EP0612049A1 - Method for classifying vehicles passing a predetermined point on the road - Google Patents

Method for classifying vehicles passing a predetermined point on the road Download PDF

Info

Publication number
EP0612049A1
EP0612049A1 EP93118481A EP93118481A EP0612049A1 EP 0612049 A1 EP0612049 A1 EP 0612049A1 EP 93118481 A EP93118481 A EP 93118481A EP 93118481 A EP93118481 A EP 93118481A EP 0612049 A1 EP0612049 A1 EP 0612049A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
distance
chassis
measuring
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93118481A
Other languages
German (de)
French (fr)
Other versions
EP0612049B1 (en
Inventor
Gunnar Dipl.-Geophys. Becker
Norbert Dr. Börsken
Alwin Dr. Güdesen
Jürgen Dipl.-Ing. Klemp
Günter Dipl.-Ing. Tummoscheit
Gordian Dipl.-Ing. Vilmar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
STN Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH, STN Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP0612049A1 publication Critical patent/EP0612049A1/en
Application granted granted Critical
Publication of EP0612049B1 publication Critical patent/EP0612049B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles

Definitions

  • the invention relates to a method for classifying vehicles passing a given waypoint.
  • a seismic detector is used to distinguish between tracked vehicles, such as tanks or the like, and wheeled vehicles, such as articulated lorries, trucks and the like monitored path section is buried in the ground.
  • the driving and engine noises generated by the vehicles couple into the ground and spread as seismic or ground-borne sound waves in the ground.
  • These ground sound waves are received by the seismic detector, which is preferably designed as a geophone. From the output signals of the With the help of suitable signal processing methods, geophones are obtained criteria that indicate whether the received ground sound waves have been triggered by a tracked or wheeled vehicle.
  • certain types of vehicles such as wheeled and tracked vehicles
  • certain types of vehicles can be separated from one another, but certain types of vehicles, such as heavy, multi-axle semitrailers or lighter trucks with one or more drive axles, cannot be separated within one category. or tanks and also lighter scout cars equipped with chains.
  • the invention is based on the object of specifying a classification method for vehicles which recognizes vehicles passing a waypoint and is able to distinguish them with a fineness sufficient in particular for military reconnaissance purposes, vehicles with the same design features, such as chains or wheels, still being within their category in different vehicle types broken down, ie classified.
  • the object is achieved according to the invention in a method of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.
  • a profile of the chassis in the direction of the longitudinal axis of the vehicle is obtained, which is used at least with its characteristic parameters to identify the vehicle.
  • characteristic chassis parameters that Specifically only occur with certain vehicle types and are therefore ideally suited for their identification.
  • chassis parameters mentioned above and their combination on a measured vehicle not only can wheeled vehicles be divided into different categories, but also tracked vehicles can be identified in their various designs, because the number of chain wheels, their diameter and wheelbase as well as wheel cover for different types of tracked vehicles also are trained differently.
  • cut lengths are defined by adding the measured value spacings of successive measured values with an approximately equally large measured value size in order to obtain running gear parameters from the measured profile of the running gear and the position of the individual cutting lengths is determined.
  • Distance measurement values with the same measured variable arise due to the distance measurement to the same chassis part, so that the cutting lengths reflect the length of these chassis parts in the vehicle longitudinal axis.
  • the measuring height i.e. the distance of the measuring line from the earth's surface is kept very small, characterize repeatedly, i.e. at least twice, the same cutting lengths occurring in the measuring profile of secant sections of the vehicle wheels running parallel to the earth's surface.
  • the wheel diameter can be determined from the cutting length on the basis of the known measuring height and known geometric relationships. Each wheel axis lies on the central perpendicular of the respective cutting lines, and the distance between the wheel axes can thus be taken directly from the measurement profile.
  • the vehicle passing the waypoint is then classified on the basis of the large number of correspondences between the chassis parameters and the same chassis parameters of one of the known reference vehicles.
  • the method according to the invention based on the distance measurement to the vehicle, has the advantage over video surveillance of a route section or monitoring of the route section with a thermal imaging camera that only a small amount of data is processed to create a meaningful measurement profile and must therefore be transmitted to the corresponding evaluation points.
  • the measured values are relatively robust against transmission errors.
  • a measuring device for performing the distance measurement can therefore be very inexpensive manufactures and thus a variety of different waypoints can be installed.
  • the evaluation of the measured values at the individual measuring points that is to say the creation of the measuring profile, the extraction of chassis parameters and the comparison with reference vehicles, can be carried out for all measuring devices in an evaluation center remote from the measuring devices. For a large number of waypoint monitoring, only a single evaluation center is necessary.
  • the classification method described below detects and identifies vehicles that pass a predetermined waypoint on a route 10.
  • the distance to the chassis of the vehicle 11 is measured continuously from a measuring location 13 lying transversely to the route 10 along a fixed measuring line 14 running through the predetermined waypoint.
  • the distance measurement is carried out optically actively with a known laser rangefinder installed at the measuring location 13, which emits a sharply focused light beam along the measuring line 14 with an infrared laser transmitter and receives the light reflected on the chassis parts of the vehicle 11 with a receiver.
  • the distance to the vehicle 11 is determined from the received signals by means of an evaluation unit.
  • the laser beam can consist of pulsed or modulated light. When light pulses are emitted, the transit time of the respective laser pulse is measured and the distance is determined therefrom.
  • the measuring line 14 is aligned at right angles to the direction of travel 12 of the vehicle 11, that is to say at right angles to the route 10, in order to avoid problems in the distance measurement which are dependent on the aspect angle.
  • the measuring line 14 maintains the smallest possible distance D from the surface of the route 10, which is typically approximately 20 cm.
  • the following boundary conditions apply to the selection of an optimal measuring height D.
  • the measurement should be above road bumps, e.g. B. on gravel roads.
  • the measurement should also be closely adjacent wheels or castors in motor vehicles separate from each other, ie the gaps between the wheels or castors should be as large as possible, the measuring line should be below the wheel axles, since the chassis above the axles is often covered by aprons and the like.
  • the driving speed v of the vehicle 11 is measured when the waypoint is passed.
  • the driving speed can be measured by various methods, e.g. B. by arranging two spaced apart in the direction of travel 12 of the vehicle 11 sensors for detecting the passing vehicle and determining the time difference.
  • the vehicle can be detected, for example, using magnetic sensors which detect changes in the magnetic earth field as it passes the vehicle.
  • the spatial distance .DELTA.L of the measured values in the vehicle longitudinal axis is determined from the known measuring frequency F of the distance measurement and the measured vehicle speed v, and a measuring profile of the chassis of the vehicle 11 is created with this spatial distance of the measured values.
  • the successively determined distance measured values are strung together with an interval predetermined by the calculated distance in a direction corresponding to the longitudinal axis of the vehicle.
  • the resulting measurement profile of the chassis of the vehicle 11 is shown schematically in FIG. 3.
  • the measured value, ie the measured distance E is plotted on the ordinate and the number of measurements with successive distances ⁇ L is plotted on the abscissa.
  • cut lengths I are defined by adding the measured value distances L of successive measured values with approximately the same measured value size, and the position of these cut lengths I within the measurement profile is determined. Due to the measuring height D, i.e. the distance of the measuring line 14 from the surface of the route 11, and the repeated occurrence of identical cutting lengths I in the measuring profile shown, it can be assumed that the measured values within the cutting lengths I of the vehicle wheels of the vehicle 11 in Fig 1, the cutting lengths I thus represent secants of the vehicle wheels extending parallel to the route 10.
  • FIG. 4 shows the geometrical relationships on the vehicle wheel taking into account the measuring height D and the cutting lengths I.
  • the diameter R of the vehicle wheel can be determined from the cutting length I calculate.
  • a first characteristic chassis parameter for the vehicle 11 is thus derived from the measurement profile. In order to eliminate errors, this wheel diameter R is only permitted for reasons of plausibility if the condition D / 2 ⁇ R ⁇ 3 m is satisfied. If R is greater than 3 m, the cutting line cannot originate from a vehicle wheel, but rather must come from a side apron.
  • the center point of the wheel and thus the point of penetration of the wheel axle lies on the central perpendicular of the cutting length I.
  • the distance between the wheel axles can thus be readily derived from the measurement profile.
  • Another vehicle parameter that typifies the vehicle 11 is thus known.
  • the number of wheel axles, here three can easily be deduced from the presence of three cutting lengths I characteristic of vehicle wheels.
  • a further chassis parameter for vehicle 11 is thus known.
  • the reference vehicle i.e. maximum permissible loading weight, unladen weight etc.
  • a procedure can also be followed such that a plurality of synthetic chassis profiles, hereinafter referred to as reference profiles, are generated from the chassis parameters of a large number of known reference vehicles, including the measuring height D of the measuring line 14 are designed as the measurement profile shown in Fig. 3.
  • the synthetic reference profiles of the plurality of reference vehicles thus obtained are successively compared with the measurement profile according to FIG. 3 of the vehicle 11 to be identified correlated, ie checked for agreement.
  • the vehicle 11 to be identified is then classified as the reference vehicle whose reference profile correlated with the measurement profile according to FIG. 3 gives the greatest correlation factor, that is to say is as close as possible to 1.
  • a limit value of the correlation factor can be set, at which such an assignment of the vehicle 11 to a reference vehicle is permitted, so that incorrect classifications are largely excluded.
  • FIG. 5 shows a block diagram of a device for carrying out the described classification method for vehicles.
  • 15 is a laser rangefinder and 16 a speed measuring device.
  • Laser range finder 15 and speed measuring device 16 are activated by a wake-up device 17 when a vehicle 11 approaches the predetermined measuring point through which the measuring line 14 passes.
  • the wake-up device 17 can be, for example, a passive sensor system, such as, for. B. magnetic sensors that register a change in the magnetic field caused by the vehicle when approaching.
  • the laser rangefinder 15 and the speed measuring device 16 enter their measuring mode, ie the laser rangefinder 15 continuously measures with the measuring frequency F the distance E along the measuring line 14 to the vehicle 11 passing through the measuring line 14.
  • the speed measuring device 16 measures the current driving speed of the vehicle Vehicle 11 when passing the measuring line 14.
  • the measured values output by the laser range finder 15 are passed through a filter 18, in which incorrect distance measured values, e.g. B. due to disturbed laser reflection, detected and removed.
  • the Distance measured values filtered in this way are fed to a measured value evaluation unit 19 which additionally receives a measuring signal representing the vehicle speed v from the speed measuring device 16 and a signal indicating the measuring frequency F from the laser range finder 15.
  • the measured value evaluation unit 19 calculates the spatial distances between the individual measured values in the direction of the vehicle longitudinal axis from the quotient of the vehicle speed v and the measurement frequency F in accordance with L - v F (2) With this measured value distance, the measured value evaluation unit 19 creates the measurement profile according to FIG. 3 and supplies it to a parameter extraction unit 20.
  • a number of identical chassis parameters from known reference vehicles are assigned to a reference memory 22 stored these reference vehicles. These chassis parameters are read out in the comparator 21 one after the other.
  • the comparator 21 determines the degree of agreement of all chassis parameters of the same reference vehicle with the vehicle parameters of the vehicle 11 to be identified and outputs the reference vehicle in which the degree of agreement is at a maximum. This means that the vehicle 11 to be identified is classified as the output reference vehicle.
  • blocks 23 and 24 can be provided, block 23 being a computing device and block 24 being a correlation unit.
  • the computing device 23 is used to create a synthetic reference profile for each of the stored reference vehicles, which is configured in the same way as the measurement profile for the chassis of the vehicle, from the plurality of vehicle parameters stored in the reference memory 22, each belonging to a plurality of reference vehicles 11 in FIG. 3.
  • the measurement profile of the chassis of the vehicle 11 created in the measured value evaluation unit 19 is fed to the correlation unit 24.
  • the correlation unit 24 successively correlates this measurement profile with each of the reference profiles of the chassis of a known reference vehicle calculated by the computing device 23 and determines the correlation factor.
  • the maximum correlation factor is determined from the large number of correlation factors, which preferably must additionally exceed a minimum size.
  • the reference vehicle that gives this maximum correlation factor is output as a classification vehicle, i. H. the vehicle 11 to be detected is classified as the reference vehicle output at the output of the correlation unit 24.
  • the invention is not limited to the exemplary embodiment described. So z. B. on embankments next to the driveway 10, which leave little space for the establishment of the measuring point 13 in the vicinity of the driveway 10, an optics with an entrance and exit pupil at measuring height D, the optical axis of which can be installed directly at the edge of the driveway 10 Measuring line 14 coincides.
  • the optics are connected to a measuring point set up behind the embankment via a light guide cable installed laser rangefinder connected, and there coupled to the laser transmitter and receiver.
  • the fiber optic cable can be laid as desired, it can also be led through the embankment or buried in the ground. The length of the light guide cable must then be taken into account when measuring distance. It is possible to provide a separate entrance and exit pupil in the optics, which are each connected to the laser transmitter and the receiver via separate light guide cables. However, it is also possible to fold the entrance and exit pupils so that only one light guide cable leads to the laser range finder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The method for classifying vehicles which are passing a predetermined point on the road, for the purpose of a refined possibility of classification within defined vehicle categories, such as track-laying (tracked) or wheeled vehicles, working from a measuring location abreast the road the distance to the running gear (undercarriage) of the vehicle respectively passing the point on the road is continuously measured in an optically active fashion along a fixed measuring line extending through the point on the road and, in addition, the speed of the vehicle respectively passing the point on the road is measured. The spatial separation of the measured values in the direction of the longitudinal axis of the vehicle is determined from the vehicle speed and the measuring frequency, and a measurement profile of the running gear of the vehicle is drawn up by plotting the measured values with the spatial separation determined in the direction of the longitudinal axis. The measurement profile is compared for agreement either indirectly by deriving vehicle parameters such as number of axles, wheelbase and wheel diameter or directly with a multiplicity of known reference vehicles. The vehicle is classified as that reference vehicle for which the agreement is closest. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Klassifizieren von einen vorgegebenen Wegpunkt passierenden Fahrzeugen.The invention relates to a method for classifying vehicles passing a given waypoint.

Zur militärischen Aufklärung ist es notwendig, Bewegungen von Truppenteilen in einem Aufmarschgebiet rechtzeitig zu erkennen und zuverlässig zu analysieren. Hierzu ist die Beobachtung von Fahrzeugverschiebungen in bestimmten Wegabschnitten unerläßlich, wobei nicht nur die Anzahl der einen Wegpunkt passierenden Fahrzeuge sondern auch deren Natur festgestellt werden muß.For military reconnaissance, it is necessary to recognize movements of troops in a deployment area in good time and to analyze them reliably. To this end, it is essential to observe vehicle shifts in certain sections of the route, not only the number of vehicles passing a waypoint but also their nature having to be determined.

Bei einem bekannten Verfahren der eingangs genannten Art (US-PS 4 158 832) bedient man sich zur Unterscheidung zwischen Kettenfahrzeugen, wie Panzer od. dgl., und Radfahrzeugen, wie Sattelschlepper, Lastkraftwagen und dgl., eines seismischen Detektors, der in Nähe des überwachten Wegabschnitts in den Boden eingegraben wird. Die von den Fahrzeugen erzeugten Fahr- und Motorgeräusche koppeln in den Boden ein und breiten sich als Seismik- oder Bodenschallwellen im Boden aus. Diese Bodenschallwellen werden von dem bevorzugt als Geophon ausgebildeten Seismikdetektor empfangen. Aus den Ausgangssignalen des Geophons werden mit Hilfe geeigneter Signalverarbeitungsverfahren Kriterien gewonnen, die erkennen lassen, ob die empfangenen Bodenschallwellen von einem Ketten- oder Radfahrzeug ausgelöst worden sind.In a known method of the type mentioned (US Pat. No. 4,158,832), a seismic detector is used to distinguish between tracked vehicles, such as tanks or the like, and wheeled vehicles, such as articulated lorries, trucks and the like monitored path section is buried in the ground. The driving and engine noises generated by the vehicles couple into the ground and spread as seismic or ground-borne sound waves in the ground. These ground sound waves are received by the seismic detector, which is preferably designed as a geophone. From the output signals of the With the help of suitable signal processing methods, geophones are obtained criteria that indicate whether the received ground sound waves have been triggered by a tracked or wheeled vehicle.

Mit einem solchen seismischen Detektions- und Klassifizierungsverfahren lassen sich zwar bestimmte Gattungen von Fahrzeugen, wie eben Rad- und Kettenfahrzeuge, voneinander separieren, jedoch können nicht innerhalb einer Gattung auch bestimmte Fahrzeugtypen, wie schwere, mehrachsige Sattelschlepper oder leichtere Lastkraftwagen mit einer oder mehreren Antriebsachsen, bzw. Panzer und ebenfalls mit Ketten ausgerüstete leichtere Spähwagen, voneinander unterschieden werden.With such a seismic detection and classification method, certain types of vehicles, such as wheeled and tracked vehicles, can be separated from one another, but certain types of vehicles, such as heavy, multi-axle semitrailers or lighter trucks with one or more drive axles, cannot be separated within one category. or tanks and also lighter scout cars equipped with chains.

Der Erfindung liegt die Aufgabe zugrunde, ein Klassifizierungsverfahren für Fahrzeuge anzugeben, das einen Wegpunkt passierende Fahrzeuge erkennt und mit insbesondere für militärische Aufklärungszwecke ausreichender Feinheit zu unterscheiden vermag, wobei auch Fahrzeuge mit gleichen Konstruktionsmerkmalen, wie Ketten oder Räder, noch innerhalb ihrer Gattung in verschiedenen Fahrzeugtypen aufgeschlüsselt, d.h. klassifiziert, werden sollen.The invention is based on the object of specifying a classification method for vehicles which recognizes vehicles passing a waypoint and is able to distinguish them with a fineness sufficient in particular for military reconnaissance purposes, vehicles with the same design features, such as chains or wheels, still being within their category in different vehicle types broken down, ie classified.

Die Aufgabe ist bei einem Verfahren der im Oberbegriff des Anspruchs 1 angegebenen Gattung erfindungsgemäß durch die Merkmale im Kennzeichenteil des Anspruchs 1 gelöst.The object is achieved according to the invention in a method of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.

Mit dem erfindungsgemäßen Verfahren wird durch Messen des Abstandes zu einem den Wegpunkt passierenden Fahrzeug ein Profil des Fahrwerks in Richtung Längsachse des Fahrzeugs gewonnen, das zumindest mit seinen charakteristischen Parametern zur Identifizierung des Fahrzeugs herangezogen wird. Solche charakteristischen Fahrwerksparameter, die speziell nur bei bestimmten Fahrzeugtypen auftreten und daher zu deren Identifizierung bestens geeignet sind, sind z. B. die Anzahl der Fahrzeugräder, die Anzahl der Radachsen, die Abstände der Radachsen und der Durchmesser der Fahrzeugräder wowie Radverkleidungen bei Kettenfahrzeugen und Fahrzeugschürzen und dgl. Diese in Fahrzeuglängsrichtung vermessenen Fahrwerksparameter werden mit einer Vielzahl von gleichartigen Fahrwerksparametern bekannter Referenzfahrzeuge verglichen, und bei ausreichender Übereinstimmung wird das vermessene Fahrzeug als dasjenige Referenzfahrzeug identifiziert.With the method according to the invention, by measuring the distance to a vehicle passing the waypoint, a profile of the chassis in the direction of the longitudinal axis of the vehicle is obtained, which is used at least with its characteristic parameters to identify the vehicle. Such characteristic chassis parameters that Specifically only occur with certain vehicle types and are therefore ideally suited for their identification. B. the number of vehicle wheels, the number of wheel axles, the spacing of the wheel axles and the diameter of the vehicle wheels, as well as wheel linings in tracked vehicles and vehicle aprons and the like. These chassis parameters measured in the vehicle longitudinal direction are compared with a large number of similar chassis parameters of known reference vehicles, and if there is sufficient agreement the measured vehicle is identified as that reference vehicle.

Hierbei ist es möglich, zum einen die typischen Fahrwerksparameter aus dem Meßprofil zu extrahieren und mit den entsprechenden Fahrwerksparametern der bekannten Referenzfahrzeuge zu vergleichen, und zum andern, anhand der typischen Fahrwerksparameter der Referenzfahrzeuge ein synthetisches Meßprofil des Fahrwerks der bekannten Referenzfahrzeuge zu erstellen und dieses unmittelbar mit dem Meßprofil zu korrelieren.Here it is possible, on the one hand, to extract the typical chassis parameters from the measurement profile and compare them with the corresponding chassis parameters of the known reference vehicles, and, on the other hand, to create a synthetic measurement profile of the chassis of the known reference vehicles based on the typical chassis parameters of the reference vehicles and this directly with to correlate the measurement profile.

Mit den vorstehend genannten Fahrwerksparametern und deren Kombination an einem vermessenen Fahrzeug können nicht nur Radfahrzeuge in verschiedene Kategorien unterteilt werden, sondern auch Kettenfahrzeuge in ihren verschiedenen Ausbildungen identifiziert werden, weil die Anzahl der Kettenlaufräder, deren Durchmesser und Radabstand sowie Radverkleidung bei unterschiedlichen Typen von Kettenfahrzeugen auch unterschiedlich ausgebildet sind.With the chassis parameters mentioned above and their combination on a measured vehicle, not only can wheeled vehicles be divided into different categories, but also tracked vehicles can be identified in their various designs, because the number of chain wheels, their diameter and wheelbase as well as wheel cover for different types of tracked vehicles also are trained differently.

Vorteilhafte Ausführungsformen des erfindungsgemäßen Verfahrens mit zweckmäßigen Ausgestaltungen und Verbesserungen der Erfindung ergeben sich aus den weiteren Ansprüchen.Advantageous embodiments of the method according to the invention with expedient refinements and improvements of the invention result from the further claims.

Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens werden zur Gewinnung von Fahrwerksparametern aus dem gemessenen Profil des Fahrwerks Schnittlängen durch Addition der Meßwertabstände aufeinanderfolgender Meßwerte mit annähernd gleich großer Meßwertgröße definiert und die Lage der einzelnen Schnittlängen bestimmt. Entfernungsmeßwerte mit gleicher Meßgröße entstehen aufgrund der Entfernungsmessung zu dem gleichen Fahrwerksteil, so daß die Schnittlängen die Länge dieser Fahrwerksteile in Fahrzeuglängsachse wiedergeben. Da erfindungsgemäß die Meßhöhe, d.h. der Abstand der Meßlinie von der Erdoberfläche recht gering gehalten wird, charakterisieren wiederholt, d.h. mindestens zweimal, auftretende gleiche Schnittlängen im Meßprofil parallel zu der Erdoberfläche verlaufende Sekantenabschnitten der Fahrzeugräder. Aus der Schnittlänge läßt sich aufgrund der bekannten Meßhöhe und bekannter geometrischer Beziehungen der Raddurchmesser ermitteln. Jede Radachse liegt auf dem Mittellot der jeweiligen Schnittlinien, und der Abstand der Radachsen läßt sich damit unmittelbar aus dem Meßprofil entnehmen. Die Klassifizierung des den Wegpunkt passierenden Fahrzeugs erfolgt dann aufgrund der Vielzahl an Übereinstimmungen der Fahrwerksparameter mit gleichen Fahrwerksparametern eines der bekannten Referenzfahrzeuge.According to a preferred embodiment of the method according to the invention, cut lengths are defined by adding the measured value spacings of successive measured values with an approximately equally large measured value size in order to obtain running gear parameters from the measured profile of the running gear and the position of the individual cutting lengths is determined. Distance measurement values with the same measured variable arise due to the distance measurement to the same chassis part, so that the cutting lengths reflect the length of these chassis parts in the vehicle longitudinal axis. According to the invention, since the measuring height, i.e. the distance of the measuring line from the earth's surface is kept very small, characterize repeatedly, i.e. at least twice, the same cutting lengths occurring in the measuring profile of secant sections of the vehicle wheels running parallel to the earth's surface. The wheel diameter can be determined from the cutting length on the basis of the known measuring height and known geometric relationships. Each wheel axis lies on the central perpendicular of the respective cutting lines, and the distance between the wheel axes can thus be taken directly from the measurement profile. The vehicle passing the waypoint is then classified on the basis of the large number of correspondences between the chassis parameters and the same chassis parameters of one of the known reference vehicles.

Das auf der Entfernungsmessung zum Fahrzeug basierende erfindungsgemäße Verfahren hat gegenüber der Videoüberwachung eines Wegabschnitts oder der Überwachung des Wegabschnitts mit einer Wärmebildkamera den Vorteil, daß zur Erstellung eines aussagefähigen Meßprofils nur wenige Daten verarbeitet werden und damit zu den entsprechenden Auswertestellen übertragen werden müssen. Dabei sind die Meßwerte relativ robust gegen Übertragungsfehler. Eine Meßvorrichtung zur Durchführung der Entfernungsmessung kann daher sehr kostengünstig herstellt und damit eine Vielzahl an verschiedenen Wegpunkten installiert werden. Die Auswertung der Meßwerte an den einzelnen Meßstellen, also die Erstellung des Meßprofils, die Extrahierung von Fahrwerksparametern und der Vergleich mit Referenzfahrzeugen, kann in einer von den Meßvorrichtungen entfernten Auswertezentrale für alle Meßvorrichtungen durchgeführt werden. Für eine Vielzahl von Wegpunktüberwachungen ist damit nur eine einzige Auswertezentrale notwendig.The method according to the invention, based on the distance measurement to the vehicle, has the advantage over video surveillance of a route section or monitoring of the route section with a thermal imaging camera that only a small amount of data is processed to create a meaningful measurement profile and must therefore be transmitted to the corresponding evaluation points. The measured values are relatively robust against transmission errors. A measuring device for performing the distance measurement can therefore be very inexpensive manufactures and thus a variety of different waypoints can be installed. The evaluation of the measured values at the individual measuring points, that is to say the creation of the measuring profile, the extraction of chassis parameters and the comparison with reference vehicles, can be carried out for all measuring devices in an evaluation center remote from the measuring devices. For a large number of waypoint monitoring, only a single evaluation center is necessary.

Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen, jeweils in schematischer Darstellung,

Fig. 1
eine Seitenansicht eines auf einer Straße fahrenden Lastkraftwagens mit einer querab der Straße angeordneten Meßvorrichtung,
Fig. 2
eine Draufsicht von Fahrzeug und Meßvorrichtung gemäß Pfeil II in Fig. 1,
Fig. 3
eine Darstellung eines Meßprofils vom Fahrwerk des Fahrzeugs in Fig. 1 und 2,
Fig. 4
eine Darstellung der geometrischen Beziehungen zur Ermittlung eines Raddurchmessers R,
Fig. 5
ein Blockschaltbild einer Vorrichtung zur Durchführung des Klassifizierungsverfahrens.
The invention is described below with reference to an embodiment shown in the drawing. They show, each in a schematic representation,
Fig. 1
2 shows a side view of a truck traveling on a street with a measuring device arranged transversely of the street,
Fig. 2
2 shows a top view of the vehicle and measuring device according to arrow II in FIG. 1,
Fig. 3
1 shows a measurement profile of the chassis of the vehicle in FIGS. 1 and 2,
Fig. 4
a representation of the geometric relationships for determining a wheel diameter R,
Fig. 5
a block diagram of an apparatus for performing the classification method.

Mit dem nachfolgend beschriebenen Klassifizierungsverfahren werden Fahrzeuge erfaßt und identifiziert, die einen vorgegebenen Wegpunkt auf einer Fahrstraße 10 passieren.The classification method described below detects and identifies vehicles that pass a predetermined waypoint on a route 10.

Dabei wird vorausgesetzt, daß die Fahrzeuge den Wegpunkt nacheinander und nicht gleichzeitig passieren, was bei geeigneter Auswahl des Wegpunktes üblicherweise der Fall ist. Das Verfahren ist nachfolgend anhand der Identifizierung eines Lastkraftwagens 11 mit doppelter Hinterachse beschrieben, der sich auf der Fahrstraße 10 in Fahrtrichtung gemäß Pfeil 12 bewegt und dabei den vorgegebenen Wegpunkt passiert.It is assumed that the vehicles pass the waypoint one after the other and not at the same time, which is usually the case when the waypoint is selected appropriately. The method is described below on the basis of the identification of a truck 11 with a double rear axle, which moves on the route 10 in the direction of travel according to arrow 12 and thereby passes the predetermined waypoint.

Von einem querab der Fahrstraße 10 liegenden Meßort 13 aus wird längs einer durch den vorgegebenen Wegpunkt verlaufenden festen Meßlinie 14 fortlaufend die Entfernung zum Fahrwerk des Fahrzeugs 11 gemessen. Die Entfernungsmessung erfolgt dabei optisch aktiv mit einem am Meßort 13 installierten an sich bekannten Laserentfernungsmesser, der mit einem Infrarot-Lasersender einen scharf gebündelten Lichtstrahl längs der Meßlinie 14 aussendet und mit einem Empfänger das an Fahrwerksteilen des Fahrzeugs 11 reflektierte Licht empfängt. Mittels einer Auswerteeinheit wird aus den Empfangssignalen die Entfernung zum Fahrzeug 11 bestimmt. Der Laserstrahl kann aus gepulstem oder moduliertem Licht bestehen. Bei Aussendung von Lichtimpulsen wird die Laufzeit des jeweiligen Laserimpulses gemessen und daraus die Entfernung bestimmt. Die Meßlinie 14 wird dabei rechtwinklig zur Fahrtrichtung 12 des Fahrzeugs 11, also rechtwinklig zur Fahrstraße 10, ausgerichtet, um vom Aspektwinkel abhängige Probleme bei der Entfernungsmessung zu vermeiden. Die Meßlinie 14 hält einen möglichst kleinen Abstand D von der Oberfläche der Fahrstraße 10 ein, der typischerweise etwa 20 cm beträgt. Für die Auswahl einer optimalen Meßhöhe D gelten folgende Randbedingungen: Die Messung sollte oberhalb von Unebenheiten der Straße, z. B. bei Schotterwegen, erfolgen. Die Messung soll auch eng benachbarte Räder bzw. Laufrollen bei Kraftfahrzeugen voneinander trennen, d. h. die Lücken zwischen den Rädern bzw. Laufrollen sollen möglichst groß sein, die Meßlinie sollte unterhalb der Radachsen liegen, da das Fahrwerk oberhalb der Achsen häufig durch Schürzen und ähnliches abgedeckt ist.The distance to the chassis of the vehicle 11 is measured continuously from a measuring location 13 lying transversely to the route 10 along a fixed measuring line 14 running through the predetermined waypoint. The distance measurement is carried out optically actively with a known laser rangefinder installed at the measuring location 13, which emits a sharply focused light beam along the measuring line 14 with an infrared laser transmitter and receives the light reflected on the chassis parts of the vehicle 11 with a receiver. The distance to the vehicle 11 is determined from the received signals by means of an evaluation unit. The laser beam can consist of pulsed or modulated light. When light pulses are emitted, the transit time of the respective laser pulse is measured and the distance is determined therefrom. The measuring line 14 is aligned at right angles to the direction of travel 12 of the vehicle 11, that is to say at right angles to the route 10, in order to avoid problems in the distance measurement which are dependent on the aspect angle. The measuring line 14 maintains the smallest possible distance D from the surface of the route 10, which is typically approximately 20 cm. The following boundary conditions apply to the selection of an optimal measuring height D. The measurement should be above road bumps, e.g. B. on gravel roads. The measurement should also be closely adjacent wheels or castors in motor vehicles separate from each other, ie the gaps between the wheels or castors should be as large as possible, the measuring line should be below the wheel axles, since the chassis above the axles is often covered by aprons and the like.

Zusätzlich zur fortlaufenden Entfernungsmessung wird die Fahrgeschwindigkeit v des Fahrzeugs 11 beim Passieren des Wegpunktes gemessen. Die Messung der Fahrgeschwindigkeit kann durch verschiedenen Methoden erfolgen, z. B. durch Anordnung von zwei im Abstand voneinander in Fahrtrichtung 12 des Fahrzeugs 11 angeordneten Sensoren zur Detektion des passierenden Fahrzeugs und Bestimmung der Zeitdifferenz. Die Detektion des Fahrzeugs kann dabei beispielsweise mit Magnetiksensoren erfolgen, die Veränderungen des magnetischen Erdfeldes beim Passieren des Fahrzeugs erfassen.In addition to the continuous distance measurement, the driving speed v of the vehicle 11 is measured when the waypoint is passed. The driving speed can be measured by various methods, e.g. B. by arranging two spaced apart in the direction of travel 12 of the vehicle 11 sensors for detecting the passing vehicle and determining the time difference. The vehicle can be detected, for example, using magnetic sensors which detect changes in the magnetic earth field as it passes the vehicle.

Aus der bekannten Meßfrequenz F der Entfernungsmessung und der gemessenen Fahrzeuggeschwindigkeit v wird der räumliche Abstand ΔL der Meßwerte in Fahrzeuglängsachse bestimmt und mit diesem räumlichen Abstand der Meßwerte ein Meßprofil des Fahrwerks des Fahrzeugs 11 erstellt. Hierzu werden die aufeinanderfolgend ermittelten Entfernungsmeßwerte mit einem durch den errechneten Abstand vorgegebenen Intervall in einer der Fahrzeuglängsachse entsprechenden Richtung aneinandergereiht. Das dabei entstehende Meßprofil des Fahrwerks des Fahrzeugs 11 ist in Fig. 3 schematisch dargestellt. Auf der Ordinate ist dabei die Meßwertgröße, also die gemessene Entfernung E, und auf der Abszisse die Anzahl der Messungen mit aufeinanderfolgenden Abständen ΔL aufgetragen. In dem Meßprofil ist deutlich zu sehen, daß einige aufeinanderfolgende Meßwerte die gleich Meßwertgröße aufweisen, was bedeutet, daß diese Meßwerte von dem gleichen Fahrwerksteil des Fahrzeugs 11 herrühren. Zur Auswertung des Meßprofils zwecks Identifikation und Klassifikation des Fahrzeugs 11 werden sog. Schnittlängen I durch Addition der Meßwertabstände L aufeinanderfolgender Meßwerte mit annähernd gleich großer Meßwertgröße definiert sowie die Lage dieser Schnittlängen I innerhalb des Meßprofils bestimmt. Aufgrund der Meßhöhe D, d. h. des Abstandes der Meßlinie 14 von der Oberfläche der Fahrstraße 11, und des wiederholten Auftretens identischer Schnittlängen I in dem dargestellten Meßprofil, kann davon ausgegangen werden, daß die Meßwerte innerhalb der Schnittlängen I von den Fahrzeugrädern des Fahrzeugs 11 in Fig. 1 herrühren, die Schnittlängen I also parallel zur Fahrstraße 10 sich erstreckende Sekanten der Fahrzeugräder darstellen. In Fig. 4 sind die geometrischen Verhältnisse am Fahrzeugrad unter Berücksichtigung der Meßhöhe D und der Schnittlängen I dargestellt. Wie aus dieser Skizze ohne weiteres ableitbar ist, läßt sich aus der Schnittlänge I der Durchmesser R des Fahrzeugrades gemäß

Figure imgb0001

errechnen. Damit ist aus dem Meßprofil ein erster charakteristischer Fahrwerksparameter für das Fahrzeug 11 abgeleitet. Um Fehler zu eliminieren, wird aus Plausibilitätsgründen dieser Raddurchmesser R nur dann zugelassen, wenn die Bedingung

D/2 < R < 3 m
Figure imgb0002


erfüllt ist. Ist R größer als 3 m, kann die Schnittlinie nicht von einem Fahrzeugrad stammen, sondern muß vielmehr von einer Seitenschürze herrühren.The spatial distance .DELTA.L of the measured values in the vehicle longitudinal axis is determined from the known measuring frequency F of the distance measurement and the measured vehicle speed v, and a measuring profile of the chassis of the vehicle 11 is created with this spatial distance of the measured values. For this purpose, the successively determined distance measured values are strung together with an interval predetermined by the calculated distance in a direction corresponding to the longitudinal axis of the vehicle. The resulting measurement profile of the chassis of the vehicle 11 is shown schematically in FIG. 3. The measured value, ie the measured distance E, is plotted on the ordinate and the number of measurements with successive distances ΔL is plotted on the abscissa. The measurement profile clearly shows that some successive measurement values have the same measurement value size, which means that these measurement values originate from the same chassis part of the vehicle 11. For Evaluation of the measurement profile for the purpose of identification and classification of the vehicle 11, so-called cut lengths I are defined by adding the measured value distances L of successive measured values with approximately the same measured value size, and the position of these cut lengths I within the measurement profile is determined. Due to the measuring height D, i.e. the distance of the measuring line 14 from the surface of the route 11, and the repeated occurrence of identical cutting lengths I in the measuring profile shown, it can be assumed that the measured values within the cutting lengths I of the vehicle wheels of the vehicle 11 in Fig 1, the cutting lengths I thus represent secants of the vehicle wheels extending parallel to the route 10. 4 shows the geometrical relationships on the vehicle wheel taking into account the measuring height D and the cutting lengths I. As can easily be derived from this sketch, the diameter R of the vehicle wheel can be determined from the cutting length I
Figure imgb0001

calculate. A first characteristic chassis parameter for the vehicle 11 is thus derived from the measurement profile. In order to eliminate errors, this wheel diameter R is only permitted for reasons of plausibility if the condition

D / 2 <R <3 m
Figure imgb0002


is satisfied. If R is greater than 3 m, the cutting line cannot originate from a vehicle wheel, but rather must come from a side apron.

Der Radmittelpunkt und damit der Durchstoßpunkt der Radachse liegt auf dem Mittellot der Schnittlänge I. Der Abstand der Radachsen läßt sich somit ohne weiteres aus dem Meßprofil entnehmen. Damit ist ein weiterer Fahrzeugparameter, der das Fahrzeug 11 typisiert, bekannt. Ebenso läßt sich die Anzahl der Radachsen, hier drei, ohne weiteres aus dem Vorhandensein von drei für Fahrzeugräder charakteristischen Schnittlängen I entnehmen. Damit ist ein weiterer Fahrwerksparameter für das Fahrzeug 11 bekannt.The center point of the wheel and thus the point of penetration of the wheel axle lies on the central perpendicular of the cutting length I. The distance between the wheel axles can thus be readily derived from the measurement profile. Another vehicle parameter that typifies the vehicle 11 is thus known. Likewise, the number of wheel axles, here three, can easily be deduced from the presence of three cutting lengths I characteristic of vehicle wheels. A further chassis parameter for vehicle 11 is thus known.

Die wie vorstehend abgeleiteten Fahrwerksparameter: Anzahl der Radachsen, Abstand der Radachsen und Durchmesser der Räder, werden mit einer Vielzahl von gleichen Fahrwerksparametern bekannter Referenzfahrzeuge verglichen, und das vermessene Fahrzeug 11 wird als dasjenige Referenzfahrzeug identifiziert bzw. klassifiziert, dessen Fahrwerksparameter in der Summe die geringste Abweichung von den aus dem Meßprofil abgeleiteten drei Fahrwerksparametern aufweisen. Hier, also als Lastkraftwagen mit zwei Hinterachsen des Typs XY. Anhand des Referenzfahrzeuges können die Fahrzeugdaten angegeben werden, also maximal zulässiges Ladegewicht, Leergewicht etc..The chassis parameters derived as above: number of wheel axles, distance of the wheel axles and diameter of the wheels are compared with a plurality of identical chassis parameters of known reference vehicles, and the measured vehicle 11 is identified or classified as the reference vehicle whose chassis parameters are the lowest in total Deviate from the three chassis parameters derived from the measurement profile. Here, as a truck with two type XY rear axles. The vehicle data can be specified on the basis of the reference vehicle, i.e. maximum permissible loading weight, unladen weight etc.

Zur Auswertung des Meßprofils zwecks Identifikation des den Wegpunkt passierenden Fahrzeuges 11 kann auch so vorgegangen werden, daß aus den Fahrwerkparametern einer Vielzahl von bekannten Referenzfahrzeugen unter Einbeziehung der Meßhöhe D der Meßlinie 14 eine Vielzahl von synthetischen Fahrwerksprofilen, im folgenden Referenzprofile genannt, erzeugt werden, die so gestaltet sind, wie das in Fig. 3 gezeigt Meßprofil. Die so gewonnenen synthetischen Referenzprofile der Vielzahl der Referenzfahrzeuge werden nacheinander mit dem Meßprofil gemäß Fig. 3 des zu identifizierenden Fahrzeugs 11 korreliert, d. h. auf Übereinstimmung geprüft. Das zu identifizierende Fahrzeug 11 wird dann als dasjenige Referenzfahrzeug klassifiziert, dessen mit dem Meßprofil gemäß Fig. 3 korreliertes Referenzprofil den größten Korrelationsfaktor ergibt, also möglichst nahe an 1 liegt. Dabei kann gleichzeitig ein Grenzwert des Korrelationsfaktors festgelegt werden, bei dem eine solche Zuordnung des Fahrzeugs 11 zu einem Referenzfahrzeug zugelassen wird, so daß Fehlklassifizierungen weitgehend ausgeschlossen werden.To evaluate the measurement profile for the purpose of identifying the vehicle 11 passing the waypoint, a procedure can also be followed such that a plurality of synthetic chassis profiles, hereinafter referred to as reference profiles, are generated from the chassis parameters of a large number of known reference vehicles, including the measuring height D of the measuring line 14 are designed as the measurement profile shown in Fig. 3. The synthetic reference profiles of the plurality of reference vehicles thus obtained are successively compared with the measurement profile according to FIG. 3 of the vehicle 11 to be identified correlated, ie checked for agreement. The vehicle 11 to be identified is then classified as the reference vehicle whose reference profile correlated with the measurement profile according to FIG. 3 gives the greatest correlation factor, that is to say is as close as possible to 1. At the same time, a limit value of the correlation factor can be set, at which such an assignment of the vehicle 11 to a reference vehicle is permitted, so that incorrect classifications are largely excluded.

In Fig. 5 ist ein Blockschaltbild einer Vorrichtung zur Durchführung des beschriebenen Klassifizierungsverfahrens von Fahrzeugen dargestellt. Mit 15 ist dabei ein Laserentfernungsmesser und mit 16 eine Geschwindigkeitsmeßeinrichtung bezeichnet. Laserentfernungsmesser 15 und Geschwindigkeitsmeßeinrichtung 16 werden von einer Weckvorrichtung 17 aktiviert, wenn ein Fahrzeug 11 sich dem vorgegebenen Meßpunkt, durch den die Meßlinie 14 hindurchgeht, nähert. Die Weckvorrichtung 17 kann beispielsweise eine passive Sensorik sein, wie z. B. Magnetsensoren, die eine von dem Fahrzeug bei Annäherung hevorgerufene Änderung des Magnetfeldes registrieren. Mit Aktivierung treten der Laserentfernungsmesser 15 und die Geschwindigkeitsmeßeinrichtung 16 in ihren Meßmodus, d. h. der Laserentfernungsmesser 15 vermißt fortlaufend mit der Meßfrequenz F die Entfernung E längs der Meßlinie 14 zu dem durch die Meßlinie 14 hindurchfahrenden Fahrzeug 11. Gleichzeitig vermißt die Geschwindigkeitsmeßeinrichtung 16 die momentane Fahrgeschwindigkeit des Fahrzeugs 11 beim Passieren der Meßlinie 14. Die vom Laserentfernungsmesser 15 ausgegebenen Meßwerte werden über ein Filter 18 geführt, in welchem fehlerhafte Entfernungsmeßwerte, z. B. aufgrund gestörter Laserreflexion, erkannt und entfernt werden. Die so gefilterten Entfernungsmeßwerte werden einer Meßwert-Auswerteeinheit 19 zugeführt, die zusätzlich noch ein die Fahrzeuggeschwindigkeit v darstellendes Meßsignal von der Geschwindigkeitsmeßeinrichtung 16 und ein die Meßfrequenz F angebendes Signal vom Laserentfernungsmesser 15 erhält. Die Meßwert-Auswerteeinheit 19 berechnet die räumlichen Abstände der einzelnen Meßwerte in Richtung der Fahrzeuglängsachse aus dem Quotienten von Fahrzeuggeschwindigkeit v und Meßfrequenz F gemäß

L - v F    (2)

Figure imgb0003


Mit diesem Meßwertabstand wird von der Meßwert-Auswerteeinheit 19 das Meßprofil gemäß Fig. 3 erstellt und einer Parameter-Extraktionseinheit 20 zugeführt. Die Extraktionseinheit 20 ermittelt, wie vorstehend beschrieben, aus dem Meßprofil typische Fahrwerksparameter, wie Raddurchmesser, Anzahl der Radachsen und Radabstände und gibt die so ermittelten Fahrwerksparameter an einen Vergleicher 21. In einem Referenzspeicher 22 sind eine Vielzahl von gleichen Fahrwerksparametern aus bekannten Referenzfahrzeugen in Zuordnung zu diesen Referenzfahrzeugen abgespeichert. Diese Fahrwerksparameter werden nacheinander in den Vergleicher 21 ausgelesen. Der Vergleicher 21 ermittelt den Grad der Übereinstimmung aller Fahrwerksparameter des gleichen Referenzfahrzeugs mit den Fahrzeugparametern des zu identifizierenden Fahrzeugs 11 und gibt dasjenige Referenzfahrzeug aus, bei dem der Grad an Übereinstimmung maximal ist. Dieses bedeutet, daß das zu identifizierende Fahrzeug 11 als das ausgegebene Referenzfahrzeug klassifiziert ist.FIG. 5 shows a block diagram of a device for carrying out the described classification method for vehicles. 15 is a laser rangefinder and 16 a speed measuring device. Laser range finder 15 and speed measuring device 16 are activated by a wake-up device 17 when a vehicle 11 approaches the predetermined measuring point through which the measuring line 14 passes. The wake-up device 17 can be, for example, a passive sensor system, such as, for. B. magnetic sensors that register a change in the magnetic field caused by the vehicle when approaching. When activated, the laser rangefinder 15 and the speed measuring device 16 enter their measuring mode, ie the laser rangefinder 15 continuously measures with the measuring frequency F the distance E along the measuring line 14 to the vehicle 11 passing through the measuring line 14. At the same time, the speed measuring device 16 measures the current driving speed of the vehicle Vehicle 11 when passing the measuring line 14. The measured values output by the laser range finder 15 are passed through a filter 18, in which incorrect distance measured values, e.g. B. due to disturbed laser reflection, detected and removed. The Distance measured values filtered in this way are fed to a measured value evaluation unit 19 which additionally receives a measuring signal representing the vehicle speed v from the speed measuring device 16 and a signal indicating the measuring frequency F from the laser range finder 15. The measured value evaluation unit 19 calculates the spatial distances between the individual measured values in the direction of the vehicle longitudinal axis from the quotient of the vehicle speed v and the measurement frequency F in accordance with

L - v F (2)
Figure imgb0003


With this measured value distance, the measured value evaluation unit 19 creates the measurement profile according to FIG. 3 and supplies it to a parameter extraction unit 20. The extraction unit 20, as described above, determines typical chassis parameters, such as wheel diameter, number of wheel axles and wheel spacings, from the measurement profile and transmits the chassis parameters determined in this way to a comparator 21. A number of identical chassis parameters from known reference vehicles are assigned to a reference memory 22 stored these reference vehicles. These chassis parameters are read out in the comparator 21 one after the other. The comparator 21 determines the degree of agreement of all chassis parameters of the same reference vehicle with the vehicle parameters of the vehicle 11 to be identified and outputs the reference vehicle in which the degree of agreement is at a maximum. This means that the vehicle 11 to be identified is classified as the output reference vehicle.

Anstelle der Blöcke 20 und 21 können die Blöcke 23 und 24 vorgesehen werden, wobei der Block 23 eine Rechenvorrichtung und Block 24 eine Korrelationseinheit darstellt. Mit der Rechenvorrichtung 23 wird aus der Vielzahl von im Referenzspeicher 22 abgespeicherten, jeweils zu einer Vielzahl von Referenzfahrzeugen gehörenden Fahrzeugparametern unter Berücksichtigung der Meßhöhe D ein synthetisches Referenzprofil für jedes der abgespeicherten Referenzfahrzeuge erstellt, das gleich konfiguriert ist, wie das Meßprofil für das Fahrwerk des Fahrzeugs 11 in Fig. 3. Das in der Meßwert-Auswerteeinheit 19 erstellte Meßprofil von dem Fahrwerk des Fahrzeugs 11 wird der Korrelationseinheit 24 zugeführt. Die Korrelationseinheit 24 korreliert dieses Meßprofil aufeinanderfolgend mit jedem des von der Rechenvorrichtung 23 errechneten Referenzprofils vom Fahrwerk eines bekannten Referenzfahrzeugs und ermittelt den Korrelationsfaktor. Aus der Vielzahl der Korrelationsfaktoren wird der maximale Korrelationsfaktor bestimmt, der vorzugsweise noch zusätzlich eine Mindestgröße überschreiten muß. Das Referenzfahrzeug, das diesen maximalen Korrelationsfaktor ergibt, wird als Klassifizierungsfahrzeug ausgegeben, d. h. das zu detektierende Fahrzeug 11 wird als das am Ausgang der Korrelationseinheit 24 ausgegebene Referenzfahrzeug klassifiziert.Instead of blocks 20 and 21, blocks 23 and 24 can be provided, block 23 being a computing device and block 24 being a correlation unit. The computing device 23 is used to create a synthetic reference profile for each of the stored reference vehicles, which is configured in the same way as the measurement profile for the chassis of the vehicle, from the plurality of vehicle parameters stored in the reference memory 22, each belonging to a plurality of reference vehicles 11 in FIG. 3. The measurement profile of the chassis of the vehicle 11 created in the measured value evaluation unit 19 is fed to the correlation unit 24. The correlation unit 24 successively correlates this measurement profile with each of the reference profiles of the chassis of a known reference vehicle calculated by the computing device 23 and determines the correlation factor. The maximum correlation factor is determined from the large number of correlation factors, which preferably must additionally exceed a minimum size. The reference vehicle that gives this maximum correlation factor is output as a classification vehicle, i. H. the vehicle 11 to be detected is classified as the reference vehicle output at the output of the correlation unit 24.

Die Erfindung ist nicht auf das beschriebene Ausführungsbeispiel beschränkt. So kann z. B. bei Böschungen neben der Fahrstraße 10, die wenig Platz für die Einrichtung des Meßortes 13 in Nähe der Fahrstraße 10 lassen, unmittelbar am Rand der Fahrstraße 10 eine Optik mit einer Ein- und Austrittspupille in Meßhöhe D installiert werden, deren optische Achse mit der Meßlinie 14 zusammenfällt. Die Optik wird über ein Lichtleitkabel mit dem an einem hinter der Böschung eingerichteten Meßort installierten Laserentfernungsmesser verbunden, und zwar dort an Lasersender und Empfänger angekoppelt. Das Lichtleitkabel kann dabei beliebig verlegt, auch durch die Böschung hindurchgeführt oder in die Erde eingegraben werden. Bei der Entfernungsmessung ist dann die Länge des Lichtleitkabels zu berücksichtigen. Es ist möglich, in der Optik eine separate Ein- und Austrittspupille vorzusehen, die jeweils über separate Lichtleitkabel mit dem Lasersender und dem Empfänger verbunden werden. Es ist jedoch auch möglich, die Ein- und Austrittspupille zusammenzulegen, so daß nur noch ein Lichtleitkabel zu dem Laserentfernungsmesser führt.The invention is not limited to the exemplary embodiment described. So z. B. on embankments next to the driveway 10, which leave little space for the establishment of the measuring point 13 in the vicinity of the driveway 10, an optics with an entrance and exit pupil at measuring height D, the optical axis of which can be installed directly at the edge of the driveway 10 Measuring line 14 coincides. The optics are connected to a measuring point set up behind the embankment via a light guide cable installed laser rangefinder connected, and there coupled to the laser transmitter and receiver. The fiber optic cable can be laid as desired, it can also be led through the embankment or buried in the ground. The length of the light guide cable must then be taken into account when measuring distance. It is possible to provide a separate entrance and exit pupil in the optics, which are each connected to the laser transmitter and the receiver via separate light guide cables. However, it is also possible to fold the entrance and exit pupils so that only one light guide cable leads to the laser range finder.

Claims (11)

Verfahren zum Klassifizieren von einen vorgegebenen Wegpunkt passierenden Fahrzeugen, dadurch gekennzeichnet, daß von einem querab des Weges (10) liegenden Meßort (13) aus längs einer durch den Wegpunkt verlaufenden festen Meßlinie (14) fortlaufend die Entfernung zum Fahrwerk des jeweils den Wegpunkt passierenden Fahrzeugs (11) optisch aktiv vermessen wird, daß die Geschwindigkeit (v) des jeweils den Wegpunkt passierenden Fahrzeugs (11) gemessen wird, daß aus der Fahrzeuggeschwindigkeit (v) und der Meßfrequenz (F) der räumliche Abstand (ΔL) der Meßwerte in Fahrzeuglängsachse bestimmt wird und daß durch eine durch die Abstände (ΔL) vorgegebene Aneinanderreihung der Meßwerte in Richtung der Fahrzeuglängsachse ein Meßprofil des Fahrwerks des Fahrzeugs (11) erstellt wird, das mittelbar durch Ableiten von Fahrwerksparametern oder unmittelbar mit einer Vielzahl von bekannten Referenzfahrzeugen verglichen wird.Method for classifying vehicles passing a given waypoint, characterized in that from a measuring point (13) lying transversely of the path (10) along a fixed measuring line (14) running through the waypoint, the distance to the undercarriage of the respective vehicle passing the waypoint (11) is measured optically actively, that the speed (v) of the vehicle (11) passing the waypoint is measured, that the spatial distance (ΔL) of the measured values in the vehicle's longitudinal axis is determined from the vehicle speed (v) and the measurement frequency (F) is and that a measurement profile of the chassis of the vehicle (11) is created by a series of the measured values in the direction of the longitudinal axis of the vehicle, which is compared indirectly by deriving chassis parameters or directly with a large number of known reference vehicles. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Ableitung von Fahrwerksparametern, wie Anzahl der Fahrzeugräder, Abstand der Radachsen, Durchmesser der Fahrzeugräder und dgl., in dem Meßprofil Schnittlängen (I) durch Addition der Meßwertabstände (ΔL) aufeinanderfolgender Meßwerte mit annähernd gleich großer Meßwertgröße definiert und die Lage der einzelnen Schnittlängen (I) bestimmt werden.Method according to Claim 1, characterized in that for deriving chassis parameters, such as the number of vehicle wheels, the distance between the wheel axles, the diameter of the vehicle wheels and the like, in the measurement profile, cut lengths (I) by adding the measured value distances (ΔL) of successive measured values with approximately the same large measured value size and the position of the individual cutting lengths (I) can be determined. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Fahrzeugparameter "Raddurchmesser (R)" aus der Schnittlänge (I) gemäß der Gleichung
Figure imgb0004
berechnet wird, wobei D der Abstand der Meßlinie (14) von der Wegoberfläche ist, und daß der Fahrzeugparameter "Raddurchmesser (R)" nur dann zugelassen wird, wenn
D/2 < R < 3 m
Figure imgb0005

ist.
A method according to claim 2, characterized in that the vehicle parameter "wheel diameter (R)" from the cutting length (I) according to the equation
Figure imgb0004
is calculated, where D is the distance of the measuring line (14) from the path surface, and that the vehicle parameter "wheel diameter (R)" is only permitted if
D / 2 <R <3 m
Figure imgb0005

is.
Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß aus den als Fahrzeugparameter "Raddurchmesser (R)" zugelassenen Schnittlängen (I) und deren Relativlage im Meßprofil der Fahrwerksparameter "Radabstände" bestimmt wird.Method according to claim 3, characterized in that the chassis parameters "wheel spacings" are determined from the cutting lengths (I) permitted as vehicle parameters "wheel diameter (R)" and their relative position in the measurement profile. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die abgeleiteten Fahrwerksparameter mit einer Vielzahl von gleichen Fahrwerksparametern bekannter Referenzfahrzeuge verglichen wird und daß das den Wegpunkt jeweils passierende Fahrzeug (11) als dasjenige Referenzfahrzeug identifiziert wird, dessen Fahrwerksparameter in der Summe die geringsten Abweichungen von den aus dem Meßprofil abgeleiteten Fahrwerksparametern aufweisen.Method according to one of claims 2 to 4, characterized in that the derived chassis parameters are compared with a plurality of identical chassis parameters of known reference vehicles and that the vehicle (11) passing the waypoint is identified as the reference vehicle whose chassis parameters are the lowest in total Show deviations from the chassis parameters derived from the measurement profile. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aus den Fahrwerksparametern der Vielzahl bekannter Referenzfahrzeuge unter Einbeziehung der Meßhöhe (D) der Meßlinie (14) eine Vielzahl von jeweils einem Referenzfahrzeug zugehörigen synthetischen Fahrwerksprofilen (Referenzprofilen) erzeugt wird, daß das Meßprofil mit der Vielzahl der Referenzprofile korreliert wird und daß das den Wegpunkt jeweils passierende Fahrzeug (11) als dasjenige Referenzfahrzeug identifiziert wird, dessen mit dem Meßprofil korreliertes Referenzprofil den größten Korrelationsfaktor ergibt.Method according to Claim 1, characterized in that a plurality of synthetic chassis profiles (reference profiles), each associated with a reference vehicle, is generated from the chassis parameters of the plurality of known reference vehicles, including the measuring height (D) of the measuring line (14), such that the measuring profile with the plurality of Reference profiles are correlated and that the vehicle (11) passing the waypoint is identified as the reference vehicle whose reference profile correlated with the measurement profile gives the greatest correlation factor. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Meßlinie (14) im wesentlichen horizontal und im rechten Winkel zur Fahrtrichtung (12) des Fahrzeugs (11) ausgerichtet wird.Method according to one of claims 1 to 6, characterized in that the measuring line (14) is aligned essentially horizontally and at right angles to the direction of travel (12) of the vehicle (11). Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Abstand (D) der Meßlinie (14) von der Wegoberfläche möglichst klein gehalten wird, typischerweise etwa 20 cm beträgt.Method according to claim 7, characterized in that the distance (D) of the measuring line (14) from the path surface is kept as small as possible, typically about 20 cm. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß zur optisch aktiven Entfernungsmessung ein an sich bekannter Laserentfernungsmesser, vorzugsweise Infrarot-Laserentfernungsmesser, mit einem Lasersender, der einen scharf gebündelten Lichtstrahl aussendet, einem Empfänger, der das reflektierte Licht empfängt, und einer Auswerteeinheit, die die Entfernung berechnet, verwendet wird.Method according to one of claims 1 to 8, characterized in that for the optically active distance measurement a known laser rangefinder, preferably infrared laser rangefinder, with a laser transmitter that emits a sharply focused light beam, a receiver that receives the reflected light, and one Evaluation unit that calculates the distance is used. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das vom Lasersender ausgesendete Licht und das vom Empfänger aufgenommene reflektierte Licht über eine am Wegrand in Meßhöhe (D) installierte Optik mit einer Aus- und Eintrittspupille abgegeben bzw. aufgenommen wird, die über mindestens ein Lichtleitkabel mit dem Lasersender und Empfänger verbunden ist.A method according to claim 9, characterized in that the light emitted by the laser transmitter and the reflected light received by the receiver are emitted or received via an optic installed at the edge of the path at measuring height (D) with an exit and entrance pupil which is connected via at least one optical fiber cable the laser transmitter and receiver is connected. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Fahrzeuge (11) im Abstand vor dem Wegpunkt detektiert und mit dem Detektionssignal die Entfernungsmessung aktiviert wird.Method according to one of claims 1 to 10, characterized in that the vehicles (11) are detected at a distance from the waypoint and the distance measurement is activated with the detection signal.
EP93118481A 1993-02-15 1993-11-16 Method for classifying vehicles passing a predetermined point on the road Expired - Lifetime EP0612049B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4304298A DE4304298A1 (en) 1993-02-15 1993-02-15 Method for classifying vehicles passing a given waypoint
DE4304298 1993-02-15

Publications (2)

Publication Number Publication Date
EP0612049A1 true EP0612049A1 (en) 1994-08-24
EP0612049B1 EP0612049B1 (en) 1998-09-30

Family

ID=6480344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93118481A Expired - Lifetime EP0612049B1 (en) 1993-02-15 1993-11-16 Method for classifying vehicles passing a predetermined point on the road

Country Status (5)

Country Link
US (1) US5446291A (en)
EP (1) EP0612049B1 (en)
DE (2) DE4304298A1 (en)
DK (1) DK0612049T3 (en)
TR (1) TR28042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488492B2 (en) 2014-09-09 2019-11-26 Leddarttech Inc. Discretization of detection zone
USRE48763E1 (en) 2011-05-11 2021-10-05 Leddartech Inc. Multiple-field-of-view scannerless optical rangefinder in high ambient background light
USRE48914E1 (en) 2012-03-02 2022-02-01 Leddartech Inc. System and method for multipurpose traffic detection and characterization
USRE49342E1 (en) 2007-12-21 2022-12-20 Leddartech Inc. Distance detection method and system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752215A (en) * 1995-02-28 1998-05-12 Livingstone Legend Enterprises (Propiretary) Ltd. Apparatus and method for classifying vehicles using electromagnetic waves and pattern recognition
KR970049929A (en) * 1995-12-30 1997-07-29 김광호 Vehicle type classification method using digital method and apparatus therefor
DE19708014A1 (en) * 1997-02-27 1998-09-10 Ernst Dr Hoerber Device and method for detecting an object in a predetermined spatial area, in particular vehicles for traffic monitoring
DE19738608C1 (en) * 1997-09-04 1998-07-16 Bosch Gmbh Robert Running gear regulation arrangement for vehicle ride regulation
US6750787B2 (en) * 2000-03-17 2004-06-15 Herbert A. Hutchinson Optronic system for the measurement of vehicle traffic
GB0103665D0 (en) * 2001-02-15 2001-03-28 Secr Defence Road traffic monitoring system
KR100459475B1 (en) * 2002-04-04 2004-12-03 엘지산전 주식회사 System and method for judge the kind of vehicle
DK1361488T3 (en) * 2002-05-07 2007-10-15 Ages Arbeitsgemeinschaft Gebue Method and apparatus for automatic classification of vehicles equipped with wheels
US7092106B2 (en) * 2002-12-13 2006-08-15 The United States Of America As Represented By The Secretary Of The Army System for determining the configuration of obscured structure by employing phase profilometry and method of use therefor
US8242476B2 (en) 2005-12-19 2012-08-14 Leddartech Inc. LED object detection system and method combining complete reflection traces from individual narrow field-of-view channels
ATE509808T1 (en) * 2006-09-19 2011-06-15 Ventech Gmbh METHOD FOR AUTOMATICALLY DETECTING A VEHICLE TYPE OR A TIRE TYPE ON A MEASURING SYSTEM
US8600656B2 (en) 2007-06-18 2013-12-03 Leddartech Inc. Lighting system with driver assistance capabilities
CA2691141C (en) 2007-06-18 2013-11-26 Leddartech Inc. Lighting system with traffic management capabilities
EP2232462B1 (en) 2007-12-21 2015-12-16 Leddartech Inc. Parking management system and method using lighting system
EP2517189B1 (en) 2009-12-22 2014-03-19 Leddartech Inc. Active 3d monitoring system for traffic detection
DE102010007383A1 (en) * 2010-02-10 2011-08-11 Krauss-Maffei Wegmann GmbH & Co. KG, 80997 Method for classifying vehicle types when driving over supporting structures, in particular mobile bridges, and apparatus for carrying out the method
CA2839194C (en) 2011-06-17 2017-04-18 Leddartech Inc. System and method for traffic side detection and characterization
CN103620439A (en) * 2011-06-21 2014-03-05 卡波施交通公司 Method and device for detecting a rotating wheel
RU2486597C1 (en) * 2012-02-09 2013-06-27 Общество с ограниченной ответственностью "Техно-траффик" Method of automatic classification of vehicles
KR20140072442A (en) * 2012-12-04 2014-06-13 한국전자통신연구원 Apparatus and method for detecting vehicle
GB2513399B (en) * 2013-04-26 2017-07-26 Optasense Holdings Ltd Traffic Monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247768A (en) * 1978-11-30 1981-01-27 British Railways Board Vehicle velocity related measuring systems
EP0318260A2 (en) * 1987-11-27 1989-05-31 Combustion Developments Limited Monitoring means
FR2670404A1 (en) * 1990-12-12 1992-06-19 Dassault Electronique Device and method for automatic classification of independent vehicles on the move

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167739A (en) * 1960-05-19 1965-01-26 Honeywell Inc Electronic object detector
US4158832A (en) * 1961-06-19 1979-06-19 The United States Of America As Represented By The Secretary Of The Army Seismic apparatus for discrimination between track-type vehicles and wheel-type vehicles
US3872283A (en) * 1973-07-13 1975-03-18 Cadre Corp Vehicle identification method and apparatus
US4284971A (en) * 1979-04-02 1981-08-18 Lowry Elliot G Overheight vehicle detection and warning system
US4747353A (en) * 1986-10-14 1988-05-31 Weber-Knapp Company Straight line motion mechanism
FR2645310B1 (en) * 1989-03-31 1991-06-21 Elsydel METHOD FOR IDENTIFYING MOVING OBJECTS, ESPECIALLY VEHICLES, AND SYSTEMS FOR IMPLEMENTING SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247768A (en) * 1978-11-30 1981-01-27 British Railways Board Vehicle velocity related measuring systems
EP0318260A2 (en) * 1987-11-27 1989-05-31 Combustion Developments Limited Monitoring means
FR2670404A1 (en) * 1990-12-12 1992-06-19 Dassault Electronique Device and method for automatic classification of independent vehicles on the move

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49342E1 (en) 2007-12-21 2022-12-20 Leddartech Inc. Distance detection method and system
USRE49950E1 (en) 2007-12-21 2024-04-30 Leddartech Inc. Distance detection method and system
USRE48763E1 (en) 2011-05-11 2021-10-05 Leddartech Inc. Multiple-field-of-view scannerless optical rangefinder in high ambient background light
USRE48914E1 (en) 2012-03-02 2022-02-01 Leddartech Inc. System and method for multipurpose traffic detection and characterization
US10488492B2 (en) 2014-09-09 2019-11-26 Leddarttech Inc. Discretization of detection zone

Also Published As

Publication number Publication date
US5446291A (en) 1995-08-29
DK0612049T3 (en) 1999-02-22
DE4304298A1 (en) 1994-08-18
DE59309027D1 (en) 1998-11-05
EP0612049B1 (en) 1998-09-30
TR28042A (en) 1995-12-11

Similar Documents

Publication Publication Date Title
EP0612049B1 (en) Method for classifying vehicles passing a predetermined point on the road
DE3204874C2 (en) Passive method for obtaining target data from a sound source
DE69305765T2 (en) System for measuring the distance between vehicles
EP1048961B1 (en) Apparatus and method for simultaneous measurement of the speed and surface characteristics of moving objects
EP1952092B1 (en) Device for checking the tyre profile depth and profile type, and the speed and ground clearance of vehicles in motion
DE69204239T2 (en) On-board device and method for determining and following the position of a vehicle on the road, and driving aid device using the method.
EP1267178B1 (en) Method for processing a high definition picture
EP1990654B1 (en) Method and device for determining the automobile class of automobiles
DE69306954T2 (en) DEVICE AND METHOD FOR DETECTING ONE OR MORE VEHICLE WHEELS.
DE102013021797A1 (en) Method for issuing a warning on a dangerous roadway condition and device
EP1660912A1 (en) Method and device for determining the size and position of a parking space
EP2698646A1 (en) Method for classifying moving vehicles by tracking a position size of the vehicle
EP0881123B1 (en) Vehicle with scanning system
DE102016210632A1 (en) Method for checking a media loss of a motor vehicle and motor vehicle and system for carrying out such a method
EP2767964A1 (en) Device for vehicle measurement
DE102017119042A1 (en) Prevention of blind spot warnings due to spray
DE10353212A1 (en) Method and device for detecting and measuring vegetation in the vicinity of traffic routes
DE10148062A1 (en) Localizing system for objects uses transmitter for pulsed emission of laser beams and receiver with sensor to pick up reflected beam pulses and to analyze them regarding their execution time
DE3913159A1 (en) Measuring wave-shaped rail deformation - using vehicle with two sensors measuring height difference of two rail top points
DE4041149C1 (en) Vehicle type classification within traffic flow - comparing vehicle silhouette with patterns stored in memory
WO2004059341A1 (en) Method for detecting environmental information and for determining the position of a parking space
EP1186856A2 (en) Device for profiles measurement
DE3930109C1 (en)
DE19646632C1 (en) Traffic monitoring method and device
WO2023039620A1 (en) Method for measuring the traffic volume using das

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK FR GB GR LI NL

17P Request for examination filed

Effective date: 19940706

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STN ATLAS ELEKTRONIK GMBH

17Q First examination report despatched

Effective date: 19970226

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB GR LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981001

REF Corresponds to:

Ref document number: 59309027

Country of ref document: DE

Date of ref document: 19981105

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990128

Year of fee payment: 6

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19991122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001116

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011012

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011106

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59309027

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601