EP0633100B1 - Torque measuring tool, such as an electronic torque wrench - Google Patents

Torque measuring tool, such as an electronic torque wrench Download PDF

Info

Publication number
EP0633100B1
EP0633100B1 EP94401544A EP94401544A EP0633100B1 EP 0633100 B1 EP0633100 B1 EP 0633100B1 EP 94401544 A EP94401544 A EP 94401544A EP 94401544 A EP94401544 A EP 94401544A EP 0633100 B1 EP0633100 B1 EP 0633100B1
Authority
EP
European Patent Office
Prior art keywords
measuring
handle
stresses
tool according
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401544A
Other languages
German (de)
French (fr)
Other versions
EP0633100A1 (en
Inventor
Gérard Brihier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Facom SA
Original Assignee
Facom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Facom SA filed Critical Facom SA
Publication of EP0633100A1 publication Critical patent/EP0633100A1/en
Application granted granted Critical
Publication of EP0633100B1 publication Critical patent/EP0633100B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/142Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for hand operated wrenches or screwdrivers
    • B25B23/1422Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for hand operated wrenches or screwdrivers torque indicators or adjustable torque limiters
    • B25B23/1425Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for hand operated wrenches or screwdrivers torque indicators or adjustable torque limiters by electrical means

Definitions

  • the subject of the present invention is a tool for measuring a torque such as for example an electronic torque wrench, making it possible to know the value of the torque exerted on a tightening member (nut, screw, bolt or the like) actuated in rotation by means of this key, and therefore to check the tightening ensured by this key, cf. for example US-A-4,006,629.
  • a tightening member nut, screw, bolt or the like
  • torque wrench torque wrench
  • the version generally considered to be the simplest torque wrench 1 using resistive extensometers and electronic signal processing shown in Fig. 1 includes a control head (of a variable model) for the part to be screwed, a flexible part 4 (handle) equipped with an extensometer (M) and used to measure the force F applied perpendicular to the longitudinal axis of the handle 4, and a manual handle 3 used to apply the force F at a variable point P.
  • the geometries and the embodiments of these different parts can, of course, be very variable.
  • the control head of the workpiece can, for example, include an open-end wrench or a square 5 for socket driving, or a "universal" adapter.
  • Equation (5) shows that the value obtained does not exactly correspond to that of the torque applied to the workpiece unless the position of the point of application P of the control force F is constant. For practical applications, this imprecision limits the possibility of using this simple solution when looking for precise measurements. A number of embodiments have therefore been proposed for producing torque wrenches that do not have this defect.
  • a first embodiment described in particular in French patent 2,400,996, consists in placing the means for measuring the force physically or functionally concentric with the axis of the screw or nut tightened (loosened) by the key.
  • This device leads to an increase in the volume of the key at the level of its head, which poses accessibility problems in many case.
  • certain types of drive, especially open-end wrench are not compatible with this solution.
  • a third embodiment described in US Pat. No. 4,006,629, consists in providing two independent measuring devices located at distances D1 and D2 different from the axis of the head of the key.
  • the ratio of the values measured by the two devices is influenced by the position of the point of application of the force and allows by the same to determine this position. Once this is known, the exact ratio between the measured value and the torque can be determined and this can therefore be calculated exactly.
  • the simple addition of the measured values M1 and M2 with suitable coefficients allows the global resolution, and therefore dispenses with carrying out explicit calculation operations. Due to the very principle of this device, the overall signal provided by the elongation sensors has a value much lower than the signal corresponding to a simple bending, and is therefore more sensitive to disturbances.
  • a fourth embodiment described inter alia in French patent 2,538,741, consists in mechanically coupling the metal part, the measurement of which is measured. deformation and the handle of the key, so that only the forces corresponding to the transmission of a torque are transmitted to the part used for force measurement.
  • this type of solution uses mechanical devices of the joint type, which, due to the imperfections inherent in this function, leads to a limitation of the possible precision.
  • the object of the present invention is a device for overcoming errors due to the position of the point of application of the control force, designed in such a way that it causes little or no substantial increase in the cost price of the key.
  • the tool for measuring a torque for example a tightening torque, such as an electronic torque wrench targeted by the invention is of the type comprising a tightening head of a screw-in member, a manual control handle, a handle deformable and sensitive to bending connecting the handle to the tightening head, as well as electronic means for measuring the deformation of the handle and for displaying the tightening torque determined from said deformation measurement characterized in that said means of measurement are suitable for measuring, independently or not, the stresses due respectively to shear and bending, and these means are made so that these stresses are in proportions such that the influence of the shear stresses compensates for an error caused by the setting in consideration of bending alone for the determination of the torque transmitted by the clamping head.
  • the handle may include an area whose main section is different from that of the rest of the handle and such that it can locally transform shear stresses, generated by the control force, into elongation-compression stresses parallel to the surface of the handle,
  • Figure 1 is a longitudinal elevational view of a known torque wrench.
  • Figure 2 is a longitudinal elevational view of a first embodiment of the electronic torque wrench according to the invention.
  • Figure 3 is a longitudinal elevational view of a second embodiment of the torque wrench according to the invention.
  • Figures 4 and 5 are graphs illustrating the variations respectively of the shear stresses and the bending stresses, on both sides of the area of the handle of the wrench according to Fig.3, whose section has been modified in accordance with the invention.
  • Figure 6 is a partial elevational view of a third embodiment of the key according to the invention.
  • Figure 7 is a top view of the key handle of Fig.6.
  • Figure 8 is a partial side elevation view of a fourth embodiment of the key according to the invention.
  • the torque wrench 1 shown in Fig.1 known per se, has a suitable clamping axis 5, for example square section as shown, or rectangular or hexagonal ...
  • the extensometer M can be connected, in a manner known in itself and not shown, to an electronic circuit for measuring and displaying the tightening torque exerted by the axis 5.
  • equation (6) By bringing equation (6) closer to equations (2) and (3) we note the analogy between the second term on the right of equation (6) and equation (2), but also that existing between equation (3) and the first term of equation (6). Indeed in these last two cases the value depends, with constant constants, only on that of the force F.
  • the measurement of the bending stresses is carried out in a conventional manner using resistive extensometers bonded to the appropriate faces of the bar.
  • the measurement of the shear stresses can be carried out by the conventional methods for this type of measurement, for example by means of extensometers glued on the lateral faces of the bar.
  • this solution leads to costs close to those of known solutions, which limits the practical interest of this solution to specific cases.
  • the signal from the extensometers measuring the shear may then be too weak to be combined directly (according to equation (6)) with the signal from the extensometers providing the information of bending, and it would then be necessary to attenuate this latter signal, which would be detrimental to the quality of the measurements.
  • the solution proposed according to the invention consists in varying the section of the flexible part (4) at the level of the measurement system (M), in order to locally transform the shear stresses into elongation / compression stresses parallel to the surface. It is then easy to measure these stresses using conventional resistive extensometers.
  • the stresses thus created are superimposed on those due to bending.
  • By measuring the bending stresses separately in an area of regular section it is possible to isolate by calculation the value of the stresses due to shear.
  • Another more efficient possibility, to measure the bending consists in adding (or subtracting according to the signs of origin) the values obtained in two zones where the shear and bending stresses are respectively of the same value, but where their relative sign is in one zone the reverse of what it is in the other zone.
  • the operator can therefore easily avoid exceeding the nominal value of the torque.
  • a first favorable solution consists in providing in the handle 4 a recess of preferably constant section, and of main axis perpendicular both to the longitudinal axis of the handle 4 and to the axis of application of the control force.
  • the handle 7, of rectangular periphery comprises a parallelepipedic bore 8, the axis XX of which is at the distance D from l geometric axis of clamping of the profile 5 and at a distance L1 from the point of application P of the control force F.
  • the main axis XX of the recess 8 is perpendicular both to the axis of application of the force F and at the longitudinal axis YY of the bar or handle 7.
  • the measuring means M resistive extensometers
  • the measuring means M are bonded to one of the faces of the handle 7 at a suitable location so as to cover an area situated substantially at right angles to the recess 8, close to the end of this recess and which may or may not cover the area in which the section of the handle 4 is full.
  • Fig.3 illustrates an alternative embodiment of the key 6 in which the recess in the handle 7 is constituted by a cylindrical bore 9 suitably dimensioned.
  • the recess in the handle 7 is constituted by a cylindrical bore 9 suitably dimensioned.
  • many other geometries of the recess are possible.
  • the third embodiment of the torque wrench illustrated in FIGS. 6 and 7, comprises a handle 11 whose zone 16 of section different from that of the rest of the handle consists of at least two parallel bars 12 each comprising an intermediate part 13 of constant cross section and thickness E, and two opposite end parts 14. The latter have an increasing cross section from part 13 to the junction with the contiguous part of the handle 11.
  • the measuring means M are glued to the one of the terminal parts 14.
  • each bar 12 is such that over the part 13 of its length, the ratio between the stresses due to the section and those due to shear is approximately constant. Such a characteristic limits the precision required for the positioning of the extensometers M.
  • the thickness E of each part 13 intervenes in a substantially proportional manner for the stresses due to bending, and to the power 2 for those due to shearing.
  • the width of the bar intervenes proportionally in both cases.
  • the simplified explanation of the operation is as follows: in the zone 13 considered, the inertia of the bar 12 is constant, which leads to an approximately constant sensitivity for the bending stresses. For the shear stresses, the considered portion of the bar 12 constitutes an isoflexion beam.
  • the external dimensions of the flexible element (4; 7; 11; 19) in the region of the recess (8, 9 ...) and those of said recess make it possible to independently define the values of the stresses due to shearing and those due to bending.
  • the distance from the right of the axis of the recess makes it possible, for a given bar and recess geometry, to define a bonding area of the extensometer such as the average of the longitudinal surface stresses in this zone corresponds to the distribution (coefficients Sc and Sf) described above. For a given geometry this zone may not exist, and it is therefore essential to choose a suitable geometry.
  • the fourth embodiment of the key shown in Fig.8 includes a bar or flexible handle 19 whose main section has not been modified, unlike the embodiments previously described.
  • This key is equipped with a measuring means consisting of the association of two elementary members corresponding respectively to a separate measurement of the shear forces due to the control force, and a measurement of the bending forces due to the control force. This can be achieved, for example, by combining two pairs of gauges in the same measurement bridge, each pair constituting an elementary "sensor".
  • the bending and shear measuring devices do not have a total insensitivity to the other parameter, the correction of their reciprocal relationships makes it possible to correct this error by means of additional resistances for example. It suffices that, in the final signal, the elementary components (bending, shear), are in the correct ratio.
  • the measuring devices glued to the faces of the bar 19 are sensitive to the stresses due to bending and to those due to shear, in proportions such that the influence of the shear stresses compensates for the error caused by the consideration of bending alone, for calculating the torque transmitted by the tightening device.
  • a torque wrench intended for measuring a maximum torque of 250 Nm having a length of 400 mm between the axis of the head 2 and the point of application P of the control force F, and using a deformable element ( 4, 7 7), the elastic limit of which has been set at 500 N / mm2.
  • the measuring element is located 40 mm from the axis of the head 2 and the width of the bar is fixed (arbitrarily) to 10 mm and the length of the recess to 20 mm. Since the global solution is not unique, these values correspond to a choice made according to criteria not depending solely on the subject of the invention itself.
  • the criteria for respecting the elastic limit lead to taking the maximum value of the stress due to bending as 9/11 of the elastic limit, that is to say 409 N / mm2 and for maximum value of the stress due to shearing, the 2 / 11ths of the elastic limit is 91 N / mm2.
  • the shear stress is 45.5 n / mm2.
  • the measuring device (M) described above as consisting of a single strain sensor can of course be made up of several sensors mounted in a half-bridge or in a full bridge. Multiple bridge structures can be produced while remaining within the scope of the invention.
  • the different extensometers can be placed at identical stress points (side by side for example) at symmetrical stress points (opposite faces of the bar for example), or at stress value points different. In the latter case, it is the functional sum of the measured stresses which must meet the placement criterion defined by the single extensometer.
  • the arrangement of the extensometer (s) must follow all the usual rules known to those skilled in the art, and can use the specific arrangements, also known. , in order to obtain an advantageous operation (insensitivity to unwanted twisting for example).
  • the recesses such as 8 and 9 preferably have a regular section for reasons of ease of manufacture. But this section may also not be regular, while remaining within the scope of the invention. It is also possible to make several recesses instead of just one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

La présente invention a pour objet un outil de mesure d'un couple tel que par exemple une clé dynamométrique électronique, permettant de connaître la valeur du couple exercé sur un organe de serrage (écrou, vis, boulon ou autres) actionné en rotation au moyen de cette clé, et par conséquent de contrôler le serrage assuré par cette clé, cf. par exemple US-A-4 006 629.The subject of the present invention is a tool for measuring a torque such as for example an electronic torque wrench, making it possible to know the value of the torque exerted on a tightening member (nut, screw, bolt or the like) actuated in rotation by means of this key, and therefore to check the tightening ensured by this key, cf. for example US-A-4,006,629.

L'un des problèmes couramment rencontrés sur les dispositifs de mesure du couple de serrage (desserrage) du type clé dynamométrique est celui de l'erreur due à l'incertitude sur le point d'application de la force de commande sur le manche de la clé. En pratique l'opérateur ne positionne pas toujours sa main exactement au même endroit et/ou ne répartit pas la force entre ses différents doigts de manière constante.One of the problems commonly encountered on devices for measuring the torque wrench type (torque wrench) is that of the error due to the uncertainty at the point of application of the control force on the handle of the key. In practice, the operator does not always position his hand exactly in the same place and / or does not distribute the force between his different fingers constantly.

La version généralement considérée comme la plus simple de clé dynamométrique 1 utilisant des extensomètres résistifs et un traitement électronique du signal représentée à la Fig.1 comprend une tête de commande (d'un modèle variable) de la pièce à visser, une partie flexible 4 (manche) équipée d'un extensomètre (M) et servant à mesurer la force F appliquée perpendiculairement à l'axe longitudinal du manche 4, et une poignée manuelle 3 servant à appliquer l'effort F en un point variable P. Les géométries et les modes de réalisation de ces différentes pièces peuvent être, bien entendu, très variables. La tête de commande de la pièce à visser peut, par exemple, comporter une clé à fourche ou un carré 5 pour entraînement de douille, ou un adaptateur "universel".The version generally considered to be the simplest torque wrench 1 using resistive extensometers and electronic signal processing shown in Fig. 1 includes a control head (of a variable model) for the part to be screwed, a flexible part 4 (handle) equipped with an extensometer (M) and used to measure the force F applied perpendicular to the longitudinal axis of the handle 4, and a manual handle 3 used to apply the force F at a variable point P. The geometries and the embodiments of these different parts can, of course, be very variable. The control head of the workpiece can, for example, include an open-end wrench or a square 5 for socket driving, or a "universal" adapter.

Cette solution simple utilise une mesure de la flexion du manche de la clé ou d'une pièce intermédiaire représentative de la flexion du manche. Les moyens de mesure de la flexion sont, par obligation, à une distance non nulle de l'axe de la tête de la clé. Le coefficient entre la valeur mesurée et le couple (Co) transmis par la clé dépend de la position du point d'application de la force de commande. Il est de valeur : Co = F x L

Figure imgb0001
This simple solution uses a measurement of the flexion of the handle of the wrench or of an intermediate piece representative of the flexion of the handle. The means of measuring the bending are, by obligation, at a distance not zero of the axis of the head of the key. The coefficient between the measured value and the torque (Co) transmitted by the key depends on the position of the point of application of the control force. It is of value: Co = F x L
Figure imgb0001

La valeur mesurée étant : Me = F x (L-D)

Figure imgb0002
The measured value being: Me = F x (LD)
Figure imgb0002

Un calcul direct du couple à partir de la valeur mesurée conduirait donc à une erreur Er de valeur égale à: Er = -F x D

Figure imgb0003
A direct calculation of the torque from the measured value would therefore lead to an error Er of value equal to: Er = -F x D
Figure imgb0003

On remarque que la valeur absolue de cette erreur ne dépend que de la valeur de la force F et est indépendante de la position du point d'application de la force. Le coefficient est donc L/(L-D)

Figure imgb0004
It is noted that the absolute value of this error depends only on the value of the force F and is independent of the position of the point of application of the force. The coefficient is therefore L / (LD)
Figure imgb0004

Et la valeur exacte du couple peut être calculée (à un coefficient près) à l'aide de la formule : C = M x (L/(L-D))

Figure imgb0005
And the exact value of the torque can be calculated (to the nearest coefficient) using the formula: C = M x (L / (LD))
Figure imgb0005

L'équation (5) met en évidence que la valeur obtenue ne correspond exactement à celle du couple appliqué à la pièce à visser que si la position du point d'application P de la force de commande F est constante. Pour des applications pratiques, cette imprécision limite la possibilité d'utiliser cette solution simple lorsque l'on recherche des mesures précises. Aussi un certain nombre de réalisations ont-elles été proposées pour réaliser des clés dynamométriques ne présentant pas ce défaut.Equation (5) shows that the value obtained does not exactly correspond to that of the torque applied to the workpiece unless the position of the point of application P of the control force F is constant. For practical applications, this imprecision limits the possibility of using this simple solution when looking for precise measurements. A number of embodiments have therefore been proposed for producing torque wrenches that do not have this defect.

Une première réalisation, décrite notamment dans le brevet français 2.400.996 consiste à placer les moyens de mesure de l'effort de manière physiquement ou fonctionnellement concentrique avec l'axe de la vis ou de l'écrou serré (desserré) par la clé. Ce dispositif conduit à une augmentation du volume de la clé au niveau de sa tête, ce qui pose des problèmes d'accessibilité dans de nombreux cas. De plus certains types d'entraînement, clé à fourche notamment, ne sont pas compatibles avec cette solution.A first embodiment, described in particular in French patent 2,400,996, consists in placing the means for measuring the force physically or functionally concentric with the axis of the screw or nut tightened (loosened) by the key. This device leads to an increase in the volume of the key at the level of its head, which poses accessibility problems in many case. In addition, certain types of drive, especially open-end wrench, are not compatible with this solution.

Une autre réalisation uniquement mécanique, (brevet français 1.034.502) consiste à réaliser, au moyen de deux lames convergeant vers l'axe de la tête de la clé, une structure se déformant préférentiellement sous l'effet d'un couple. L'influence sur les éléments de mesure des forces autres que le couple à mesurer est nettement diminuée, et la mesure peut être considérée comme dépendant uniquement de ce dernier. L'association de ce dispositif avec une mesure électronique au moyen d'extensomètres résistifs ("jauges de contraintes") est décrite dans le brevet français 2.584.330.Another purely mechanical embodiment (French patent 1,034,502) consists in producing, by means of two blades converging towards the axis of the head of the key, a structure preferably deformed under the effect of a torque. The influence on the elements of measurement of the forces other than the torque to be measured is markedly reduced, and the measurement can be considered to depend solely on the latter. The association of this device with an electronic measurement by means of resistive extensometers ("strain gauges") is described in French patent 2,584,330.

Une troisième réalisation, décrite dans le brevet US 4.006.629, consiste à prévoir deux dispositifs de mesure indépendants situés à des distances D1 et D2 différentes de l'axe de la tête de la clé. Le rapport des valeurs mesurées par les deux dispositifs est influencé par la position du point d'application de la force et permet par la-même de déterminer cette position. Une fois celle-ci connue, le rapport exact entre la valeur mesurée et le couple peut être déterminé et celui-ci peut donc être calculé exactement. En pratique la simple addition des valeurs mesurées M1 et M2 avec des coefficients adaptés permet la résolution globale, et dispense donc d'effectuer des opérations de calcul explicites. En raison du principe même de ce dispositif le signal global fourni par les capteurs d'élongation a une valeur nettement inférieure au signal correspondant à une flexion simple, et est donc plus sensible aux perturbations.A third embodiment, described in US Pat. No. 4,006,629, consists in providing two independent measuring devices located at distances D1 and D2 different from the axis of the head of the key. The ratio of the values measured by the two devices is influenced by the position of the point of application of the force and allows by the same to determine this position. Once this is known, the exact ratio between the measured value and the torque can be determined and this can therefore be calculated exactly. In practice, the simple addition of the measured values M1 and M2 with suitable coefficients allows the global resolution, and therefore dispenses with carrying out explicit calculation operations. Due to the very principle of this device, the overall signal provided by the elongation sensors has a value much lower than the signal corresponding to a simple bending, and is therefore more sensitive to disturbances.

Une quatrième réalisation, décrite entre autres dans le brevet français 2.538.741, consiste à coupler mécaniquement la pièce métallique dont on mesure la déformation et le manche de la clé, de manière à ce que seules les forces correspondant à la transmission d'un couple soient transmises à la partie servant à la mesure de force. En général ce type de solution met en oeuvre des dispositifs mécaniques du type articulation ce qui, en raison des imperfections inhérentes à cette fonction, conduit à une limitation de la précision possible.A fourth embodiment, described inter alia in French patent 2,538,741, consists in mechanically coupling the metal part, the measurement of which is measured. deformation and the handle of the key, so that only the forces corresponding to the transmission of a torque are transmitted to the part used for force measurement. In general, this type of solution uses mechanical devices of the joint type, which, due to the imperfections inherent in this function, leads to a limitation of the possible precision.

Ces différentes solutions conduisent à des réalisations nettement plus complexes et plus onéreuses que la simple mesure de flexion au niveau du manche de la clé.These different solutions lead to significantly more complex and more expensive embodiments than the simple measurement of bending at the handle of the key.

L'objet de la présente invention est un dispositif permettant de s'affranchir des erreurs dues à la position du point d'application de la force de commande, conçu de telle manière qu'il n'entraîne pas ou peu d'augmentation substantielle du prix de revient de la clé.The object of the present invention is a device for overcoming errors due to the position of the point of application of the control force, designed in such a way that it causes little or no substantial increase in the cost price of the key.

L'outil de mesure d'un couple, par exemple de serrage, tel qu'une clé dynamométrique électronique visée par l'invention est du type comportant une tête de serrage d'un organe à visser, une poignée manuelle de commande, un manche déformable et sensible à la flexion reliant la poignée à la tête de serrage, ainsi que des moyens électroniques de mesure de la déformation du manche et d'affichage du couple de serrage déterminés à partir de ladite mesure de déformation caractérise en ce que lesdits moyens de mesure sont adaptés pour mesurer, indépendamment ou non, les contraintes dues respectivement au cisaillement et à la flexion, et ces moyens sont réalisés afin que ces contraintes soient dans des proportions telles que l'influence des contraintes de cisaillement compense une erreur provoquée par la prise en considération de la flexion seule pour la détermination du couple transmis par la tête de serrage.The tool for measuring a torque, for example a tightening torque, such as an electronic torque wrench targeted by the invention is of the type comprising a tightening head of a screw-in member, a manual control handle, a handle deformable and sensitive to bending connecting the handle to the tightening head, as well as electronic means for measuring the deformation of the handle and for displaying the tightening torque determined from said deformation measurement characterized in that said means of measurement are suitable for measuring, independently or not, the stresses due respectively to shear and bending, and these means are made so that these stresses are in proportions such that the influence of the shear stresses compensates for an error caused by the setting in consideration of bending alone for the determination of the torque transmitted by the clamping head.

Conformément à un mode de réalisation de l'invention, le manche peut comporte une zone dont la section principale est différente de celle du reste du manche et telle qu'elle peut transformer localement des contraintes de cisaillement, générées par la force de commande, en contraintes d'élongation-compression parallèles à la surface du manche,In accordance with one embodiment of the invention, the handle may include an area whose main section is different from that of the rest of the handle and such that it can locally transform shear stresses, generated by the control force, into elongation-compression stresses parallel to the surface of the handle,

On constate que dans ces conditions, l'erreur de mesure due à la position du point d'application de la force de commande se trouve diminuée ou annulée, ce qui permet à l'opérateur de respecter la valeur nominale du couple.It is noted that under these conditions, the measurement error due to the position of the point of application of the control force is reduced or canceled, which allows the operator to respect the nominal value of the torque.

D'autres particularités et avantages de l'invention apparaîtront au cours de la description qui va suivre, faite en référence aux dessins annexés qui en illustrent plusieurs formes de réalisation à titre d'exemples non limitatifs.Other features and advantages of the invention will become apparent during the description which follows, given with reference to the appended drawings which illustrate several embodiments thereof by way of nonlimiting examples.

La figure 1 est une vue en élévation longitudinale d'une clé dynamométrique connue.Figure 1 is a longitudinal elevational view of a known torque wrench.

La figure 2 est une vue en élévation longitudinale d'une première forme de réalisation de la clé dynamométrique électronique selon l'invention.Figure 2 is a longitudinal elevational view of a first embodiment of the electronic torque wrench according to the invention.

La figure 3 est une vue en élévation longitudinale d'une seconde forme de réalisation de la clé dynamométrique selon l'invention.Figure 3 is a longitudinal elevational view of a second embodiment of the torque wrench according to the invention.

Les figures 4 et 5 sont des graphiques illustrant les variations respectivement des contraintes de cisaillement et des contraintes en flexion, de part et d'autre de la zone du manche de la clé selon la Fig.3, dont la section a été modifiée conformément à l'invention.Figures 4 and 5 are graphs illustrating the variations respectively of the shear stresses and the bending stresses, on both sides of the area of the handle of the wrench according to Fig.3, whose section has been modified in accordance with the invention.

La figure 6 est une vue en élévation partielle d'une troisième forme de réalisation de la clé selon l'invention.Figure 6 is a partial elevational view of a third embodiment of the key according to the invention.

La figure 7 est une vue de dessus du manche de clé de la Fig.6.Figure 7 is a top view of the key handle of Fig.6.

La figure 8 est une vue en élévation latérale partielle d'une quatrième forme de réalisation de la clé selon l'invention.Figure 8 is a partial side elevation view of a fourth embodiment of the key according to the invention.

La clé dynamométrique 1 représentée à la Fig.1, connue en soi, comporte un axe 5 de serrage approprié, de section par exemple carrée comme représenté, ou rectangulaire ou hexagonale... L'extensomètre M peut être relié, de manière connue en soi et non représentée, à un circuit électronique de mesure et d'affichage du couple de serrage exercé par l'axe 5.The torque wrench 1 shown in Fig.1, known per se, has a suitable clamping axis 5, for example square section as shown, or rectangular or hexagonal ... The extensometer M can be connected, in a manner known in itself and not shown, to an electronic circuit for measuring and displaying the tightening torque exerted by the axis 5.

Si par conséquent on applique la force F suivant la normale au manche ou barreau 4 au point P situé à une distance L de l'axe géométrique de serrage (perpendiculaire au plan de la Fig.1), cette distance L étant variable en fonction du point d'application des doigts de l'opérateur sur le manche 3, on constate, après analyse, que l'on introduit deux contraintes différentes :

  • une contrainte de cisaillement, constante dans la zone située entre P et 2, et donc au point M. Cette contrainte ne dépend que de la valeur de la force F;
  • une contrainte de flexion proportionnelle à la valeur de la force F et à la distance séparant le point P du point de mesure M.
If consequently the force F is applied according to the normal to the handle or bar 4 at the point P located at a distance L from the geometric tightening axis (perpendicular to the plane of Fig. 1), this distance L being variable depending on the point of application of the operator's fingers on the handle 3, it is found, after analysis, that two different constraints are introduced:
  • a shear stress, constant in the area between P and 2, and therefore at point M. This stress depends only on the value of the force F;
  • a bending stress proportional to the value of the force F and to the distance separating the point P from the measurement point M.

Il existe donc au point de mesure M des contraintes telles qu'un système de mesure adapté ayant une sensibilité Sc pour les contraintes de cisaillement et Sf pour les contraintes de flexion fournirait une information de valeur V égale à : V = F x Sc + F x Sf x (L-D)

Figure imgb0006
There are therefore constraints at the measurement point M such that a suitable measurement system having a sensitivity Sc for the shear stresses and Sf for the bending stresses would provide information of value V equal to: V = F x Sc + F x Sf x (LD)
Figure imgb0006

En rapprochant l'équation (6) des équations (2) et (3) on constate l'analogie entre le second terme de droite de l'équation (6) et l'équation (2), mais aussi celle existant entre l'équation (3) et le premier terme de l'équation (6). En effet dans ces deux derniers cas la valeur ne dépend, aux constantes prés, que de celle de la force F.By bringing equation (6) closer to equations (2) and (3) we note the analogy between the second term on the right of equation (6) and equation (2), but also that existing between equation (3) and the first term of equation (6). Indeed in these last two cases the value depends, with constant constants, only on that of the force F.

Si pour le dispositif de mesure M on rend le rapport Sc/Sf des sensibilités en cisaillement et en flexion de dispositifs de mesure élémentaires et séparés (M1, M2...) égal à D/U, U étant l'unité de longueur commune utilisée pour exprimer les valeurs de L et D, on constate que la valeur V fournie par l'équation (6) est alors exactement proportionnelle au couple transmis. En effet le premier terme de la partie droite de cette équation compense exactement l'erreur due à une mesure en flexion seule, mesure exprimée par le second terme de la partie droite.If for the measuring device M the ratio Sc / Sf of the shear and bending sensitivities of elementary and separate measuring devices (M1, M2 ...) is made equal to D / U, U being the unit of common length used to express the values of L and D, we see that the value V provided by equation (6) is then exactly proportional to the transmitted torque. Indeed the first term of the right part of this equation exactly compensates for the error due to a measurement in bending alone, measure expressed by the second term of the right part.

Pour la suite des explications, et dans le but de clarifier l'exposé, seul le cas d'éléments sensibles des organes de mesure (M) constitués d'extensomètres résistifs collés (jauges de contrainte) sera considéré. Il est toutefois évident que des moyens de mesure connus, d'un autre type, peuvent être utilisés en restant dans le cadre de la présente invention.For the following explanations, and with the aim of clarifying the presentation, only the case of sensitive elements of the measurement members (M) made up of bonded resistive extensometers (strain gauges) will be considered. It is however obvious that known measurement means of another type can be used while remaining within the scope of the present invention.

La mesure des contraintes de flexion est effectuée de manière classique au moyen d'extensomètres résistifs collés sur les faces adéquates du barreau.The measurement of the bending stresses is carried out in a conventional manner using resistive extensometers bonded to the appropriate faces of the bar.

La mesure des contraintes de cisaillement peut être effectuée par les méthodes classiques pour ce type de mesure, par exemple au moyen d'extensomètres collés sur les faces latérales du barreau. Toutefois cette solution conduit à des coûts proches de ceux des solutions connues ce qui limite l'intérêt pratique de cette solution à des cas particuliers. Le signal fourni par les extensomètres mesurant le cisaillement peut être alors trop faible pour être combiné directement (suivant l'équation (6)) avec le signal des extensomètres fournissant l'information de flexion, et il serait alors nécessaire d'atténuer ce dernier signal, ce qui serait préjudiciable à la qualité des mesures.The measurement of the shear stresses can be carried out by the conventional methods for this type of measurement, for example by means of extensometers glued on the lateral faces of the bar. However, this solution leads to costs close to those of known solutions, which limits the practical interest of this solution to specific cases. The signal from the extensometers measuring the shear may then be too weak to be combined directly (according to equation (6)) with the signal from the extensometers providing the information of bending, and it would then be necessary to attenuate this latter signal, which would be detrimental to the quality of the measurements.

La solution proposée selon l'invention consiste à faire varier la section de la partie flexible (4) au niveau du système de mesure (M), afin de transformer localement les contraintes de cisaillement en contraintes d'élongation/compression parallèles à la surface. Il est alors aisé de mesurer ces contraintes au moyen d'extensomètres résistifs classiques.The solution proposed according to the invention consists in varying the section of the flexible part (4) at the level of the measurement system (M), in order to locally transform the shear stresses into elongation / compression stresses parallel to the surface. It is then easy to measure these stresses using conventional resistive extensometers.

Les contraintes ainsi créées se superposent à celles dues à la flexion. En mesurant séparément les contraintes de flexion dans une zone de section régulière, il est possible d'isoler par calcul la valeur des contraintes dues au cisaillement. Une autre possibilité plus performante, pour mesurer la flexion, consiste à additionner (ou soustraire suivant les signes d'origine) les valeurs obtenues dans deux zones où les contraintes de cisaillement et de flexion sont respectivement de même valeur, mais où leur signe relatif est dans une zone l'inverse de ce qu'il est dans l'autre zone.The stresses thus created are superimposed on those due to bending. By measuring the bending stresses separately in an area of regular section, it is possible to isolate by calculation the value of the stresses due to shear. Another more efficient possibility, to measure the bending, consists in adding (or subtracting according to the signs of origin) the values obtained in two zones where the shear and bending stresses are respectively of the same value, but where their relative sign is in one zone the reverse of what it is in the other zone.

Si l'ensemble "extensomètre" et "modification de section" a été conçu de manière adéquate, il est possible d'obtenir un fonctionnement tel que le signal de sortie de l'extensomètre corresponde à la somme des influences du cisaillement et de la flexion avec des proportions relatives correspondant à celles recherchées, telles que données pour les coefficients Sc et Sf de l'équation (6). On obtient alors directement le résultat souhaité, c'est-à-dire la valeur du couple indépendamment de la position du point d'application de la force, sans aucune autre modification à la structure de base que le changement de section du barreau et le collage de l'extensomètre en correspondance.If the "extensometer" and "section modification" assembly has been designed adequately, it is possible to obtain an operation such that the output signal of the extensometer corresponds to the sum of the influences of shear and bending with relative proportions corresponding to those sought, as given for the coefficients Sc and Sf of equation (6). The desired result is therefore obtained directly, that is to say the value of the torque independently of the position of the point of application of the force, without any other modification to the basic structure than the change in cross section of the bar and the bonding of the extensometer in correspondence.

L'opérateur peut de ce fait aisément éviter de dépasser la valeur nominale du couple.The operator can therefore easily avoid exceeding the nominal value of the torque.

Une première solution favorable consiste à ménager dans le manche 4 un évidement de section de préférence constante, et d'axe principal perpendiculaire à la fois à l'axe longitudinal du manche 4 et à l'axe d'application de la force de commande.A first favorable solution consists in providing in the handle 4 a recess of preferably constant section, and of main axis perpendicular both to the longitudinal axis of the handle 4 and to the axis of application of the control force.

Ainsi dans la première forme de réalisation de la clé 6 selon l'invention, illustrée à la Fig.2, le manche 7, de pourtour rectangulaire, comporte un perçage parallélépipédique 8, dont l'axe XX se trouve à la distance D de l'axe géométrique de serrage du profil 5 et à une distance L1 du point d'application P de la force de commande F. L'axe principal XX de l'évidement 8 est perpendiculaire à la fois à l'axe d'application de la force F et à l'axe longitudinal YY du barreau ou manche 7. Les moyens de mesure M (extensomètres résistifs) sont collés sur l'une des faces du manche 7 à un emplacement approprié de façon à couvrir une zone située sensiblement au droit de l'évidement 8, proche de l'extrémité de cet évidement et pouvant ou non recouvrir la zone dans laquelle la section du manche 4 est pleine.Thus in the first embodiment of the key 6 according to the invention, illustrated in FIG. 2, the handle 7, of rectangular periphery, comprises a parallelepipedic bore 8, the axis XX of which is at the distance D from l geometric axis of clamping of the profile 5 and at a distance L1 from the point of application P of the control force F. The main axis XX of the recess 8 is perpendicular both to the axis of application of the force F and at the longitudinal axis YY of the bar or handle 7. The measuring means M (resistive extensometers) are bonded to one of the faces of the handle 7 at a suitable location so as to cover an area situated substantially at right angles to the recess 8, close to the end of this recess and which may or may not cover the area in which the section of the handle 4 is full.

La Fig.3 illustre une variante de réalisation de la clé 6 dans laquelle l'évidement dans le manche 7 est constitué par un perçage cylindrique 9 convenablement dimensionné. Cependant de nombreuses autres géométries de l'évidement sont possibles.Fig.3 illustrates an alternative embodiment of the key 6 in which the recess in the handle 7 is constituted by a cylindrical bore 9 suitably dimensioned. However, many other geometries of the recess are possible.

Comme illustré à la Fig.4, pour la zone de surface (S) du barreau située en vis-à-vis de l'axe de l'évidement 8, les contraintes longitudinales induites par le cisaillement (Cc) sont nulles. Pour les zones situées à une distance d de part et d'autre de la zone citée précédemment, les contraintes longitudinales existent et sont de signe contraire. Leur valeur augmente puis diminue au fur et à mesure que l'on s'éloigne de l'axe de l'évidement.As illustrated in FIG. 4, for the surface area (S) of the bar located opposite the axis of the recess 8, the longitudinal stresses induced by the shear (Cc) are zero. For areas located at a distance d on either side of the area mentioned above, longitudinal constraints exist and are of opposite sign. Their value increases then decreases as one moves away from the axis of the recess.

Les contraintes longitudinales dues à la flexion (Cf) sont maximales au droit de l'axe de l'évidement 8 (Fig.5), et diminuent au fur et à mesure que l'on s'éloigne de ce point.
(Ces graphiques sont proches de ceux qui correspondraient aux modes de réalisations décrits ci-après).
The longitudinal stresses due to bending (Cf) are maximum in line with the axis of the recess 8 (Fig. 5), and decrease as one moves away from this point.
(These graphs are close to those which would correspond to the embodiments described below).

La troisième forme de réalisation de la clé dynamométrique, illustrée aux Fig.6 et 7, comprend un manche 11 dont la zone 16 de section différente de celle du reste du manche est constituée d'au moins deux barreaux parallèles 12 comportant chacun une partie intermédiaire 13 de section et d'épaisseur E constantes, et deux parties terminales opposées 14. Ces dernières ont une section croissante de la partie 13 jusqu'à la jonction avec la partie contiguë du manche 11. Les moyens de mesure M sont collés à l'une des parties terminales 14.The third embodiment of the torque wrench, illustrated in FIGS. 6 and 7, comprises a handle 11 whose zone 16 of section different from that of the rest of the handle consists of at least two parallel bars 12 each comprising an intermediate part 13 of constant cross section and thickness E, and two opposite end parts 14. The latter have an increasing cross section from part 13 to the junction with the contiguous part of the handle 11. The measuring means M are glued to the one of the terminal parts 14.

Ainsi la forme de chaque barreau 12 est telle, que sur la partie 13 de sa longueur, le rapport entre les contraintes dues à la section et celles dues au cisaillement est approximativement constant. Une telle caractéristique limite la précision requise pour le positionnement des extensomètres M. Dans l'exemple illustré aux Fig.6, 7 l'épaisseur E de chaque partie 13 intervient de manière sensiblement proportionnelle pour les contraintes dues à la flexion, et à la puissance 2 pour celles dues au cisaillement. La largeur du barreau intervient proportionnellement dans les deux cas. L'explication simplifiée du fonctionnement est la suivante : dans la zone 13 considérée, l'inertie du barreau 12 est constante, ce qui conduit à une sensibilité approximativement constante pour les contraintes dues à la flexion. Pour les contraintes dues au cisaillement, la portion considérée du barreau 12 constitue une poutre isoflexion.Thus the shape of each bar 12 is such that over the part 13 of its length, the ratio between the stresses due to the section and those due to shear is approximately constant. Such a characteristic limits the precision required for the positioning of the extensometers M. In the example illustrated in FIGS. 6, 7 the thickness E of each part 13 intervenes in a substantially proportional manner for the stresses due to bending, and to the power 2 for those due to shearing. The width of the bar intervenes proportionally in both cases. The simplified explanation of the operation is as follows: in the zone 13 considered, the inertia of the bar 12 is constant, which leads to an approximately constant sensitivity for the bending stresses. For the shear stresses, the considered portion of the bar 12 constitutes an isoflexion beam.

Les dimensions extérieures de l'élément flexible (4; 7; 11; 19) dans la zone de l'évidement (8, 9...) et celles du dit évidement permettent de définir indépendamment les valeurs des contraintes dues au cisaillement et celles dues à la flexion. De plus la distance par rapport au droit de l'axe de l'évidement permet, pour une géométrie de barreau et d'évidement donnée, de définir une zone de collage de l'extensomètre telle que la moyenne des contraintes longitudinales en surface dans cette zone corresponde à la répartition (coefficients Sc et Sf) décrite précédemment. Pour une géométrie donnée cette zone peut ne pas exister, et il est donc indispensable de choisir une géométrie adaptée.The external dimensions of the flexible element (4; 7; 11; 19) in the region of the recess (8, 9 ...) and those of said recess make it possible to independently define the values of the stresses due to shearing and those due to bending. In addition, the distance from the right of the axis of the recess makes it possible, for a given bar and recess geometry, to define a bonding area of the extensometer such as the average of the longitudinal surface stresses in this zone corresponds to the distribution (coefficients Sc and Sf) described above. For a given geometry this zone may not exist, and it is therefore essential to choose a suitable geometry.

La quatrième forme de réalisation de la clé représentée à la Fig.8 comporte un barreau ou manche flexible 19 dont la section principale n'a pas subi de modification, contrairement aux formes de réalisation précédemment décrites. On utilise alors la présence sur des faces différentes du barreau, de contraintes dues respectivement à la flexion et au cisaillement. Cette clé est équipée d'un moyen de mesure constitué de l'association de deux organes élémentaires correspondant respectivement à une mesure distincte des forces de cisaillement dues à la force de commande, et une mesure des forces de flexion dues à la force de commande. Ceci peut être réalisé par exemple en associant dans un même pont de mesure deux paires de jauges, chaque paire constituant un "capteur" élémentaire. En effet, il a été exposé précédemment que l'association, dans un rapport convenable, des signaux partiels provenant (ou provoqués par) des sollicitations en flexion et en cisaillement, permet d'obtenir un signal global indépendant de la position du point d'application P de la force F. Il en est de même si ce signal global est obtenu par addition, après mise à l'échelle éventuelle pour obtenir le rapport correct, de deux signaux élémentaires provenant respectivement d'un dispositif de mesure de la flexion pure et d'un dispositif de mesure du cisaillement pur. Ces dispositifs peuvent être par exemple, comme représenté à la Fig.8, un demi-pont d'extensomètres 20 placé sur une face du barreau 19 éloignée de la fibre neutre pour la mesure de flexion F, et un demi-pont d'extensomètres 21 placé sur une face latérale du manche 19. Ces dispositifs de mesure extensométriques sont parfaitement connus en soi et décrits en détail notamment dans les traités d'extensométrie, tant pour les mesures élémentaires que pour les effets d'une association.The fourth embodiment of the key shown in Fig.8 includes a bar or flexible handle 19 whose main section has not been modified, unlike the embodiments previously described. One then uses the presence on different faces of the bar, of stresses due respectively to bending and to shearing. This key is equipped with a measuring means consisting of the association of two elementary members corresponding respectively to a separate measurement of the shear forces due to the control force, and a measurement of the bending forces due to the control force. This can be achieved, for example, by combining two pairs of gauges in the same measurement bridge, each pair constituting an elementary "sensor". Indeed, it has been stated previously that the association, in a suitable relationship, of partial signals originating (or caused by) solicitations in bending and shearing, makes it possible to obtain an overall signal independent of the position of the point of application P of the force F. The same is true if this overall signal is obtained by addition, after possible scaling for obtain the correct ratio of two elementary signals respectively from a device for measuring pure bending and from a device for measuring pure shear. These devices can be, for example, as shown in FIG. 8, a half-bridge of extensometers 20 placed on a face of the bar 19 remote from the neutral fiber for the measurement of flexion F, and a half-bridge of extensometers 21 placed on a lateral face of the handle 19. These strain measurement devices are perfectly known per se and described in detail in particular in extensometry treaties, both for elementary measurements and for the effects of a combination.

Si les dispositifs de mesure de flexion et de cisaillement n'ont pas une insensibilité totale à l'autre paramètre, la correction de leurs rapports réciproques permet de corriger cette erreur au moyen de résistances additionnelles par exemple. Il suffit que, dans le signal final, les composantes élémentaires (flexion, cisaillement), soient dans le rapport correct.If the bending and shear measuring devices do not have a total insensitivity to the other parameter, the correction of their reciprocal relationships makes it possible to correct this error by means of additional resistances for example. It suffices that, in the final signal, the elementary components (bending, shear), are in the correct ratio.

Dans tous les cas, les dispositifs de mesure collés sur les faces du barreau 19 sont sensibles aux contraintes dues à la flexion et à celles dues au cisaillement, dans des proportions telles que l'influence des contraintes de cisaillement compense l'erreur provoquée par la prise en considération de la flexion seule, pour le calcul du couple transmis par le dispositif de serrage.In all cases, the measuring devices glued to the faces of the bar 19 are sensitive to the stresses due to bending and to those due to shear, in proportions such that the influence of the shear stresses compensates for the error caused by the consideration of bending alone, for calculating the torque transmitted by the tightening device.

En ce qui concerne les diverses formes d'exécution de la clé illustrées aux Fig.2 à 7, il convient de préciser les points suivants.

  • L'organe déformable constitué par le manche 7, 11... ainsi que l'évidement 8, 9,... ont une forme telle que la proportion entre les contraintes dues à la flexion et celles dues au cisaillement soit constante ou approximativement constante sur une certaine longueur de la partie recevant l'organe de mesure M, tandis que la partie sensible de cet organe de mesure possède de préférence une sensibilité constante sur la longueur de mesure. L'extensomètre M est positionné de manière bien précise : si par exemple suivant les endroits du manche flexible, on relève des valeurs de la proportion entre les deux types de contraintes comprises entre 0 et 40%, et qu'on désire obtenir une valeur de 20% pour ce rapport, on colle l'extensomètre M à l'endroit précis où cette valeur de 20% existe. Il est aussi possible de coller une jauge de contrainte dans un endroit où le rapport des deux types de contraintes est trop faible, une autre jauge dans un endroit où le rapport est trop fort, puis d'associer ces jauges selon un rapport ajustable, par exemple au moyen d'un potentiomètre, afin d'obtenir un rapport correspondant à la proportion exacte souhaitée.
With regard to the various embodiments of the key illustrated in Figs. 2 to 7, it should be noted the following points.
  • The deformable member constituted by the handle 7, 11 ... as well as the recess 8, 9, ... have a shape such that the proportion between the stresses due to bending and those due to shearing is constant or approximately constant over a certain length of the part receiving the measuring member M, while the sensitive part of this measuring member preferably has a constant sensitivity over the measuring length. The extensometer M is positioned very precisely: if for example depending on the locations of the flexible handle, values of the proportion between the two types of stress are between 0 and 40%, and we want to obtain a value of 20% for this report, we stick the extensometer M at the precise place where this value of 20% exists. It is also possible to stick a strain gauge in a place where the ratio of the two types of constraints is too low, another gauge in a place where the ratio is too strong, then to associate these gauges according to an adjustable ratio, by example by means of a potentiometer, in order to obtain a ratio corresponding to the exact proportion desired.

L'extensomètre doit être placé de manière précise en théorie, de même que la géométrie du barreau doit être appropriée, la précision du positionnement de l'extensomètre pouvant être par exemple de 0,1mm. On peut également ajuster la géométrie de l'évidement 8, 9,... notamment par fraisage, afin d'obtenir la sensibilité exacte souhaitée, et ce après détermination des dimensions de l'évidement par le calcul.

  • L'un au moins des organes sensibles (extensomètres) aux contraintes des moyens de mesure peut être constitué d'au moins deux parties, séparées ou non. Ces différentes parties peuvent être placées, pour certaines d'entre elles, en des zones du barreau où la proportion de contrainte est légèrement supérieure à la valeur théorique, les autres parties étant placées en des zones où la proportion des contraintes est légèrement inférieure à la valeur théorique.
  • Les différentes parties des organes sensibles concernés comportent par construction, ou sont associées, à des moyens permettant d'ajuster de façon discrète ou continue leur influence globale, afin d'obtenir une sensibilité globale correspondant exactement à la valeur recherchée, lesdits moyens pouvant être confondus ou séparés de ceux destinés au réglage de la proportion des contraintes. Il existe donc en fait deux types de réglage: d'une part l'obtention du rapport correct entre l'effet de la flexion et celui du cisaillement, et d'autre part l'obtention de la sensibilité exacte souhaitée sur l'étalonnage global de la clé. Ces derniers moyens de réglage peuvent être complètement séparés des précédents ou être reliés à ceux-ci. Par exemple l'évidement peut être légèrement déplacé par fraisage ou découpe laser d'une fente, les deux réglages pouvant être exécutés simultanément dans une même opération. Le fait de faciliter l'étalonnage de la clé apporte un avantage important, car il diminue la main d'oeuvre nécessaire, et par conséquent le coût de revient de la clé.
  • Les moyens de réglage peuvent comporter par eux mêmes, ou sont associés à des moyens auxiliaires spécifiques pour ajuster la proportion de sensibilité aux contraintes, en fonction d'un changement de géométrie de l'organe de commande de la pièce à visser, si celui-ci est amovible, et/ou d'un changement de l'adaptateur entre cet organe de commande et la pièce à visser. Les moyens auxiliaires spécifiques précités peuvent être la tête de serrage 2 avec son axe profilé 5, ou bien une tête à fourche, ou encore un adaptateur universel, le changement de tête de serrage pouvant permettre un ajustement de la sensibilité aux contraintes. Un adaptateur est choisi pour une utilisation particulière et permet d'ajuster les rapports de contraintes, grâce à des moyens du circuit électronique de mesure : par exemple ce circuit peut comporter un bouton manuel de réglage à plusieurs positions, chacune correspondant à la distance entre l'axe géométrique de serrage de l'adaptateur utilisé et la position de l'organe extensométrique de mesure M. Le positionnement du bouton sur l'index correspondant à la longueur D de l'adaptateur choisi ajuste alors automatiquement le calcul du couple de serrage à la nouvelle distance D.
  • La clé dynamométrique selon l'invention peut comporter des moyens permettant de modifier la géométrie fonctionnelle de l'évidement de l'organe de commande, soit directement soit indirectement en provoquant une modification de son influence, afin d'ajuster la proportion de sensibilité aux contraintes, en fonction d'un changement de géométrie de l'organe de commande de la pièce à visser, si celui-ci est amovible, et/ou d'un changement de l'adaptateur entre cet organe de commande et la pièce à visser. En d'autres termes, on modifie la géométrie de façon que l'extensomètre M réagisse dans les proportions voulues, par exemple en réalisant un renfort partiel de l'évidement 8, 9,... On modifie ainsi la géométrie du barreau, ou encore la liaison (point d'application des forces par exemple) du barreau avec la tête de serrage, afin d'obtenir une altération appropriée aux sensibilités relatives des deux types de contraintes.
The extensometer must be placed in a precise manner in theory, just as the geometry of the bar must be appropriate, the precision of the positioning of the extensometer being for example 0.1 mm. One can also adjust the geometry of the recess 8, 9, ... in particular by milling, in order to obtain the exact sensitivity desired, and this after determining the dimensions of the recess by calculation.
  • At least one of the sensitive organs (extensometers) to the constraints of the measuring means can consist of at least two parts, separated or not. These different parts can be placed, for some of them, in areas of the bar where the proportion of stress is slightly greater than the theoretical value, the other parts being placed in zones where the proportion of stresses is slightly less than the value theoretical.
  • The different parts of the sensitive organs concerned comprise by construction, or are associated, with means making it possible to adjust, in a discrete or continuous manner, their overall influence, in order to obtain a global sensitivity corresponding exactly to the desired value, said means possibly being combined. or separate from those intended for adjusting the proportion of stresses. There are therefore in fact two types of adjustment: on the one hand obtaining the correct ratio between the effect of bending and that of shearing, and on the other hand obtaining the exact sensitivity desired on the global calibration. of the key. These latter adjustment means can be completely separate from the previous ones or be connected to them. For example, the recess can be slightly displaced by milling or laser cutting a slot, the two adjustments being able to be executed simultaneously in the same operation. The fact of facilitating the calibration of the key brings an important advantage, because it reduces the manpower necessary, and consequently the cost price of the key.
  • The adjustment means may comprise by themselves, or are associated with specific auxiliary means for adjusting the proportion of sensitivity to stresses, as a function of a change in geometry of the control member of the part to be screwed, if it it is removable, and / or a change of the adapter between this control member and the part to be screwed. Ways specific aforementioned auxiliaries can be the clamping head 2 with its profiled axis 5, or else a fork head, or even a universal adapter, the change of clamping head being able to allow an adjustment of the sensitivity to the stresses. An adapter is chosen for a particular use and makes it possible to adjust the stress ratios, by means of the electronic measurement circuit: for example this circuit can include a manual adjustment knob with several positions, each corresponding to the distance between the geometrical axis of tightening of the adapter used and the position of the extensometric measuring member M. The positioning of the button on the index corresponding to the length D of the chosen adapter then automatically adjusts the calculation of the tightening torque to the new distance D.
  • The torque wrench according to the invention may include means making it possible to modify the functional geometry of the recess of the control member, either directly or indirectly by causing a modification of its influence, in order to adjust the proportion of sensitivity to stresses , depending on a change in geometry of the control member of the part to be screwed, if the latter is removable, and / or a change in the adapter between this control member and the part to be screwed. In other words, the geometry is modified so that the extensometer M reacts in the desired proportions, for example by making a partial reinforcement of the recess 8, 9, ... The geometry of the bar is thus modified, or still the connection (point of application of the forces for example) of the bar with the clamping head, in order to obtain an alteration appropriate to the relative sensitivities of the two types of stresses.

Ainsi par exemple si l'on utilise sur un même outil des adaptateurs de longueurs différentes, on peut pour chacun des adaptateurs choisir la position des points d'appui, entre le manche et l'adaptateur, donc les points par lesquels les forces sont transmises, afin que pour chaque cas, les contraintes transmises au système de mesure soient égales à la valeur nominale souhaitée.So for example if you use on the same tool adapters of different lengths, you can for each of the adapters choose the position of the support points, between the handle and the adapter, so the points through which forces are transmitted , so that for each case, the stresses transmitted to the measurement system are equal to the desired nominal value.

* Exemple numérique de calcul du barreau : cas d'un évidement de section rectangulaire dans le cas d'un élément sensible de type capteur extensomètre résistif.* Numerical example of calculation of the bar : case of a recess of rectangular section in the case of a sensitive element of the resistive extensometer sensor type.

Soit une clé dynamométrique destinée à la mesure d'un couple maximum de 250 N.m ayant une longueur de 400 mm entre l'axe de la tête 2 et le point d'application P de la force de commande F, et utilisant un élément déformable (4, 7...) dont la limite élastique a été fixée à 500 N/mm2.Or a torque wrench intended for measuring a maximum torque of 250 Nm having a length of 400 mm between the axis of the head 2 and the point of application P of the control force F, and using a deformable element ( 4, 7 ...), the elastic limit of which has been set at 500 N / mm2.

L'élément de mesure est situé à 40 mm de l'axe de la tête 2 et on fixe (arbitrairement) la largeur du barreau à 10 mm et la longueur de l'évidement à 20 mm. La solution globale n'étant pas unique, ces valeurs correspondent à un choix effectué suivant des critères ne dépendant pas uniquement de l'objet de l'invention proprement dit.The measuring element is located 40 mm from the axis of the head 2 and the width of the bar is fixed (arbitrarily) to 10 mm and the length of the recess to 20 mm. Since the global solution is not unique, these values correspond to a choice made according to criteria not depending solely on the subject of the invention itself.

Cet exemple correspond à un calcul simplifié. La démarche générale établie, les calculs élémentaires sont suffisamment connus par eux-mêmes pour qu'il ne soit pas besoin de les rappeler ici.This example corresponds to a simplified calculation. Once the general approach has been established, the elementary calculations are sufficiently known by themselves that there is no need to recall them here.

On choisit comme point de positionnement de l'élément extensomètrique (M) sur le barreau (S) formant le cote de l'évidement le quart de la longueur du dit barreau. Des contraintes plus élevées dues au cisaillement existent aux extrémités de ce barreau, mais leur gradient étant élevé le positionnement de l'élément extensométrique serait à cet endroit plus délicat.One chooses as point of positioning of the extensometric element (M) on the bar (S) forming the dimension of the recess a quarter of the length of said bar. Higher stresses due to shearing exist at the ends of this bar, but their gradient being high the positioning of the extensometric element would be more delicate here.

La force maximum appliquée au point de commande sera de : 250/0,4 = 625 NThe maximum force applied to the control point will be: 250 / 0.4 = 625 N

La force maximum au cisaillement sera, par barreau (xx) : 625/2 = 312 NThe maximum shear force will be, per bar (xx): 625/2 = 312 N

La proportion entre les contraintes provoquées par la flexion et celles provoquées par le cisaillement sera, pour le point nominal d'application de la force :
360/(400-360) soit 9
The proportion between the stresses caused by bending and those caused by shear will be, for the nominal point of application of the force:
360 / (400-360) or 9

Au point de contrainte maximale la contrainte due au cisaillement étant le double de celle au point de mesure, les critères de respect de la limite élastique conduisent à prendre pour valeur maximum de la contrainte due à la flexion les 9/11ème de la limite élastique, soit 409 N/mm2 et pour valeur maximum de la contrainte due au cisaillement, les 2/11ème de la limite élastique soit 91 N/mm2. Au point de mesure, la contrainte due au cisaillement est de 45,5 n/mm2.At the point of maximum stress, the stress due to shear being twice that at the point of measurement, the criteria for respecting the elastic limit lead to taking the maximum value of the stress due to bending as 9/11 of the elastic limit, that is to say 409 N / mm2 and for maximum value of the stress due to shearing, the 2 / 11ths of the elastic limit is 91 N / mm2. At the point of measurement, the shear stress is 45.5 n / mm2.

La formule donnant la contrainte maximum étant : T = (6 x F x L) / (B x E2) The formula giving the maximum stress being: T = (6 x F x L) / (B x E2)

L'application de cette formule au barreau permet de calculer l'épaisseur de celui-ci : H = V(6 x 312 x 5)/(10 x 91) = 4,5mm

Figure imgb0008
The application of this formula to the bar allows the thickness of the bar to be calculated: H = V (6 x 312 x 5) / (10 x 91) = 4.5mm
Figure imgb0008

La formule donnant la contrainte maximum dans le cas de la flexion étant : T = (6 x F x L x H)/(B x (H3-E3))

Figure imgb0009
The formula giving the maximum stress in the case of bending being: T = (6 x F x W x H) / (B x (H3-E3))
Figure imgb0009

L'application de cette formule permet de calculer l'épaisseur totale de l'élément sensible : (H3-E3)/H = (6 x 625 x 360)/(10 x 409) = 330

Figure imgb0010
   D'où H = 18,3mmThe application of this formula makes it possible to calculate the total thickness of the sensitive element: (H3-E3) / H = (6 x 625 x 360) / (10 x 409) = 330
Figure imgb0010
Hence H = 18.3mm

Il est à noter que, dans cet exemple la contrainte due au cisaillement variant linéairement le long du barreau (S) et celle due à la flexion étant sensiblement constante sur la longueur du barreau (S), le fait que l'élément de mesure ne soit pas ponctuel mais recouvre une certaine longueur dudit barreau n'influence pas la mesure, pour autant que l'élément de mesure (M,2) ait une sensibilité constante sur toute sa longueur.It should be noted that, in this example, the stress due to shear varying linearly along the bar (S) and that due to bending being substantially constant over the length of the bar (S), the fact that the measuring element is not punctual but covers a certain length of said bar does not influence the measurement, provided that the measuring element (M, 2) has constant sensitivity over its entire length.

Le dispositif de mesure (M) décrit précédemment comme étant constitué d'un capteur extensométrique unique peut bien entendu être constitué de plusieurs capteurs montés en demi-pont ou en pont complet. Des structures à ponts multiples peuvent être réalisées en restant dans le cadre de l'invention. Dans le cas d'extensomètres multiples, les différents extensomètres peuvent être placés en des points de contraintes identiques (côte à côte par exemple) en des points de contrainte symétriques (faces opposées du barreau par exemple), ou en des points de valeurs de contrainte différentes. Dans ce dernier cas, c'est la somme fonctionnelle des contraintes mesurées qui doit répondre au critère de placement défini par l'extensomètre unique. En dehors du rapport des sensibilités Sc et Sf qui est à la base de l'invention, la disposition du ou des extensomètres doit suivre toutes les règles habituelles connues de l'homme de l'art, et peut utiliser les dispositions particulières, également connues, afin d'obtenir un fonctionnement avantageux (insensibilité au vrillage parasite par exemple).The measuring device (M) described above as consisting of a single strain sensor can of course be made up of several sensors mounted in a half-bridge or in a full bridge. Multiple bridge structures can be produced while remaining within the scope of the invention. In the case of multiple extensometers, the different extensometers can be placed at identical stress points (side by side for example) at symmetrical stress points (opposite faces of the bar for example), or at stress value points different. In the latter case, it is the functional sum of the measured stresses which must meet the placement criterion defined by the single extensometer. Apart from the ratio of sensitivities Sc and Sf which is the basis of the invention, the arrangement of the extensometer (s) must follow all the usual rules known to those skilled in the art, and can use the specific arrangements, also known. , in order to obtain an advantageous operation (insensitivity to unwanted twisting for example).

Il convient de noter que les évidements tels que 8 et 9, ont de préférence une section régulière pour des raisons de facilité de fabrication. Mais cette section peut aussi ne pas être régulière, tout en restant dans le cadre de l'invention. Il est également possible de réaliser plusieurs évidements au lieu d'un seul.It should be noted that the recesses such as 8 and 9 preferably have a regular section for reasons of ease of manufacture. But this section may also not be regular, while remaining within the scope of the invention. It is also possible to make several recesses instead of just one.

Claims (18)

  1. Tool for measuring torque, for example tightening torque, such as an electronic torque wrench (6), comprising a head (2) for tightening a member to be screwed, a manual control hand-grip (3), a handle (7; 11) which is deformable and sensitive to bending, connecting the hand-grip to the head, as well as electronic means (M) for measuring the deformation of the handle and displaying the torque determined from said deformation measurement, characterised in that said means (M) are adapted to measure, independently or otherwise, the stresses due respectively to shearing and to bending, and these means are produced in order that these stresses are in proportions such that the influence of the shearing stresses compensates for an error caused by taking the bending alone into consideration for the determination of the torque transmitted by the head.
  2. Tool according to Claim 1, characterised in that the handle comprises an area whereof the main section is different from that of the remainder of the handle and such that it is able to transform locally shearing stresses, generated by the control force (F), into elongation/compression stresses parallel to the surface of the handle.
  3. Tool according to Claim 2, characterised in that the area of main section different from that of the remainder of the handle (7) comprises at least one transverse recess (8; 9), of preferably regular section whereof the axis (XX) is perpendicular to the axis of the handle (4) and to the control force (F) or reaction force.
  4. Tool according to Claim 3, characterised in that the section of the recess is uniform, for example square (8), circular (9) or rectangular.
  5. Tool according to Claim 4, in which the recess (9) is cylindrical, characterised in that the axis of this recess is situated in the main plane of the deformable handle, defined by the longitudinal axis of the wrench and by the axis of the part to be screwed, in order to produce two identical deformation areas on either side of the recess.
  6. Tool according to one of Claims 1 to 4, characterised in that the handle (7; 11; 15) and the recess (8, 9...) have a shape such that the proportion between the stresses due to bending and those due to shearing is constant or approximately constant over a predetermined length of the part receiving the measuring member (M), and in that this measuring member comprises a sensitive part which preferably has constant sensitivity over the measuring length.
  7. Tool according to one of Claims 1 to 5, characterised in that at least one of the members (M) sensitive to stresses of the measuring means is constituted by at least two parts, certain of which are placed in areas where the proportion of stresses is slightly higher than the theoretical value, whereas the other parts are placed in areas where the proportion of stresses is slightly lower than the theoretical value.
  8. Tool according to Claim 7, characterised in that the different parts of the aforesaid sensitive member or members comprise due to construction, or are associated with means making it possible to adjust their reciprocal influence discretely or continuously in order to obtain overall a proportion corresponding exactly to the desired value.
  9. Tool according to Claim 7, characterised in that the different parts of the sensitive members in question comprise by construction or are associated with means making it possible to adjust their overall influence discretely or continuously in order to obtain an overall sensitivity corresponding exactly to the desired value, said means being able to be combined with or separate from the aforesaid means intended for adjusting the proportion.
  10. Tool according to one of Claims 2 to 8, characterised in that the recess has a geometry such that it may be adjusted mechanically after fixing the sensitive members of the measuring means (M) in order to obtain the adequate value of the proportion of sensitivity to stresses, and the mechanical adjusting means provided are arranged in order to be able to be used without risk of damaging said sensitive members.
  11. Tool according to one of Claims 6 to 8, characterised in that said adjustment means comprise or are associated with specific auxiliary means for adjusting the proportion of sensitivity to stresses as a function of a change in geometry of the member for controlling the part to be screwed, if the latter is removable, and/or changing an adaptor between this control member and the part to be screwed.
  12. Tool according to one of Claims 1 to 10, characterised in that it comprises means making it possible to modify the functional geometry of the recess in the control member, directly or indirectly causing a modification of its influence, in order to adjust the proportion of sensitivity to stresses, as a function of a change of geometry of the member for controlling the part to be screwed, if the latter is removable, and/or as a function of a change of the adaptor between this control member and the part to be screwed.
  13. Tool according to Claim 1, characterised in that said area of different section is constituted by at least two parallel small bars (12) whereof the opposite ends (14) have a section greater than that of the intermediate part (12) of constant section of the small bar and supports the means (M) for measuring the tightening torque.
  14. Tool according to Claim 12, characterised in that said ends (14) of the small bars (12) have a conical profile.
  15. Tool according to Claim 1, characterised in that said area (16) of different section is constituted by a central part (17) of section greater than that of the remainder of the handle, and by two opposed terminal parts (18), whereof the section decreases as far as the connection to the contiguous parts (15a) of the handle (15), one of these terminal parts being provided with means (M) for measuring the tightening torque.
  16. Tool according to one of Claims 1 to 15, characterised in that the means (M) for measuring the tightening torque comprise a single extensometric pick-up (M), or several extensometric pick-ups mounted as a half-bridge or as a complete bridge, or even as multiple bridges.
  17. Tool according to Claim 1, characterised in that the deformable handle is equipped with measuring means constituted by the association of a first member (21) for measuring the shearing forces due to the control force, and with a second member (20) for measuring the bending forces due to the control force (Figure 8).
  18. Tool according to Claim 1, characterised in that said means for measuring the shearing forces and the bending forces comprise for example a bridge of extensometers (20) placed on the sides of the handle remote from the neutral fibre for measuring bending, and a bridge or a half-bridge of extensometers (21) on the side faces of the handle for measuring the shearing.
EP94401544A 1993-07-09 1994-07-05 Torque measuring tool, such as an electronic torque wrench Expired - Lifetime EP0633100B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9308519A FR2707395B1 (en) 1993-07-09 1993-07-09 Torque measurement tool, such as an electronic torque wrench.
FR9308519 1993-07-09

Publications (2)

Publication Number Publication Date
EP0633100A1 EP0633100A1 (en) 1995-01-11
EP0633100B1 true EP0633100B1 (en) 1997-10-08

Family

ID=9449145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401544A Expired - Lifetime EP0633100B1 (en) 1993-07-09 1994-07-05 Torque measuring tool, such as an electronic torque wrench

Country Status (4)

Country Link
US (1) US5503028A (en)
EP (1) EP0633100B1 (en)
DE (1) DE69406057T2 (en)
FR (1) FR2707395B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925395B2 (en) * 2002-10-15 2005-08-02 Canberra Aquila, Inc. Apparatus and method for measuring the torque applied to bolts
US7082865B2 (en) * 2003-05-01 2006-08-01 Ryeson Corporation Digital torque wrench
US7194940B2 (en) * 2003-06-25 2007-03-27 Chih-Ching Hsieh Electronic torsional tool
US7004689B2 (en) * 2004-01-09 2006-02-28 Kennametal Inc. High-speed milling cutter and insert
ITMI20051461A1 (en) * 2005-07-28 2007-01-29 Gianni Ponte CAMBRETTA FOR SUTURE OF THE STERNO AND APPARATUS ACTING TO POSITION IT AND TIGHTEN IT
US7096747B1 (en) * 2005-07-28 2006-08-29 Chih-Ching Hsieh Hand tool with twisting force measuring functions
US7380473B2 (en) * 2005-09-19 2008-06-03 Chih-Ching Hsieh Hand tool with torque detection device
US7380472B2 (en) * 2006-06-07 2008-06-03 Chih-Ching Hsieh Hand tool with torque measuring device
TWI426002B (en) * 2010-07-30 2014-02-11 Xiamen United Trade Electronic Co Ltd Digital torque wrench structure and the way to grip the force
CN103528747B (en) * 2013-09-30 2015-07-08 航天东方红卫星有限公司 Torque measurement transfer tool and method
CN104535259B (en) * 2015-01-13 2017-04-12 内蒙古自治区计量测试研究院 Spanner torque calibrating device
CN108098668A (en) * 2017-11-29 2018-06-01 中国航发沈阳黎明航空发动机有限责任公司 A kind of torque wrench measuring index selection method of equipped adapter

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1034502A (en) * 1950-04-05 1953-07-27 Improvements to processes and devices for obtaining gaseous products by endothermic reactions
US3298221A (en) * 1963-12-30 1967-01-17 Charles E Miller Densitometer
US3355944A (en) * 1964-09-03 1967-12-05 Anatole J Sipin Mass flow metering means
US3329019A (en) * 1964-10-26 1967-07-04 Anatole J Sipin Mass flow metering means
GB1280997A (en) * 1968-10-29 1972-07-12 Solartron Electronic Group Improvements in or relating to fluid density transducers
US4006629A (en) * 1975-07-17 1977-02-08 Gse, Inc. Torque measuring apparatus
US4125016A (en) * 1976-07-06 1978-11-14 Gse, Inc. Battery operated torque wrench with digital display
JPS6057528B2 (en) * 1978-01-24 1985-12-16 株式会社共和電業 Strain gauge load transducer
US4208905A (en) * 1978-09-22 1980-06-24 Bofors America, Inc. Miniature load beams
GB2085033B (en) * 1980-10-06 1985-06-12 Gen Electric Electrode material for molteen carbonate fuel cells
DE3139374A1 (en) * 1981-10-03 1983-04-14 Dr. Staiger, Mohilo + Co GmbH, 7060 Schorndorf Mechanical torque wrench (torque measurement outside the centre of application)
FR2538741A1 (en) * 1982-12-30 1984-07-06 Facom Torque wrench with electrical extensometers
GB8408502D0 (en) * 1984-04-03 1984-05-16 Trw Probe Electronics Co Ltd Torque sensing apparatus
DE3443234A1 (en) * 1984-11-27 1986-06-05 Danfoss A/S, Nordborg MASS FLOW MEASURING DEVICE ACCORDING TO THE CORIOLIS PRINCIPLE
DE3505166A1 (en) * 1985-02-15 1986-08-21 Danfoss A/S, Nordborg MASS FLOW MEASURING DEVICE ACCORDING TO THE CORIOLIS PRINCIPLE
US4622858A (en) * 1985-03-25 1986-11-18 The Babcock & Wilcox Company Apparatus and method for continuously measuring mass flow
FR2584330B1 (en) * 1985-07-02 1990-06-08 Renault Ets G NEW DYNAMOMETRIC TIGHTENING WRENCH OF THE TYPE WITH DEFORMING BENDING ELEMENTS
DE3534288A1 (en) * 1985-09-26 1987-04-02 Danfoss As MASS FLOW METER ACCORDING TO THE CORIOLIS PRINCIPLE
US4703660A (en) * 1986-04-01 1987-11-03 The Babcock & Wilcox Company Apparatus and method for continuously measuring mass flow
US4730501A (en) * 1986-05-19 1988-03-15 Exac Corporation Single tube parallel flow coriolis mass flow sensor
DE3632800A1 (en) * 1986-09-26 1988-04-07 Flowtec Ag MASS FLOW MEASURING DEVICE WORKING ACCORDING TO THE CORIOLIS PRINCIPLE
DE3632851A1 (en) * 1986-09-26 1988-04-07 Flowtec Ag MASS FLOW MEASURING DEVICE WORKING ACCORDING TO THE CORIOLIS PRINCIPLE
US4763530A (en) * 1986-10-10 1988-08-16 The Babcock & Wilcox Company Apparatus and method for continuously measuring mass flow
GB8705758D0 (en) * 1987-03-11 1987-04-15 Schlumberger Electronics Uk Mass flow measurement
FR2615948B1 (en) * 1987-05-27 1989-10-27 Sam Outillage ELECTRONIC DYNAMOMETRIC KEY
GB2212613B (en) * 1987-11-19 1991-07-03 Schlumberger Ind Ltd Improvements in single vibrating tube transducers
EP0316908B1 (en) * 1987-11-20 1993-01-27 Endress + Hauser Flowtec AG Process for the measurement of mass flow rate using the coriolis principle and mass flow rate measuring apparatus using the coriolis principle
FR2626514B1 (en) * 1988-02-03 1990-06-08 Seb Sa DYNAMOMETRIC WRENCH WITH EXTENSOMETRY GAUGES
DE3824111A1 (en) * 1988-07-15 1990-01-18 Fischer & Porter Gmbh METHOD FOR MEASURING THE MASS CURRENT OF A MEDIUM AND DEVICE FOR IMPLEMENTING THE METHOD
DE3829061A1 (en) * 1988-08-26 1990-03-08 Danfoss As FLOW MEASURING DEVICE WORKING ACCORDING TO THE CORIOLIS PRINCIPLE (III)
DE3829059A1 (en) * 1988-08-26 1990-03-08 Danfoss As FLOW MEASURING DEVICE WORKING ACCORDING TO THE CORIOLIS PRINCIPLE
US4982612A (en) * 1988-10-03 1991-01-08 Snap-On Tools Corporation Torque wrench with measurements independent of hand-hold position
GB8829825D0 (en) * 1988-12-21 1989-02-15 Schlumberger Ind Ltd A combined output and drive circuit for a mass flow transducer
DE3923409A1 (en) * 1989-07-14 1991-01-24 Danfoss As MASS FLOW MEASURING DEVICE WORKING ACCORDING TO THE CORIOLIS PRINCIPLE
EP0448913B1 (en) * 1990-03-30 1994-02-16 Endress + Hauser Flowtec AG Mass flow meter working on the Coriolis principle
US5275061A (en) * 1991-05-13 1994-01-04 Exac Corporation Coriolis mass flowmeter
US5261284A (en) * 1992-10-13 1993-11-16 Exac Corporation Non-interacting enclosure design for coriolis mass flow meters

Also Published As

Publication number Publication date
EP0633100A1 (en) 1995-01-11
DE69406057D1 (en) 1997-11-13
FR2707395A1 (en) 1995-01-13
FR2707395B1 (en) 1995-10-06
DE69406057T2 (en) 1998-02-26
US5503028A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
EP0633100B1 (en) Torque measuring tool, such as an electronic torque wrench
EP2978565B1 (en) Insert holder for a machine tool
EP1239274B1 (en) Analog torque measuring device, steering column and module incorporating this device
EP2798304B1 (en) Device for measuring an internal or external profile of a tubular component
EP0611193B1 (en) Device for measuring stress applied on mechanical part and method of fixation
EP0589778A1 (en) Mounting element as well as method of mounting and mounting machine
FR2473729A1 (en) VOLTAGE MEASURING AND ELECTRIC FIELD DEVICE USING LIGHT
EP0293310B1 (en) Method to calibrate an electronic dynamometric wrench
EP0376795B1 (en) Stress-measuring extensometer transducer for a drilling element
EP2102585B1 (en) Device and method for measuring the mechanical deformations of a section
EP0229801B1 (en) New dynamometric spanner of the deforming flexion elements type
FR2680574A1 (en) Microsensor with temperature-compensated vibrating beam
EP0018873A1 (en) Compact device for optical coupling and optical-fibre interferometric gyrometer comprising such a device
WO2017203188A1 (en) Sensor for measuring a tightening force applied on a screw-assembly member
EP0177744B1 (en) Measuring head to measure diameters of cylindric objects
FR2828278A1 (en) Angular movement detector e.g. for vehicle power assisted steering system has polarized radiation emitter and receiver
FR2911528A1 (en) SCREWDRIVER TOOL INCLUDING ONE OR MORE TORQUE SENSORS MOUNTED FOR MEASURING DEFORMATIONS IN A PLAN PERPENDICULAR TO A AXIS OF REVOLUTION, AND CORRESPONDING SENSOR SUPPORT
CA2514802A1 (en) Extensometer comprising a flexible sensing element and bragg gratings
FR2626514A1 (en) Dynamometric wrench spanner with strain gauges
FR2863701A1 (en) METHOD FOR COMPENSATING AN ANISOTROPY IN AN INERTIAL ROTATING SENSOR WITH A VIBRATION BELL
FR2706613A1 (en) Method for determining the ductile tear strength of a material
EP0720006A1 (en) Method and device for non intrusively measuring the pressure fluctuations of a fluid within a conduit
EP0536037A1 (en) Process and apparatus for measuring the average thickness of a roadlayer
EP0034991B1 (en) Extensometer for concrete
EP0251894B1 (en) Process for measuring strain components in transparent photoelastic substrates, assembled by glueing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19950425

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961028

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69406057

Country of ref document: DE

Date of ref document: 19971113

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69406057

Country of ref document: DE

Owner name: STANLEY WORKS (EUROPE) AG, CH

Free format text: FORMER OWNER: FACOM S.A., MORANGIS, FR

Effective date: 20110218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110727

Year of fee payment: 18

Ref country code: GB

Payment date: 20110725

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110727

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120705

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69406057

Country of ref document: DE

Effective date: 20130201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120705