EP0636277A1 - Reaktionsharze zum vergiessen von druckempfindlichen elektronischen bauelementen - Google Patents

Reaktionsharze zum vergiessen von druckempfindlichen elektronischen bauelementen

Info

Publication number
EP0636277A1
EP0636277A1 EP93906430A EP93906430A EP0636277A1 EP 0636277 A1 EP0636277 A1 EP 0636277A1 EP 93906430 A EP93906430 A EP 93906430A EP 93906430 A EP93906430 A EP 93906430A EP 0636277 A1 EP0636277 A1 EP 0636277A1
Authority
EP
European Patent Office
Prior art keywords
resin composition
percent
weight
composition according
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93906430A
Other languages
English (en)
French (fr)
Inventor
Ernst Dr.Rer.Nat. Wipfelder
Suzanne Dipl.-Ing. Kober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0636277A1 publication Critical patent/EP0636277A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • a versatile and simple encapsulation process is the potting of electronic components with liquid reactive resins and subsequent thermally initiated curing.
  • Envelopes for components which are operated in an environment with constant conditions with regard to temperature and atmosphere are unproblematic. However, if the components are to be suitable for larger temperature ranges, the thermal-mechanical property level of the reaction resin coating must be such that the tensile or compressive forces that necessarily occur in the temperature change do not exceed a critical size for the component gene.
  • Rubber-elasticized reactive resins are known which, with regard to their mechanical properties, would be suitable for wrapping and covering pressure-sensitive components. Because of the sensitivity of such masses to moist or chemically aggressive, in particular thermally oxidative, environments, they are therefore not suitable for encasing components which are operated under the above ambient conditions. .
  • Object of the present invention is, therefore, a Reak ⁇ tion resin composition for casting indicate that already as monolayer u hüllung an optimal low-stress property shows a high temperature range of -40 * C to 150 * C pressure sensitive elektro ⁇ tronic Components does not lead to any damage to the cast components and, moreover, is resistant to a moist and aggressive environment, as occurs in particular in the engine compartment of motor vehicles.
  • reaction resin composition which has the features of claim 1 according to the invention.
  • the reactive resin composition according to the invention combines the advantageous properties of the individual components contained therein in an inventive manner, without at the same time their Show disadvantages.
  • silicone rubber particles By incorporating the silicone rubber particles, a viscoplastic behavior of the hardened reaction resin composition with a high modulus of elasticity is achieved without being associated with a noticeable decrease in the glass transition temperature of the hardened reaction resin composition.
  • the high rate of diffusion of small molecules (for example water) within silicone rubber is also suppressed by the use of finely divided silicone rubber particles or has no effect on the (hardened) reactive resin molding material.
  • the reactive constituents of the reaction resin matrix harden into a reaction resin molding material with a high glass transition temperature of, for example, more than 170 ° C., which lies outside the desired operating temperature interval for a component to be encased and therefore shows no phase change during operation of the component.
  • the hardener system which consists of the hardener and the accelerator, is optimized for rapid hardening at a relatively high temperature.
  • a suitable reaction accelerator based on imidazole guarantees that the reaction resin composition has a sufficiently long processability of at least one hour below the curing temperature and thus enables a long machine cycle without cleaning the application devices in between.
  • the high filler content of up to 45 percent by volume is responsible for only a small thermal expansion in the operating temperature interval, which is due to the low expansion coefficient of quartz material.
  • the reactive resin composition has a sufficiently low viscosity of less than 1500 mPas for processing, which is brought about by an optimized particle size distribution of the filler. Any application equipment can be used with the reactive resin compound. be used and thus cast components that have a sophisticated geometry with undercuts and / or narrow spaces or gaps of a few microns.
  • a suitably chosen accelerator contributes to the high possible processing temperature and thus to the low viscosity at this processing temperature.
  • Imidazoles which are substituted in the 1-position with a cyanoethyl group such as, for example, l-cyanoethyl-2-phenylimidazole, are particularly suitable.
  • other substituted imidazoles are also suitable, for example 2-ethyl-4-methylimidazole.
  • These imidazoles can be used alone as accelerators, or in admixture with other accelerators, for example with a benzyl tetrahydrothiolanium salt.
  • Bisepoxides based on the diglycidyl ethers of bisphenol A and / or bisphenol F are preferably used as reactive diluents. These result in the uncured reac- tion resin composition to lower the viscosity without negatively influencing the glass transition temperature of the hardened reactive resin molding materials.
  • Glycidyl ethers based on phenol or cresol novolak are preferably used as crosslinking enhancers. This component gives the molding material a glass transition temperature and, like the bisphenol A or
  • Manufacture F-diglycidyl ether in electronic grade quality This means in particular a total chlorine content of less than 1200 pp and minimal ionic impurities, which could otherwise result in an increased susceptibility to corrosion of the electronic components encased in the mass.
  • Anhydrides are used as the hardener component for the reaction resin composition, methylnadic acid anhydride being particularly suitable.
  • the susceptibility to cracking of the crosslinked reactive resin molding materials is significantly reduced even under high temperature changes.
  • the reaction resin compositions can be provided in the form of two storage-stable components (resin and hardener components) and can be prepared into reaction resin compositions using the usual methods. They are overall at 60 "C for four hours consumption compatible and can be beneficial in the batch process without expensive mixing equipment process. On the other hand it takes is 20 minutes at 150 ⁇ C for the curing of the resin compositions.
  • the processing properties oer reaction resin compound according to the invention are thus so therefore a - Provided that electronic components can be encased in large series with relatively little technological effort and in economical production. Due to the high temperature resistance of the reaction resin composition according to the invention, this reacts in a preparatory manner 0585
  • a reaction resin matrix suitable for the reaction resin composition according to the invention is mixed together from the following constituents given in parts by weight (MT):
  • This mass contains 18 MT silicone rubber particles with a maximum particle size of less than 2 ⁇ m, which are modified for better compatibility with the reaction resin matrix surfaces, that is to say are provided with functional groups compatible with epoxy resins.
  • the proportion of filler is mixed together from commercially available quartz materials in such a way that the reaction resin composition shows the lowest possible viscosity with the same filler content.
  • splintered quartz is added in the following proportions:
  • the finished reaction resin compound has a viscosity of 1000 mPas and a service life of 75 minutes at a processing temperature of 80 ⁇ C. If all components are mixed homogeneously, the reaction resin composition can be processed with any application devices. 20 minutes at 150 * C are sufficient to harden the mass.
  • a composition consisting of the constituents mentioned Christs ⁇ resin composition was cured under the above conditions, has a glass transition temperature (temperature of the damping maximum) of 185 * C, a modulus at 25 * C of
  • a test board is cast with the reaction resin compound and then subjected to rapid temperature changes. For this purpose, cycles from -40 * C to +150 * C, each with a one-hour residence time, are selected. After 300 cycles, no impairment of the measured values can be determined.
  • the same boards are cast with a resin composition which differs from the invention only in the absence of the silicone rubber particles. These boards also function after a 300 cycle temperature change test, but clear cracks can be seen in the casing.
  • the degree of filling can be reduced, for example to 30 or 35 percent by volume.
  • the viscosity required for processing is already reached at 60 or 70 "C, which increases the service life (pot life) to 265 or 150 minutes.
  • the reaction resin composition can therefore be optimized for any application problem, the focus being on the molding material properties or, alternatively, on the processing properties of the reaction resin composition. In any case, one is compared to the state of the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Zum Vergießen druckempfindlicher elektronischer Bauelemente wird vorgeschlagen, ein Epoxid/Anhydrid-Reaktionsharz-System mit hoher Glasübergangstemperatur mit eindispergierten feinteiligen Silikonkautschukpartikeln und einem bezüglich der Korngrößenverteilung optimierten Quarzgutfüllstoff zu modifizieren, um E-Modul, Rißfestigkeit und Temperaturwechselbeständigkeit bei gleichzeitig hoher Feuchte- und Chemikalienresistenz zu verbessern.

Description

Reaktionsharze zum Vergießen von druckempfindlichen elek¬ tronischen Bauelementen.
Zum Schutz vor klimatischen, thermischen, chemischen und mechanischen Einflüssen werden elektronische Bauelemente mit Kunststoff umhüllt. Ein vielseitig einsetzbares und einfaches Umhüllverfahren ist der Verguß von elektronischen Bauelementen mit flüssigen Reaktionsharzen und anschließen¬ der thermisch initiierter Härtung.
Unproblematisch sind Umhüllungen für Bauelemente, die in einer Umgebung mit konstanten Bedingungen bezüglich Tempe¬ ratur und Atmosphäre betrieben werden. Sollen die Bauele¬ mente jedoch für größere Temperaturbereiche geeignet sein, muß das thermisch-mechanische Eigenschaftsniveau der Reak¬ tionsharzumhüllung so beschaffen sein, daß die im Tempe¬ raturwechsel zwangsläufig auftretenden Zug- bzw. Druckkräf¬ te eine für das Bauelement kritische Größe nicht überstei¬ gen.
Es sind kautschukelastifizierte Reaktionsharze bekannt, die sich hinsichtlich ihrer mechanischen Eigenschaften für die Umhüllung und Abdeckung von druckempfindlichen Bauele¬ menten eignen würden. Aufgrund der Empfindlichkeit derar- tiger Massen gegenüber feuchter oder chemisch aggressiver, insbesondere thermisch oxidativer Umgebung eignen sie sich daher nicht zur Umhüllung von Bauelementen, die unter obi¬ gen Umgebungsbedingungen betrieben werden. .
Zur Schaffung einer Reaktionsharzumhüllung mit sogenanntem low-stress-Verhalten wird in einem bekannten Verfahren eine doppelte Umhüllung erzeugt. Dazu wird das Bauelement zunächst mit einer elastischen Dämpfungsschicht abgedeckt und schließlich mit einer harten und chemisch inerten weiteren Harzschicht versehen. Dieses Verfahren erfordert jedoch zumindest zwei Arbeitsgänge für eine Umhüllung und ist daher ein aufwendiges, kosten- und zeitintensives Ver¬ fahren.
Bislang verwendete einschichtige Umhüllungen,--zum Beispiel auf der Basis von Epoxid-Anhydrid- oder Epoxά-t-Amin-Bas-i_r. werden den stetig steigenden Ansprüchen hinsichtlich wirt¬ schaftlicher Verarbeitbarkeit und steigenden thermischen-"- Anforderungen nicht mehr gerecht. So zeigten zum Beispiel-" mit Gießharz nach dem Stand der Technik umhüllte Drehzahl- seπsoren für Automobile nach Dauerlagerung bei 150*C mit kurzen im 30-minütigen Abstand gelegenen Temperaturspitzen bis 180*C nach ca. 1200 Stunden die ersten Ausfälle.
Aufgabe der vorliegenden Erfindung ist es daher, eine Reak¬ tionsharzmasse zum Vergießen druckempfindlicher elektro¬ nischer Bauelemente anzugeben, die bereits als Einschicht- u hüllung ein optimales low-stress-Verhalten zeigt, über einen hohen Temperaturbereich von -40*C bis 150*C zu kei- nerlei Beschädigung der vergossenen Bauelemente führt und die außerdem gegenüber feuchter und aggressiver Umgebung, wie sie insbesondere im Motorraum von Kraftfahrzeugen auf¬ tritt, beständig ist.
Diese Aufgabe wird durch eine Reaktionsharzmasse gelöst, die erfinduπgsge äß die Merkmale von Anspruch 1 aufweist.
Weitere Ausgestaltungen der Erfindung sowie ein damit ver¬ gossenes elektronisches Bauelement sind den Unteransprü- chen zu entnehmen.
Die erfinduπgsge äße Reaktionsharzmasse vereint in erfin¬ derischer Weise die vorteilhaften Eigenschaften der darin enthaltenen Einzelkomponenten, ohne gleichzeitig deren Nachteile aufzuweisen. So wird durch Einarbeitung der Sili¬ konkautschukpartikel ein zähelastisches Verhalten der ge- härteten Reaktionsharzmasse mit hohem E-Modul erzielt, ohne daß damit eine merkliche Abnahme der Glasübergangs¬ temperatur der gehärteten Reaktionsharzmasse verbunden ist. Auch die hohe Diffusionsgeschwindigkeit kleiner Mole¬ küle (zum Beispiel Wasser) innerhalb von Silikonkautschuk wird durch Verwendung feinteiliger voneinander getrennter Silikonkautschukpartikel unterdrückt bzw. hat keine Aus¬ wirkungen auf den (gehärteten) Reaktionsharzformstoff.
Die reaktiven Bestandteile der Reaktionsharzmatrix härten zu einem Reaktionsharzformstoff mit hoher Glasübergangstem¬ peratur von zum Beispiel mehr als 170"C, welche außerhalb des gewünschten Betriebstemperaturintervalls für ein zu umhüllendes Bauelement liegt und daher im Betrieb des Bau¬ elements keine Phasenumwandlung zeigt.
Das Härtersystem, welches aus dem Härter und dem Beschleu¬ niger besteht, ist auf eine schnelle Härtung bei relativ hoher Temperatur optimiert. Gleichzeitig ist durch einen geeigneten Reaktionsbeschleuniger auf der Basis von Imida- zol garantiert, daß die Reaktionsharzmasse unterhalb der Härtungstemperatur eine ausreichend lange Verarbeitungbar- keit von zumindest einer Stunde aufweist und so einen langen Maschinenzyklus ohne dazwischenliegende Reinigung der Applikationsvorrichtungen ermöglicht.
Der hohe Füllstoffgehalt von bis zu 45 Volumenprozent ist für eine nur geringe Wärmeausdehnung im Betriebstemperatur¬ intervall verantwortlich, was auf den niedrigen Ausdehnungs¬ koeffizienten von Quarzgut zurückzuführen ist. Trotz des hohen Füllstoffgehaltes hat die Reaktionsharzmasse eine zur Verarbeitung ausreichend niedrige Viskosität von weni¬ ger als 1500 mPas, was durch eine optimierte Korngrößenver¬ teilung des Füllstoffes bewirkt wird. So können mit der Reaktionsharzmasse beliebige Applikationsapparaturen ver- wendet werden und damit Bauelemente vergossen werden, die eine anspruchsvolle Geometrie mit Hinterschnitten und/oder enge Zwischenräume oder Spalte von wenigen μm aufweisen.
Eine geeignete Korngrößenverteilung für einen Füllstoff auf der Basis von splittrigem Quarzgut enthält
- 35 bis 50 Gewichtsprozent Partikel größer 25 μm,
- 15 bis 30 Gewichtsprozent Partikel zwischen 10 und 25 μ ,
- 5 bis 12 Gewichtsprozent Partikel zwischen 4 und 10 μm,
- 10 bis 20 Gewichtsprozent Partikel kleiner 4 μm und
- 5 bis 10 Gewichtsprozent Partikel kleiner 2 μm.
Damit wird bei einem Füllgrad von insbesondere 35 bis 40 Volumenprozent eine noch gut verarbeitbarte Reaktionsharz¬ masse von zum Beispiel 1100 Pas erhalten.
Ein geeignet gewählter Beschleuniger trägt zur hohen mög¬ lichen Verarbeitungstemperatur und damit zur niedrigen Viskosität bei dieser Verarbeitungstemperatur bei. Beson¬ ders geeignet sind Imidazole, die in 1-Position mit einer Cyanoethyl-Gruppe substituiert sind, wie beispielsweise das l-Cyanoethyl-2-phenyl- imidazol. Doch auch anders sub¬ stituierte Imidazole sind geeignet, beispielsweise 2-Ethyl- 4-methylimidazol. Diese Imidazole können allein als Be¬ schleuniger eingesetzt werden, oder in Abmischung mit ande¬ ren Beschleunigern, beispielsweise mit einem Benzyltetra- hydrothiolaniumsalz.
Als Reaktivverdünner werden bevorzugt Bisepoxide auf der Basis der Diglycidylether von Bisphenol A und/oder Bisphe¬ nol F verwendet. Diese führen in der ungehärteten Reak- tionsharzmasse zu einer Viskositätsabsenkung ohne dabei die Glasübergangstemperatur der gehärteten Reaktionsharz- formstoffe negativ zu beeinflussen.
Als Vernetzungsverstärker werden bevorzugt Glycidylether auf Phenol- oder Kresol-Novolak-Basis verwendet. Dieser Bestandteil verleiht dem Formstoff eine Glasübergangstem- peratur und läßt sich ebenso wie die Bisphenol-A- bzw.
F-Diglycidylether in electronic-grade-Qualität herstellen. Dies bedeutet insbesondere einen Gesamtchlorgehalt von weniger als 1200 pp und geringste ionische Verunreinigun¬ gen, die ansonsten für eine erhöhte Korrosionsanfälligkeit der mit der Masse umhüllten elektronischen Bauelemente be¬ wirken könnten.
Als Härterkomponente für die Reaktionsharzmasse werden An¬ hydride eingesetzt, wobei insbesondere das Methylnadicsäu- reanhydrid geeignet ist.
Die Rißanfälligkeit der vernetzten Reaktionsharzformstoffe ist auch bei hoher Temperaturwechselbeanspruchung deutlich verringert.
Die Reaktionsharzmassen lassen sich in Form von zwei lager¬ stabilen Komponenten (Harz- und Härterkomponente) bereit¬ stellen und mit den üblichen Methoden zu Reaktionsharzmas¬ sen aufbereiten. Sie sind bei 60"C über vier Stunden ge- brauchsfähig und lassen sich deshalb vorteilhaft im batch- Verfahren ohne aufwendige Mischeinrichtungen verarbeiten. Andererseits genügen bereits 20 Minuten bei 150βC für die Aushärtung der Harzmassen. Die Verarbeitungseigenschaften oer erfindungsgemäßen Reaktionsharzmasse sind also so ein- gestellt, daß elektronische Bauelemente mit relativ gerin¬ gem technologischem Aufwand und in wirtschaftlicher Fer¬ tigung in großer Serie umhüllt werden können. Aufgrund der hohen Temperaturbeständigkeit der erfindungsgemäßen Reak¬ tionsharzmasse eiαnet sich diese in nεrvorraαender Weise 0585
für elektronische Bauelemente für die Automobiltechnik und insbesondere für Bauelemente, die im Außenbereich oder im Motorraum von Kraftfahrzeugen eingesetzt werden, zum Bei¬ spiel zum Verguß von Drehzahlsensoren.
Im folgenden wird die Erfindung anhand eines Ausführungs¬ beispiels näher erläutert.
Eine für die erfindungsgemäße Reaktionsharzmasse geeignete Reaktionsharzmatrix wird aus folgenden in Gewichtsteilen (MT) angegebenen Bestandteilen zusammengemischt:
12 MT Bisphenol A 40 MT Bisphenol F 30 MT Kresolnovolak 83 MT Methylnadicsäureanhydrid
I MT l-Cyanoethyl-2-phenylimidazol
Diese Masse enthält 18 MT Silikonkautschukpartikel mit einer maximalen Partikelgröße kleiner 2 μm, die zur besse¬ ren Verträglichkeit mit der Reaktionsharzmatrix Oberflä¬ chen modifiziert, das heißt mit Epoxidharzen kompatiblen funktionellen Gruppen versehen sind. Der Füllstoffanteil wird aus käuflichen Quarzguttypen derart zusammengemischt, daß die Reaktionsharzmasse bei gleichem Füllstoffgehalt möglichst niedrige Viskosität zeigt. Für einen Füllstoff¬ anteil von 55 Gewichtsprozent bzw. 40 Volumenprozent wird dazu zum Beispiel splittriges Quarzgut in folgenden An¬ teilen zugesetzt:
211 MT Silbond FW 61 EST
II MT Silbond FW 600 EST und 4,5 MT Sil icron VP 810-10/1.
Die nun fertige Reaktionsharzmasse besitzt bei einer Verar- beitungstempexatur von 80βC eine Viskosität von 1000 mPas und eine Gebrauchsdauer von 75 Minuten. Wenn alle Bestandteile homogen gemischt sind, kann die Reak¬ tionsharzmasse mit beliebigen Applikationsvorrichtungen ver- arbeitet werden. Zur Härtung der Masse genügen 20 Minuten bei 150*C.
Eine aus den genannten Bestandteilen bestehende Reaktions¬ harzmasse, die unter den genannten Bedingungen gehärtet wurde, besitzt eine Glasübergangstemperatur (Temperatur des Dämpfungsmaximums) von 185*C, ein E-Modul bei 25*C von
-2 ?
4700 Nmm , bei 250*C von 500 Nm und einen Ausdehnungs¬ koeffizienten bei 50 bis 110'C von 26 pp K . Auch die Feuchteaufnahme ist sehr gering und beträgt nach DIN 53495 0,33 Prozent (nach 7 Tagen/ 23*C). Der geringe Massever¬ lust von 0,27 Prozent nach 1000 Stunden Hochtemperaturla¬ gerung bei 180*C zeugt von der hohen Temperaturbeständig¬ keit und der vollständigen Durchhärtung der Reaktionsharz¬ masse bzw. des Reaktionsharzformstoffes.
Um die Eignung der Reaktionsharzmasse als Umhüllungsmasse für empfindliche elektronische Bauteile zu testen, wird eine Testplatine mit der Reaktionsharzmasse vergossen und anschließend mit raschen Temperaturwechseln belastet. Dazu werden Zyklen von -40*C bis +150*C mit je einer Stunde Ver¬ weilzeit gewählt. Nach 300 Zyklen ist noch keine Beein¬ trächtigung der Meßwerte festzustellen.
Parallel dazu werden die gleichen Platinen mit einer Harz- masse vergossen, die sich von der erfindungsgemäßen nur durch das Fehlen der Silikonkautschukpartikel unterschei¬ det. Auch diese Platinen funktionieren noch nach 300 Zyk¬ len Temperaturwechseltest, jedoch sind deutliche Risse in der Umhüllung erkennbar.
Für eine spezielle Anwendung der erfindungsgemäßen Reak¬ tionsharzmasse werden Drehzahlsensoren mit der Masse ver¬ gossen. Ein Temperaturwechseltest (1 Stunde/-40*C, 3 Stun¬ den Aufheizen auf 180*C, 3 Stunden/180"C, Spannungsbela- stung U = 12 V) ergibt auch nach 70 Zyklen noch keinerlei Funktionsstörung der Sensoren.
Für eine Anwendung der erfindungsgemäßen Reaktionsharzmas¬ se für weniger empfindliche elektronische Bauelemente kann der Füllgrad reduziert werden, beispielsweise auf 30 oder 35 Volumenprozent. Dabei wird die für die Verarbeitung erforderliche Viskosität bereits bei 60 bzw. 70"C erreicht, wodurch sich die Gebrauchsdauer (Topfzeit) auf 265 bzw. 150 Minuten erhöht.
Bei den untersuchten Proben hat weder die Füllstoffor noch die Korngrößenverteilung einen Einfluß auf die ge¬ messene Glasübergangstemperatur, den Dämpfungsfaktor und den Elastizitätsmodul des Reaktionsharzformstoffs. Wohl aber steigt erwartungsgemäß mit abnehmendem Füllgrad der Ausdehnungskoeffizient.
Die Reaktionsharzmasse kann daher für jedes Anwendungs¬ problem optimiert werden, wobei der Schwerpunkt auf die Formstoffeigenschaften oder alternativ auf die Verarbei¬ tungseigenschaften der Reaktionsharzmasse gelegt werden kann. In jedem Fall wird eine gegenüber dem Stand der
Technik deutlich verbesserte Reaktionsharzmasse erhalten, die bestens für druckempfindliche elektronische Bauele¬ mente geeignet ist. Die einfache und problemlose Verar¬ beitung macht die Masse ausgesprochen fertigungsfreund- lieh.

Claims

Patentansprüche
1. Reaktionsharzmasse zum Vergießen von druckempfindlichen elektronischen Bauelementen, die aus einer Reaktionsharz¬ matrix und einem Füllstoff besteht, bei der die Reaktions¬ harzmatrix zumindest folgende Bestandteile enthält:
- 3 bis 10 Gewichtsprozent feinteilige Silikonkautschuk¬ partikel,
- 25 bis 40 Gewichtsprozent eines niederviskosen und aro¬ matischen Reaktivverdünners auf der Basis von Bisepoxi- den,
- 10 bis 25 Gewichtsprozent eines Vernetzungsverstärkers auf der Basis eines aromatischen Polyepoxids,
- 35 bis 55 Gewichtsprozent eines Härters auf der Basis von Anhydriden und
- 0,3 bis 2 Gewichtsprozent eines Reaktionsbeschleunigers auf der Basis von Imidazol,
wobei die Reaktionsharzmasse 25 bis 45 Volumenprozent Füll¬ stoff auf der Basis von Quarzgut mit einer auf niedrige Viskosität der Reaktionsharzmasse optimierten Korngrößen¬ verteilung enthält.
2. Reaktionsharzmasse nach Anspruch 1, welche bei einer gegebenen Verarbeitungstemperatur eine Topfzeit von zumin¬ dest 1 Stunde und eine Viskosität von weniger als 1500 Pas aufweist.
3. Reaktionsharzmasse nach Anspruch 1 oder 2, welche als Reaktionsbeschleuniger ein 1-Cyanoethyl-substituiertes Imidazol enthält.
4. Reaktionsharzmasse nach einem der Ansprüche 1 bis 3, die eine Glasübergangstemperatur von zumindest 170*C auf- weist.
5. Reaktionsharzmasse nach einem der Ansprüche 1 bis 4, die einen Füllgrad von 35 bis 40 Volumenprozent aufweist,
6. Reaktionsharzmasse nach einem der Ansprüche 1 bis 5, die als Füllstoff splittriges Quarzgut mit folgender Korn¬ größenverteilung enthält:
- 35 bis 50 Gewichtsprozent Partikel größer als 25 μm,
- 15 bis 30 Gewichtsprozent Partikel zwischen 10 und 25 μm,
- 5 bis 12 Gewichtsprozent Partikel zwischen 4 und 10 μm,
- 10 bis 20 Gewichtsprozent Partikel kleiner 4 μm und
- 5 bis 10 Gewichtsprozent Partikel kleiner 2 μm.
7. Reaktionsharzmasse nach einem der Ansprüche 1 bis 6, die als Reaktivverdünner Diglycidylether von Bisphenol A und/oder Bisphenol F enthält.
8. Reaktionsharzmasse nach einem der Ansprüche 1 bis 7, die als Härter Methylnadicsäureanhydrid enthält.
9. Reaktionsharzmasse nach einem der Ansprüche 1 bis 8 mit
einem Reaktivverdünner auf. der Basis von Diglycidyl- ethern von Bisphenol A/F
einem Vernetzungsverstärker auf der Basis von Kresol- oder Phenol-Novolakharz, und splittrigem Quarzgut als Füllstoff.
10. Elektronisches Bauelement, welches mit einer Reaktions¬ harzmasse nach einem der vorangehenden Ansprüche vergossen ist.
11. Verwendung eines Bauelements nach Anspruch 10 für einen Anwendungsbereich von - 40 bis 150*C in feuchter und aggressiver Umgebung, insbesondere im Motorraum von Kraft¬ fahrzeugen.
EP93906430A 1992-04-03 1993-03-17 Reaktionsharze zum vergiessen von druckempfindlichen elektronischen bauelementen Withdrawn EP0636277A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4211250A DE4211250A1 (de) 1992-04-03 1992-04-03 Reaktionsharze zum Vergießen von druckempfindlichen elektronischen Bauelementen
DE4211250 1992-04-03
PCT/DE1993/000247 WO1993020585A1 (de) 1992-04-03 1993-03-17 Reaktionsharze zum vergiessen von druckempfindlichen elektronischen bauelementen

Publications (1)

Publication Number Publication Date
EP0636277A1 true EP0636277A1 (de) 1995-02-01

Family

ID=6456011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93906430A Withdrawn EP0636277A1 (de) 1992-04-03 1993-03-17 Reaktionsharze zum vergiessen von druckempfindlichen elektronischen bauelementen

Country Status (4)

Country Link
EP (1) EP0636277A1 (de)
KR (1) KR950701140A (de)
DE (1) DE4211250A1 (de)
WO (1) WO1993020585A1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488404A (en) * 1967-12-18 1970-01-06 Chevron Res Diepoxy alkanes as epoxy diluents for polyglycidyl ethers of polyhydric phenols or epoxidized novolacs
JPS6018145B2 (ja) * 1980-09-22 1985-05-09 株式会社日立製作所 樹脂封止型半導体装置
US4732962A (en) * 1987-02-18 1988-03-22 General Motors Corporation High temperature epoxy tooling composition of bisphenol-A epoxy, trifunctional epoxy, anhydride curing agent and an imidazole catalyst
JP2642470B2 (ja) * 1989-02-23 1997-08-20 株式会社東芝 封止用樹脂組成物及び樹脂封止型半導体装置
DE59010594D1 (de) * 1989-03-08 1997-01-23 Siemens Ag Tropfenabdeckmassen für elektrische und elektronische Bauelemente

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9320585A1 *

Also Published As

Publication number Publication date
DE4211250A1 (de) 1993-10-07
KR950701140A (ko) 1995-02-20
WO1993020585A1 (de) 1993-10-14

Similar Documents

Publication Publication Date Title
DE3137480C2 (de)
DE69501771T2 (de) Epoxidharzformmasse zur Einkapselung elektronischer Bauelemente und eingekapselte Halbleiteranordnung unter Verwendung dieser Formmasse
DE3884648T2 (de) Epoxyharz-Zusammensetzung und eine harzumhüllte Halbleiteranordnung.
DE102009053965B4 (de) Mit einer Vergussmasse vergossene Gradientenspule
EP0308676A2 (de) Spannungsarme Umhüllung für elektrische und elektronische Bauelemente, insbesondere Hybridschaltungen
EP1303567B2 (de) Volumenmodifizierte vergussmassen auf der basis polymerer matrixharze
EP1518889B1 (de) Härtbares Reaktionsharzsystem
EP1156711A1 (de) Verguss- oder Einbettmasse mit elektromagnetischen Abschirmeigenschaften zur Herstellung elektronischer Bauteile
DE10057111C1 (de) Wärmeleitfähige Vergußmasse
EP0386473B1 (de) Tropfenabdeckmassen für elektrische und elektronische Bauelemente
DE69508129T2 (de) Epoxydharzzusammensetzung und Formmassen daraus
EP2252641B1 (de) Härtbares reaktionsharzsystem
DE102007062035A1 (de) Reaktionsharzsystem
EP1337585B1 (de) Silikonmodifizierte einkomponentenvergussmasse
EP0636277A1 (de) Reaktionsharze zum vergiessen von druckempfindlichen elektronischen bauelementen
DE19538468B4 (de) Verfahren zur flächigen Verklebung von Werkstücken, geklebter Verbund und Verwendung davon
DE10144871A1 (de) Vergußmasse mit hoher thermischer Stabilität
EP0623782A2 (de) Reflektor für Fahrzeugscheinwerfer und Verfahren zu dessen Herstellung
EP0391183B1 (de) Elektrischer Isolator
WO2009089957A1 (de) Härtbares reaktionsharzsystem
DE3229558A1 (de) Impraegniervergussmasse fuer elektrische bauteile
DE68909198T2 (de) Giessharzzusammensetzung, Verfahren zum Vergiessen eines elektronischen Bauelementes und vergossenes elektronisches Bauelement.
WO2009144135A1 (de) Wärmeleitfähiger verbundwerkstoff mit aluminium-pulver, verfahren zum herstellen des verbundwerkstoffs und verwendung des verbundwerkstoffs
DE69917729T2 (de) Filmförmiges Einkapselungsmaterial für elektronische Teile
DE102007012919B4 (de) Zündspule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19960411

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960822