EP0665378A1 - Pompe centrifuge à entraînement magnétique - Google Patents

Pompe centrifuge à entraînement magnétique Download PDF

Info

Publication number
EP0665378A1
EP0665378A1 EP95420014A EP95420014A EP0665378A1 EP 0665378 A1 EP0665378 A1 EP 0665378A1 EP 95420014 A EP95420014 A EP 95420014A EP 95420014 A EP95420014 A EP 95420014A EP 0665378 A1 EP0665378 A1 EP 0665378A1
Authority
EP
European Patent Office
Prior art keywords
wheel
assembly
pump according
pump
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95420014A
Other languages
German (de)
English (en)
Inventor
Pascal Gautier
Gilles Braussen
Bernard Gouthier
Ghislaine Deswert
Ernest Totino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mersen SA
Original Assignee
Carbone Lorraine SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbone Lorraine SA filed Critical Carbone Lorraine SA
Publication of EP0665378A1 publication Critical patent/EP0665378A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/025Details of the can separating the pump and drive area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/404Transmission of power through magnetic drive coupling
    • F05B2260/4041Transmission of power through magnetic drive coupling the driven magnets encircling the driver magnets

Definitions

  • the invention relates to centrifugal pumps with central magnetic drive, particularly pumps made of carbonaceous material and pumps intended to convey hot and / or corrosive and / or toxic and dangerous fluids.
  • Centrifugal pumps with magnetic drive have as basic components a pump body, a centrifugal impeller, a magnetic drive and assembly and connection elements.
  • Figure 1 schematically illustrates the constitution of a known pump of this type.
  • the pump body 4 is provided with an inlet port 12, a pumping compartment 22 and an outlet port 13.
  • the pump body 4 can be formed from several parts.
  • the magnetic drive device comprises a rotor 23 and a driver 24.
  • the driver consists of a drive wheel 14, which is provided with permanent motor magnets 3 and which is fixed to the shaft 2 of a motor.
  • peripheral drive there are at least two types of magnetic drive: either peripheral drive or central drive.
  • the drive wheel 14 surrounds the rotor 23, while in the second case, which relates to the present application, it is located inside the rotor.
  • the rotor 23 is fixed to the centrifugal wheel 5, most often by means of a common shaft and by screws, so as to form an integral wheel-rotor assembly.
  • the rotor is provided with follower elements 6, which are either permanent magnets, called follower magnets, or parts made of material of high magnetic permeability, called drive parts, or a combination of the two.
  • follower elements 6 are either permanent magnets, called follower magnets, or parts made of material of high magnetic permeability, called drive parts, or a combination of the two.
  • the motor magnets 3 and the follower elements 6 are generally placed opposite and spaced so as to ensure sufficient driving torque.
  • a lubrication device 10 and a particular lubricant are often necessary, but it is known to be able to ensure the lubrication of the bearings using the fluid conveyed (self-lubricating pumps).
  • the self-lubrication is obtained using a secondary circuit which promotes the circulation of the fluid conveyed in a slight clearance at the bearings and / or in reflux conduits 25 in the fixed and / or mobile parts.
  • the pumping compartment 22 occupies a volume closed internally by an air-tight bell 7.
  • the driver 24 and the motor are located outside the pumping compartment and are thus isolated from the transported fluid, which no longer circulates except in the pumping compartment 22.
  • the wall of the air-gap bell 7 is generally thin and configured. so as to pass through the air gap of the drive device, namely into the space which separates the motor magnets 3 from the follower elements 6.
  • pumps intended in particular for the chemical, parachemical and pharmaceutical industries are most often an integral part of complex devices.
  • they in addition to the imperative of resistance to the fluid conveyed, they must meet a certain number of additional imperatives of a technical and above all economic nature, in particular in order to reduce maintenance costs and limit production stoppages.
  • the rotor is cantilevered with respect to the centrifugal wheel (patent US-5201642) or with respect to an axis in the inlet port of the pump (US Pat. No. 4,645,433). It is known that these arrangements allow a slight radial movement, a source of vibrations and possibly parasitic friction. These undesirable effects are accentuated at high temperatures, in particular by the effect of differential expansions between the constituent parts.
  • US Pat. No. 4,645,433 describes a pump, the drive device of which is of reduced volume, but the inlet section is greatly reduced by the presence of the axis of rotation, which considerably increases the pressure drop. and the NPSH (Net Positive Suction Head) required and which consequently increases the risks of degradation of the centrifugal wheel by cavitation.
  • NPSH Net Positive Suction Head
  • the centrifugal pump with magnetic drive comprises a pump body 4, a centrifugal impeller 5, a rotor 23, an air-gap bell 7 and a driver 24, and assembly and connection members, and is characterized in that that the driver is central, in that the pump body 4 is made of carbonaceous material, in particular graphite, in that the air-gap bell 7 is made of non-magnetic and electrically non-conductive material, in that permanent follower magnets 6 are secured to the rotor 23 and completely isolated from the fluid carried, in that the rotor 23 is cylindrical in shape and is fixed directly to the centrifugal wheel 5, without any intermediate part, so as to form a compact wheel-rotor assembly, in that the wheel-rotor assembly is made of carbonaceous material of the same kind as that of the body of pump 4, in that the wheel-rotor assembly rests only on two rigid external annular axial bearings 16 and 17 situated at the ends of said assembly in the axial direction, and in that the wheel-rotor assembly has a secondary circuit
  • the air gap bell 7 is preferably made of composite material comprising in particular carbonaceous products and / or polymerized resins.
  • the secondary circuit preferably consists of an axial hole 19 in the centrifugal wheel 5 or in a series of holes 26 in the centrifugal wheel 5 arranged symmetrically around the axis of rotation of the wheel-rotor assembly.
  • the follower magnets 6 are preferably secured to the wheel-rotor assembly by bonding a cap 31 comprising an annular cavity 32.
  • complementary parts 28 and / or 29 are placed in the cavity 32 in addition to the follower magnets 6.
  • the parts 28 and / or 29, which may be made of magnetic or non-magnetic material, allow precise positioning of the follower magnets 6 and / or confinement of the magnetic field lines.
  • a suitable expansion joint which preferably consists of expanded graphite, can be placed in the residual expansion space 33 in order to wedge the magnets and to absorb the differential expansions.
  • the wheel-rotor assembly abuts against an axial stop 18 on the side of the inlet 12.
  • the bearings 16 and 17 and the stopper 18 are preferably made of carbonaceous material, in particular graphite, or graphite-silicide or silicon carbide.
  • the wheel-rotor assembly rests directly on the external bearings 16 and 17, without the intermediary of bearings fixed to said assembly.
  • the part of the transported liquid circulated in the pumping compartment by the secondary circuit not only allows the self-lubrication of the rear bearing, but also avoids the use of a second axial stop at the rear bearing thanks to an effect liquid bearing and limits the pressure at the rear of the wheel-rotor assembly, which reduces wear on the front stop.
  • the assembly and disassembly operations of the pump according to the invention are carried out by simple stacking and nesting of the constituent parts.
  • the motor can be removed without removing the pump from the device to which it is connected, that is to say that the fluid carried may remain in the pumping compartment during this operation.
  • the number of parts of the pump according to the invention is very small, which facilitates maintenance and reduces costs.
  • the pump according to the invention also has the advantage of great adaptability to very variable conditions of use, especially with regard to pressure and flow.
  • the pump according to the invention offers very good performance, in particular as regards the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and centering of the wheel-rotor assembly.
  • FIG. 1 shows, in axial section, a centrifugal pump with central magnetic drive of the prior art.
  • the centrifugal wheel 5 is supported by an axial bearing 8 and is provided with axial stops 11a and 11b and with a lubrication device 10.
  • FIG. 2 represents, in axial section, an embodiment of the centrifugal pump with central magnetic drive according to the invention which corresponds to example 1.
  • FIG. 3 illustrates a second embodiment of the pump according to the invention which corresponds to Example 2.
  • FIG. 4 shows, in axial section, an embodiment of the device for fixing the follower magnets which makes it possible to prevent the magnets from being attacked by the transported fluid.
  • the watertight fixing is obtained by gluing along the plane I-I of the wheel-rotor assembly, which has an annular cavity 30, with a cap 31 carrying a complementary annular cavity 32.
  • FIG. 5 illustrates a third embodiment of the pump according to the invention which corresponds to Example 3.
  • a pump was produced according to the invention comprising a drive motor on the shaft 2 of which was fixed the drive wheel 14 provided with motor magnets 3, a pump body 4 in graphite, a wheel-rotor assembly of which the annular cylindrical extension comprised follower magnets 6 located opposite the motor magnets 3, a rear intermediate piece 27 and a gap bell 7.
  • a tight fixing of the follower magnets on the wheel-rotor assembly was obtained by bonding with a cement based on graphite, phenolic resin and catalyst according to the plane I-I of the cap 31 on said assembly (FIG. 4).
  • a complementary part 29 consisting of a steel ring has been inserted into the cavity 32.
  • the residual space 33 has been filled with expanded graphite so as to form an expansion joint.
  • the wheel-rotor assembly was supported externally on the one hand on the pump body 4 and on the intermediate part 27 by means of two external annular axial bearings rigid 16 and 17 located at the two ends of the wheel-rotor assembly in the direction of the axis and on the other hand on an axial stop 18 located on the side of the inlet orifice 12.
  • the bearings 16 and 17 and the stop 18 were made of graphite-silicon and silicon carbide.
  • the wheel-rotor assembly included an axial hole 19 in the centrifugal wheel 5.
  • the bearing 17 rested on an intermediate piece 27 provided with two seals.
  • the air gap bell 7 was made from a resin-carbon fiber composite (Rigilor (R) from the company Le Carbone Lorraine).
  • the pump body 4 which was made in one piece having an inlet 12 and an outlet 13, was fixed to the flange 1 of the motor by means of an assembly plate 15 on which was fixed the air gap bell 7.
  • the pump had an inlet flange 20 and an outlet flange 21.
  • a second pump according to the invention was produced according to Example 1, with the exception of the bearing 17 which rested directly on the body of the pump 4, which made it possible to eliminate the intermediate part 27 and one of the corresponding seals.
  • This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.
  • a third pump according to the invention was produced according to Example 1, with the exception of the secondary circuit, which included a series of holes 26 arranged symmetrically around the axis of rotation at the level of the centrifugal wheel, and of the cap. 31 containing the follower magnets which was inserted into an annular cavity 34 in the centrifugal wheel. A second complementary piece 28 of graphite and of annular shape was placed in the annular cavity 32 of the cap 31.
  • This pump has been tested on several chemical processes and has given complete satisfaction, in particular with regard to the characteristic curve, the corrosion resistance, the reliability, the mechanical resistance and the centering of the wheel assembly. rotor, even in high temperature conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne les pompes à entraînement magnétique central, en particulier les pompes en matériau carboné, notamment en graphite, destinées plus particulièrement à véhiculer des fluides chauds et/ou corrosifs et/ou toxiques et dangereux. La pompe selon l'invention comporte un corps de pompe (4) muni d'un orifice d'entrée (12) et d'un orifice de sortie (13), d'un ensemble roue (5) - rotor (23) compact possédant un circuit secondaire de circulation du fluide véhiculé et reposant sur deux paliers axiaux annulaires externes rigides (16, 17) situés aux deux extrémités de l'ensemble roue-rotor dans le sens axial, et éventuellement sur une butée axiale (18) côté entrée (12). Les aimants suiveurs (6) sont entièrement noyés dans le corps du rotor de manière à éviter leur corrosion par les fluides véhiculés. La pompe selon l'invention est compacte, stable en rotation et d'un entretien facilité et économique grâce à un nombre de pièces réduit, un montage et un démontage aisé, et un équilibrage en rotation simplifié. <IMAGE>

Description

    Domaine technique
  • L'invention concerne les pompes centrifuges à entraînement magnétique central, particulièrement les pompes en matériau carboné et les pompes destinées à véhiculer des fluides chauds et/ou corrosifs et/ou toxiques et dangereux.
  • Etat de la technique
  • Les pompes centrifuges à entraînement magnétique ont pour constituants de base un corps de pompe, une roue centrifuge, un dispositif d'entraînement magnétique et des organes d'assemblage et de raccordement.
  • La figure 1 illustre schématiquement la constitution d'une pompe connue de ce type.
  • Le corps de pompe 4 est doté d'un orifice d'entrée 12, d'un compartiment de pompage 22 et d'un orifice de sortie 13. Le corps de pompe 4 peut être formé de plusieurs pièces.
  • Le dispositif d'entraînement magnétique comporte un rotor 23 et un entraîneur 24. L'entraîneur consiste en une roue d'entraînement 14, qui est munie d'aimants permanents moteurs 3 et qui est fixée à l'arbre 2 d'un moteur.
  • On distingue au moins deux types d'entraînement magnétique : soit à entraîneur périphérique, soit à entraîneur central. Dans le premier cas, le plus fréquent, la roue d'entraînement 14 entoure le rotor 23, alors que dans le second cas, qui concerne la présente demande, elle se situe à l'intérieur du rotor.
  • Le rotor 23 est fixé à la roue centrifuge 5, le plus souvent par l'intermédiaire d'un arbre commun et par visserie, de manière à former un ensemble roue-rotor solidaire. Le rotor est doté d'éléments suiveurs 6, qui sont soit des aimants permanents, dits aimants suiveurs, soit des pièces en matériau de grande perméabilité magnétique, dites pièces d'entraînement, soit une combinaison des deux. Les aimants moteurs 3 et les éléments suiveurs 6 sont en général disposés en vis-à-vis et espacés de manière à assurer un couple d'entraînement suffisant.
  • La stabilité et le centrage des pièces en rotation sont assurés par un ou des palier(s) axial (axiaux) 8, interne(s) ou externe(s), garni(s) ou non de coussinets 9. Un dispositif de lubrification 10 et un lubrifiant particuliers sont souvent nécessaires, mais il est connu de pouvoir assurer la lubrification des paliers à l'aide du fluide véhiculé (pompes auto-lubrifiantes). Comme le décrivent les brevets DE-3413930 et US-5201642 et la demande GB-2263312, l'auto-lubrification est obtenue à l'aide d'un circuit secondaire qui favorise la circulation du fluide véhiculé dans un léger jeu au niveau des paliers et/ou dans des conduits de reflux 25 dans les parties fixes et/ou mobiles.
  • Le compartiment de pompage 22 occupe un volume fermé intérieurement par une cloche entrefer 7 hermétique. L'entraîneur 24 et le moteur se situent à l'extérieur du compartiment de pompage et sont ainsi isolés du fluide véhiculé, qui ne circule plus que dans le compartiment de pompage 22. La paroi de la cloche entrefer 7 est en général mince et configurée de manière à passer dans l'entrefer du dispositif d'entraînement, à savoir dans l'espace qui sépare les aimants moteurs 3 des éléments suiveurs 6.
  • Problème posé
  • Une des principales préoccupations des fabricants de pompes centrifuges à entraînement magnétique est la tenue au fluide véhiculé, c'est-à-dire la tenue en température et la résistance à l'agressivité chimique des fluides véhiculés.
  • Pour cela, outre l'introduction d'une cloche entrefer hermétique, il est connu par les brevets DE-3413930 et US-4645433 d'utiliser des matériaux offrant une bonne tenue physico-chimique au fluide véhiculé.
  • Or, les pompes destinées notamment aux industries chimique, parachimique et pharmaceutique font le plus souvent partie intégrante de dispositifs complexes. Pour cela, outre l'impératif de la tenue au fluide véhiculé, elles doivent répondre à un certain nombre d'impératifs complémentaires de nature technique et surtout économique, afin notamment de réduire les coûts d'entretien et de limiter les arrêts de production.
  • Ces impératifs complémentaires comprennent notamment :
    • une grande stabilité et un équilibrage parfait en rotation ;
    • une construction aussi compacte que possible ;
    • un nombre de pièces aussi limité que possible ;
    • un montage et un démontage très aisé.
  • La pompe décrite dans le brevet DE-3413930 résiste certes aux fluides véhiculés, mais il est connu que les pompes avec arbre commun sont d'un entretien difficile à cause de l'emboîtement particulier des pièces.
  • De façon générale, il est bien connu que les pompes avec arbre commun peuvent difficilement être compactes.
  • Dans certains cas, le rotor est en porte-à-faux par rapport à la roue centrifuge (brevet US-5201642) ou par rapport à un axe dans l'orifice d'entrée de la pompe (brevet US-4645433). Il est connu que ces dispositions permettent un léger débattement radial, source de vibrations et éventuellement de frottements parasites. Ces effets indésirables sont accentués aux températures élevées, notamment per l'effet des dilatations différentielles entre les pièces constitutives.
  • Par ailleurs, le brevet US-4645433 décrit certes une pompe dont le dispositif d'entraînement est de volume réduit, mais la section d'entrée est fortement réduite par la présence de l'axe de rotation, ce qui augmente considérablement la perte de charge et le NPSH (Net Positive Suction Head) requis et qui augmente par conséquent les risques de dégradation de la roue centrifuge par cavitation. De surcroît, cette configuration requiert une lubrification particulière indépendante.
  • Ayant constaté l'absence de solution connue satisfaisante, la demanderesse a alors cherché à fabriquer une pompe centrifuge à entraînement magnétique qui satisfasse l'ensemble des impératifs industriels énoncés plus haut.
  • Description de l'invention
  • La pompe centrifuge à entraînement magnétique selon l'invention comporte un corps de pompe 4, une roue centrifuge 5, un rotor 23, une cloche entrefer 7 et un entraîneur 24, et des organes d'assemblage et de raccordement, et est caractérisée en ce que l'entraîneur est central, en ce que le corps de pompe 4 est en matériau carboné, notamment en graphite, en ce que la cloche entrefer 7 est en matériau amagnétique et électriquement non-conducteur, en ce que des aimants permanents suiveurs 6 sont solidarisés au rotor 23 et totalement isolés du fluide véhiculé, en ce que le rotor 23 est de forme cylindrique et est fixé directement à la roue centrifuge 5, sans pièce intermédiaire, de manière à former un ensemble roue-rotor compact, en ce que l'ensemble roue-rotor est en matériau carboné de même nature que celui du corps de pompe 4, en ce que l'ensemble roue-rotor repose uniquement sur deux paliers axiaux annulaires externes rigides 16 et 17 situés aux extrémités dudit ensemble dans le sens axial, et en ce que l'ensemble roue-rotor possède un circuit secondaire permettant la circulation d'une partie du fluide véhiculé à l'arrière dudit ensemble et entre celui-ci et la cloche entrefer 7.
  • La cloche entrefer 7 est de préférence en matériau composite comportant notamment des produits carbonés et/ou des résines polymérisées.
  • Le circuit secondaire consiste de préférence en un trou axial 19 dans la roue centrifuge 5 ou en une série de trous 26 dans la roue centrifuge 5 disposés symétriquement autour de l'axe de rotation de l'ensemble roue-rotor.
  • Les aimants suiveurs 6 sont de préférence solidarisés à l'ensemble roue-rotor par collage d'un chapeau 31 comportant une cavité annulaire 32. Selon une variante de l'invention, des pièces complémentaires 28 et/ou 29 sont placées dans la cavité 32 en complément des aimants suiveurs 6. Les pièces 28 et/ou 29, qui peuvent être en matériau magnétique ou amagnétique, permettent un positionnement précis des aimants suiveurs 6 et/ou un confinement des lignes de champ magnétique.
  • Un joint de dilatation adapté, qui consiste de préférence en du graphite expansé, peut être placé dans l'espace résiduel de dilatation 33 afin de caler les aimants et d'absorber les dilatations différentielles.
  • Selon une variante de l'invention, l'ensemble roue-rotor bute contre une butée axiale 18 du côté de l'orifice d'entrée 12.
  • Les paliers 16 et 17 et la butée 18 sont de préférence en matériau carboné, notamment en graphite, ou en graphite-siliciuré ou en carbure de silicium.
  • De préférence, l'ensemble roue-rotor repose directement sur les paliers externes 16 et 17, sans l'intermédiaire de coussinets fixés audit ensemble.
  • La partie du liquide véhiculé mise en circulation dans le compartiment de pompage par le circuit secondaire permet non seulement l'auto-lubrification du palier arrière, mais évite aussi l'utilisation d'une deuxième butée axiale au niveau du palier arrière grâce à un effet de palier liquide et limite la pression à l'arrière de l'ensemble roue-rotor, ce qui réduit l'usure de la butée avant.
  • Le fait d'isoler les aimants suiveurs dans la masse du rotor permet non seulement d'éviter que les aimants soient attaqués par le fluide véhiculé, mais permet également de bénéficier des propriétés tribologiques des matériaux carbonés constituant l'ensemble roue-rotor.
  • Les opérations de montage et de démontage de la pompe selon l'invention s'effectuent par simple empilement et emboîtement des pièces constitutives. Le moteur peut être enlevé sans retirer la pompe du dispositif auquel elle est raccordée, c'est-à-dire que le fluide véhiculé peut rester dans le compartiment de pompage au cours de cette opération.
  • Le nombre de pièces de la pompe selon l'invention est très réduit, ce qui facilite l'entretien et en réduit les coûts.
  • La pompe selon l'invention présente aussi l'avantage d'une grande adaptabilité aux conditions très variables d'utilisation, notamment en ce qui concerne la pression et le débit.
  • Lors des essais, comme le montrent les exemples, la demanderesse a pu constater que la pompe selon l'invention offre de très bonnes performances, notamment ce qui concerne la courbe des caractéristiques, la tenue à la corrosion, la fiabilité, la tenue mécanique et le centrage de l'ensemble roue-rotor.
  • On attribue ces résultats à la combinaison favorable d'un ensemble roue-rotor compact, c'est-à-dire court par rapport à son diamètre, et de paliers externes de grand diamètre aux extrémités. On fait également l'hypothèse que l'effet de palier liquide entre l'ensemble roue-rotor et la cloche entrefer joue un rôle important dans la stabilité mécanique de la pompe.
  • L'invention sera mieux comprise à l'aide des exemples de réalisation illustrés aux figures 2 à 5.
  • Description des figures
  • La figure 1 représente, en coupe axiale, une pompe centrifuge à entraînement magnétique central de l'art antérieur. La roue centrifuge 5 est supportée par un palier axial 8 et est dotée de butées axiales 11a et 11b et d'un dispositif de lubrification 10.
  • La figure 2 représente, en coupe axiale, une réalisation de la pompe centrifuge à entraînement magnétique central selon l'invention qui correspond à l'exemple 1.
  • La figure 3 illustre une deuxième réalisation de la pompe selon l'invention qui correspond à l'exemple 2.
  • La figure 4 représente, en coupe axiale, une réalisation du dispositif de fixation des aimants suiveurs qui permet d'éviter que les aimants soient attaqués par le fluide véhiculé. La fixation étanche est obtenue par collage selon le plan I-I de l'ensemble roue-rotor, qui possède une cavité annulaire 30, avec un chapeau 31 portant une cavité annulaire complémentaire 32.
  • La figure 5 illustre une troisième réalisation de la pompe selon l'invention qui correspond à l'exemple 3.
  • Exemples EXEMPLE 1 (Figure 2)
  • On a réalisé une pompe selon l'invention comportant un moteur d'entraînement sur l'arbre 2 duquel était fixée la roue d'entraînement 14 dotée d'aimants moteurs 3, un corps de pompe 4 en graphite, un ensemble roue-rotor dont l'extension cylindrique annulaire comportait des aimants suiveurs 6 situés en face des aimants moteurs 3, une pièce intermédiaire 27 arrière et une cloche entrefer 7.
  • Une fixation étanche des aimants suiveurs sur l'ensemble roue-rotor a été obtenue par collage avec un ciment à base de graphite, résine phénolique et catalyseur selon le plan I-I du chapeau 31 sur ledit ensemble (figure 4). Une pièce complémentaire 29 consistant en un anneau en acier a été insérée dans la cavité 32. L'espace résiduel 33 a été rempli de graphite expansé de manière à former un joint de dilatation.
  • L'ensemble roue-rotor s'appuyait extérieurement d'une part sur le corps de pompe 4 et sur la pièce intermédiaire 27 par l'intermédiaire de deux paliers axiaux annulaires externes rigides 16 et 17 situés aux deux extrémités de l'ensemble roue-rotor dans le sens de l'axe et d'autre part sur une butée axiale 18 située du côté de l'orifice d'entrée 12. Les paliers 16 et 17 et la butée 18 étaient en graphite-siliciuré et en carbure de silicium.
  • L'ensemble roue-rotor comportait un trou axial 19 dans la roue centrifuge 5.
  • Le palier 17 reposait sur une pièce intermédiaire 27 munie de deux joints d'étanchéité.
  • La cloche entrefer 7 a été réalisée en un composite résine-fibres de carbone (Rigilor (R) de la société Le Carbone Lorraine).
  • Le corps de pompe 4, qui était fait d'une seule pièce possédant un orifice d'entrée 12 et un orifice de sortie 13, était fixé au flasque 1 du moteur par l'intermédiaire d'une plaque d'assemblage 15 sur laquelle était fixée la cloche entrefer 7.
  • La pompe comportait une bride d'entrée 20 et une bride de sortie 21.
  • Cette pompe a été mise à l'essai sur plusieurs procédés chimiques et a donné entière satisfaction. En particulier, la courbe des caractéristiques, la tenue à la corrosion et la fiabilité étaient excellentes. Il n'est apparu aucun problème de tenue mécanique ou de centrage de l'ensemble roue-rotor, même dans des conditions de température élevée.
  • EXEMPLE 2 (Figure 3)
  • Une deuxième pompe selon l'invention a été réalisée selon l'exemple 1, à l'exception du palier 17 qui reposait directement sur le corps de la pompe 4, ce qui a permis d'éliminer la pièce intermédiaire 27 et un des joints correspondants.
  • Cette pompe a été mise à l'essai sur plusieurs procédés chimiques et a donné entière satisfaction, notamment en ce qui concernait la courbe des caractéristiques, la tenue à la corrosion, la fiabilité, la tenue mécanique et le centrage de l'ensemble roue-rotor, même dans des conditions de température élevée.
  • EXEMPLE 3 (Figure 5)
  • Une troisième pompe selon l'invention a été réalisée selon l'exemple 1, à l'exception du circuit secondaire, qui comportait une série de trous 26 disposés symétriquement autour de l'axe de rotation au niveau de la roue centrifuge, et du chapeau 31 contenant les aimants suiveurs qui s'insérait dans une cavité annulaire 34 dans la roue centrifuge. Un seconde pièce complémentaire 28 en graphite et de forme annulaire a été placée dans la cavité annulaire 32 du chapeau 31.
  • Cette pompe a été mise à l'essai sur plusieurs procédés chimiques et a donné entière satisfaction, notamment en ce qui concernait la courbe des caractéristiques, la tenue à la corrosion, la fiabilité, la tenue mécanique et le centrage de l'ensemble roue-rotor, même dans des conditions de température élevée.

Claims (12)

1- Pompe centrifuge à entraînement magnétique comportant un corps de pompe (4), une roue centrifuge (5), un rotor (23), une cloche entrefer (7) et un entraîneur (24), et des organes d'assemblage et de raccordement, ladite pompe étant caractérisée en ce que l'entraîneur (24) est central, en ce que le corps de pompe (4) est en matériau carboné, en ce que la cloche entrefer (7) est en matériau amagnétique et électriquement non-conducteur, en ce que des aimants permanents suiveurs (6) sont solidarisés au rotor (23) et totalement isolés du fluide véhiculé, en ce que le rotor (23) est de forme cylindrique et est fixé directement à la roue centrifuge (5), sans pièce intermédiaire, de manière à former un ensemble roue-rotor compact, en ce que ledit ensemble est en matériau carboné de même nature que celui du corps de pompe (4), en ce que ledit ensemble repose uniquement sur deux paliers axiaux annulaires externes rigides (16 et 17) situés aux extrémités dudit ensemble dans le sens axial, et en ce que ledit ensemble possède un circuit secondaire de circulation du fluide véhiculé.
2- Pompe selon la revendication 1, caractérisée en ce que ledit matériau carboné est du graphite.
3- Pompe selon l'une des revendications 1 et 2, caractérisée en ce que l'ensemble roue-rotor bute contre une butée axiale (18) du côté de l'orifice d'entrée (12).
4- Pompe selon l'une des revendications 1 à 3, caractérisée en ce que l'ensemble roue-rotor repose directement sur les paliers externes (16 et 17), sans l'intermédiaire de coussinets fixés audit ensemble.
5- Pompe selon l'une des revendications 1 à 4, caractérisée en ce que la cloche entrefer (7) est en matériau composite comportant des produits carbonés et/ou des résines polymérisées.
6- Pompe selon l'une des revendications 1 à 5, caractérisée en ce que le circuit secondaire comprend un trou axial (19) dans la roue centrifuge (5).
7- Pompe selon l'une des revendications 1 à 5, caractérisée en ce que le circuit secondaire comprend une série de trous (26) dans la roue centrifuge (5) disposés symétriquement autour de l'axe de rotation de l'ensemble roue-rotor.
8- Pompe selon l'une des revendications 1 à 7, caractérisée en ce que les paliers (16 et 17) et la butée (18) sont en un matériau choisi parmi le graphite, le graphite-siliciuré et le carbure de silicium.
9- Pompe selon l'une des revendications 1 à 8, caractérisée en ce que les aimants suiveurs (6) sont solidarisés à l'ensemble roue-rotor par collage d'un chapeau (31) comportant une cavité annulaire (32).
10- Pompe selon l'une des revendications 1 à 9, caractérisée en ce que l'ensemble roue-rotor possède un joint de dilatation dans l'espace résiduel (33).
11- Pompe selon la revendication 10, caractérisée en ce que ledit joint est en graphite expansé.
12- Pompe selon l'une des revendications 1 à 11, caractérisée en ce que des pièces complémentaires (28 et/ou 29) sont disposées dans la cavité annulaire (32).
EP95420014A 1994-01-26 1995-01-23 Pompe centrifuge à entraînement magnétique Withdrawn EP0665378A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9401104 1994-01-26
FR9401104A FR2715442B1 (fr) 1994-01-26 1994-01-26 Pompe centrifuge à entraînement magnétique.

Publications (1)

Publication Number Publication Date
EP0665378A1 true EP0665378A1 (fr) 1995-08-02

Family

ID=9459644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95420014A Withdrawn EP0665378A1 (fr) 1994-01-26 1995-01-23 Pompe centrifuge à entraînement magnétique

Country Status (4)

Country Link
US (1) US5501582A (fr)
EP (1) EP0665378A1 (fr)
JP (1) JPH07224785A (fr)
FR (1) FR2715442B1 (fr)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009889A1 (fr) * 1998-08-11 2000-02-24 Cooper Paul V Pompe pour metal fondu a rotor monolithique
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US8075837B2 (en) 2003-07-14 2011-12-13 Cooper Paul V Pump with rotating inlet
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8333666B2 (en) 2004-12-10 2012-12-18 Sundyne Corporation Inner drive for magnetic drive pump
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US8529828B2 (en) 2002-07-12 2013-09-10 Paul V. Cooper Molten metal pump components
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device
US12031550B2 (en) 2023-04-26 2024-07-09 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443844A1 (de) * 1994-12-09 1996-06-13 Philips Patentverwaltung Gebläseaggregat zum Erzeugen von Gasströmen
GB2307947B (en) * 1995-12-08 1999-08-18 Aisan Ind Magnetically coupled pump
SE508445C2 (sv) * 1997-01-28 1998-10-05 Magnetal Ab Vakuumpump av höghastighetstyp
DE19718981A1 (de) * 1997-05-05 1998-11-12 Proair Geraetebau Gmbh Fördereinrichtung für flüssige und gasförmige Medien, wie Sauggeräte, insbesondere Naßsauger, Pumpen und dergleichen
US6129704A (en) * 1997-06-12 2000-10-10 Schneider (Usa) Inc. Perfusion balloon catheter having a magnetically driven impeller
GB9717866D0 (en) * 1997-08-23 1997-10-29 Concentric Pumps Ltd Improvements to rotary pumps
US5915931A (en) * 1997-11-13 1999-06-29 The Gorman-Rupp Company Magnetic drive unit having molded plastic magnetic driver
EP0954087A1 (fr) * 1998-04-30 1999-11-03 Sulzer Innotec Ag Transmission dynamoélectrique et pompe centrifuge avec une telle transmission
DE29822717U1 (de) 1998-12-21 1999-03-18 Feodor Burgmann Dichtungswerke GmbH & Co, 82515 Wolfratshausen Kreiselpumpe, insbesondere zum Pumpen eines Kühlmittels in einem Kühlmittelkreislauf
US6254361B1 (en) * 1999-07-29 2001-07-03 Itt Manufacturing Enterprises, Inc. Shaftless canned rotor inline pipe pump
JP3403719B2 (ja) * 1999-08-10 2003-05-06 株式会社イワキ マグネットポンプ
FR2798169B1 (fr) * 1999-09-06 2001-11-16 Siebec Sa Pompe a entrainement magnetique
CH710862B1 (de) 1999-11-26 2016-09-15 Imerys Graphite & Carbon Switzerland Sa Verfahren zur Herstellung von Graphitpulvern mit erhöhter Schüttdichte.
DE60239819D1 (de) * 2001-10-08 2011-06-01 Timcal Ag Elektrochemische zelle
ATE296958T1 (de) * 2001-12-04 2005-06-15 Levitronix Llc Abgabevorrichtung für ein fluid
US6863124B2 (en) * 2001-12-21 2005-03-08 Schlumberger Technology Corporation Sealed ESP motor system
US6908291B2 (en) * 2002-07-19 2005-06-21 Innovative Mag-Drive, Llc Corrosion-resistant impeller for a magnetic-drive centrifugal pump
US7572115B2 (en) * 2002-07-19 2009-08-11 Innovative Mag-Drive, Llc Corrosion-resistant rotor for a magnetic-drive centrifugal pump
CN1746468A (zh) * 2004-06-09 2006-03-15 鸿富锦精密工业(深圳)有限公司 液冷式散热***微型泵
JP2007071147A (ja) * 2005-09-08 2007-03-22 Kr & D:Kk ポンプ駆動装置
NO325341B1 (no) * 2005-12-05 2008-03-31 Norsk Hydro Produksjon As Kjolesystem for en elektrisk motor, og et drivsystem for drift av et lopehjul
DE202006005189U1 (de) 2006-03-31 2007-08-16 H. Wernert & Co. Ohg Kreiselpumpe mit koaxialer Magnetkupplung
US20070224059A1 (en) * 2006-03-23 2007-09-27 Cheng-Tien Lai Miniature pump for liquid cooling system
CN101852216A (zh) * 2010-05-08 2010-10-06 白银鸿浩化工机械制造有限公司 一种磁力泵的内磁转子生产工艺
US20120177511A1 (en) * 2011-01-10 2012-07-12 Peopleflo Manufacturing, Inc. Modular Pump Rotor Assemblies
US8905728B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with permanent magnet coupling inside the impeller
US8905729B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with electro-magnet coupling inside the impeller
US9551091B2 (en) * 2013-12-26 2017-01-24 Hexa Nano Carbon LLC Process and equipment for the production of micro-carbonfibers
CN104776033B (zh) * 2014-01-14 2017-09-15 高涵文 一种耐腐蚀抗干磨的磁力泵
US9771938B2 (en) * 2014-03-11 2017-09-26 Peopleflo Manufacturing, Inc. Rotary device having a radial magnetic coupling
PL3247480T3 (pl) * 2015-01-21 2019-06-28 Basf Se Kolumna do oczyszczania przez destylację bezwodników kwasów karboksylowych
CN105042181A (zh) * 2015-06-30 2015-11-11 志远科技有限公司 适用于高温浓硫酸的控制阀
US9920764B2 (en) 2015-09-30 2018-03-20 Peopleflo Manufacturing, Inc. Pump devices
DE202015106097U1 (de) * 2015-11-11 2016-02-01 Holger Blum Fördereinrichtung für eine Vakuumdestillationsanlage
US20180245596A1 (en) * 2016-07-26 2018-08-30 RELIAX MOTORES SA de CV Integrated electric motor and pump assembly
AU2017353926B2 (en) * 2016-11-01 2020-04-30 Psg Worldwide, Inc. Magnetically coupled sealless centrifugal pump
DE102017204947A1 (de) * 2017-03-23 2018-09-27 Volkswagen Aktiengesellschaft Außenläufer-Rotor einer Pumpe sowie Pumpe mit einem solchen Außenläufer-Rotor
RU2681045C1 (ru) * 2018-05-21 2019-03-01 Акционерное общество "Новомет-Пермь" Установка погружного насоса с герметичным двигателем
RU2681051C1 (ru) * 2018-05-21 2019-03-01 Акционерное общество "Новомет-Пермь" Узел передачи крутящего момента для погружной установки (варианты)
CN111002764B (zh) * 2018-10-06 2022-06-10 河南天基轮胎有限公司 一种磁流体可调刚度轮胎
WO2020100690A1 (fr) * 2018-11-13 2020-05-22 パナソニックIpマネジメント株式会社 Pompe électrique
GB2581339A (en) 2019-02-08 2020-08-19 Hmd Seal/Less Pumps Ltd Containment shell for a magnetic pump
DE102019122042A1 (de) * 2019-08-16 2021-02-18 HELLA GmbH & Co. KGaA Pumpvorrichtung
DE202020101750U1 (de) * 2020-03-31 2020-04-15 Speck Pumpen Verkaufsgesellschaft Gmbh Gegenstromschwimmanlage

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1453760A1 (de) * 1962-01-08 1969-01-09 Fuss Und Stahl Veredlung Gmbh Pumpe mit einem schnell rotierend angetriebenen Laufrad,insbesondere Kreiselpumpe
DE3413930A1 (de) * 1984-04-13 1985-10-31 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Kreiselpumpe
US4645433A (en) * 1984-07-16 1987-02-24 Cp Pumpen Ag Sealing shroud centrifugal pump
EP0250856A1 (fr) * 1986-06-04 1988-01-07 GebràœDer Sulzer Aktiengesellschaft Pompe centrifuge à accouplement magnétique
US4775291A (en) * 1987-07-27 1988-10-04 Binks Manufacturing Company Magnetic clutch drive and thrust balancing mechanism for rotary pumps
EP0291780A1 (fr) * 1987-05-12 1988-11-23 Comadur SA Pompe à entraînement magnétique
DE3922426A1 (de) * 1988-09-19 1990-03-22 Sulzer Ag Magnetkupplung fuer rotierende prozesspumpen
US5017103A (en) * 1989-03-06 1991-05-21 St. Jude Medical, Inc. Centrifugal blood pump and magnetic coupling
FR2672344A1 (fr) * 1991-02-05 1992-08-07 Lorraine Carbone Pompe a entrainement magnetique equipee d'une piece de separation monobloc en materiau composite.
US5201642A (en) * 1991-11-27 1993-04-13 Warren Pumps, Inc. Magnetic drive pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806080A (en) * 1983-07-06 1989-02-21 Ebara Corporation Pump with shaftless impeller
CH672820A5 (fr) * 1986-03-21 1989-12-29 Ernst Hauenstein
US5324177A (en) * 1989-05-08 1994-06-28 The Cleveland Clinic Foundation Sealless rotodynamic pump with radially offset rotor
GB2263312A (en) * 1992-01-17 1993-07-21 Stork Pompen Vertical pump with magnetic coupling.
US5405251A (en) * 1992-09-11 1995-04-11 Sipin; Anatole J. Oscillating centrifugal pump
US5248245A (en) * 1992-11-02 1993-09-28 Ingersoll-Dresser Pump Company Magnetically coupled centrifugal pump with improved casting and lubrication

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1453760A1 (de) * 1962-01-08 1969-01-09 Fuss Und Stahl Veredlung Gmbh Pumpe mit einem schnell rotierend angetriebenen Laufrad,insbesondere Kreiselpumpe
DE3413930A1 (de) * 1984-04-13 1985-10-31 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Kreiselpumpe
US4645433A (en) * 1984-07-16 1987-02-24 Cp Pumpen Ag Sealing shroud centrifugal pump
EP0250856A1 (fr) * 1986-06-04 1988-01-07 GebràœDer Sulzer Aktiengesellschaft Pompe centrifuge à accouplement magnétique
EP0291780A1 (fr) * 1987-05-12 1988-11-23 Comadur SA Pompe à entraînement magnétique
US4775291A (en) * 1987-07-27 1988-10-04 Binks Manufacturing Company Magnetic clutch drive and thrust balancing mechanism for rotary pumps
DE3922426A1 (de) * 1988-09-19 1990-03-22 Sulzer Ag Magnetkupplung fuer rotierende prozesspumpen
US5017103A (en) * 1989-03-06 1991-05-21 St. Jude Medical, Inc. Centrifugal blood pump and magnetic coupling
FR2672344A1 (fr) * 1991-02-05 1992-08-07 Lorraine Carbone Pompe a entrainement magnetique equipee d'une piece de separation monobloc en materiau composite.
US5201642A (en) * 1991-11-27 1993-04-13 Warren Pumps, Inc. Magnetic drive pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MERSCH A: "MAGNETIC DRIVE CHEMICAL PUMPS OF TOMORROW", WORLD PUMPS, no. 5, pages 146/147, XP000084072 *

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345964B1 (en) 1996-12-03 2002-02-12 Paul V. Cooper Molten metal pump with metal-transfer conduit molten metal pump
WO2000009889A1 (fr) * 1998-08-11 2000-02-24 Cooper Paul V Pompe pour metal fondu a rotor monolithique
US6093000A (en) * 1998-08-11 2000-07-25 Cooper; Paul V Molten metal pump with monolithic rotor
US6398525B1 (en) 1998-08-11 2002-06-04 Paul V. Cooper Monolithic rotor and rigid coupling
US6303074B1 (en) 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
US6689310B1 (en) 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
US6723276B1 (en) 2000-08-28 2004-04-20 Paul V. Cooper Scrap melter and impeller
US8110141B2 (en) 2002-07-12 2012-02-07 Cooper Paul V Pump with rotating inlet
US8361379B2 (en) 2002-07-12 2013-01-29 Cooper Paul V Gas transfer foot
US9034244B2 (en) 2002-07-12 2015-05-19 Paul V. Cooper Gas-transfer foot
US8529828B2 (en) 2002-07-12 2013-09-10 Paul V. Cooper Molten metal pump components
US8178037B2 (en) 2002-07-12 2012-05-15 Cooper Paul V System for releasing gas into molten metal
US8440135B2 (en) 2002-07-12 2013-05-14 Paul V. Cooper System for releasing gas into molten metal
US7731891B2 (en) 2002-07-12 2010-06-08 Cooper Paul V Couplings for molten metal devices
US8409495B2 (en) 2002-07-12 2013-04-02 Paul V. Cooper Rotor with inlet perimeters
US9435343B2 (en) 2002-07-12 2016-09-06 Molten Meal Equipment Innovations, LLC Gas-transfer foot
US7906068B2 (en) 2003-07-14 2011-03-15 Cooper Paul V Support post system for molten metal pump
US8075837B2 (en) 2003-07-14 2011-12-13 Cooper Paul V Pump with rotating inlet
US8475708B2 (en) 2003-07-14 2013-07-02 Paul V. Cooper Support post clamps for molten metal pumps
US8501084B2 (en) 2003-07-14 2013-08-06 Paul V. Cooper Support posts for molten metal pumps
US8333666B2 (en) 2004-12-10 2012-12-18 Sundyne Corporation Inner drive for magnetic drive pump
US9362050B2 (en) 2004-12-10 2016-06-07 Sundyne, Llc Inner drive for magnetic drive pump
US9855600B2 (en) 2007-06-21 2018-01-02 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US11167345B2 (en) 2007-06-21 2021-11-09 Molten Metal Equipment Innovations, Llc Transfer system with dual-flow rotor
US11759854B2 (en) 2007-06-21 2023-09-19 Molten Metal Equipment Innovations, Llc Molten metal transfer structure and method
US8613884B2 (en) 2007-06-21 2013-12-24 Paul V. Cooper Launder transfer insert and system
US11185916B2 (en) 2007-06-21 2021-11-30 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel with pump
US8753563B2 (en) 2007-06-21 2014-06-17 Paul V. Cooper System and method for degassing molten metal
US11130173B2 (en) 2007-06-21 2021-09-28 Molten Metal Equipment Innovations, LLC. Transfer vessel with dividing wall
US9017597B2 (en) 2007-06-21 2015-04-28 Paul V. Cooper Transferring molten metal using non-gravity assist launder
US11103920B2 (en) 2007-06-21 2021-08-31 Molten Metal Equipment Innovations, Llc Transfer structure with molten metal pump support
US11020798B2 (en) 2007-06-21 2021-06-01 Molten Metal Equipment Innovations, Llc Method of transferring molten metal
US10562097B2 (en) 2007-06-21 2020-02-18 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9156087B2 (en) 2007-06-21 2015-10-13 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9205490B2 (en) 2007-06-21 2015-12-08 Molten Metal Equipment Innovations, Llc Transfer well system and method for making same
US10458708B2 (en) 2007-06-21 2019-10-29 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10352620B2 (en) 2007-06-21 2019-07-16 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US10345045B2 (en) 2007-06-21 2019-07-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US10274256B2 (en) 2007-06-21 2019-04-30 Molten Metal Equipment Innovations, Llc Vessel transfer systems and devices
US9383140B2 (en) 2007-06-21 2016-07-05 Molten Metal Equipment Innovations, Llc Transferring molten metal from one structure to another
US9409232B2 (en) 2007-06-21 2016-08-09 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US10195664B2 (en) 2007-06-21 2019-02-05 Molten Metal Equipment Innovations, Llc Multi-stage impeller for molten metal
US10072891B2 (en) 2007-06-21 2018-09-11 Molten Metal Equipment Innovations, Llc Transferring molten metal using non-gravity assist launder
US8366993B2 (en) 2007-06-21 2013-02-05 Cooper Paul V System and method for degassing molten metal
US9982945B2 (en) 2007-06-21 2018-05-29 Molten Metal Equipment Innovations, Llc Molten metal transfer vessel and method of construction
US9925587B2 (en) 2007-06-21 2018-03-27 Molten Metal Equipment Innovations, Llc Method of transferring molten metal from a vessel
US9909808B2 (en) 2007-06-21 2018-03-06 Molten Metal Equipment Innovations, Llc System and method for degassing molten metal
US9862026B2 (en) 2007-06-21 2018-01-09 Molten Metal Equipment Innovations, Llc Method of forming transfer well
US9566645B2 (en) 2007-06-21 2017-02-14 Molten Metal Equipment Innovations, Llc Molten metal transfer system and rotor
US9581388B2 (en) 2007-06-21 2017-02-28 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US8337746B2 (en) 2007-06-21 2012-12-25 Cooper Paul V Transferring molten metal from one structure to another
US9643247B2 (en) 2007-06-21 2017-05-09 Molten Metal Equipment Innovations, Llc Molten metal transfer and degassing system
US9080577B2 (en) 2009-08-07 2015-07-14 Paul V. Cooper Shaft and post tensioning device
US9328615B2 (en) 2009-08-07 2016-05-03 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9506129B2 (en) 2009-08-07 2016-11-29 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US9422942B2 (en) 2009-08-07 2016-08-23 Molten Metal Equipment Innovations, Llc Tension device with internal passage
US10428821B2 (en) 2009-08-07 2019-10-01 Molten Metal Equipment Innovations, Llc Quick submergence molten metal pump
US9470239B2 (en) 2009-08-07 2016-10-18 Molten Metal Equipment Innovations, Llc Threaded tensioning device
US9464636B2 (en) 2009-08-07 2016-10-11 Molten Metal Equipment Innovations, Llc Tension device graphite component used in molten metal
US8444911B2 (en) 2009-08-07 2013-05-21 Paul V. Cooper Shaft and post tensioning device
US9377028B2 (en) 2009-08-07 2016-06-28 Molten Metal Equipment Innovations, Llc Tensioning device extending beyond component
US8535603B2 (en) 2009-08-07 2013-09-17 Paul V. Cooper Rotary degasser and rotor therefor
US8524146B2 (en) 2009-08-07 2013-09-03 Paul V. Cooper Rotary degassers and components therefor
US9657578B2 (en) 2009-08-07 2017-05-23 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US8449814B2 (en) 2009-08-07 2013-05-28 Paul V. Cooper Systems and methods for melting scrap metal
US10570745B2 (en) 2009-08-07 2020-02-25 Molten Metal Equipment Innovations, Llc Rotary degassers and components therefor
US9382599B2 (en) 2009-08-07 2016-07-05 Molten Metal Equipment Innovations, Llc Rotary degasser and rotor therefor
US8714914B2 (en) 2009-09-08 2014-05-06 Paul V. Cooper Molten metal pump filter
US9108244B2 (en) 2009-09-09 2015-08-18 Paul V. Cooper Immersion heater for molten metal
US10309725B2 (en) 2009-09-09 2019-06-04 Molten Metal Equipment Innovations, Llc Immersion heater for molten metal
US9410744B2 (en) 2010-05-12 2016-08-09 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US9482469B2 (en) 2010-05-12 2016-11-01 Molten Metal Equipment Innovations, Llc Vessel transfer insert and system
US10641279B2 (en) 2013-03-13 2020-05-05 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened tip
US11391293B2 (en) 2013-03-13 2022-07-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US9903383B2 (en) 2013-03-13 2018-02-27 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened top
US10126059B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Controlled molten metal flow from transfer vessel
US9587883B2 (en) 2013-03-14 2017-03-07 Molten Metal Equipment Innovations, Llc Ladle with transfer conduit
US10302361B2 (en) 2013-03-14 2019-05-28 Molten Metal Equipment Innovations, Llc Transfer vessel for molten metal pumping device
US10126058B2 (en) 2013-03-14 2018-11-13 Molten Metal Equipment Innovations, Llc Molten metal transferring vessel
US9011761B2 (en) 2013-03-14 2015-04-21 Paul V. Cooper Ladle with transfer conduit
US10307821B2 (en) 2013-03-15 2019-06-04 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10322451B2 (en) 2013-03-15 2019-06-18 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US10052688B2 (en) 2013-03-15 2018-08-21 Molten Metal Equipment Innovations, Llc Transfer pump launder system
US11286939B2 (en) 2014-07-02 2022-03-29 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10138892B2 (en) 2014-07-02 2018-11-27 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US11939994B2 (en) 2014-07-02 2024-03-26 Molten Metal Equipment Innovations, Llc Rotor and rotor shaft for molten metal
US10465688B2 (en) 2014-07-02 2019-11-05 Molten Metal Equipment Innovations, Llc Coupling and rotor shaft for molten metal devices
US11933324B2 (en) 2015-02-02 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US10947980B2 (en) 2015-02-02 2021-03-16 Molten Metal Equipment Innovations, Llc Molten metal rotor with hardened blade tips
US11519414B2 (en) 2016-01-13 2022-12-06 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US10641270B2 (en) 2016-01-13 2020-05-05 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US10267314B2 (en) 2016-01-13 2019-04-23 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11098720B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned rotor shaft for molten metal
US11098719B2 (en) 2016-01-13 2021-08-24 Molten Metal Equipment Innovations, Llc Tensioned support shaft and other molten metal devices
US11976672B2 (en) 2017-11-17 2024-05-07 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11149747B2 (en) 2017-11-17 2021-10-19 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices
US11858036B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc System and method to feed mold with molten metal
US11850657B2 (en) 2019-05-17 2023-12-26 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11358217B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc Method for melting solid metal
US11858037B2 (en) 2019-05-17 2024-01-02 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11759853B2 (en) 2019-05-17 2023-09-19 Molten Metal Equipment Innovations, Llc Melting metal on a raised surface
US11931802B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal controlled flow launder
US11931803B2 (en) 2019-05-17 2024-03-19 Molten Metal Equipment Innovations, Llc Molten metal transfer system and method
US11471938B2 (en) 2019-05-17 2022-10-18 Molten Metal Equipment Innovations, Llc Smart molten metal pump
US11358216B2 (en) 2019-05-17 2022-06-14 Molten Metal Equipment Innovations, Llc System for melting solid metal
US11873845B2 (en) 2021-05-28 2024-01-16 Molten Metal Equipment Innovations, Llc Molten metal transfer device
US12031550B2 (en) 2023-04-26 2024-07-09 Molten Metal Equipment Innovations, Llc Tensioned support post and other molten metal devices

Also Published As

Publication number Publication date
FR2715442A1 (fr) 1995-07-28
US5501582A (en) 1996-03-26
FR2715442B1 (fr) 1996-03-01
JPH07224785A (ja) 1995-08-22

Similar Documents

Publication Publication Date Title
EP0665378A1 (fr) Pompe centrifuge à entraînement magnétique
FR2944838A1 (fr) Amelioration structurelle d&#39;une pompe a rotor noye
FR2588323A1 (fr) Pompe centrifuge a entrainement magnetique
FR3037110B1 (fr) Compresseur frigorifique centrifuge
FR2856440A1 (fr) Compresseur de turbomachine et roue dudit compresseur
FR2798169A1 (fr) Pompe a entrainement magnetique
CN101892990B (zh) 一种中开多级泵
FR3011290A3 (fr) Pompe a engrenages a deplacement positif
FR3114353A1 (fr) Joint dynamique amélioré pour l’étanchéité d’un module de moteur d’aéronef
FR3051852A1 (fr) Stator, arbre rotatif, pompe a vide de type seche et procedes de fabrication associes
EP3493373A1 (fr) Dispositif de compression d&#39;un fluide entraine par une machine electrique avec un arbre de rotor ayant une frette amagnetique
FR2594185A1 (fr) Pompe radiale
FR3094051A1 (fr) Bague à cage de type écureuil en bi-matière composite et métal, et ensemble de roulement à éléments roulants équipé d’une telle bague
BE1000873A5 (fr) Motopompe integree a turbine et pompe rotative.
EP3008296B1 (fr) Tourillon pour turbine haute pression, et turboreacteur incluant un tel tourillon
EP0009449B1 (fr) Palier pour pompe centrifuge ambivalente
FR3134435A1 (fr) Pompe à vide
FR2845735A1 (fr) Pompe a vide a embout
FR2672344A1 (fr) Pompe a entrainement magnetique equipee d&#39;une piece de separation monobloc en materiau composite.
EP3289222B1 (fr) Compresseur électrique avec système d&#39;étanchéité dynamique amélioré
FR3112172A1 (fr) Pompe à vide sèche
FR2514079A1 (fr) Machine a pistons radiaux, notamment pompe a pistons a bille
FR2911166A1 (fr) Pompe a entrainement magnetique et etancheite coulissante
EP1552158A1 (fr) Groupe motopompe de mise en circulation d&#39;un fluide corrosif
FR2912797A1 (fr) Joint d&#39;etancheite magnetique a portance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19950902

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LE CARBONE LORRAINE

17Q First examination report despatched

Effective date: 19960708

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980117