EP0644024B1 - Verfahren und Vorrichtung zur Herstellung von Gasbetonkörpern - Google Patents

Verfahren und Vorrichtung zur Herstellung von Gasbetonkörpern Download PDF

Info

Publication number
EP0644024B1
EP0644024B1 EP94114110A EP94114110A EP0644024B1 EP 0644024 B1 EP0644024 B1 EP 0644024B1 EP 94114110 A EP94114110 A EP 94114110A EP 94114110 A EP94114110 A EP 94114110A EP 0644024 B1 EP0644024 B1 EP 0644024B1
Authority
EP
European Patent Office
Prior art keywords
moulding box
jolting
process according
mixture
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94114110A
Other languages
English (en)
French (fr)
Other versions
EP0644024A1 (de
Inventor
Franz Xaver Greisel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREISEL-BAUSTOFF-GmbH
Greisel-Baustoff GmbH
Original Assignee
GREISEL-BAUSTOFF-GmbH
Greisel-Baustoff GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREISEL-BAUSTOFF-GmbH, Greisel-Baustoff GmbH filed Critical GREISEL-BAUSTOFF-GmbH
Publication of EP0644024A1 publication Critical patent/EP0644024A1/de
Application granted granted Critical
Publication of EP0644024B1 publication Critical patent/EP0644024B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/50Producing shaped prefabricated articles from the material specially adapted for producing articles of expanded material, e.g. cellular concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/087Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould

Definitions

  • the invention relates to a method and an apparatus for the production of gas concrete bodies in the preambles of claims 1 and 9 mentioned art.
  • Such methods and devices are generally known and can, for example, the German patent specifications DE-A-29 23 626 or DE-A-29 26 379 can be found. There too explains that after soaking and partially curing the further processing steps of the mass in the molding box e.g. may consist in that in Molding box located semi-solid block after one turn formed around its longitudinal axis by 90 °, in the desired Gas concrete elements cut and then in an autoclave under pressure at temperatures of about 180 ° C about 15 Steam-hardened for hours.
  • the cutting process can either be carried out that ultimately gas concrete "stones" are formed, which on the Construction site to be put together to a masonry.
  • plates can also be made from the partially hardened block can be cut out, possibly with reinforcement elements are reinforced, which before pouring the mass coming from the mixing device into the molding box were used in these.
  • the invention is therefore based on the object of a method and a device for carrying it out to improve the type mentioned so that the for above-mentioned relevant parameters target values can be achieved with greater reliability.
  • the invention provides the Claims 1 and 11 summarized process steps or characteristics.
  • a particularly easy way to do the vibrations to put on the molding box is to be against his Floor in the area of one of the floor longitudinal edges at two in Direction of this longitudinal edge spaced locations to press plates connected to unbalance motors, which the vibrations generated by the balancing motors on the molding box transfer.
  • the vibrating frequencies are preferably in the range of 10 Hz to 50 Hz, the higher frequencies being favorable, the higher the target bulk density.
  • a particularly high saving in aluminum powder can be achieved in the production of aerated concrete based on lime, in which the sludge is 37% to 43% sand by weight, 8% to 12% return goods, 10% to 16% lime, 3% to 5% cement and comprises 30% to 37% water. These muds can then Depending on the desired bulk density, about 0.06% to 0.15% aluminum powder be added.
  • the invention has proven to be particularly advantageous Proven method in the manufacture of gas concrete bodies those to increase their tensile strength with reinforcements, for example are made of structural steel. These reinforcements before pouring the gas concrete mixture into the molding box inserted in this and positioned there so that they were enclosed by the poured mass as it rose be and in the partially hardened gas concrete body are in their desired end position. In the casting process the problem arises without a shaking process the so-called trailing shadow. Underneath is the fact understood that the density and thus the compressive strength of the finished gas concrete element seen in the climbing direction often significantly lower behind the reinforcement elements than in the other areas of the gas concrete body in question is. It is clear that this diminished significantly Rigidity and resilience of this gas concrete body leads.
  • the molding box 1 shows a cuboid shaped box 1 open at the top, as it is used for the production of gas concrete.
  • the molding box is double-walled in such a way that its inner and outer walls connected by webs Enclose cavities through which a coolant, for example Water can be pumped.
  • Such a molding box is used to manufacture gas concrete about a third of its volume with an aqueous one Sludges from sand, lime, cement and other aggregates filled the aluminum powder just before pouring into the molding box as a blowing agent or blowing agent is.
  • the molding box 1 Immediately after filling, the molding box 1 is in the brought position shown in Fig. 1 on the hall floor 2, in which he with his one longitudinal edge 4 over two in Direction of this longitudinal edge spaced from each other Openings 6 is located in the hall floor 2.
  • the molding box 1 remains at least as it is long until the shortly after adding the aluminum powder rising process is completed, during which the mass in the molding box 1 its volume so strong enlarges that with its upper surface approximately the height of the upper edge of the molding box is reached or even slightly exceeds.
  • each of the openings 6 there is under each of the openings 6 a shaft 8 in which a Vibrator arrangement 10 is housed.
  • This vibrator assembly 10 includes one on the shaft bottom a hinge 11 supported and substantially vertical arranged hydraulic or pneumatic cylinders 12, the upwardly projecting piston rod 14 via a joint 15 carries a box-shaped housing 17, with the hall floor 2 roughly aligned top with a plate 18 made of hard elastic material, for example hard rubber is occupied.
  • an unbalance motor 20 arranged in its Frequency and amplitude of variable vibrations on the housing 17 transmits.
  • the top of the housing 17 which is occupied by the plate 18 can be pressed with the aid of the cylinder 12 against the bottom of a molding box 1 positioned above the opening 6, so that the vibrations generated by the unbalance motor 20 are transmitted to the molding box 1.
  • a molding box with a usable volume of 4.5 m 3 and a total weight of 12,000 kg (with cooling water and filled gas-concrete mixture), a pressing force of 10,000 N has proven to be favorable for each of the two vibrator arrangements 10. At this force, the molding box 1 is not yet lifted off the hall floor 2, but the contact with the plates 18 is so good that the vibrations generated by the unbalance motors 20 are well transmitted to the molding box and the gas concrete mass contained in it.
  • the molding box 1 is a few seconds after pouring the gas concrete mixture in the position shown in Fig. 1 brought, so the two cylinders 12 of the vibrating assemblies 10 actuated and the housing 17 from below in the area of one longitudinal edge 4 to the bottom of the molding box 1 pressed, and the unbalance motors 12 in motion set.
  • different vibration frequencies selected. So have yourself a frequency for gas concrete with a bulk density of 0.4 of 13.5 Hz, with a bulk density of 0.5 a vibration frequency of 28 Hz and a vibration frequency for a bulk density of 0.6 of 32.5 Hz proved to be favorable.
  • the shaking process is like this long continued until the mass rising in the molding box 1 a height of about 10 cm below the upper edge of the molding box has reached. Then the unbalance motors 20 are switched off and the molding box 1 is left in place until the Climbing process is completely finished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Herstellung von Gasbetonkörpern der in den Oberbegriffen der Ansprüche 1 und 9 genannten Art.
Solche Verfahren und Vorrichtungen sind allgemein bekannt und können beispielsweise den deutschen Patentschriften DE-A-29 23 626 oder DE-A-29 26 379 entnommen werden. Dort wird auch erläutert, daß nach dem Steigen- und Teilaushärtenlassen der im Formkasten befindlichen Masse die weiteren Verarbeitungsschritte z.B. darin bestehen können, daß der im Formkasten befindliche halbfeste Block nach einer Drehung um seine Längsachse um 90° ausgeformt, in die gewünschten Gasbetonelemente zerschnitten und dann in einem Autoklaven unter Überdruck bei Temperaturen von etwa 180°C etwa 15 Stunden lang dampfgehärtet wird.
Der Zerschneidevorgang kann entweder so ausgeführt werden, daß letztendlich Gasbeton-"Steine" entstehen, die an der Baustelle zu einem Mauerwerk zusammengefügt werden. Alternativ hierzu können aus dem teilgehärteten Block auch Platten herausgeschnitten werden, die unter Umständen mit Armierungselementen bewehrt sind, welche vor dem Eingießen der aus der Mischvorrichtung kommenden Masse in den Formkasten in diesen eingesetzt wurden.
Auch ist es denkbar, die Formkästen so zu gestalten, daß die in ihnen entstehenden Blöcke weitestgehend die Form des angestrebten Fertigproduktes besitzen und nach dem Ausformen nur noch beschnitten aber nicht mehr in kleinere Elemente zerschnitten werden müssen.
Diese bekannten Verfahren erfordern bei ihrer Durchführung ein sehr hohes Maß an Know-how, wobei das Grundproblem darin besteht, daß aus natürlichen Ausgangsstoffen wie Sand, Kalk und Wasser, die in ihrer Zusammensetzung und Beschaffenheit und damit auch in ihren für die Gasbetonherstellung wesentlichen Eigenschaften innerhalb weiter Grenzen variieren können, ein industriell verwendbares Produkt hergestellt werden soll, dessen für seinen Einsatz relevante Eigenschaften wie Homogenität insbesondere hinsichtlich der Porengröße, Freiheit von Luft- bzw. Gasblasen und Lunkern, Druckfestigkeit, Dichte usw. nur innerhalb sehr enger Toleranzgrenzen variieren dürfen.
Somit liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zu seiner Durchführung der eingangs genannten Art so zu verbessern, daß die für die oben genannten relevanten Parameter angestrebten Werte mit höherer Zuverlässigkeit erreicht werden.
Zur Lösung dieser Aufgabe sieht die Erfindung die in den Ansprüchen 1 und 11 zusammengefaßten Verfahrensschritte bzw. Merkmale vor.
Zwar ist es aus der Herstellung von Gebäudestrukturen oder Fertigbauteilen aus Schwerbeton bekannt, nach dem Eingießen der Betonmischung in die Schalung mit Hilfe von Tauchrüttlern, die in die in der Schalung befindliche und noch "flüssige" Masse eingetaucht werden Rüttelschwingungen einzusetzen, um dadurch eine Homogenisierung der Mischung zu erzielen, daß eventuell vorhandene Luftblasen möglichst ausgetrieben werden und die Gefahr einer Lunkerbildung vermindert wird. Hauptzweck dieser Maßnahme ist es dabei, eine möglichst große Verdichtung zu erreichen.
Gerade dies ist aber ein Effekt, der Rüttelschwingungen bei der Herstellung von Gasbeton zunächst als äußerst unzweckmäßig erscheinen läßt. Dort werden je nach Verwendungszweck der gerade in Produktion befindlichen Gasbetonelemente Rohdichten von beispielsweise 0,4, 0,5, 0,6, 0,7 oder 0,8 angestrebt, die möglichst exakt erreicht werden sollen. Gesteuert wird dies im wesentlichen durch den prozentualen Anteil des zugesetzten Treib- oder Blähmittels, beispielsweise des Aluminiumpulvers, von dem um so mehr beigemischt wird, je kleiner die gewollte Rohdichte ist. Dabei kommt es aber immer wieder zu der Erscheinung, daß der Treib- und Steigvorgang entweder überhaupt nicht in dem erforderlichen Ausmaß stattfindet oder daß der "Kuchen" im Formkasten kurz bevor oder nachdem er seine volle Steighöhe erreicht hat, plötzlich wieder in sich zusammensackt. Es ist klar, daß dies zu einer Dichte führt, die wesentlich größer als gewollt und zudem ungleichmäßig verteilt ist, so daß die gesamte im Formkasten befindliche Masse verworfen werden muß und allenfalls noch einer Verwertung als Zuschlagstoff für eine neu anzusetzende Mischung zugeführt werden kann.
Wegen der bekannten Verdichtungswirkung von Rüttelschwingungen bei der Herstellung von Schwerbeton war zu befürchten, daß die eben geschilderten ungünstigen und kostenerhöhenden Erscheinungen durch den Einsatz von Rüttelschwingungen bei der Herstellung von Gasbeton verstärkt werden und mit größerer Häufigkeit auftreten könnten. Überraschenderweise hat sich in der Praxis ergeben, daß Rüttelschwingungen, die nicht mit Tauchrüttlern direkt in die Masse selbst sondern gemäß der Erfindung indirekt über den Formkasten eingebracht werden, dazu führen, daß die angestrebte Dichte und damit auch Druckfestigkeit mit größerer Zuverlässigkeit erreicht wird, wobei sich eine besonders gleichförmige Homogenität des fertigen Produktes ergibt.
Dies wird darauf zurückgeführt, daß die Rüttelschwingungen auf den Formkasten einseitig von unten her so aufgebracht werden, daß eine Kombination und Überlagerung sowohl von horizontalen als auch vertikalen Schwingungsamplituden in der Masse entsteht.
Besonders überraschend ist dabei, daß zur Erzielung eines bestimmten Dichtewertes 5 % bis 10 % weniger Aluminiumpulver zugegeben werden müssen, als dies ohne die Durchführung des Rüttelvorganges der Fall ist. Da das Aluminiumpulver vergleichsweise teuer ist, führt dies zu einer deutlichen Kostenverminderung.
Ein weiterer überraschender Effekt ist, daß es in Verbindung mit dem Rüttelvorgang möglich ist, Gasbeton-Ausgangsmischungen mit einer höheren Viskosität zuverlässig zum Treiben zu bringen, als dies bisher möglich war. Damit lassen sich Endprodukte mit größerer Zuverlässigkeit herstellen, die eine höhere Rohdichte besitzen.
Als äußerste zeitliche Obergrenze, bis zu der der Rüttelvorgang beibehalten werden kann, ohne daß die Gefahr nachteiliger Effekte wie z.B. der Rückverdichtung des aufgegangenen "Kuchens" steigt, hat sich ein Zeitpunkt herausgestellt, der bei angestrebten niederen Rohdichten einige Sekunden vor der Beendigung des Treibvorganges liegt, bei höheren Rohdichten aber nur etwa bei der Hälfte bis einem Drittel der Zeit liegt, die der im Formkasten steigende "Kuchen" benötigt, um seine Endhöhe zu erreichen.
Eine besonders einfache Möglichkeit, die Rüttelschwingungen auf den Formkasten aufzubringen, besteht darin, gegen seinen Boden im Bereich einer der Boden-Längskanten an zwei in Richtung dieser Längskante voneinander beabstandeten Stellen mit Unwuchtmotoren verbundene Platten anzudrücken, die die von den Umwuchtmotoren erzeugten Schwingungen auf den Formkasten übertragen.
Vorzugsweise liegen die Rüttelfrequenzen im Bereich von 10 Hz bis 50 Hz, wobei um so höhere Frequenzen günstig sind, je höher die angestrebte Rohdichte ist.
Grundsätzlich ist es möglich, bereits während des Eingießens der mit Treibmittel versetzten Mischung in den Formkasten mit den Rüttelschwingungen zu beginnen. Im allgemeinen ist es aber wünschenswert, einen gerade befüllten Formkasten möglichst rasch aus dem Bereich der Einfüllvorrichtung herauszubewegen, damit der nächste zu befüllende Formkasten unter die Eingießvorrichtung hineinbewegt werden kann. Das Herausbewegen eines befüllten Formkastens benötigt einige Sekunden und es hat sich gezeigt, daß es günstig ist, etwa 5 bis 15 Sekunden nach Beendigung des Eingießvorganges mit dem Rüttelvorgang zu beginnen.
Eine besonders hohe Einsparung an Aluminiumpulver läßt sich bei der Herstellung von Gasbeton auf Kalkbasis erzielen, bei dem die Schlämme in Gewichtsprozent 37 % bis 43 % Sand, 8 % bis 12 % Rückgut, 10 % bis 16 % Kalk, 3 % bis 5 % Zement und 30 % bis 37 % Wasser umfaßt. Dieser Schlämme können dann je nach gewünschter Rohdichte etwa 0,06 % bis 0,15 % Aluminiumpulver zugesetzt werden.
Als besonders vorteilhaft hat sich das erfindungsgemäße Verfahren bei der Herstellung von Gasbetonkörpern erwiesen, die zur Erhöhung ihrer Zugfestigkeit mit Armierungen beispielsweise aus Baustahl versehen sind. Diese Armierungen werden vor dem Eingießen der Gasbetonmischung in den Formkasten in diesen eingesetzt und dort so positioniert, daß sie beim Steigen der eingegossenen Masse von dieser umschlossen werden und sich in dem teilgehärteten Gasbetonkörper in ihrer gewünschten Endlage befinden. Bei den Gießverfahren ohne Rüttelvorgang ergibt sich dabei das Problem der sogenannten Treibschatten. Darunter wird die Tatsache verstanden, daß die Dichte und damit auch die Druckfestigkeit des fertigen Gasbetonelementes in Steigrichtung gesehen hinter den Armierungselementen häufig deutlich niedriger als in den übrigen Bereichen des betreffenden Gasbetonkörpers ist. Es ist klar, daß dies zu einer deutlich verminderten Steifigkeit und Belastbarkeit dieser Gasbetonkörper führt. Es hat sich nun gezeigt, daß die eben beschriebene Treibschattenbildung durch den erfindungsgemäß vorgesehenen Rüttelvorgang erheblich vermindert werden kann, so daß sich insbesondere auch bei Gasbetonkörpern, die mit Armierungselementen versehen sind, eine erheblich verbesserte Homogenität der Druckfestigkeit und damit eine höhere Belastbarkeit der so hergestellten Gasbeton-Bauelemente erzielen läßt.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung beschrieben; in dieser zeigen:
Fig. 1
einen Formkasten zur Herstellung von Gasbeton, der auf einem Hallenboden über zwei erfindungsgemäßen Rüttleranordnungen abgesetzt ist, und
Fig. 2
in stark vergrößertem Maßstab einen Schnitt durch den Hallenboden aus Fig. 1 mit einer der beiden dort befindlichen Rüttleranordnungen.
Fig. 1 zeigt einen oben offenen, quaderförmigen Formkasten 1, wie er zur Herstellung von Gasbeton verwendet wird. Der Formkasten ist in der Weise doppelwanding ausgeführt, daß seine durch Stege miteinander verbundenen Innen- und Außenwände Hohlräume umschließen, durch die ein Kühlmittel, beispielsweise Wasser gepumpt werden kann.
Zur Herstellung von Gasbeton wird ein solcher Formkasten etwa zu einem Drittel seines Volumens mit einer wässrigen Schlämme aus Sand, Kalk, Zement und weiteren Zuschlagstoffen gefüllt, der kurz vor dem Eingießen in den Formkasten Aluminiumpulver als Treib- bzw. Blähmittel zugemischt worden ist.
Unmittelbar nach dem Füllen wird der Formkasten 1 in die in Fig. 1 gezeigte Position auf dem Hallenboden 2 gebracht, in der er sich mit seiner einen Längskante 4 über zwei in Richtung dieser Längskante voneinander im Abstand angeordneten Öffnungen 6 im Hallenboden 2 befindet.
In dieser Stellung bleibt der Formkasten 1 zumindest so lange, bis der kurz nach der Zugabe des Aluminiumpulvers einsetzende Steigprozeß beendet ist, während dessen die im Formkasten 1 befindliche Masse ihr Volumen so stark vergrößert, daß sie mit ihrer oberen Oberfläche in etwa die Höhe der Formkasten-Oberkante erreicht oder sogar geringfügig übersteigt.
Wie man insbesondere der Fig. 2 entnimmt, befindet sich unter jeder der Öffnungen 6 ein Schacht 8, in dem eine Rüttleranordnung 10 untergebracht ist.
Diese Rüttleranordnung 10 umfaßt einen am Schachtboden über ein Gelenk 11 abgestützten und im wesentlichen senkrecht angeordneten hydraulischen bzw. pneumatischen Zylinder 12, dessen nach oben ragende Kolbenstange 14 über ein Gelenk 15 ein kastenförmiges Gehäuse 17 trägt, dessen mit dem Hallenboden 2 in etwa fluchtende Oberseite mit einer Platte 18 aus hartelastischem Material, beispielsweise Hartgummi belegt ist.
Im Inneren des Gehäuses ist, wie in Fig. 2 schematisch angedeutet, ein Unwuchtmotor 20 angeordnet, der seine in Frequenz und Amplitude variablen Schwingungen auf das Gehäuse 17 überträgt.
Die mit der Platte 18 belegte Oberseite des Gehäuses 17 kann mit Hilfe des Zylinders 12 gegen den Boden eines über der Öffnung 6 positionierten Formkastens 1 angedrückt werden, so daß die vom Unwuchtmotor 20 erzeugten Schwingungen auf den Formkasten 1 übertragen werden. Bei einem Formkasten mit einem nutzbaren Volumen von 4,5 m3 und einem Gesamtgewicht von 12.000 kg (mit Kühlwasser und eingefüllter Gasbetonmischung) hat sich eine Andruckkraft von 10.000 N für jede der beiden Rüttleranordnungen 10 als günstig erwiesen. Bei dieser Kraft wird der Formkasten 1 noch nicht vom Hallenboden 2 abgehoben aber der Kontakt mit den Platten 18 ist so gut, daß die von den Unwuchtmotoren 20 erzeugten Schwingungen gut auf den Formkasten und die in ihm befindliche Gasbetonmasse übertragen werden.
Ist der Formkasten 1 einige Sekunden nach dem Eingießen der Gasbetonmischung in die in Fig. 1 gezeigte Position gebracht, so werden die beiden Zylinder 12 der Rüttelanordnungen 10 betätigt und die Gehäuse 17 von unten her im Bereich der einen Längskante 4 an den Boden des Formkastens 1 angepreßt, und die Unwuchtmotoren 12 in Bewegung gesetzt. Je nach Dichte des zu erzeugenden Gasbetons werden dabei unterschiedliche Rüttelfrequenzen gewählt. So haben sich für einen Gasbeton mit einer Rohdichte von 0,4 eine Frequenz von 13,5 Hz, mit einer Rohdichte von 0,5 eine Rüttelfrequenz von 28 Hz und für eine Rohdichte von 0,6 eine Rüttelfrequenz von 32,5 Hz als günstig erwiesen. Der Rüttelvorgang wird so lange fortgesetzt, bis die im Formkasten 1 aufsteigende Masse eine Höhe von etwa 10 cm unterhalb des oberen Formkastenrandes erreicht hat. Dann werden die Unwuchtmotoren 20 abgeschaltet und der Formkasten 1 ruhig an seinem Platz gelassen, bis der Steigvorgang völlig beendet ist.

Claims (10)

  1. Verfahren zur Herstellung von Gasbetonkörpern auf Kalkbasis, das folgende Schritte umfaßt:
    Herstellen einer Schlämme aus Sand, Kalk, Zement, weiteren Zuschlagstoffen und Wasser,
    Zumischen von Aluminiumpulver als Treibmittel,
    Eingießen der so erhaltenen Mischung in einen Formkasten,
    Steigen- und Teilaushärtenlassen der im Formkasten befindlichen Masse, die dann weiteren Verarbeitungsschritten zugeführt wird,
    dadurch gekennzeichnet, daß nach dem Eingießen der Mischung in den Formkasten (1) auf diesen als Ganzes Rüttelschwingungen einseitig im Bereich einer seiner Boden-Längskanten (4) von unten her aufgebracht und spätestens dann beendet werden, wenn die Masse ihren Steigvorgang im wesentlichen beendet hat.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Rütteln einige Sekunden vor Beendigung des Steigvorganges beendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Rüttelschwingungen dadurch auf den Formkasten (1) aufgebracht werden, daß an zwei voneinander im Abstand befindlichen Stellen im Bereich seiner einen Boden-Längskante (4) jeweils eine einen Unwuchtmotor (20) umfassende Rüttelanordnung (10) angepreßt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Rüttelfrequenzen im Bereich von 10 Hz bis 50 Hz liegen.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß eine um so höhere Rüttelfrequenz verwendet wird, je höher die angestrebte Dichte des fertigen Gasbetonkörpers ist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mit dem Rütteln etwa fünf bis fünfzehn Sekunden nach dem Eingießen der Mischung in den Formkasten (1) begonnen wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Schlämme in Gewichtsprozent folgende Bestandteile umfaßt:
    Sand 37 % bis 43 %,
    Rückgut 8 % bis 12 %,
    Kalk 10 % bis 16 %,
    Zement 3 % bis 5 %,
    Wasser 30 % bis 37 %
    und daß dieser Schlämme etwa 0,06 % bis 0,15 % Aluminiumpulver zugesetzt werden.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in den Formkasten (1) vor dem Eingießen der Mischung Armierungselemente für den fertigen Gasbetonkörper eingebracht werden.
  9. Vorrichtung, die zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche folgende Bestandteile umfaßt:
    Eine Mischvorrichtung zur Herstellung der Schlämme und zum Zumischen des Aluminiumpulvers und
    eine Gießvorrichtung zum Eingießen der so erhaltenen Mischung in Formkästen (1),
    und die dadurch gekennzeichnet ist, daß sie weiterhin wenigstens eine zeitlich steuerbare Rüttelanordnung (10) zum Aufbringen von Rüttelschwingungen auf den die steigende Mischung enthaltenden Formkasten (1) umfaßt, wobei die Rüttelanordnung einseitig im Bereich einer Boden-Längskanten (4) des Formkastens angeordnet ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß sie wenigstens eine Anpreßvorrichtung umfaßt, mit deren Hilfe eine mit einem Unwuchtmotor (20) in mechanischer Verbindung stehende Platte (18) gegen die Unterseite des Formkastens (1) andrückbar ist.
EP94114110A 1993-09-08 1994-09-08 Verfahren und Vorrichtung zur Herstellung von Gasbetonkörpern Expired - Lifetime EP0644024B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4330443 1993-09-08
DE4330443 1993-09-08

Publications (2)

Publication Number Publication Date
EP0644024A1 EP0644024A1 (de) 1995-03-22
EP0644024B1 true EP0644024B1 (de) 1998-07-29

Family

ID=6497184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94114110A Expired - Lifetime EP0644024B1 (de) 1993-09-08 1994-09-08 Verfahren und Vorrichtung zur Herstellung von Gasbetonkörpern

Country Status (3)

Country Link
EP (1) EP0644024B1 (de)
AT (1) ATE168922T1 (de)
DE (1) DE59406542D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676862B2 (en) 1999-09-15 2004-01-13 Advanced Building Systems, Inc. Method for forming lightweight concrete block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750535C1 (ru) * 2020-11-23 2021-06-29 федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» Способ изготовления ячеистобетонных изделий

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE342219B (de) * 1966-10-07 1972-01-31 Siporex Int Ab
AT308620B (de) * 1969-04-25 1973-07-10 Vsejuzny Nii Zd Skoi T Sbornyk Verfahren zur Herstellung von Fertigbauteilen mit Zellenstruktur
GB1330458A (en) * 1971-02-16 1973-09-19 Urmston C W B Making light weight concrete
SU709361A1 (ru) * 1977-06-08 1980-01-15 Государственный Всесоюзный Научно- Исследовательский Институт Строительных Материалов И Конструкций Им.П.П.Будникова Способ формовани изделий из чеистобетонных смесей
SU675362A1 (en) * 1977-12-26 1979-07-25 Kalininsk Polt Inst Method of monitoring and controlling gas-silicate mix vibroswelling process
SU737833A1 (ru) * 1978-01-18 1980-05-30 Государственный Научно-Исследовательский И Проектный Институт Силикатного Бетона Автоклавного Твердения Способ регулировани процесса виброформовани чеистобетонной смеси
SU802026A1 (ru) * 1978-03-13 1981-02-07 Рижский Ордена Трудового Красногознамени Политехнический Институт Способ изготовлени изделий из чЕиСТОбЕТОННыХ СМЕСЕй
SU779094A1 (ru) * 1978-12-25 1980-11-15 Военный Инженерный Краснознаменный Институт Им.А.Ф.Можайского Устройство дл автоматического управлени режима работы вибрационных формующих площадок
SU905786A1 (ru) * 1980-01-09 1982-02-15 Калининский Ордена Трудового Красного Знамени Политехнический Институт Способ управлени процессом структурообразовани при виброударном формовании чеистобетонных смесей и устройство дл его осуществлени
SU1152780A1 (ru) * 1984-03-29 1985-04-30 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский И Проектный Институт Типового И Экспериментального Проектирования Жилища Устройство дл уплотнени бетонной смеси
SU1294607A1 (ru) * 1985-03-01 1987-03-07 Калининский политехнический институт Способ управлени процессом структурообразовани при виброударном формовании чеистобетонной смеси и устройство дл его осуществлени
DE3809383A1 (de) * 1988-03-19 1989-09-28 Bernd Lechner Verfahren zur herstellung einer fertigteil-wandtafel aus leichtbeton
JPH0637337B2 (ja) * 1988-10-07 1994-05-18 住友金属鉱山株式会社 Alcの製造方法
DE4239447C1 (de) * 1992-11-24 1994-03-03 Hugo Bittlmayer Verfahren und eine Vorrichtung zum Verdichten von Beton durch Rütteln

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676862B2 (en) 1999-09-15 2004-01-13 Advanced Building Systems, Inc. Method for forming lightweight concrete block
US7942658B1 (en) 1999-09-15 2011-05-17 Advanced Building Systems, Inc. Systems for forming lightweight concrete block

Also Published As

Publication number Publication date
EP0644024A1 (de) 1995-03-22
DE59406542D1 (de) 1998-09-03
ATE168922T1 (de) 1998-08-15

Similar Documents

Publication Publication Date Title
DE2133320C3 (de) Verfahren zum Herstellen eines Formkörpers mit mindestens einem durchgehenden Hohlraum aus einem mit Flüssigkeit abbindenden pulverförmigen und einem festigen Bestandteil
DE3522910C2 (de) Verfahren und Vorrichtung zur Herstellung von synthetischen Gesteinsblöcken
DE3030914C2 (de) Verfahren zur Herstellung von Maschinenständern mittels Polymerbeton
DD218859A5 (de) Verfahren und gleitschalungsvorrichtung zum herstellen von hohlraumplatten aus beton
EP0673733A2 (de) Verfahren zur Herstellung einer porösen, mineralischen Leicht-Dämmplatte
CH627126A5 (de)
EP0644024B1 (de) Verfahren und Vorrichtung zur Herstellung von Gasbetonkörpern
EP0046272B1 (de) Verfahren zur Herstellung von Maschinenbauteilen, z.B. Maschinenständern
DE102006051045A1 (de) Vorrichtung zum Herstellen von Fertigteilen aus aushärtbarer Gießmasse
DE2408503A1 (de) Verfahren und vorrichtung zur herstellung von kunststeinen und -platten
CH595198A5 (en) Moulding plant for gas concrete bricks
EP3705250B1 (de) Verfahren zum herstellen eines betonbauteils und betonteil-herstellvorrichtung
EP2055457A2 (de) Verfahren zum Herstellen eines Bausteins aus Beton und Vorrichtung zur Durchfuehrung des Verfahrens
DE10164466B4 (de) Hauptrahmen für eine Betongussmaschine
DE3841117C1 (en) Process for producing steam pressure-cured gas concrete
DE19931898C1 (de) Verfahren zur Herstellung von Porenbeton
DE10137151C1 (de) Vorrichtung und Verfahren zum Verdichten eines Werkstoffs
DE2443837C3 (de) Verfahren zur Herstellung von Preßformkörpern, insbesondere Kalksandsteinen, sowie Preßvorrichtung zur Durchführung des Verfahrens
DE621446C (de) Verfahren zur Herstellung von Formlingen aus Beton
DE2901545A1 (de) Verfahren und vorrichtung zum herstellen von formsteinen
DE805615C (de) Verfahren zum Herstellen von Beton
DE1816888A1 (de) Verfahren zum Herstellen einstueckiger,mit glasfaserverstaektem Giessharz ummantelter Formkoerper
DE3048181A1 (de) Vorrichtung zum herstellen verdichteter formkoerper aus beton o.dgl.
DE2114456A1 (de) Verfahren und Vorrichtung zur Her stellung von vorgefertigten Stahlbeton flachentragwerken
DE19814158C2 (de) Verfahren zur Herstellung großflächiger Betonfertigteile mit zumindest zweiseitig schalungsglatten Oberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980122

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR IT LI

REF Corresponds to:

Ref document number: 168922

Country of ref document: AT

Date of ref document: 19980815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59406542

Country of ref document: DE

Date of ref document: 19980903

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991027

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GREISEL-BAUSTOFF-GMBH

Free format text: GREISEL-BAUSTOFF-GMBH#BLINDHAM 18#D-94496 ORTENBURG (DE) -TRANSFER TO- GREISEL-BAUSTOFF-GMBH#BLINDHAM 18#D-94496 ORTENBURG (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130919

Year of fee payment: 20

Ref country code: CH

Payment date: 20130923

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130918

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 168922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140908