits de deuxième génération sont apparus dans les années 60 et ont été surtout utilisés à des fins militaires. De par leur conception, ces hydroptères sont instables, la stabilité n'étant obtenue qu'en dynamique, grâce à un système de régulation spécifique.
  • En ce qui concerne les hydroptères à voile, des engins de course ont déjà été construits qui permettent d'atteindre des vitesses élevées dans des conditions de mer calme. Par contre, ces engins présentent des problèmes importants de stabilité et sont pratiquement inutilisables en présence de houle.
  • Les brevets US-5 054 410 (SCARBOROUGH) et US 3 789 789 (CLEARY) décrivent des hydroptères à voile présentant un plan porteur avant partiellement immergé et un plan porteur arrière, et un dispositif de compensation dynamique, ce qui fait que ces hydroptères ne sont pas intrinsèquement stables. Dans le brevet US 5 054 410, le plan porteur arrière est totalement immergé, et l'hydroptère n'est pas intrinsèquement stable, la stabilité étant obtenue de manière purement dynamique. Dans le brevet US 3 789 789, le plan porteur arrière n'est pas totalement immergé, ce qui fait qu'en fonctionnement sur foils, il vient à la surface de l'eau et travaille non plus comme une aile portante, mais comme un patin ou un ski nautique, imposant à l'arrière une altitude de vol fixe.
  • On connaît également un hydroptère à stabilisation dynamique de l'article de Neil BOSE "Model Tests for a wind-propelled hydrofoil trimaran" paru dans HIGH-SPEED SURFACE CRAFT vol. 20, N°10, oct.1981, London p28-31. Cet hydroptère est équipé d'un foil arrière qui, comme les foils avant, présente une forme de V, les pointes du V traversant la surface, ce qui fait qu'il n'est pas totalement immergé.
  • La présente invention se propose pour but de réaliser un hydroptère à voile qui soit intrinsèquement stable.
  • L'idée de base de l'invention consiste à partir d'un type d'hydroptère à voile connu présentant un ensemble avant comportant des plans porteurs avant qui sont au moins partiellement immergés, et un plan arrière totalement immergé, ce dernier ne présentant pas de ce fait, de caractéristique de pilonnement.
  • L'objet de la présente invention est la reconnaissance du fait qu'une disposition particulière des éléments d'un hydroptère à voile de ce type est susceptible d'assurer la stabilité longitudinale de celui-ci, et plus particulièrement une stabilité longitudinale compatible avec des conditions de navigation à forte houle.
  • La présente invention concerne ainsi un hydroptère à voile du type précité caractérisé en ce que les plans porteurs avant sont tels que la résultante des efforts verticaux :
    • diminuent lorsque ledit ensemble avant est soumis à une translation verticale vers le haut, ladite résultante ayant une caractéristique de pilonnement F,
    • augmentent lorsque ledit ensemble avant est soumis à un mouvement de tangage à cabrer, avec une caractéristique d'incidence A,
    et en ce que le plan arrière est tel qu'il présente une caractéristique d'incidence R de manière à satisfaire la relation suivante : C = R (d-g) - Ag + F(g 2 +r 2 ) > 0
    Figure imgb0001
    • d désignant la composante horizontale de la distance entre le plan arrière et le foyer de pilonnement de l'ensemble avant,
    • g désignant la distance entre le centre de gravité de l'hydroptère et le foyer de pilonnement de l'ensemble avant,
    • et r désignant le rayon de giration de l'hydroptère.
  • La définition de ces termes est donnée dans la suite de la description.
  • La condition de stabilité selon l'invention assure que, à partir d'une position d'équilibre, tout écart de cette position, combinaison quelconque d'un mouvement de tangage et d'un mouvement de pilonnement, produit une variation des efforts hydrodynamiques qui tend à ramener l'engin dans sa position d'équilibre.
  • L'hydroptère est avantageusement du type multicoque, avec une coque centrale et deux flotteurs latéraux, les plans porteurs avant étant supportés par les flotteurs latéraux et convergeant symétriquement en direction de la coque centrale.
  • L'hydroptère peut alors comporter des poutres reliant la coque centrale et les flotteurs latéraux qui sont supportés par des tirants fixés sur la coque centrale et il comporte des redans s'étendant depuis la proue de la coque centrale jusqu'à au moins le point de fixation de chaque tirant sur la coque centrale, ledit point de fixation de chaque tirant étant disposé au-dessus de la base du redan. Ceci permet que, lorsque l'hydroptère embarque un paquet de mer, le redant dévie celui-ci des points de fixation des tirants, ce qui évite de produire un effort instantanné de déstabilisation de l'hydroptère.
  • Le plan arrière est avantageusement monté à l'extrémité inférieure d'un safran disposé verticalement. Le plan arrière peut être symétrique de part et d'autre du safran. Selon un mode de réalisation préféré, le plan arrière est monté sur un axe de rotation vertical lié à un système de déclenchement de telle sorte qu'il est susceptible de s'effacer en rotation lorsqu'il est soumis à un couple supérieur à une valeur nominale donnée. Le montage du plan arrière peut être effectué par l'intermédiaire d'un tube de torsion maintenu par un galet, lequel est susceptible de s'effacer en comprimant un ressort de manière à limiter les efforts de torsion à ladite valeur nominale.
  • L'hydroptère peut également comporter un dispositif de mise en rotation du safran comprenant un levier d'entraînement commandant un volet mobile lié mécaniquement à une extrémité du safran opposée à son axe de rotation. Il peut comporter, entre le levier d'entraînement et le volet mobile un dispositif d'entraînement comprenant un mécanisme bielle-manivelle d'amplification de bras de levier, ainsi qu'un tube de torsion reliant le mécanisme bielle-manivelle ou levier d'entraînement. Il peut comporter également une boîte à ressort disposée entre le levier d'entraînement et le safran, de telle sorte que le tube de torsion ne retransmet d'effort que lorsque l'effort résistant du safran dépasse le tarage de la boîte à ressort. De la sorte, lorsque l'effort résistant du safran est inférieur au tarage de la boîte à ressort, le levier d'entraînement entraîne directement le safran, alors que le mécanisme bielle-manivelle d'amplification et le volet mobile entrent en action pour des valeurs supérieures.
  • Un mode de réalisation avantageux de l'hydroptère consiste à pouvoir régler le calage du plan arrière autour d'un axe horizontal transversal de façon à choisir les conditions d'assiette et d'enfoncement de l'hydroptère qui permettent d'obtenir les meilleures performances. Ce réglage ne participe pas directement à la stabilité puisque la position dudit plan horizontal est habituellement fixe et ne fait l'objet que de réglages ponctuels en fonction de l'évolution des conditions de navigation.
  • L'hydroptère peut également comporter un dispositif de relevage du safran et/ou des plans porteurs avant, ce qui permet de mettre l'hydroptère dans une configuration qui est celle d'un trimaran classique.
  • L'hydroptère peut également comporter un ballast d'eau destiné à déplacer le centre de gravité vers l'arrière lorsqu'il navigue à vitesse élevée.
  • Dans la mesure où le remplissage du ballast ne doit se faire qu'à partir d'une certaine vitesse, une réalisation avantageuse du système de remplissage consiste en un tube plongeant sous la surface de l'eau et dont l'orifice inférieur est orienté vers l'avant de façon à ce que le ballast se remplisse automatiquement sous l'effet de la pression dynamique de l'eau. Par exemple, un tel tube immergé permet de remplir un réservoir situé à 1,30 m au-dessus de la surface de l'eau à partir d'une vitesse de 10 noeuds.
  • De façon à diminuer la résistance hydraulique représentée par le tube immergé, un mode de réalisation avantageux de l'invention consiste à placer ce tube à l'intérieur du safran de façon à ce que son orifice inférieur se situe dans la partie basse du bord d'attaque du safran, partie qui est toujours immergée lorsque l'hydroptère fonctionne par portance hydrodynamique.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre donnée à titre d'exemple non limitatif, en liaison avec les dessins qui représentent :
    • les figures 1 et 2, des hydroptères à moteur de l'art antérieur, respectivement de première et de deuxième génération,
    • les figures 3 et 4, des vues générales d'un hydroptère selon l'invention, respectivement de côté et de dessus,
    • les figures 5a et 5b, des vues partielles d'un hydroptère selon l'invention, respectivement de côté et d'avant,
    • les figures 6a et 6b respectivement, en vue de côté et en vue d'avant, la mise en place de redans de protection selon l'invention,
    • les figures 7 et 8 un dispositif de commande du safran selon un mode de réalisation préféré de l'invention,
    • les figures 9a et 9b, un dispositif de relevage des plans porteurs avant, respectivement en position déployée et en position repliée,
    • et la figure 10, une variante du plan porteur arrière.
  • La figure 1 représente un schéma d'un hydroptère du type RHS 160 de la firme CANTIERE NAVAL TECNICA SpA. qui comporte des ailes avant 21 en forme de V, un plan avant 23 et un élément de support vertical 22. Un ensemble arrière comporte deux ailes 24 des éléments de support verticaux 25 et des bras de support 26. Ce bateau présente deux moteurs diesel 29, une boîte de vitesse 30, des arbres de transmission 28 et des hélices de propulsion 27 situées à la base des renforts 25. Ainsi qu'il a été dit ci-dessus, la présence d'ailes en V à l'avant et l'arrière de l'hydroptère a pour effet que la surface immergée varie automatiquement en fonction du poids et de la vitesse, ce qui fait que les ailes suivent les ondulations de la houle et que le navire est particulièrement inconfortable en cas de mer forte.
  • Un hydroptère de deuxième génération conçu par la firme BOEING est représenté à la figure 2. Le plan avant 14 est relié à la coque du navire par une traverse verticale 12 et le plan arrière 7 est relié à la coque par une traverse centrale 16 et deux traverses latérales 15. Les traverses 15 servent aux commandes des dérives arrière. Le dispositif comporte un accéléromètre vertical 1, un boîtier de jonction arrière 2, une commande de dérive arrière 3, une commande de direction 4, un boîtier de jonction avant, une commande de dérive avant 6, un accéléromètre latéral 7, des sondes 8 de détection de hauteur des vagues, un tableau 9 de commande automatique ACS, un ordinateur 10, et un tableau 11 de contrôle de position. L'ensemble des plans porteurs d'un tel hydroptère ne présente pas de stabilité propre, celle-ci n'étant obtenue que de manière dynamique par le système de régulation mentionné ci-dessus.
  • Il n'existe pas actuellement d'hydroptère présentant des caractéristiques intrinsèques de stabilité permettant la navigation par forte houle. Les conditions à remplir sont encore plus difficiles pour les hydroptères à voile qui ne disposent pas d'une puissance motorisée importante. En outre, une structure auto-stable présente l'avantage d'une simplicité de construction, ce qui évite les problèmes de fiabilité lors de traversées longues et difficiles.
  • Comme représenté aux figures 3 et 4, l'hydroptère selon la présente invention se présente sous la forme d'un trimaran présentant une coque centrale 40 et deux flotteurs latéraux 41 et 42 reliés à la coque centrale par des poutres 37 et 38, lesquelles se divisent, au voisinage de la coque 40, en deux bras 61 et 63 pour la poutre 37, et 62 et 64 pour la poutre 38. Les plans porteurs avant sont constitués de deux foils 43 et 44 fixés aux bords internes des flotteurs 41 et 42 et qui sont dirigés l'un vers l'autre en direction de la coque centrale (voir également la figure 5b).
  • Le plan porteur arrière 46 est un profil horizontal fixé à la partie inférieure d'un safran 45 constituant le gouvernail de l'hydroptère.
  • A la figure 4, le repère 60 désigne la cabine de pilotage, les repères 65 et 66, les espaces situés entre les bras, respectivement 61, 63 et 62, 64.
  • La ligne de flottaison de l'hydroptère au repos a été figurée par le repère 50.
  • Plus particulièrement sur les figures 3 et 4, on voit que les foils avant 43 et 44 présentent, à partir de leur emplanture, une première partie trapézoïdale s'évasant depuis les flotteurs 41 et 42 jusqu'à une partie de largeur maximale située approximativement au niveau de la ligne de flottaison 50 lorsque l'hydroptère est au repos. Ensuite, les foils se poursuivent vers le bas par une deuxième partie trapézoïdale allant se rétrécissant et se prolongent par des plans porteurs de faibles dimensions ou ailerons 47 et 48 disposés horizontalement.
  • Ces ailerons 47, 48 présentent avantageusement une corde c' inférieure ou égale à celle (c) de l'extrémité distale des foils 43 et 44 et dont l'envergure e est au moins égale à trois fois cette corde c', cette envergure e s'étendant suivant une direction sensiblement horizontale en direction du plan de symétrie de l'hydroptère (voir fig. 4 et 5b).
  • En outre, comme le montre particulièrement la figure 5b, les poutres 37 et 38 sont soutenues par des bras de renfort jumelés 51 et 52 situés en-dessous des bras 61 à 64 et qui sont fixés entre une partie de la coque située au-dessus de la ligne de flottaison 50 et l'extrémité distale par rapport à la coque des bras 61 à 64, et de manière à dégager les espaces 65 et 66.
  • Nous allons maintenant définir les conditions de stabilité d'un hydroptère tel que représenté aux figures 3, 4, 5a et 5b.
  • On désigne par d la composante horizontale de la distance entre l'axe transversal du plan arrière 46 et le foyer de pilonnement qui est situé au droit des foils avant 43 et 44.
  • On désigne par g la distance entre le centre de gravité de l'hydroptère et le foyer de pilonnement, cette distance étant comptée positivement pour un centre de gravité G situé en arrière de ce foyer de pilonnement.
  • On désigne par r le rayon de giration de l'hydroptère qui est défini comme la longueur dont le carré est égal au rapport entre le moment d'inertie de l'hydroptère dans une rotation autour d'un axe transversal passant par le centre de gravité, et la masse de l'hydroptère.
  • On désigne par foyer de pilonnement P, le point d'application des variations d'efforts verticaux engendrés par un mouvement de translation verticale de l'hydroptère sans variation de vitesse ni d'assiette à partir d'un état d'équilibre.
  • On désigne par F la caractéristique de pilonnement qui est le rapport entre la variation de la résultante des efforts verticaux et la longueur du déplacement vertical qui engendre cette variation. En d'autres termes, il s'agit de la dérivée de la portance de l'hydroptère en fonction de son enfoncement. La caractéristique de pilonnement est comptée positive pour une résultante des efforts verticaux orientée vers le bas, lorsque l'engin subit un déplacement vers le haut.
  • On remarquera que, étant donné que seul le plan avant présente une variation de surface des plans porteurs immergés en fonction des déplacements verticaux de l'hydroptère, la caractéristique de pilonnement F est due uniquement à la présence des foils avant 43 et 44 et il en résulte que le foyer de pilonnement P est situé dans le plan vertical moyen de ces foils avant 43 et 44.
  • La caractéristique d'incidence A d'un plan porteur est définie comme le rapport entre la variation de la résultante des efforts verticaux engendrés par un mouvement de rotation autour d'un axe transversal et l'angle de rotation correspondant exprimé en radians. En d'autres termes, c'est la dérivée de la portance en fonction de l'assiette. La caractéristique d'incidence A est comptée positive pour une variation de résultante des efforts verticaux orientée vers le haut pour un mouvement à cabrer.
  • Les plans porteurs avant ou foils 43 et 44 présentent une résultante des efforts verticaux qui diminuent lorsque l'ensemble avant est soumis à une translation verticale vers le haut, cette résultante présentant une caractéristique de pilonnement F positive. La résultante des efforts verticaux augmente lorsque ledit ensemble avant est soumis à un mouvement de tangage à cabrer. L'ensemble avant présente une caractéristique d'incidence A. Enfin, le plan arrière présente également une caractéristique d'incidence R, mais présente une caractéristique du pilonnement nulle.
  • La caractéristique de stabilité de l'hydroptère est donnée par la relation suivante C = R (d-g) - Ag + F(g 2 +r 2 ) > 0
    Figure imgb0002
  • La condition de stabilité selon l'invention assure que, à partir d'une position d'équilibre, tout écart de cette position, combinaison quelconque d'un mouvement de tangage et d'un mouvement de pilonnement, produit une variation des efforts hydrodynamiques qui tend à ramener l'engin dans sa position d'équilibre. En particulier, si on considère une immersion momentanée due à la houle, des plans porteurs avant 43 et 44, la portance de ceux-ci tend à augmenter brusquement, d'où soulevement de l'avant du bateau et cabrage de celui-ci. Dans cette configuration, le plan porteur arrière compense ou surcompense ce phénomène, et l'augmentation de sa portance a pour effet de contrecarrer le cabrage de l'avant de l'hydroptère, d'où limitation par compensation de l'effet de tangage. Par contre, comme le plan porteur arrière ne présente pas de caractéristique de pilonnement, l'effet de stabilisation qu'il procure est tel que l'hydroptère n'est pas amené à suivre les mouvements de la houle. Cet inconvénient des hydroptères de première génération est donc évité.
  • Il en résulte que la combinaison de plans porteurs avant présentant une caractéristique de pilonnement ainsi que de cabrage, et d'un plan arrière présentant seulement une caractéristique de cabrage a permis de définir des conditions de stabilité qui n'auraient pas pu être obtenues avec d'autres configurations connues.
  • La taille du foil arrière 46 est limitée vers les valeurs supérieures par la trainée qu'il produit et les conséquences qui en résultent pour les performances du bateau.
  • On remarquera que les caractéristiques hydrodynamiques d'ailes immergées ou semi-immergées ou bien traversant la surface de l'eau peuvent être déterminées par des moyens connus, en particulier par des mesures en bassin de carène sur des maquettes à échelle réduite ou non, par des calculs d'écoulement par ordinateur, par des mesures d'efforts sur un prototype. On se reportera en particulier à l'ouvrage de S.F. HOERNER intitué "Résistance à l'avancement dans les fluides" édité en 1965 par Gautier-Villard à Paris.
  • L'évaluation de la masse, de la position du centre de gravité des moments d'inertie de l'hydroptère peut également être effectuée par des méthodes connues.
  • La détermination en tant que telle de ces différentes caractéristiques fait donc partie du travail habituel de conception d'un engin de type à portance hydrodynamique. Dans sa forme la plus générale, l'invention ne concerne pas un type particulier de plans porteurs, mais une disposition relative desdits plans porteurs entre eux et surtout par rapport au centre de gravité de l'engin, qui assure que l'équilibrage de la masse de l'hydroptère et des efforts de propulsion par des efforts de portance hydrodynamique est stable et permet à l'hydroptère de se maintenir dans un état d'équilibre sans système de régulation.
  • Un mode de réalisation avantageux de l'hydroptère consiste à pouvoir régler le calage du plan arrière autour d'un axe horizontal transversal de façon à choisir les conditions d'assiette et d'enfoncement de l'hydroptère qui permettent d'obtenir les meilleures performances. Ce réglage ne participe pas directement à la stabilité puisque la position dudit plan horizontal est habituellement fixe et ne fait l'objet que de réglages ponctuels en fonction de l'évolution des conditions de navigation.
  • Exemple d'application
  • L'hydroptère est composé d'un ensemble de deux plans porteurs 43 et 44 situés symétriquement par rapport au plan de symétrie de l'engin et appelés "foils avant" et d'un plan porteur arrière 46 totalement immergé et appelé "foil arrière". Le foil arrière est situé 4 m en arrière de la ligne joignant les foils avant (d=4m). Le centre de gravité de l'engin est situé à 0,65 m en arrière de la ligne joignant les foils avant (g=0,65m). Le rayon de giration r de l'engin en ordre de marche autour de l'axe de tangage est de 2,1 m. La masse de l'engin en ordre de marche est de 400 kg.
  • Les études et les essais effectués sur les foils avant 43 et 44 ont montré que la composante verticale de l'effort que chaque foil développe varie en fonction de l'assiette du foil, de son niveau d'immersion et de la vitesse de l'engin. Cet effort est correctement représenté pour chaque foil par les formules suivantes :
    pour une immersion de 0,850 m, (et une surface projetée verticalement égale à 0,53 m2 pour chaque foil) Fa1 = 750 x a x v 2 ;
    Figure imgb0003
    pour une immersion de 0,450 m, Fa2 = 370 x a x v 2 ;
    Figure imgb0004
    • où a est l'assiette (ou incidence) de fonctionnement du foil exprimée en radians
    • v2 est le carré de la vitesse de l'engin exprimée en m/s ; les efforts Fa1 et Fa2 sont exprimés en N.
  • Les études et les essais effectués sur le foil arrière 46 d'envergure 1,5 m et de surface 0,34 m2 montrent que l'effort vertical qu'il développe peut s'exprimer correctement par la formule suivante : Fr = 660 x b x v 2
    Figure imgb0005
       où b est l'incidence du foil arrière exprimée en radians, l'effort Fr est exprimé en N.
  • Le foil arrière étant réglable en incidence par le pilote de l'engin, l'incidence b est indépendante de l'assiette a de l'engin mais il faut considérer que leurs variations intantanées sont identiques.
  • Caractéristique de pilonnement F
  • En supposant que la composante verticale des efforts appliquées aux foils avant varie linéairement en fonction de l'immersion, on peut déduire que la caractéristique de pilonnement pour l'ensemble des deux foils avant vaut : F=2 x (Fa1-Fa2) / (0,850 - 0,450)
    Figure imgb0006
    F=2 x (750 x a x v 2 - 370 x a x v 2 ) / (0,850 - 0,450)
    Figure imgb0007
    F = 1900 x a x v 2
    Figure imgb0008
  • Application numérique
  • On peut attribuer à chaque paramètre les valeurs suivantes, indépendantes du niveau d'imersion :
    • g = 0,65 m
    • r = 2,10 m
    • d = 4 m
    • F = 1900 x a x v2
    • R = 660 x v2
  • Par ailleurs, pour l'immersion de 0,85 m on a : A = 2 x 750 x v 2 = 1500 x v 2
    Figure imgb0009
    et pour l'immersion de 0,45 m on a : A = 2 x 370 x v 2 = 740 x v 2
    Figure imgb0010
  • L'application à la relation d'équilibre C donne :
       pour l'immersion de 0,85 m : C = R x (d-g) - Axg + F x (g 2 +r 2 ) = (660 x v 2 ) x (4-0,65) - (1500 x v 2 ) x 0,65 + (1900 x a x v 2 ) x (0,65 2 + 2,12) C = (1236 + 9180 x a) x v 2 > 0
    Figure imgb0011
       pour l'immersion de 0,450 m : R x (d-g) - Axg + F x (g 2 + r 2 ) = (660 v) x (4 - 0,65) - (740 v 2 ) x 0,65 + (1900 x a x v 2 ) x (0,65 2 = 2,1 2 ) C = (1730 + 9180 x a) x v 2 > 0
    Figure imgb0012
  • La condition est donc satisfaite dans les deux cas d'immersion, pour toute valeur de l'assiette a. La valeur numérique du terme C diminue lorsque l'immersion augmente. En d'autres termes, et ceci est valable dans tous les cas, si la condition est satisfaite pour l'immersion maximale (c'est-à-dire lors du déjaugeage) elle est toujours satisfaite quelle que soit l'immersion et donc la vitesse de l'engin.
  • Contre-exemple
  • Supposons que le centre de gravité de l'engin se situe à 1,80 m en arrière des foils avant et qu'il navigue avec une assiette de 3,5 degrés (0,06 radians). L'application de la relation d'équilibre avec
    • g = 1,8 m
    • a = 0,06 rd
       donne pour l'immersion de 0,85 m R(d-g) - Ag + F(g 2 + r 2 )= 660 x v 2 (4 - 1,8) - 1500 v 2 x 1,8 + 1900 a v 2 (1,8 2 +2,1 2 ) (1452 - 2700 + 872)v 2 = -376 v 2 < 0
    Figure imgb0013
  • La condition n'est pas satisfaite.
  • A titre de règle de conception, on peut remédier à des instabilités :
    • en augmentant la taille du plan porteur arrière 46,
    • en disposant celui-ci plus à l'arrière,
    • en avançant le centre de gravité,
    • en augmentant l'assiette de l'ensemble avant,
    • en diminuant la profondeur d'immersion de l'ensemble avant,
    • en augmentant le rayon de giration r
  • Le comportement dynamique de l'ensemble poutre 37, 38 et foils principaux 43, 44 est très sensible à la raideur en flexion et en torsion de cette poutre (voir fig. 4)
  • Pour assurer une rigidité satisfaisante tout en maintenant un objectif de poids minimum, la solution retenue consiste à reprendre cette poutre 37, 38, de chaque côté de la coque principale 40, par deux ferrures d'appui 57, 58 au niveau de la coque 40 et deux tirants 51, 52 repris juste au-dessus de la ligne de flottaison 50.
  • Ce principe d'attache présente l'inconvénient que, si ces tirants 51, 52, viennent au contact de l'eau, il se produit un freinage important. Il est donc peu employé sur les multicoques classiques mais est, en revanche, bien adapté à l'hydroptère qui sort sa coque de l'eau à grande vitesse et peut donc maintenir les tirants 51 et 52 hors du contact de l'eau, sauf si la mer est très agitée, conditions dans lesquelles, ces coups de frein brutaux, qui sont susceptibles d'en résulter, sont dangereux.
  • Pour limiter ces effets de choc de la mer sur les ferrures 57, 58 de reprise des tirants 51 et 52, ceux-ci sont placés à l'intérieur de volumes 55, 56 rapportés sur la coque et comportant des redans 53, 54.
  • Les volumes en question jouent donc un double rôle :
    • carénage des ferrures 57 et 58
    • sustentation supplémentaire par double effet : portance dynamique sur les redans 53, 54 et effet de volume 55, 56.
  • Comme le montrent les figures 6a et 6b, la coque 40 présente, de part et d'autre, des redans 53 et 54, sensiblement horizontaux . Les bras 51 et 52 de maintien des poutres 37 et 38 sont fixés à la coque 40 en des points 57 et 58 qui sont disposés au-dessus des plans des redans 53 et 54 et protégés par les redans 55, 56. Il en résulte, que, en présence de houle, la présence des redans 53 et 54 détournent les paquets de mer des ferrures d'appui 57 et 58, ce qui empêche que soient générées des forces d'enfoncement de l'hydroptère qui seraient susceptibles de freiner brutalement et de déstabiliser celui-ci.
  • Le principe du plan porteur arrière 46 en forme de T peut entraîner un problème de stabilité instantanée à vitesse élevée en cas de mer houleuse. En effet, lorsque la vitesse augmente, la coque 40 s'élève de plus en plus au-dessus de la surface de l'eau, et le plan porteur arrière 46 est susceptible de s'en approcher dangereusement. La force de portance qu'il est capable d'exercer lorsqu'il est suffisamment immergé peut dans ce cas, disparaître brutalement. Il est alors possible, à grande vitesse, d'équilibrer le bateau par les seules forces d'inertie massique. Comme ce type d'équilibre n'est à utiliser que dans certaines conditions de navigation, il est prévu à l'arrière du bateau un ballast 80 alimenté par une perche de ravitaillement escamotable 81 de manière à pouvoir vider et remplir avec de l'eau de mer, le ballast 80 qui permet d'éviter de grever les performances du bateau à faible vitesse. On remarquera que ce type de ballastage est connu en soi mais n'a pas été associé jusqu'à présent aux conditions de stabilité d'un plan porteur arrière. Plus particulièrement, étant donné que la valeur du terme C de la condition de stabilité augmente avec la vitesse, le déplacement vers l'arrière du centre de gravité G à grande vitesse ne présente pas d'inconvénient tant que C reste positif.
  • Dans la mesure où le remplissage du ballast ne doit se faire qu'à partir d'une certaine vitesse, une réalisation avantageuse du système de remplissage consiste en un tube plongeant sous la surface de l'eau et dont l'orifice inférieur est orienté vers l'avant de façon à ce que le ballast se remplisse automatiquement sous l'effet de la pression dynamique de l'eau. Par exemple, un tel tube immergé permet de remplir un réservoir disposé à 1,30 m au-dessus de la surface de l'eau à partir d'une vitesse de 10 noeuds.
  • De façon à diminuer la résistance hydraulique représentée par le tube immergé, un mode de réalisation avantageux de l'invention consiste à placer ce tube à l'intérieur du safran de façon à ce que son orifice inférieur se situe dans la partie basse du bord d'attaque du safran, partie qui est toujours immergée lorsque l'hydroptère fonctionne par portance hydrodynamique.
  • Comme indiqué ci-dessus, la structure de redans 53 et 54, telle que décrite joue, outre le rôle de carrénage des ferrures de fixation des bras 51, 52 le rôle d'une sustentation supplémentaire par effet de portance dynamique et par un effet d'accroissement de volume de la coque.
  • En se reportant aux figures 7 et 8, on va maintenant décrire le mécanisme d'actionnement du safran 45 et du plan porteur arrière 46.
  • L'ensemble safran 45-plan porteur arrière 46 est normalement fixé au tableau arrière du bateau par quatre fixations A à démontage rapide, un axe horizontal d'articulation B en permettant le relevage. Après démontage des fixations A, ce relevage peut s'effectuer par traction sur une balancine B', le verrouillage en position haute pouvant être assuré par deux bielles D disposées en V. A faible vitesse, l'ensemble est relevé et un safran annexe de petit temps est mis en place sur le tableau arrière.
  • En cours de navigation, le safran 45, et son plan porteur 46 étant en position abaissée, un mécanisme est prévu pour effacer le plan porteur arrière 46 en cas d'engagement de celui-ci dans un orin ou tout autre obstacle. Cet effacement s'effectue autour d'un axe de rotation vertical E. Le plan porteur arrière 46 est maintenu en position par un système à déclenchement à friction lié au plan porteur arrière 46 par un tube F' (tube de torsion).
  • Comme représenté à la figure 8, ce système comporte une came G' maintenue en rotation par un galet H qui s'efface en comprimant un ou plusieurs ressorts I limitant les efforts de torsion aux valeurs choisies. Le retour dans l'axe est obtenu par la stabilité naturelle en rotation du plan porteur arrière 46 qui est due à la symétrie de sa position nominale qui est stable en raison des efforts hydrodynamiques, ou bien manuellement, en agissant sur la came G si la vitesse du bateau est insuffisante.
  • Le dispositif comporte également un système d'assistance du safran permettant de manoeuvrer celui-ci au-delà d'un seuil d'effort donné. La barre ou le pilote automatique entraîne l'ensemble safran 45-plan porteur arrière 46 autour de son axe vertical O par l'intermédiaire d'une bielle J attaquant un levier K libre en rotation autour de l'axe O. Ce levier K entraîne en rotation le safran 45 par l'intermédiaire d'une boîte à ressort L. Lorsque l'effort résistant du safran 45 est inférieur au tarage de la boîte à ressort L, l'entraînement s'effectue de manière directe. Par contre, si l'effort résistant du safran dépasse le tarage de la boîte à ressort, un moment différentiel apparaît entre le levier K et le safran 45. Cette rotation est transmise à un volet V situé verticalement à l'extrémité arrière inférieure du safran 45 et au-dessus du plan porteur 46, par l'intermédiaire d'un tube de torsion P. Ce moment de rotation est amplifié dans le rapport du bras de levier produit par un système bielle-manivelle N-Q. Ceci entraîne un braquage du volet V qui est articulé sur le safran 45 et le fait tourner de manière à annuler le moment différentiel entre le levier K et le safran 45, ce qui constitue un système mécanique asservi.
  • Comme représentés aux figures 9a et 9b, les foils principaux 43, 44 qui sont articulés sur les poutres principales respectives 37 et 38, s'appuient sur une contre-fiche briseuse 73, 74. La manoeuvre de cette contre-fiche est assurée par un vérin hydraulique 71, 72 qui prend appui sur une ferrure rapportée sur le foil principal ainsi que sur un des montants de la contre-fiche. En position relevée, l'extrémité 47, 48 des foils principaux 43, 44 vient se loger dans les espaces 65 et 66 (voir fig. 4).
  • Selon la figure 10, le plan porteur arrière, qui reste totalement immergé dans des conditions normales de navigation, présente un plan porteur dont les deux bras extérieurs 46, 46', forment un V dirigé vers le bas, d'un angle a par exemple égal à 10°. Ainsi qu'il a été dit ci-dessus, lorsque la vitesse augmente, la coque 40 s'élève de plus en plus au-dessus de la surface de l'eau, le plan porteur arrière étant alors susceptible de s'en approcher dangereusement. La forme en V dirigée vers le bas des deux bras 46, 46' vise à éviter une disparition brutale de la portance du plan porteur 46' lorsqu'il vient accidentiellement franchir la surface de l'eau. Par contre, dans des conditions normales de navigation, il est totalement immergé et ne présente pas de caractéristique de pilonnement.
  • A la figure 9a, on a représenté un aileron vertical 100 dirigé verticalement et disposé à l'extrémité inférieure des foils avant 43, 44 à la naissance des ailerons horizontaux 47, 48. Ces ailerons verticaux 100 ont pour fonction de permettre d'auto-stabiliser latéralement l'hydroptère à vitesse élevée, lorsque les foils avant sont très peu immergés.

Claims (17)

  1. Hydroptère à voile présentant un ensemble avant comportant des plans porteurs avant qui sont au moins partiellement immergés, et un plan arrière totalement immergé et ne présentant de ce fait pas de caractéristique de pilonnement, les plans porteurs avant (43, 44) étant tels que la résultante des efforts verticaux :
    - diminue lorsque ledit ensemble avant est soumis à une translation verticale vers le haut, ladite résultante ayant une caractéristique de pilonnement F
    - augmente lorsque ledit ensemble avant est soumis à un mouvement de tangage à cabrer, avec une caractéristique d'incidence A, caractérisé en ce que le plan arrière (46) est tel qu'il présente une caractéristique d'incidence R de manière) satisfaire la relation suivante : R (d-g) - Ag + F(g 2 + r 2 ) > 0
    Figure imgb0014
    d désignant la composante horizontale de la distance entre le plan arrière (46) et le foyer de pilonnement de l'ensemble avant
    g désignant la distance entre le centre de gravité de l'hydroptère et le foyer de pilonnement de l'ensemble avant
    et r désignant le rayon de giration de l'hydroptère.
  2. Hydroptère selon la revendication 1, caractérisé en ce qu'il est du type multicoque avec une coque centrale (40) et deux flotteurs latéraux (41, 42), lesdits plans porteurs avant (43, 44) étant supportés par les flotteurs latéraux (41, 42) et convergeant symétriquement en direction de la coque centrale (40).
  3. Hydroptère selon la revendication 2, caractérisé en ce qu'il comporte des poutres (37, 38) reliant la coque centrale (40) et les flotteurs latéraux (41, 42) et qui sont supportés par des tirants (51, 52) fixés sur la coque centrale (40), et en ce qu'il comporte des redans (53, 54) s'étendant depuis la proue de la coque centrale jusqu'à au moins le point de fixation (57, 58) de chaque tirant (51, 52) sur la coque centrale (40) ledit point de fixation (57, 48) de chaque tirant (51, 52) étant disposé au-dessus des redans (53, 54).
  4. Hydroptère selon une des revendications 1 à 3, caractérisé en ce que le plan arrière (46) est monté à l'extrémité inférieure d'un safran (45) disposé verticalement et est symétrique de part et d'autre du safran (45).
  5. Hydroptère selon la revendication 4, caractérisé en ce que le plan arrière (46) est monté sur un axe de rotation vertical (E) lié à un système à déclenchement (G', H, I) de telle sorte qu'il est susceptible de s'effacer en rotation lorsqu'il est soumis à un couple supérieur à une valeur nominale donnée.
  6. Hydroptère selon la revendication 5, caractérisé en ce que ledit montage est effectué par l'intermédiaire d'un tube de torsion (F) maintenu par un galet (H), lequel est susceptible de s'effacer en comprimant un ressort (I) de manière à limiter les efforts de torsion à ladite valeur nominale.
  7. Hydroptère selon une des revendications 4 à 6, caractérisé en ce qu'il comporte un dispositif de mise en rotation, autour d'un axe vertical, du safran (45) comprenant un levier d'entraînement (K) commandant un volet mobile (V) lié mécaniquement à une extrémité du safran (45) opposé à son axe de rotation.
  8. Hydroptère selon la revendication 7, caractérisé en ce qu'il comporte entre le levier d'entraînement (K) et le volet mobile (V), un dispositif d'entraînement comprenant un mécanisme bielle-manivelle (N, Q) d'amplification du bras de levier, ainsi qu'un tube de torsion (P) reliant le mécanisme bielle-manivelle (N, Q) au levier d'entraînement (K).
  9. Hydroptère selon la revendication 8, caractérisé en ce qu'il comporte une boîte à ressort (L) disposée entre le levier d'entraînement (K) et de telle sorte que le tube de torsion (P) ne retransmet d'effort que lorsque l'effort résistant du safran (45) dépasse le tarage de la boîte à ressort (L).
  10. Hydroptère selon une des revendications 2 à 9, caractérisé en ce que les plans porteurs avant (43, 44) se prolongent par des ailerons horizontaux (47, 48) ayant une corde (c') inférieure ou égale à celle (c) de l'extrémité distale des plans porteurs avant (43, 44), et une envergure (e) au moins égale à trois fois leur corde (c').
  11. Hydroptère selon une des revendications précédentes caractérisé en ce que le plan porteur arrière (46) est réglable en rotation autour d'un axe horizontal transversal.
  12. Hydroptère selon une des revendications précédentes, caractérisé en ce qu'il comporte un dispositif de relevage du safran (45) et/ou des plans porteurs avant (43, 44).
  13. Hydroptère selon une des revendications précédentes, caractérisé en ce qu'il comporte un ballast d'eau (80) destiné à déplacer le centre de gravité (G) vers l'arrière lorsque l'hydroptère navigue à vitesse élevée.
  14. Hydroptère selon la revendication 13, caractérisé en ce que ledit ballast d'eau (80) est alimenté automatiquement en eau par un tube plongeant sous la surface de l'eau et dont l'extrémité est orientée vers l'avant.
  15. Hydroptère selon la revendication 14, caractérisé en ce que ledit tube d'alimentation du ballast d'eau (80) est disposé à l'intérieur du safran et a son orifice inférieur situé dans la partie inférieure basse du bord d'attaque dudit safran.
  16. Hydroptère selon une des revendications précédentes, caractérisé en ce que le plan porteur arrière comporte deux bras latéraux (46, 46') formant un V incliné vers le bas.
  17. Hydroptère selon une des revendications précédentes, caractérisé en ce que les plans porteurs avant (43, 44) présentent, à une extrémité inférieure, un aileron vertical (100) destiné à permettre une auto-stabilisation latérale à vitesse élevée.
EP94913156A 1993-04-13 1994-04-12 Hydroptere a voile Expired - Lifetime EP0694008B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9304310 1993-04-13
FR9304310A FR2703975B1 (fr) 1993-04-13 1993-04-13 Hydroptere a voile.
PCT/FR1994/000404 WO1994023989A2 (fr) 1993-04-13 1994-04-12 Hydroptere a voile

Publications (2)

Publication Number Publication Date
EP0694008A1 EP0694008A1 (fr) 1996-01-31
EP0694008B1 true EP0694008B1 (fr) 1997-01-02

Family

ID=9445995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94913156A Expired - Lifetime EP0694008B1 (fr) 1993-04-13 1994-04-12 Hydroptere a voile

Country Status (7)

Country Link
US (1) US5673641A (fr)
EP (1) EP0694008B1 (fr)
AU (1) AU680245B2 (fr)
DE (1) DE69401350T2 (fr)
FR (1) FR2703975B1 (fr)
NZ (1) NZ265077A (fr)
WO (1) WO1994023989A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LV11603B (en) * 1996-08-19 1997-04-20 Eglajs Aldis Sailboat-trimaran with hydrofoil
AUPP502598A0 (en) * 1998-08-04 1998-08-27 North West Bay Ships Pty. Limited Trimaran construction
FR2787758B1 (fr) 1998-12-29 2001-02-02 Patrick Coulombel Quintamaran: bateau multicoque a cinq coques, propulsion a la voile ou au moteur
FR2888560B1 (fr) 2005-07-12 2007-10-12 Richard Sorrentino Bateau multicoque a grande vitesse
US7520238B2 (en) * 2006-09-25 2009-04-21 Robert Michael Patterson Boat stabilizer
EP1908679A3 (fr) * 2007-12-04 2008-07-23 Jean Psarofagis Voilier multicoque a ailerons de sustentation et methode de navigation
SI23103A (sl) * 2009-07-09 2011-01-31 Tomaž ZORE Naprava za premikanje po vodi in/ali po zraku in/ali po kopnem
FR2956088B1 (fr) * 2010-02-05 2012-06-08 Philippe Perrier Vehicule a hydrofoil.
IT1403578B1 (it) 2011-02-01 2013-10-31 Brizzolara Dispositivo natante
US8720354B2 (en) * 2011-06-22 2014-05-13 Hobie Cat Co. Quadfoiler
US9475559B2 (en) 2013-07-03 2016-10-25 Hobie Cat Company Foot operated propulsion system for watercraft
US20220212756A1 (en) * 2019-04-06 2022-07-07 Boundary Layer Technologies Inc. Retractable hydrofoil on vessel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE358888C (de) * 1919-02-09 1922-09-16 Paul Hirschfelder Vorrichtung zum Ausschleusen von festen Bestandteilen aus Luft- und Gaskanaelen
US2890672A (en) * 1957-05-01 1959-06-16 Jr Harold Boericke Watercraft hydrofoil device
FR1456080A (fr) * 1965-09-09 1966-10-21 Application de l'aile marine à la navigation à voile
GB1348698A (en) * 1971-05-17 1974-03-20 Holtom G H Sailing hydrofoil craft
US3789789A (en) * 1972-03-23 1974-02-05 J Cleary Hydrofoil sailing craft
US4100876A (en) * 1977-05-18 1978-07-18 The Boeing Company Hydrofoil fixed strut steering control
DE3831468A1 (de) * 1988-09-16 1990-03-22 Messerschmitt Boelkow Blohm Segelyacht
US5113775A (en) * 1989-05-01 1992-05-19 Imhoff Robert W Aero hydrofoil sail boat
US5054410A (en) * 1989-12-27 1991-10-08 Scarborough Greer T Hydrofoil sailboat with control system
FR2659287A1 (fr) * 1990-03-09 1991-09-13 Launay Claude Vehicule nautique type trimarant.

Also Published As

Publication number Publication date
DE69401350T2 (de) 1997-04-30
FR2703975B1 (fr) 1995-06-30
WO1994023989A2 (fr) 1994-10-27
WO1994023989A3 (fr) 1994-12-08
AU680245B2 (en) 1997-07-24
DE69401350D1 (de) 1997-02-13
EP0694008A1 (fr) 1996-01-31
US5673641A (en) 1997-10-07
FR2703975A1 (fr) 1994-10-21
NZ265077A (en) 1997-09-22
AU6541394A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
EP0694008B1 (fr) Hydroptere a voile
EP3215416A1 (fr) Aile portante escamotable
WO2005054049A2 (fr) Stabilisateur dynamique pour bateau, dispositif compensateur d’effort pour orienter une voilure et bateau semi-submersible
FR2933372A1 (fr) Navire dont la poupe est equipee d&#39;un tel dispositif de deflection de flux d&#39;eau
FR2519933A1 (fr) Systeme de propulsion pour engins et navires a voiles
EP3652055B1 (fr) Ensemble portant asservi a aile profilee pour bateau semi rigide
CA1326409C (fr) Voilier muni d&#39;un dispositif de sustentation et anti-gite
WO2003082662A1 (fr) Coque de navire a grande vitesse du type timaran
EP0105819A1 (fr) Bateau rapide
WO1982002865A1 (fr) Trimaran auto stable
WO2015107125A1 (fr) Navire multicoque à propulsion marine
FR2978420A1 (fr) Engin flottant rapide a propulsion eolienne
WO2007006907A1 (fr) Bateau multicoque a grande vitesse
FR2685281A1 (fr) Navire de type monocoque pourvu d&#39;un dispositif de stabilisation transversale.
EP0104122A1 (fr) Perfectionnement aux bateaux automobiles pour assurer le poussage et la gouverne de tout train de barges avec une économie optimale
WO2023094176A1 (fr) Système de nageoires articulées pour bateau
FR2563800A1 (fr) Objet muni d&#39;ailes de portance hydrodynamique
FR2655309A1 (fr) Systeme de propulsion et de sustentation eoliennes pour engins de vitesse nautiques, terrestres ou amphibies.
WO2020084127A1 (fr) Coque de navire a grande vitesse munie d&#39;un hydrojet avant
WO1994029168A1 (fr) Greement comportant une voilure non supportee par un mat et hydroptere pourvu d&#39;un tel greement
WO1990011219A1 (fr) Dispositif d&#39;equilibrage, de carene et de reglage d&#39;un voilier de sport
WO2020084123A1 (fr) Coque de navire a grande vitesse a injection de gaz d&#39;echappement sous chaque bras de liaison
FR2726804A1 (fr) Coque de navire rapide a mouvements et impacts amortis
FR3121424A1 (fr) Dispositif aerien pour optimiser les engins a voiles
WO2020084122A1 (fr) Coque de navire a grande vitesse munie de flotteurs lateraux a marches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB GR IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960416

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PERRIER, PHILIPPE

Owner name: THEBAULT, ALAIN

Owner name: DE BERGH, ALAIN

Owner name: SOURNAT, ANDRE

Owner name: ARCHITECTURE NAVALE MVPVLP

Owner name: DASSAULT AVIATION

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB GR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970102

Ref country code: GB

Effective date: 19970102

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970102

REF Corresponds to:

Ref document number: 69401350

Country of ref document: DE

Date of ref document: 19970213

ITF It: translation for a ep patent filed

Owner name: 0414;01TOFBARZANO'E ZANARDO S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970102

BERE Be: lapsed

Owner name: PERRIER PHILIPPE

Effective date: 19970430

Owner name: THEBAULT ALAIN

Effective date: 19970430

Owner name: DE BERGH ALAIN

Effective date: 19970430

Owner name: SOURNAT ANDRE

Effective date: 19970430

Owner name: ARCHITECTURE NAVALE MVPVLP

Effective date: 19970430

Owner name: DASSAULT AVIATION

Effective date: 19970430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060406

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412