EP0654604B1 - Procédé et dispositif d'allumage à bobine avec des décharges additionnelles pour diagnostics - Google Patents

Procédé et dispositif d'allumage à bobine avec des décharges additionnelles pour diagnostics Download PDF

Info

Publication number
EP0654604B1
EP0654604B1 EP19940402617 EP94402617A EP0654604B1 EP 0654604 B1 EP0654604 B1 EP 0654604B1 EP 19940402617 EP19940402617 EP 19940402617 EP 94402617 A EP94402617 A EP 94402617A EP 0654604 B1 EP0654604 B1 EP 0654604B1
Authority
EP
European Patent Office
Prior art keywords
primary
current
spark
intensity
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940402617
Other languages
German (de)
English (en)
Other versions
EP0654604A1 (fr
Inventor
Bernard Boucly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli France SAS
Original Assignee
Magneti Marelli France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France SAS filed Critical Magneti Marelli France SAS
Publication of EP0654604A1 publication Critical patent/EP0654604A1/fr
Application granted granted Critical
Publication of EP0654604B1 publication Critical patent/EP0654604B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques

Definitions

  • the subject of the invention is a method and a device electronic ignition, for internal combustion engine controlled ignition, in each engine cylinder, by at minus one spark plug in series with a secondary coil ignition, the primary of which is supplied with current electrical from an electrical source, such as the battery of a vehicle equipped with the engine, by a switch placed in a primary charging circuit, and itself controlled by a calculation and control unit, comprising advantageously a microcontroller.
  • the invention more specifically relates to a method and a device of the type mentioned above, allowing perform a diagnosis of the engine ignition, thanks to the calculation and control unit, or calculator, which manages the ignition function as well as possibly the function injection, when the engine is fitted with an installation fuel injection system, the calculation and command then being a calculator called "of engine control ".
  • the method and the device according to the invention are intended to be used not only on board vehicles, but also on recording equipment and service station.
  • the ignition diagnosis consists in giving information qualitative information relating to the sparks produced by the spark plugs in the combustion chambers of the engine. This information should make it possible to determine whether there is absence or presence of a spark, and, in the latter case, if the spark is correct.
  • An ignition device with ignition diagnosis of the second type mentioned above, was proposed by the Applicant in European patent application EP 559 540: on the one hand, it includes means for measuring the current of load, intended to provide, on an output, a signal in response to exceedances of a specified, lower value at the current needed to create the ignition voltage at secondary of the coil by breaking the primary current, and, on the other hand, means of transposing the tension primary, to form the image of the secondary voltage and provide, on said output, a signal when the voltage secondary becomes below a specified threshold indicating the end of the spark at the candle.
  • These means of transposition include, in series between the terminal of the primary not connected to the source and the ground, the emitter-collector junction a transistor and collector resistors and transmitter, so that the voltage across one of resistances be representative of the difference between the voltage across the primary and source voltage.
  • a first drawback of such a device is that it does not allow, in a simple way, to discriminate sparks from different cylinders, at high revs, due of a superposition between the transpositions of tensions secondary and primary charges. For example, in a inline four-cylinder four-stroke engine, load of cylinder # 3 coil primary can start while the spark at the spark plug of cylinder n ° 1 is not finished.
  • the object of the invention is to remedy the drawbacks of the aforementioned device known from EP 0 559 540, and propose a method and a device allowing a control the quality of the ignition by detecting whether the spark is neither too short nor too long, and if the spark is of sufficient quality for a sufficient period of time.
  • Another object of the invention is to propose a method and device for further monitoring wear of the spark plug, or more generally degradation of the secondary circuit which comprises it in series with the secondary of the coil and a resistive interference suppression wire, for example integrated into the candle.
  • Yet another object of the invention is to propose a method allowing an implementation by a device many components of which may be common to all engine cylinders, and therefore in a single copy in a more economical and less bulky production device.
  • Another aim is to propose a method of ignition diagnosis also compatible with calculation and the primary charge time control, in the way already known, in particular from the aforementioned document EP 559 540, the method according to the invention being able to be implemented by a device which is structurally only slightly different known devices to perform this calculation and this primary charge time control.
  • the idea behind the invention is that an image of the quality of the spark to the candle is given by the dynamic impedance of this candle during the spark, and that the observation of the intensity of a current that we circulates in the coil primary, for spark allows analysis of the rate of increase for at least one diagnostic period, this speed increasing the intensity of the dependent primary current especially the dynamic impedance of the candle during the spark.
  • the quality of the spark is determined from the speed measurement increasing the intensity of the current flowing in the coil primary for at least one diagnostic time determined for the duration of the assumed spark.
  • Discrimination in the rate of increase of the intensity of the current in the primary during each duration can be ensured by comparison with minus a corresponding threshold, to deliver a signal presence of spark if this threshold is exceeded corresponding.
  • we measure the intensity of the current in primary for at least each diagnostic period we discriminate the rate of increase by comparing the maximum intensity measured during the duration of diagnosis corresponding to a corresponding intensity threshold, to issue a spark presence signal if the maximum intensity measured is greater than the intensity threshold.
  • the switch opening is fine ordered one or more times, at least once defined by the calculation and control unit.
  • the method of the invention consists to order at least two successive diagnostic durations between two successive charge durations, and to deduce therefrom, on the one hand, the presence of a spark if at least one presence signal is delivered in a first interval of predetermined time, following the end of the charging time earlier, and ending at the same time as the first diagnostic duration, and secondly, a duration minimum of a spark of sufficient quality in function the number of presence signals issued.
  • the method may further include deduce that the spark is too short if a second signal attendance is not issued in a second interval of predetermined time, greater than the first interval of time, also following the end of the charging time earlier, and ending at the same time as the second duration of the diagnosis.
  • the method of the invention is to also order a third diagnostic time between two successive charging times, and deduce that the spark plug is short-circuited if a third presence signal is issued before the end of a third predetermined time interval, also following the end of the previous charge duration, greater than first and, if applicable, the second time interval predetermined, and ending at the earliest at the same time as the third diagnostic duration.
  • the process can also consist of measuring the intensity maximum current in the primary for at least a diagnostic duration of the same rank after durations of successive loads, compare the measurements with each other and / or at least a maximum intensity threshold, and to deduce therefrom minus a signal testifying to the deterioration of the circuit secondary.
  • the switch is controlled, from a command output of the calculation and control unit, via an interface amplifier
  • the means for measuring the current in the primary include a shunt in series with the switch, between the latter and ground
  • the means detection systems include at least a first and a second comparator, each receiving the shunt signal on a input and comparing it to a prime and a respectively second intensity threshold, received on another input of the corresponding comparator, the output of each comparator being connected to a diagnostic input of the computing unit and control, the second intensity threshold being higher to the first, but less than the current required to create an ignition voltage by cutting the primary, for the calculation by said unit of primary charge times.
  • the calculation and control unit includes a second diagnostic input, connected to the shunt, and transmitting the current intensity measurement to a analog / digital converter, itself connected to means for storing and comparing a maximum value intensity, measured during a diagnostic period corresponding to a maximum intensity threshold and / or comparison of several values maximum intensity measured over several diagnostic durations, and means delivering a circuit degradation signal secondary.
  • the device ignition includes means for measuring the current in the primary, detection means, a calculation and control, and possibly an interface amplifier, which are common to all engine cylinders.
  • the system is intended for the ignition of a internal combustion engine combustion chamber, fitted with at least one spark plug 10, placed in series with the secondary 12 of an ignition coil 11.
  • Primary 13 of coil 11 is connected to a power source (battery of the vehicle in general), of voltage Vbat.
  • the primary 13 and secondary 12 have a common terminal connected to the collector of a bipolar transistor 14 of NPN type, of which the transmitter is connected to ground via a shunt resistor 15.
  • Shunt 15 is thus in series in the primary 13 charging circuit from the source Vbat, between the ground and the ignition transistor 14, serving switch or cut-off switch, capable of switch from the blocked state to the saturated state and vice versa, to control the primary current Ip, which flows through the primary 13 when transistor 14 is conductive in the state saturated.
  • This switch 14 is controlled at closing and at opening from a calculation and control unit 16, via an amplifier 17 serving interface between the base of transistor 14 and unit 16, which is an engine control computer, of the microcontroller type, comprising at least one microprocessor, and having at minus an output S giving control information to amplifier 17.
  • the shunt 15 is used to measure the primary current Ip, and supplies across its terminals a voltage representative of this current.
  • This information from shunt 15, and relating to the intensity of the primary current Ip is treated, in the form analog or in logical or digital form, by a threshold detector 18 connected to at least one input E of the computer 16, allowing to receive information from diagnosis on the presence and quality of a spark produced between the two spark plug electrodes 10 and generated by the secondary 12 of the ignition coil 11 by switching off the primary charge 13.
  • Figure 1 shows the device for a single spark plug 10 in a single cylinder, so as not to overload the figure but the means of measuring the primary current consisting of shunt 15, the calculation and control unit 16, the interface amplifier 17 and the detection means consisting of the threshold detector 18 are common to all candles 10 of all cylinders, to which they are connected by selection diodes (not shown) so known, and are therefore each provided in single copy in the circuit.
  • Curve (a) represents a timing diagram of the signal control of switch 14 applied to output S of the unit 16.
  • Curves (b) and (c) represent respectively the intensity of the primary current Ip and the secondary current Is as a function of time
  • curve (d) represents the signal applied by detector 18 to input E of unit 16.
  • unit 16 applies cyclically an output signal from time t0 of closing the switch 14 until the instant t1 of cut-off.
  • the primary current Ip gradually increases as shown on curve (b).
  • Ip In about 1 ⁇ s after the time of cutoff t1, Ip is canceled from its maximum value of the order of 6 A, sufficient for its cut to give the ignition voltage required across spark plug 10, and the secondary current Is very quickly takes its value maximum of the order of 60 mA, as shown on curve (c). From this maximum value, Is gradually decreases, while Ip is zero.
  • unit 16 applies a command to its output S of closing switch 14 for three durations of successive diagnoses, preferably of the same value, and spaced in time, t3-t2, t5-t4 and t7-t6.
  • the stream primary Ip gradually increases from the start t2, t4 or t6 of each diagnostic time to cancel quickly at the break in t3, t5 or t7 at the end of each duration diagnostic, as shown on curve (b).
  • the duration of the spark T t8-t1 is of the order of 1.5 ms, under conditions normal ignition, it corresponds to each pulse of a chosen positive sign of primary current Ip a impulse of a negative secondary current chosen sign Is, which is practically no longer sensitive outside the spark time T.
  • the impedance Z of the plug 10 is low (around 20 to 100 k ⁇ ). After the spark (after t8), the impedance Z is high (greater than 1 M ⁇ ).
  • the rate of increase of Ip is around 50 A / ms, while in the absence of spark, this rate of increase ⁇ 'is of the order of 2 A / ms.
  • This rate of increase of Ip corresponds to velocity gradients during diagnostic times, which are calibrated to a constant value of the order of 20 ⁇ s for example.
  • This rate of increase of Ip can therefore be expressed as the ratio of the maximum intensity of this current at the end of t3, t5 or t7 of each diagnostic time on said diagnostic duration, or more simply still, by the values of maximum intensity.
  • Strong gradients (50 A / ms) are discriminated from weak gradients (2 A / ms) by detector 18, comprising for example a threshold comparator.
  • the Io threshold can be calibrated to a constant and unique value for all diagnostic times, and be set for example at 1 A. Each times and as long as Ip is greater than Io, the detector 18 applies a signal to input E of unit 16 not zero, as shown in (d) in Figure 2.
  • the signals transmitted during t3-t'2 and t5-t'4 correspond to a primary current Ip> Io, during diagnostic times t3-t2 and t5-t4, which took place before the end of the spark in t8.
  • Ip a primary current
  • the signals received by input E of unit 16 at during diagnostic times such as t3-t2 and t5-t4 are therefore spark presence signals.
  • the specific diagnostic program implemented by the microprocessor of unit 16 allows, from spark presence signals from the detector 18, to determine that the spark was of sufficient quality during a time interval at least equal to t5-t1, in this example, therefore T ⁇ t5-t1, and the spark has most likely extinguished before t7, therefore T ⁇ t7-t1.
  • unit 16 does not receive of the detector spark signal signal 18, it delivers a spark fault diagnosis, meaning that the spark plug circuit 10 is probably open.
  • unit 16 If unit 16 receives a first presence signal during T1 (for example t3-t'2), but no second signal presence during a predetermined time interval T2, also starting in t1 and ending at the earliest in t5 (but not after t6), unit 16 considers that there has been a spark, but that it was not of a quality suitable for a sufficient time. Unit 16 delivers then a diagnosis of spark too short.
  • the unit 16 If the unit 16 receives two successive signals presence of spark during T2, including the first during T1, but no third presence signal for a third predetermined time interval T3, starting at t1 and ending at the earliest in t7, but not before the start (t0) of the next charging time, the unit 16 delivers a proper quality spark diagnosis during a sufficient time.
  • the unit 16 successively receives three spark presence signals during T3, it delivers a too long spark diagnosis, signifying that the spark plug 10 is probably short-circuited.
  • the detector 18 can, during the third duration of diagnosis t7-t6, compare the measured current Ip to a threshold a particular short circuit, for example less than 1 A.
  • the detector 18 can compare the intensity of the current measured, during each duration of diagnosis, at a threshold specific to each of the diagnostic durations, especially if these are not the same value.
  • the unit 16 can thus diagnose the presence or the absence of a suitable quality spark, and the duration of such a spark comprised, for example, between 0.4 ms and 2 ms.
  • the measurement of the spark time can be taken count by unit 16 to adjust the I2 value of the current primary Ip for which the cut is performed, in order to guarantee for example a sufficient spark duration for avoid unburned, such a duration for less than 0.4 ms indicating a high probability of open circuit, while that a spark duration greater than 2 ms indicating a high probability of short circuit, these two values defining a range of spark times that experience revealed as normal.
  • Amplifier 17 includes two transistors bipolar, including a 19 NPN type connected by its base to the output S of unit 16 via a resistor 21, while its transmitter is grounded and its collector connected by a resistor 22 to the base of the other transistor 20, of PNP type, the transmitter of which is put on the voltage of the source Vbat, and the collector connected by a resistor 23 to the base of the ignition transistor 14, which comprises, on its collector connected to primary 13, an integrated Zener diode (and not shown) in a known manner.
  • the detector 18 comprises an input RC filter 24-25, filtering primary current measurements across the shunt 15, and passing them to a negative input of a first threshold comparator 26, receiving on an input positive a voltage threshold corresponding to the intensity threshold Spark detection Io, and defined, from a logic voltage source Vcc (of + 5 V for example) by through a resistance bridge 27, 28 and 29.
  • comparator 26 is connected in parallel at the voltage source + Vcc through the resistor 30 and at the input of an inverter 31.
  • the output of the RC filter 24-25 is also connected in parallel to the positive input a second threshold comparator 32 receiving at its input negative another voltage threshold defined by the bridge resistors 27, 28 and 29 from the voltage source + Vcc.
  • the comparator output 32 is connected in parallel to the source + Vcc through of the resistor 30 and at the input of the inverter 31, in being isolated from the mass by the capacity 33. All of the two comparators 26 and 32 constitute an OR circuit, which attacks the diagnostic input E of unit 16 via of the inverter 40.
  • Comparator 26 compares current measurements with Io threshold, of 1 A for example, for the delivery of signals presence of spark as described above.
  • the comparator 32 compare the measurements of the intensity of the primary current Ip at a second intensity threshold I1, higher than that Io of comparator 26, for example equal to 4.5 A, to provide a signal when the charge current Ip in the primary 13 exceeds this second threshold I1, when the current Ip to be cut to obtain a spark of satisfactory quality is I2, for example 6 A, as shown on curve (b) of the figure 2.
  • unit 16 From the duration (t'1-t0) between the start t0 of the charge of the primary 13, fixed by the unit 16, and the instant t'1 if I1 is exceeded, unit 16 can determine the time t1-t'1 necessary to arrive at current I2 and, for the next ignition, determine t0 appropriately. The time of the start of the charge can thus be adjusted by optimally by unit 16 without additional output from the detector 18 to control unit 16.
  • the primary current measurement signals Ip aux shunt terminals 15 are also transmitted from the output of the RC 24-25 filter in parallel directly over one second input E 'of the computer 16 and applied to a converter analog / digital 34, itself connected to means of digital counting, memories, registers and comparators 35 of the computer 16.
  • the primary current Ip measured for diagnostic times, is used as analog signal diagnostic transmitted to the analog input E 'of the microprocessor of the computer 16.
  • the converter 34 and to digital memories and comparators 35 the comparison of the maximum intensities of the primary current Ipmax, as measured during diagnostic times, of the same rank (for example always during the first duration diagnostic) between successive charging times, and these Ipmax values are compared to each other as well as a maximum current intensity threshold Imax primary, adapted according to the order of the duration of diagnosis considered in the following of these durations of diagnosis between two consecutive charging times, in order to detect the decrease in Ipmax values, depending on the operating time of the installation, which translates wear of the spark plug 10 and, more generally, degradation of the secondary circuit, comprising this spark plug 10, the secondary 12 as well as a suppression interference, in series with the candle 10 and / or integrated therein. Indeed, the degradation of this secondary circuit is reflected by a gradual increase in equivalent resistance of this circuit, hence a correlative decrease in maximum intensity signals Ipmax, as shown in figure 6.
  • This figure 6 represents four curves of Ip measured during the first diagnostic period t3-t2, curve 36 corresponding to a spark plug 10 in new condition, while curves 37, 38 and 39 correspond to the use of the same candle 10 after periods of use gradually increasing.
  • Ipmax the intensity maximum primary current Ipmax gradually decreases when the duration of use of the candle 10 increases, by curve 36 to curve 39.
  • the four curves are shown secondary current Is 40, 41, 42 and 43, obtained during sparks during which we have respectively measured, during the first diagnostic period, the curves 36 to 39 of Ip which correspond to the points of negative sign of current Is visible and superimposed for the four curves 40 to 43 of FIG. 7.
  • the curves 42 and 43 corresponding to sparks obtained with a candle 10 in a degraded state, reflected by the curves 38 and 39 in FIG. 6 correspond to excess sparks short duration, while the duration of the sparks of the curves 40 and 41, obtained with a candle 10 in good condition, such as reflected by curves 36 and 37 in Figure 6, is sufficient to obtain a suitable quality spark for a sufficient time.
  • diagnostic method described above can be implemented by a device (see Figures 1 and 3), which is both structurally sparse modified compared to that described in EP 0 559 540, and much more economical than the latter, since does not require high voltage components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

L'invention a pour objet un procédé et un dispositif d'allumage électronique, pour moteur à combustion interne à allumage commandé, dans chaque cylindre du moteur, par au moins une bougie en série avec un secondaire d'une bobine d'allumage, dont le primaire est alimenté en courant électrique à partir d'une source électrique, telle que la batterie d'un véhicule équipé du moteur, par un commutateur placé dans un circuit de charge du primaire, et lui-même commandé par une unité de calcul et de commande, comprenant avantageusement un microcontrôleur.
L'invention a plus précisément pour objet un procédé et un dispositif du type mentionné ci-dessus, permettant d'effectuer un diagnostic de l'allumage du moteur, grâce à l'unité de calcul et de commande, ou calculateur, qui gère la fonction allumage ainsi, éventuellement, que la fonction injection, lorsque le moteur est équipé d'une installation d'alimentation en combustible par injection, l'unité de calcul et de commande étant alors un calculateur dit "de contrôle moteur".
Le procédé et le dispositif selon l'invention sont destinés à être mis en oeuvre non seulement à bord des véhicules, mais également sur les appareils de contrôle et de diagnostic en station service.
Le diagnostic d'allumage consiste à donner des informations qualitatives relatives aux étincelles produites par les bougies dans les chambres de combustion du moteur. Ces informations doivent permettre de déterminer s'il y a absence ou présence d'étincelle, et, dans ce dernier cas, si l'étincelle est correcte.
De nombreux procédés et dispositifs ont déjà été proposés pour fournir un tel diagnostic, qui est obtenu soit en mesurant le courant traversant la bougie, à l'aide d'un shunt, soit en effectuant une analyse de la tension aux bornes du primaire de la bobine d'allumage, pendant l'étincelle réelle ou présumée.
Un dispositif d'allumage, avec diagnostic d'allumage du second type mentionné ci-dessus, a été proposé par la demanderesse dans la demande de brevet européen EP 559 540: il comprend, d'une part, des moyens de mesure du courant de charge, destinés à fournir, sur une sortie, un signal en réponse aux dépassements d'une valeur déterminée, inférieure au courant nécessaire pour créer la tension d'allumage au secondaire de la bobine par coupure du courant primaire, et, d'autre part, des moyens de transposition de la tension primaire, pour former l'image de la tension secondaire et fournir, sur ladite sortie, un signal lorsque la tension secondaire devient inférieure à un seuil déterminé indiquant la fin de l'étincelle à la bougie. Ces moyens de transposition comprennent, en série entre la borne du primaire non reliée à la source et la masse, la jonction émetteur-collecteur d'un transistor et des résistances de collecteur et d'émetteur, de façon que la tension aux bornes d'une des résistances soit représentative de la différence entre la tension aux bornes du primaire et la tension de source.
Un premier inconvénient d'un tel dispositif est qu'il ne permet pas, de façon simple, de discriminer des étincelles de différents cylindres, à haut régime, en raison d'une superposition entre les transpositions des tensions secondaires et les charges primaires. Par exemple, dans un moteur à quatre temps à quatre cylindres en ligne, la charge du primaire de la bobine du cylindre n° 3 peut commencer alors que l'étincelle à la bougie du cylindre n° 1 n'est pas terminée.
Pour remédier à cet inconvénient, il est nécessaire de dupliquer certains composants du circuit, et/ou de prévoir une diode entre le primaire de chaque bobine et des moyens de transposition qui peuvent être communs à deux cylindres, sinon à tous les cylindres.
Un autre inconvénient est qu'un tel dispositif est coûteux à réaliser, car les résistances et diodes qu'il comporte sont des composants à haute tension, et occupent une surface relativement importante sur des circuits imprimés utilisés.
Le but de l'invention est de remédier aux inconvénients du dispositif précité connu par EP 0 559 540, et de proposer un procédé et un dispositif permettant un contrôle de la qualité de l'allumage en détectant si l'étincelle est d'une durée ni trop courte ni trop longue, et si l'étincelle est d'une qualité suffisante pendant une durée suffisante.
Un autre but de l'invention est de proposer un procédé et un dispositif permettant en outre de surveiller l'usure de la bougie, ou, plus généralement, la dégradation du circuit secondaire qui la comporte en série avec le secondaire de la bobine et un fil résistif d'antiparasitage, par exemple intégré à la bougie.
Un autre but encore de l'invention est de proposer un procédé permettant une mise en oeuvre par un dispositif dont de nombreux composants peuvent être communs à tous les cylindres du moteur, et donc en unique exemplaire dans un dispositif de réalisation plus économique et moins encombrant.
Un autre but enfin est de proposer un procédé de diagnostic d'allumage compatible également avec le calcul et la commande du temps de charge du primaire, de la manière déjà connue, notamment par le document EP 559 540 précité, le procédé selon l'invention pouvant être mis en oeuvre par un dispositif qui n'est structurellement que peu différent des dispositifs connus pour effectuer ce calcul et cette commande du temps de charge du primaire.
L'idée à la base de l'invention est qu'une image de la qualité de l'étincelle à la bougie est donnée par l'impédance dynamique de cette bougie pendant l'étincelle, et que l'observation de l'intensité d'un courant que l'on fait circuler dans le primaire de la bobine, pendant l'étincelle, permet d'en analyser la vitesse d'accroissement pendant au moins une durée de diagnostic, cette vitesse d'accroissement de l'intensité du courant primaire dépendant en particulier de l'impédance dynamique de la bougie pendant l'étincelle.
En résumé, selon l'invention, la qualité de l'étincelle est déterminée à partir de la mesure de la vitesse d'accroissement de l'intensité du courant circulant dans le primaire de la bobine pendant au moins une durée de diagnostic déterminée pendant la durée de l'étincelle présumée.
A cet effet, l'invention propose un procédé d'allumage électronique du type présenté ci-dessus et comprenant l'étape consistant à commander cycliquement la charge du primaire pendant des durées de charge définies et à des instants définis par l'unité de calcul et de commande, de sorte que la coupure de la charge, à la fin de chaque durée de charge, est destinée à provoquer une étincelle à la bougie, et se caractérise en ce qu'il comprend de plus les étapes consistant :
  • entre deux durées de charge successives, et pendant la durée de l'étincelle présumée à la suite de la première desdites deux durées de charge successies, à commander le passage d'un courant de mesure dans le primaire pendant au moins une durée de diagnostic et à un instant définis par l'unité de calcul et de commande,
  • à déterminer une vitesse d'accroissement de l'intensité du courant dans le primaire pendant au moins une durée de diagnostic,
  • à discriminer une vitesse d'accroissement élevée d'une vitesse d'accroissement faible, et
  • à en déduire une information sur la présence et/ou la qualité d'une étincelle à la bougie, après la fin de la durée de charge antérieure.
La discrimination de la vitesse d'accroissement de l'intensité du courant dans le primaire pendant chaque durée de diagnostic peut être assurée par comparaison avec au moins un seuil correspondant, pour délivrer un signal de présence d'étincelle en cas de dépassement de ce seuil correspondant. Mais, dans une variante de mise en oeuvre particulièrement simple, on mesure l'intensité du courant dans le primaire pendant au moins chaque durée de diagnostic, et on discrimine la vitesse d'accroissement en comparant l'intensité maximum mesurée pendant la durée de diagnostic correspondante à un seuil d'intensité correspondant, pour délivrer un signal de présence d'étincelle si l'intensité maximum mesurée est supérieure au seuil d'intensité.
Il a certes déjà été proposé par US-A-5,174,267 de commander le passage d'un courant de mesure dans le primaire d'un circuit d'allumage du type présenté ci-dessus, entre deux durées de charge successives, à partir d'un instant défini par l'unité de calcul et de commande, et à déterminer une vitesse d'accroissement de l'intensité du courant dans le primaire par la prise en compte d'un seuil d'intensité correspondant.
Mais l'objet de US-A-5,174,267 est très différent de celui de la présente demande, puisque ce document décrit un procédé d'identification du cylindre en phase de compression et du cylindre en phase d'échappement, dans une paire de cylindres pour lesquels la commande d'allumage est simultanée, au moins au début du fonctionnement d'un moteur comportant un nombre pair de cylindres, et dont l'installation d'allumage comporte une bobine par cylindre, alors que la présente demande a pour objet un procédé et un dispositif de commande d'allumage avec diagnostic d'allumage portant au moins sur la présence des étincelles, et non d'identification des cylindres en compression et des cylindres en échappement.
Dans US-A-5,174,267, cette identification est assurée par la surveillance de signaux provoqués par les étincelles des bougies sur les primaires des bobines d'allumage, dans un circuit d'allumage qui, par nécessité structurelle, comporte les composants de base bien connus du circuit d'allumage sur lequel s'applique le procédé et le dispositif de la présente demande.
La variante du procédé d'identification des cylindres décrite dans US-A-5,174,267 en référence à la figure 3 met en oeuvre certains moyens en commun avec le procédé de la présente demande, mais pour une application industrielle finale qui est différente, comme mentionné ci-dessus.
En particulier, entre deux durées de charge successives sur le primaire, l'ouverture du commutateur est bien commandée à une ou plusieurs reprises, à au moins un instant défini par l'unité de calcul et de commande.
Mais cette ou ces ouvertures du commutateur est ou sont commandée(s) uniquement après une durée maximum présumée de l'étincelle, contrairement au procédé de la demande dans lequel au moins une ouverture supplémentaire du commutateur est commandée pendant la durée présumée de l'étincelle. En outre, dans US-A-5,174,267, le passage du courant primaire est arrêté dès qu'il atteint un seuil d'intensité, alors qu'au contraire, dans le procédé de la demande, ce ou ces passages supplémentaires du courant primaire est ou sont commandés pendant au moins une durée de diagnostic déterminée, puisque dans le procédé de la demande on détecte si, à la fin de chaque durée prédéterminée, l'intensité primaire mesurée est supérieure ou non au seuil, alors qu'au contraire, dans US-A-5,174,267, le passage du courant primaire est prolongé jusqu'à ce qu'un seuil de courant soit atteint, et, c'est la durée de passage du courant primaire jusqu'à atteindre le seuil qui est mesurée, et qui est ensuite comparée à la durée correspondante pour un second cylindre, pour déterminer que le temps mesuré le plus long est celui obtenu dans le cylindre en phase de compression.
Le procédé décrit dans US-A-5,174,267 ne permet pas de délivrer une information sur la présence et/ou la qualité d'une étincelle à la bougie, selon que le courant primaire maximum mesuré dépasse ou non le seuil fixé au terme d'une durée de diagnostic imposée, car, précisément, dans ce document, on attend aussi longtemps qu'il faut pour que le seuil de courant primaire soit atteint, et l'on mesure la durée pour que ce résultat soit atteint.
En conséquence, même si le procédé de la présente demande et US-A-5,174,267 font utilisation de moyens communs, ces moyens communs ne sont pas mis en oeuvre de la même façon, et les résultats industriels résultant de ces mises en oeuvre différentes sont également très différents.
Avantageusement, le procédé de l'invention consiste à commander au moins deux durées de diagnostic successives entre deux durées de charge successives, et à en déduire, d'une part, la présence d'une étincelle si au moins un signal de présence est délivré dans un premier intervalle de temps prédéterminé, suivant la fin de la durée de charge antérieure, et se terminant au plus tôt en même temps que la première durée de diagnostic, et, d'autre part, une durée minimale d'une étincelle de qualité suffisante en fonction du nombre de signaux de présence délivrés.
En outre, le procédé peut consister de plus à déduire que l'étincelle est trop courte si un second signal de présence n'est pas délivré dans un second intervalle de temps prédéterminé, supérieur au premier intervalle de temps, suivant également la fin de la durée de charge antérieure, et se terminant au plus tôt en même temps que la seconde durée du diagnostic.
Dans un exemple préféré de réalisation, le procédé de l'invention consiste à commander également une troisième durée de diagnostic entre deux durées de charge successives, et à en déduire que la bougie est en court-circuit si un troisième signal de présence est délivré avant la fin d'un troisième intervalle de temps prédéterminé, suivant également la fin de la durée de charge antérieure, supérieur au premier et, le cas échéant, au second intervalle de temps prédéterminé, et se terminant au plus tôt en même temps que la troisième durée de diagnostic.
Afin de surveiller l'usure de la bougie et du circuit secondaire qui la comporte en série avec le secondaire, le procédé peut consister de plus à mesurer l'intensité maximum du courant dans le primaire pendant au moins une durée de diagnostic de même rang après des durées de charge successives, à comparer les mesures entre elles et/ou à au moins un seuil d'intensité maximum, et à en déduire au moins un signal témoignant de la dégradation du circuit secondaire.
L'invention a également pour objet un dispositif d'allumage électronique, du type précité, comprenant de plus des moyens de mesure du courant dans le primaire, montés en série dans le circuit de charge entre le commutateur et la masse, et relié à des moyens de détection, eux-mêmes reliés à l'unité de calcul et de commande, comme connu par EP 559 540, et qui se caractérise en ce que :
  • l'unité de calcul et de commande comprend des moyens générateurs d'un signal de commande du commutateur pour le passage du courant dans le primaire pendant au moins une durée de diagnostic et à au moins un instant définis par ladite unité, entre deux durées de charge successives du primaire, et pendant la durée de l'étincelle présumée à la suite de la première desdites deux durées de charge successives, et
  • les moyens de détection comprennent des moyens discriminant la vitesse d'accroissement de l'intensité du courant dans le primaire et délivrant un signal à ladite unité de calcul et de commande lorsque l'intensité mesurée du courant dans le primaire est supérieure à un seuil, au moins pendant chaque durée de diagnostic.
Selon un mode de réalisation simple et économique, le commutateur est commandé, depuis une sortie de commande de l'unité de calcul et de commande, par l'intermédiaire d'un amplificateur d'interface, les moyens de mesure du courant dans le primaire comprennent un shunt en série avec le commutateur, entre ce dernier et la masse, et les moyens de détection comprennent au moins un premier et un second comparateur, recevant chacun le signal du shunt sur une entrée et le comparant respectivement à un premier et à un second seuil d'intensité, reçu sur une autre entrée du comparateur correspondant, la sortie de chaque comparateur étant reliée à une entrée de diagnostic de l'unité de calcul et de commande, le second seuil d'intensité étant supérieur au premier, mais inférieur au courant nécessaire pour créer une tension d'allumage par coupure du primaire, pour le calcul par ladite unité des durées de charge du primaire.
Avantageusement, pour permettre la surveillance du circuit secondaire, l'unité de calcul et de commande comprend une seconde entrée de diagnostic, reliée au shunt, et transmettant la mesure de l'intensité du courant à un convertisseur analogique/numérique, lui-même relié à des moyens de mémorisation et comparaison d'une valeur maximum d'intensité, mesurée pendant une durée de diagnostic correspondante, à un seuil d'intensité maximum et/ou de comparaison entre elles de plusieurs valeurs maximum d'intensité mesurées pendant plusieurs durées de diagnostic, et des moyens délivrant un signal de dégradation du circuit secondaire.
Selon une réalisation économique, le dispositif d'allumage comprend des moyens de mesure du courant dans le primaire, des moyens de détection, une unité de calcul et de commande, et, éventuellement, un amplificateur d'interface, qui sont communs à tous les cylindres du moteur.
D'autres caractéristiques et avantages de l'invention découleront de la description donnée ci-dessous, à titre non limitatif, d'un exemple de réalisation décrit en référence aux dessins annexés sur lesquels :
  • la figure 1 est un schéma fonctionnel de principe d'un dispositif selon un mode particulier de réalisation de l'invention ;
  • la figure 2 montre les courbes représentatives de la variation, en fonction du temps t, du signal de commande délivré au commutateur, du courant Ip dans le primaire de la bobine, du courant Is dans le secondaire de la bobine, et du signal de diagnostic transmis à l'unité de calcul et de commande ;
  • la figure 3 montre une constitution possible du dispositif de la figure 1 ;
  • les figures 4 et 5 montrent les variations en fonction du temps des courants Ip et Is selon des courbes plus représentatives et à plus grande échelle que celles de la figure 2 ;
  • la figure 6 représente, à plus grande échelle, quatre courbes représentatives du courant de mesure pendant une durée de diagnostic pour quatre valeurs différentes de la résistance du circuit secondaire, et
  • la figure 7 représente les quatre courbes correspondantes d'évolution du courant Is.
Le dispositif, dont la constitution de principe est représentée sur la figure 1, est destiné à l'allumage d'une chambre de combustion de moteur à combustion interne, équipée d'au moins une bougie 10, placée en série avec le secondaire 12 d'une bobine d'allumage 11. Le primaire 13 de la bobine 11 est relié à une source d'alimentation (batterie du véhicule en général), de tension Vbat. Du côté opposé respectivement à la source Vbat et à la bougie 10, le primaire 13 et le secondaire 12 ont une borne commune reliée au collecteur d'un transistor bipolaire 14 de type NPN, dont l'émetteur est relié à la masse par l'intermédiaire d'une résistance de shunt 15. Le shunt 15 est ainsi en série dans le circuit de charge du primaire 13 à partir de la source Vbat, entre la masse et le transistor d'allumage 14, servant d'interrupteur ou de commutateur de coupure, pouvant basculer de l'état bloqué à l'état saturé et inversement, pour commander le courant primaire Ip, qui parcourt le primaire 13 lorsque le transistor 14 est conducteur à l'état saturé.
Ce commutateur 14 est commandé à la fermeture et à l'ouverture à partir d'une unité de calcul et de commande 16, par l'intermédiaire d'un amplificateur 17 servant d'interface entre la base du transistor 14 et l'unité 16, qui est un calculateur de contrôle moteur, du type microcontrôleur, comportant au moins un microprocesseur, et ayant au moins une sortie S donnant l'information de commande à l'amplificateur 17.
Le shunt 15 sert à mesurer le courant primaire Ip, et fournit à ses bornes une tension représentative de ce courant. Cette information issue du shunt 15, et relative à l'intensité du courant primaire Ip, est traitée, sous forme analogique ou sous forme logique ou numérique, par un détecteur à seuil 18 relié à au moins une entrée E du calculateur 16, permettant de recevoir une information de diagnostic sur la présence et la qualité d'une étincelle produite entre les deux électrodes de la bougie 10 et générée par le secondaire 12 de la bobine d'allumage 11 par la coupure de la charge du primaire 13.
La figure 1 représente le dispositif pour une seule bougie 10 dans un seul cylindre, afin de ne pas surcharger la figure, mais les moyens de mesure du courant primaire constitués par le shunt 15, l'unité de calcul et de commande 16, l'amplificatur d'interface 17 et les moyens de détection constitués du détecteur à seuil 18 sont communs à toutes les bougies 10 de tous les cylindres, auxquelles ils sont reliés par des diodes de sélection (non représentées) de manière connue, et sont donc prévus chacun en unique exemplaire dans le circuit.
Le fonctionnement du dispositif selon le procédé de l'invention est décrit ci-dessous en référence aux quatre courbes (a) à (d) de la figure 2 pour une seule bougie 10. La courbe (a) représente un chronogramme du signal de commande du commutateur 14 appliqué à la sortie S de l'unité 16. Les courbes (b) et (c) représentent respectivement l'intensité du courant primaire Ip et du courant secondaire Is en fonction du temps, et la courbe (d) représente le signal appliqué par le détecteur 18 sur l'entrée E de l'unité 16. Sur sa sortie S, l'unité 16 applique cycliquement un signal de sortie de l'instant t0 de fermeture du commutateur 14 jusqu'à l'instant t1 de coupure. Pendant la durée de charge du primaire 13, entre ces instants t0 et t1, le courant primaire Ip croít progressivement comme représenté sur la courbe (b). En environ 1 µs après l'instant de coupure t1, Ip s'annule à partir de sa valeur maximum de l'ordre de 6 A, suffisante pour que sa coupure donne la tension d'amorçage requise aux bornes de la bougie 10, et le courant secondaire Is prend très rapidement sa valeur maximum de l'ordre de 60 mA, comme montré sur la courbe (c). A partir de cette valeur maximum, Is diminue progressivement, alors que Ip est nul.
Entre t1 et le début de la durée de charge (t1-t0) suivante, l'unité 16 applique sur sa sortie S une commande de fermeture du commutateur 14 pendant trois durées de diagnostic successives, de préférence de même valeur, et espacées dans le temps, t3-t2, t5-t4 et t7-t6. Le courant primaire Ip croít progressivement à partir du début t2, t4 ou t6 de chaque durée de diagnostic pour s'annuler rapidement à la coupure en t3, t5 ou t7 à la fin de chaque durée de diagnostic, comme montré sur la courbe (b). Au cours de l'étincelle, pendant laquelle le courant secondaire Is diminue progressivement comme montré sur la courbe (c), jusqu'à s'annuler en t8, de sorte que la durée de l'étincelle T = t8-t1 soit de l'ordre de 1,5 ms, dans des conditions normales d'allumage, il correspond à chaque impulsion d'un signe choisi positif de courant primaire Ip une impulsion d'un signe choisi négatif de courant secondaire Is, qui n'est pratiquement plus sensible en dehors de la durée d'étincelle T. Pendant cette durée d'étincelle T, au cours de laquelle l'étincelle est normalement présente, après l'instant t1 (à la fin de la durée de charge t1-t0, d'environ 3 ms, au cours de laquelle le courant de charge circule dans le primaire 13), l'impédance Z de la bougie 10 est faible (de l'ordre de 20 à 100 kΩ). Après l'étincelle (après t8), l'impédance Z est élevée (supérieure à 1 MΩ).
En théorie, et pendant une étincelle normale, la vitesse τ d'accroissement du courant primaire Ip, est exprimée par la formule (1) suivante : (1)   τ = Imax x Zη 2 x LF
  • où, Imax est le courant maximum de saturation du primaire 13 (de l'ordre de 24 A, pour une tension usuelle de batterie de 13 V),
  • Z est l'impédance de la bougie 10 (de l'ordre de 20 kΩ),
  • η est le rapport de transformation entre le secondaire 12 et le primaire 13 (de l'ordre de 100),
  • LF est la self de fuite de l'ensemble primaire 13 et secondaire 12 (de l'ordre de 1 mH).
  • Par contre, en l'absence d'étincelle, cette vitesse d'accroissement du courant primaire Ip, qui correspond à la pente de la courbe de Ip en fonction du temps t, est donnée par la formule (2) : (2)   τ' = VbatLp où, Vbat est la tension de la batterie (de l'ordre de 13 V), et Lp est la self inductance (de l'ordre de 6 mH).
    Au cours des durées de diagnostic t3-t2, t5-t4 et t7-t6, et pendant une étincelle normale, la vitesse d'accroissement de Ip est de l'ordre de 50 A/ms, alors qu'en l'absence d'étincelle, cette vitesse d'accroissement τ' est de l'ordre de 2 A/ms.
    Cette vitesse d'accroissement de Ip correspond aux gradients de vitesse au cours des durées de diagnostic, qui sont calibrées à une valeur constante de l'ordre de 20 µs par exemple. Cette vitesse d'accroissement de Ip peut donc être exprimée par le rapport de l'intensité maximum de ce courant à la fin t3, t5 ou t7 de chaque durée de diagnostic sur ladite durée de diagnostic, ou plus simplement encore, par les valeurs de l'intensité maximum.
    Les gradients forts (50 A/ms) sont discriminés des gradients faibles (2 A/ms) par le détecteur 18, comprenant par exemple un comparateur à seuil. Le seuil Io peut être calibré à une valeur constante et unique pour toutes les durées de diagnostic, et être fixé par exemple à 1 A. Chaque fois et aussi longtemps que Ip est supérieur à Io, le détecteur 18 applique à l'entrée E de l'unité 16 un signal non nul, tel que représenté en (d) sur la figure 2. Le signal transmis pendant t1-t'0 correspond à un courant primaire Ip > Io=1 A, pendant la durée de charge (t1-t0).
    Les signaux transmis pendant t3-t'2 et t5-t'4 correspondent à un courant primaire Ip > Io, pendant les durées de diagnostic t3-t2 et t5-t4, qui se sont déroulées avant la fin de l'étincelle en t8. Par contre, aucun signal n'est donné sur l'entrée E pendant la durée de diagnostic t7-t6 postérieure à t8, car Ip est resté inférieur au seuil Io de 1 A pendant cette durée.
    Les signaux reçus par l'entrée E de l'unité 16 au cours des durées de diagnostic telles que t3-t2 et t5-t4 sont donc des signaux de présence d'étincelle.
    Le programme de diagnostic spécifique mis en oeuvre par le microprocesseur de l'unité 16 permet, à partir des signaux de présence d'étincelle délivrés par le détecteur 18, de déterminer que l'étincelle a été de qualité suffisante pendant un intervalle de temps au moins égal à t5-t1, dans cet exemple, donc T ≥ t5-t1, et que l'étincelle s'est très vraisemblablement éteinte avant t7, donc T < t7-t1.
    D'une manière générale, si, pendant un intervalle de temps prédéterminé T1, commençant en tl et se terminant au plus tôt en t3, mais pas après t4, l'unité 16 ne reçoit pas de signal de présence d'étincelle du détecteur 18, elle délivre un diagnostic de défaut d'étincelle, signifiant que le circuit de la bougie 10 est vraisemblablement ouvert.
    Si l'unité 16 reçoit un premier signal de présence pendant T1 (par exemple t3-t'2), mais pas de second signal de présence pendant un intervalle de temps prédéterminé T2, commençant également en t1 et se terminant au plus tôt en t5 (mais pas après t6), l'unité 16 considère qu'il y a bien eu une étincelle, mais que celle-ci n'a pas été d'une qualité convenable pendant une durée suffisante. L'unité 16 délivre alors un diagnostic d'étincelle trop courte.
    Si l'unité 16 reçoit successivement deux signaux de présence d'étincelle pendant T2, dont le premier pendant T1, mais pas de troisième signal de présence pendant un troisième intervalle de temps prédéterminé T3, commençant en t1 et se terminant au plus tôt en t7, mais pas avant le début (t0) de la durée de charge suivante, l'unité 16 délivre un diagnostic d'étincelle de qualité convenable pendant une durée suffisante.
    Enfin, si l'unité 16 reçoit successivement trois signaux de présence d'étincelle pendant T3, elle délivre un diagnostic d'étincelle trop longue, signifiant que la bougie 10 est vraisemblablement en court-circuit.
    Pour une détection plus fine d'un éventuel court-circuit, le détecteur 18 peut, pendant la troisième durée de diagnostic t7-t6, comparer le courant mesuré Ip à un seuil de court-circuit particulier, par exemple inférieur à 1 A.
    De manière générale, le détecteur 18 peut comparer l'intensité du courant mesuré, au cours de chaque durée de diagnostic, à un seuil propre à chacune des durées de diagnostic, surtout si ces dernières ne sont pas d'une même valeur.
    L'unité 16 peut ainsi diagnostiquer la présence ou l'absence d'étincelle de qualité convenable, et la durée d'une telle étincelle comprise, par exemple, entre 0,4 ms et 2 ms.
    La mesure de la durée d'étincelle peut être prise en compte par l'unité 16 pour ajuster la valeur I2 du courant primaire Ip pour laquelle est effectuée la coupure, afin de garantir par exemple une durée d'étincelle suffisante pour éviter les imbrûlés, une telle durée pendant moins de 0,4 ms indiquant une probabilité élevée de circuit ouvert, tandis qu'une durée d'étincelle supérieure à 2 ms indiquant une probabilité élevée de court-circuit, ces deux valeurs délimitant une plage de durée d'étincelle que l'expérience a révélé comme normale.
    Sur la figure 3, les éléments du dispositif analogues à ceux de la figure 1 ont été indiqués par les mêmes références. L'amplificateur 17 comprend deux transistors bipolaires, dont un 19 de type NPN relié par sa base à la sortie S de l'unité 16 par l'intermédiaire d'une résistance 21, tandis que son émetteur est à la masse et son collecteur relié par une résistance 22 à la base de l'autre transistor 20, de type PNP, dont l'émetteur est mis à la tension de la source Vbat, et le collecteur relié par une résistance 23 à la base du transistor d'allumage 14, qui comporte, sur son collecteur relié au primaire 13, une diode Zener intégrée (et non représentée) de manière connue.
    Le détecteur 18 comprend un filtre RC d'entrée 24-25, filtrant les mesures de courant primaire aux bornes du shunt 15, et les transmettant à une entrée négative d'un premier comparateur à seuil 26, recevant sur une entrée positive un seuil de tension correspondant au seuil d'intensité Io de détection d'étincelle, et défini, à partir d'une source de tension logique Vcc (de + 5 V par exemple) par l'intermédiaire d'un pont à résistances 27, 28 et 29.
    La sortie du comparateur 26 est reliée en parallèle à la source de tension + Vcc au travers de la résistance 30 et à l'entrée d'un inverseur 31. La sortie du filtre RC 24-25 est également reliée en parallèle à l'entrée positive d'un second comparateur à seuil 32 recevant sur son entrée négative un autre seuil de tension défini par le pont de résistances 27, 28 et 29 à partir de la source de tension + Vcc. Comme pour le comparateur 26, la sortie du comparateur 32 est reliée en parallèle à la source + Vcc au travers de la résistance 30 et à l'entrée de l'inverseur 31, en étant isolée de la masse par la capacité 33. L'ensemble des deux comparateurs 26 et 32 constitue un circuit OU, qui attaque l'entrée E de diagnostic de l'unité 16 par l'intermédiaire de l'inverseur 40.
    Le comparateur 26 compare les mesures de courant au seuil Io, de 1 A par exemple, pour la délivrance des signaux de présence d'étincelle comme décrit ci-dessus. Le comparateur 32 compare les mesures d'intensité du courant primaire Ip à un second seuil d'intensité I1, supérieur à celui Io du comparateur 26, et par exemple égal à 4,5 A, pour fournir un signal lorsque le courant de charge Ip dans le primaire 13 dépasse ce second seuil I1, lorsque le courant Ip à couper pour obtenir une étincelle de qualité satisfaisante est I2, par exemple de 6 A, comme indiqué sur la courbe (b) de la figure 2. A partir de la durée (t'1-t0) entre le début t0 de la charge du primaire 13, fixé par l'unité 16, et l'instant t'1 de dépassement de I1, l'unité 16 peut déterminer le temps t1-t'1 nécessaire pour arriver au courant I2 et, pour l'allumage suivant, déterminer t0 de façon appropriée. L'instant du début de la charge peut ainsi être ajusté de façon optimale par l'unité 16 sans sortie supplémentaire du détecteur 18 vers l'unité de commande 16.
    Dans le dispositif de la figure 3, comme dans celui de la figure 1, il est très important de noter que le shunt 15, l'unité de calcul et de commande 16 et le détecteur à seuils 18 sont communs à tous les cylindres et à toutes les bougies, et sont donc chacun monté en unique exemplaire dans le circuit, ainsi plus compact et économique.
    Pour une bougie, les courbes des courants Ip et Is mesurés sur un tel dispositif sont représentées respectivement sur les figures 4 et 5, avec un décalage de l'origine des temps pour Is par rapport à Ip. Après une durée de charge du primaire d'environ 3 ms, pour laquelle Ip croít de 0 à pratiquement 6 V, on constate deux pointes de signe choisi positif de courant primaire Ip mesurées pendant les deux premières durées de diagnostic de 20 µs commençant respectivement à environ 3,2 ms et 4 ms. A ces pointes de courant Ip, correspondent des pointes de signe choisi négatif du courant secondaire Is, qui s'annule vers 5 ms, indiquant une durée d'étincelle légèrement inférieure à 2 ms.
    Les signaux de mesure du courant primaire Ip aux bornes du shunt 15 sont également transmis de la sortie du filtre RC 24-25 en parallèle directement sur une seconde entrée E' du calculateur 16 et appliqués à un convertisseur analogique/numérique 34, lui-même relié à des moyens de comptage, mémoires, registres et comparateurs numériques 35 du calculateur 16. Le courant primaire Ip, mesuré pendant les durées de diagnostic, est utilisé comme signal analogique de diagnostic transmis à l'entrée analogique E' du microprocesseur du calculateur 16. Grâce au convertisseur 34 et aux mémoires et comparateurs numériques 35, on assure la comparaison des intensités maximum du courant primaire Ipmax, telles que mesurées pendant des durées de diagnostic, de même rang (par exemple toujours pendant la première durée de diagnostic) entre des durées de charge qui se succèdent, et ces valeurs Ipmax sont comparées les unes aux autres ainsi qu'à un seuil maximum Imax d'intensité de courant primaire, adapté en fonction de l'ordre de la durée de diagnostic considérée dans la suite de ces durées de diagnostic entre deux durées de charge consécutives, afin de détecter la diminution des valeurs Ipmax, en fonction de la durée de fonctionnement de l'installation, ce qui traduit l'usure de la bougie 10 et, plus généralement, la dégradation du circuit secondaire, comprenant cette bougie 10, le secondaire 12 ainsi qu'une résistance d'antiparasitage, en série avec la bougie 10 et/ou intégrée dans cette dernière. En effet, la dégradation de ce circuit secondaire se traduit par une augmentation progressive de la résistance équivalente de ce circuit, d'où une diminution corrélative des signaux d'intensité maximum Ipmax, comme cela est représenté sur la figure 6.
    Cette figure 6 représente quatre courbes de Ip mesurées au cours de la première durée de diagnostic t3-t2, la courbe 36 correspondant à une bougie 10 à l'état neuf, tandis que les courbes 37, 38 et 39 correspondent à l'utilisation de la même bougie 10 après des durées d'utilisation progressivement croissantes. On constate que l'intensité maximum du courant primaire Ipmax diminue progressivement lorsque la durée d'utilisation de la bougie 10 augmente, de la courbe 36 à la courbe 39. La surveillance de Ipmax donne donc une image de la dégradation du circuit secondaire, et par comparaison avec un seuil d'intensité maximum Imax, par exemple de 1 A, on peut considérer que les courbes 36 et 37 correspondent à une bougie 10 dans un état acceptable, car Ipmax est supérieur au seuil Imax, alors que les courbes 38 et 39 correspondent à une bougie 10, ou, plus généralement, à un circuit secondaire trop dégradé, nécessitant par exemple le changement de la bougie.
    Sur la figure 7, on a représenté les quatre courbes du courant secondaire Is 40, 41, 42 et 43, obtenues au cours des étincelles pendant lesquelles on a respectivement mesuré, pendant la première durée de diagnostic, les courbes 36 à 39 de Ip qui correspondent aux pointes de signe négatif de courant Is visibles et superposées pour les quatre courbes 40 à 43 de la figure 7. On constate que les courbes 42 et 43, correspondant à des étincelles obtenues avec une bougie 10 dans un état dégradé, reflété par les courbes 38 et 39 de la figure 6, correspondent à des étincelles de trop courte durée, alors que la durée des étincelles des courbes 40 et 41, obtenues avec une bougie 10 en bon état, tel que reflété par les courbes 36 et 37 de la figure 6, est suffisante pour obtenir une étincelle de qualité convenable pendant une durée suffisante.
    Il est à noter que le procédé de diagnostic décrit ci-dessus peut être mis en oeuvre par un dispositif (voir figures 1 et 3), qui est à la fois structurellement peu modifié par rapport à celui décrit dans EP 0 559 540, et de réalisation bien plus économique que ce dernier, puisqu'il ne nécessite pas de composants à haute tension.

    Claims (12)

    1. Procédé d'allumage électronique, pour moteur à combustion interne à allumage commandé, dans chaque cylindre du moteur, par au moins une bougie (10) en série avec un secondaire (12) d'une bobine d'allumage (11) dont le primaire (13) est alimenté en courant électrique à partir d'une source (Vbat) par un commutateur (14) placé dans un circuit de charge du primaire (13), et lui-même commandé par une unité (16) de calcul et de commande, comprenant l'étape consistant à commander cycliquement la charge du primaire (13) pendant des durées de charge (t1-t0) définies et à des instants (t0) définis par l'unité (16) de calcul et de commande, de sorte que la coupure de la charge à la fin (t1) de chaque durée de charge (t1-t0) est destinée à provoquer une étincelle à la bougie (10), caractérisé en ce qu'il comprend de plus les étapes consistant :
      entre deux durées de charge (t1-t0) successives, et pendant la durée de l'étincelle présumée à la suite de la première desdites deux durées de charge successives, à commander le passage d'un courant de mesure dans le primaire (13) pendant au moins une durée de diagnostic (t3-t2) et à au moins un instant (t2) définis par l'unité (16) de calcul et de commande,
      à déterminer une vitesse d'accroissement de l'intensité (Ip) du courant dans le primaire (13) pendant au moins une durée de diagnostic,
      à discriminer une vitesse d'accroissement élevée d'une vitesse d'accroissement faible, et
      à en déduire une information sur la présence et/ou la qualité d'une étincelle à la bougie (10) après la fin de la durée de charge (t1-t0) antérieure.
    2. Procédé selon la revendication 1, caractérisé en ce qu'il consiste à discriminer la vitesse d'accroissement de l'intensité (Ip) du courant dans le primaire (13) pendant chaque durée de diagnostic (t3-t2) par comparaison avec au moins un seuil correspondant, et à délivrer un signal de présence d'étincelle en cas de dépassement du seuil correspondant.
    3. Procédé selon la revendication 2, caractérisé en ce qu'il comprend de plus l'étape consistant à mesurer l'intensité (Ip) du courant dans le primaire (13) pendant au moins chaque durée de diagnostic (t3-t2), et à discriminer la vitesse d'accroissement en comparant l'intensité maximum mesurée pendant la durée de diagnostic correspondante à un seuil d'intensité (Io) correspondant, pour délivrer un signal de présence d'étincelle si l'intensité maximum mesurée est supérieure au seuil d'intensité (Io).
    4. Procédé selon l'une des revendications 2 et 3, caractérisé en ce qu'il consiste de plus à commander au moins deux durées de diagnostic successives (t3-t2, t5-t4) entre deux durées de charge (t1-t0) successives, et à en déduire, d'une part, la présence d'une étincelle si au moins un signal de présence (t3-t'2) est délivré dans un premier intervalle de temps (T1) prédéterminé, suivant la fin (t1) de la durée de charge antérieure, et se terminant au plus tôt en même temps (t3) que la première durée de diagnostic (t3-t2), et, d'autre part, une durée minimale d'une étincelle de qualité suffisante en fonction du nombre de signaux de présence délivrés.
    5. Procédé selon la revendication 4, caractérisé en ce qu'il consiste de plus à déduire que l'étincelle est trop courte si un second signal de présence (t5-t'4) n'est pas délivré dans un second intervalle de temps prédéterminé (T2), supérieur au premier intervalle de temps (T1), suivant également la fin (t1) de la durée de charge antérieure, et se terminant au plus tôt en même temps (t5) que la seconde durée du diagnostic (t5-t4).
    6. Procédé selon l'une des revendications 4 et 5, caractérisé en ce qu'il consiste à commander également une troisième durée de diagnostic (t7-t6) entre deux durées de charge (t1-t0) successives, et à en déduire que la bougie (10) est en court-circuit si un troisième signal de présence est délivré avant la fin d'un troisième intervalle de temps (T3) prédéterminé, suivant également la fin (t1) de la durée de charge antérieure, supérieur au premier (T1) et, le cas échéant, au second intervalle de temps (T2) prédéterminé, et se terminant au plus tôt en même temps (t7) que la troisième durée de diagnostic (t7-t6).
    7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il consiste de plus à mesurer l'intensité maximum du courant (Ip) dans le primaire (13) pendant au moins une durée de diagnostic (t3-t2) de même rang après des durées de charge (t1-t0) successives, à comparer les mesures entre elles et/ou à au moins un seuil d'intensité maximum (Imax), et à en déduire au moins un signal témoignant de la dégradation du circuit secondaire comportant la bougie (10) et le secondaire (12) de la bobine (11).
    8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il consiste à calibrer chaque durée de diagnostic (t3-t2, t5-t4, t7-t6) sur une valeur constante et chaque seuil (Io) correspondant d'intensité de courant (Ip) sur une valeur également constante.
    9. Dispositif d'allumage électronique, pour moteur à combustion interne à allumage commandé, dans chaque cylindre du moteur, par au moins une bougie (10) en série avec un secondaire (12) d'une bobine d'allumage (11), dont le primaire (13) est alimenté en courant électrique à partir d'une source (Vbat) par un commutateur (14) placé dans un circuit de charge du primaire (13), et lui-même commandé par une unité de calcul et de commande (16), des moyens (15) de mesure du courant (Ip) dans le primaire (13) étant montés en série dans le circuit de charge, entre le commutateur (14) et la masse, et reliés à des moyens de détection (18), eux-mêmes reliés à l'unité de calcul et de commande (16), caractérisé en ce que :
      l'unité de calcul et de commande (16) comprend des moyens générateurs d'un signal de commande du commutateur (14) pour le passage du courant (Ip) dans le primaire (13) pendant au moins une durée de diagnostic (t3-t2) et à au moins un instant (t2), définis par ladite unité (16), entre deux durées de charge (t1-t0) successives du primaire (13), et pendant la durée de l'étincelle présumée à la suite de la première desdites deux durées de charge successives, et
      les moyens de détection (18) comprennent des moyens (26) discriminant la vitesse d'accroissement de l'intensité du courant (Ip) dans le primaire (13) et délivrant un signal à ladite unité de calcul et de commande (16) lorsque l'intensité mesurée du courant (Ip) dans le primaire (13) est supérieure à un seuil (Io), au moins pendant chaque durée de diagnostic.
    10. Dispositif selon la revendication 9, caractérisé en ce que le commutateur (14) est commandé, depuis une sortie de commande (S) de l'unité (16) de calcul et de commande, par l'intermédiaire d'un amplificateur d'interface (17), les moyens de mesure du courant (Ip) dans le primaire (13) comprennent un shunt (15) en série avec le commutateur (14), entre ce dernier et la masse, et les moyens de détection (18) comprennent au moins un premier (26) et un second comparateur (32), recevant chacun le signal du shunt (15) sur une entrée et le comparant respectivement à un premier (Io) et à un second seuil d'intensité (I1), reçu sur une autre entrée du comparateur (26, 32) correspondant, la sortie de chaque comparateur étant reliée à une entrée (E) de diagnostic de l'unité (16) de calcul et de commande, le second seuil d'intensité (I1) étant supérieur au premier (Io), mais inférieur au courant (I2) nécessaire pour créer une tension d'allumage par coupure du primaire (13), pour le calcul par ladite unité (16) des durées de charge (t1-t0) du primaire (13).
    11. Dispositif selon la revendication 10, caractérisé en ce que l'unité de calcul et de commande (16) comprend une seconde entrée de diagnostic (t1), reliée au shunt (15), et transmettant la mesure de l'intensité du courant (Ip) à un convertisseur analogique/numérique (34), lui-même relié à des moyens (35) de mémorisation et de comparaison d'une valeur maximum d'intensité (Ip), mesurée pendant une durée de diagnostic correspondante (t3-t2, t5-t4, t7-t6), à un seuil d'intensité maximum (Imax) et/ou de comparaison entre elles de plusieurs valeurs maximum d'intensité (Ip) mesurées pendant plusieurs durées de diagnostic, et des moyens délivrant un signal de dégradation du circuit secondaire comportant la bougie (10) et le secondaire (12) en cas d'intensité (Ip) maximum mesurée inférieure audit seuil (Imax).
    12. Dispositif selon l'une quelconque des revendications 9 à 11, caractérisé en ce que lesdits moyens (15) de mesure du courant (Ip) dans le primaire (13), ladite unité de calcul et de commande (16), lesdits moyens de détection (18) et, éventuellement, ledit amplificateur d'interface (17), sont communs à toutes les bougies (10) de tous les cylindres.
    EP19940402617 1993-11-22 1994-11-17 Procédé et dispositif d'allumage à bobine avec des décharges additionnelles pour diagnostics Expired - Lifetime EP0654604B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9313944A FR2712934B1 (fr) 1993-11-22 1993-11-22 Procédé et dispositif d'allumage à bobine, pour moteur à allumage commandé.
    FR9313944 1993-11-22

    Publications (2)

    Publication Number Publication Date
    EP0654604A1 EP0654604A1 (fr) 1995-05-24
    EP0654604B1 true EP0654604B1 (fr) 1998-07-29

    Family

    ID=9453103

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19940402617 Expired - Lifetime EP0654604B1 (fr) 1993-11-22 1994-11-17 Procédé et dispositif d'allumage à bobine avec des décharges additionnelles pour diagnostics

    Country Status (4)

    Country Link
    EP (1) EP0654604B1 (fr)
    DE (1) DE69412039T2 (fr)
    ES (1) ES2122192T3 (fr)
    FR (1) FR2712934B1 (fr)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE69527702T2 (de) * 1995-04-28 2002-12-05 Daimlerchrysler Corp., Auburn Hills Methode und Schaltung zur Erkennung eines Zündfunkens in einer inneren Brennkraftmaschine
    DE19520852C1 (de) * 1995-06-08 1996-09-19 Vogt Electronic Ag Vorrichtung und Verfahren zur Zündungserkennung
    DE19524541C1 (de) * 1995-07-05 1996-12-05 Telefunken Microelectron Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine
    DE19652267A1 (de) * 1996-12-16 1998-06-18 Bosch Gmbh Robert Induktives Spulenzündsystem für einen Motor
    DE19720535C2 (de) * 1997-05-16 2002-11-21 Conti Temic Microelectronic Verfahren zur Erkennung klopfender Verbrennung bei einer Brennkraftmaschine mit einer Wechselspannungszündanlage
    FR2768186B1 (fr) * 1997-09-11 1999-10-15 Siemens Automotive Sa Procede et dispositif de diagnostic d'un systeme d'allumage pour moteur a combustion interne
    FR2820465B1 (fr) * 2001-02-05 2004-04-30 Siemens Automotive Sa Procede et dispositif de commande d'une bobine d'allumage d'un melange air/carburant dans un moteur a combustion interne
    DE10133005B4 (de) * 2001-07-06 2014-10-23 Volkswagen Ag Verfahren und Vorrichtung zum Erkennen der Unterbrechung der Spannungsversorgung einer Zündspule
    DE102016115980B4 (de) 2016-08-26 2018-09-20 Krohne Messtechnik Gmbh Zündgenerator und Verfahren zum Erzeugen von elektrischen Zündfunken zum Zünden von Plasmen in Mikrosystemen
    EP3306075B1 (fr) 2016-10-07 2024-05-22 Caterpillar Energy Solutions GmbH Surveillance de bougie d'allumage dans un moteur à combustion interne
    CN107178454B (zh) * 2017-07-28 2019-01-04 中国第一汽车股份有限公司 一种天然气发动机点火能量闭环控制方法

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2752244A1 (de) * 1977-11-23 1979-06-07 Baum Elektrophysik Gmbh Verfahren und vorrichtung zum pruefen elektrischer zuendanlagen von otto-motoren
    DE3341880A1 (de) * 1983-11-19 1985-05-30 Bayerische Motoren Werke AG, 8000 München Pruefverfahren fuer zuendanlagen von brennkraftmaschinen in kraftfahrzeugen
    DE3909906A1 (de) * 1989-03-25 1990-09-27 Bosch Gmbh Robert Schaltungsanordnung zur ueberwachung einer hochspannungszuendanlage
    FR2676506B1 (fr) * 1991-05-15 1993-09-03 Siemens Automotive Sa Procede et dispositif de detection de rates d'allumage dans un cylindre de moteur a combustion interne et leur application.
    WO1992021876A1 (fr) * 1991-05-31 1992-12-10 Caterpillar Inc. Systeme diagnostique pour un systeme d'allumage de decharge de condensateur
    US5174267A (en) * 1991-07-22 1992-12-29 Ford Motor Company Cylinder identification by spark discharge analysis for internal combustion engines
    FR2688272B1 (fr) * 1992-03-03 1995-10-06 Marelli Autronica Dispositif d'allumage electronique a bobine pour moteur a allumage commande.

    Also Published As

    Publication number Publication date
    FR2712934B1 (fr) 1996-01-26
    EP0654604A1 (fr) 1995-05-24
    FR2712934A1 (fr) 1995-06-02
    DE69412039T2 (de) 1999-04-01
    DE69412039D1 (de) 1998-09-03
    ES2122192T3 (es) 1998-12-16

    Similar Documents

    Publication Publication Date Title
    EP2205858B1 (fr) Dispositif de mesure du courant d&#39;ionisation dans un systeme d&#39;allumage radiofrequence pour un moteur a combustion interne
    EP0654604B1 (fr) Procédé et dispositif d&#39;allumage à bobine avec des décharges additionnelles pour diagnostics
    FR2523218A1 (fr) Dispositif pour detecter des rates d&#39;allumage
    EP0408436B1 (fr) Circuit de détection du signal phase alternateur polyphase de contrôle d&#39;un régulateur de charge de batterie de véhicule automobile et son utilisation
    FR2476837A1 (fr) Dispositif pour alimenter en tension des installations destinees a detecter des fluctuations de pression dans la chambre de combustion d&#39;un moteur a combustion interne
    FR2799510A1 (fr) Appareil de detection de l&#39;etat de combustion pour un moteur a combustion interne
    FR2798960A1 (fr) Dispositif de detection de rates d&#39;allumage pour moteur a combustion interne
    FR3090888A1 (fr) Dispositif de détection automatique de couplage entre dispositifs électronique
    WO2004029639A1 (fr) Procece de diagnostic concernant le branchement d&#39;une antenne
    FR2467396A1 (fr) Detecteur de cliquetis pour un moteur a combustion interne
    FR2545536A1 (fr)
    FR2736398A1 (fr) Installation d&#39;allumage pour un moteur a combustion interne
    EP0825343B1 (fr) Procédé et dispositif de diagnostic de l&#39;allumage d&#39;un moteur thermique par mesure de l&#39;impédance d&#39;ionisation
    EP0032333A1 (fr) Dispositif de détection de défauts de combustion dans un moteur à explosions
    FR2788559A1 (fr) Dispositif de detection d&#39;etat de combustion pour un moteur a combustion interne
    FR2611815A1 (fr) Dispositif pour controler au moins deux equipements utilisant l&#39;energie electrique dans des vehicules automobiles, notamment des bougies a incandescence dans des moteurs a combustion interne a auto-allumage
    EP0042641B1 (fr) Démodulateur de fréquence utilisant un circuit à retard variable avec la fréquence reçue
    FR2493414A1 (fr) Dispositif de mesure et de reglage du delai d&#39;allumage dans les installations d&#39;allumage de moteurs a combustion interne
    FR2688272A1 (fr) Dispositif d&#39;allumage electronique a bobine pour moteur a allumage commande.
    FR2611273A1 (fr) Procede et dispositif d&#39;utilisation d&#39;une sonde de mesure pour le controle de l&#39;etat d&#39;un melange de carburant
    EP0926337A1 (fr) Capteur d&#39;ionisation dans un système d&#39;allumage pour moteur à combustion interne
    EP0272965A1 (fr) Convertisseur fréquence-tension
    FR2742486A1 (fr) Dispositif de surveillance du systeme d&#39;allumage d&#39;un moteur a combustion interne
    FR2681161A1 (fr) Dispositif de commande et de protection de sorties, notamment pour automate programmable.
    EP0736688B1 (fr) Dispositif de détection de la phase de fonctionnement d&#39;un moteur à allumage simultané par paires de cylindre, notamment pour véhicule automobile

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    17P Request for examination filed

    Effective date: 19950930

    17Q First examination report despatched

    Effective date: 19970414

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REF Corresponds to:

    Ref document number: 69412039

    Country of ref document: DE

    Date of ref document: 19980903

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980820

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2122192

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20011109

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20011115

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20011116

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20011121

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021117

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030603

    GBPC Gb: european patent ceased through non-payment of renewal fee
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030731

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20031213

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051117