EP0578605B1 - Schmelzbad und Verfahren zur elektrolytischen Oberflächenbeschichtung - Google Patents

Schmelzbad und Verfahren zur elektrolytischen Oberflächenbeschichtung Download PDF

Info

Publication number
EP0578605B1
EP0578605B1 EP93610041A EP93610041A EP0578605B1 EP 0578605 B1 EP0578605 B1 EP 0578605B1 EP 93610041 A EP93610041 A EP 93610041A EP 93610041 A EP93610041 A EP 93610041A EP 0578605 B1 EP0578605 B1 EP 0578605B1
Authority
EP
European Patent Office
Prior art keywords
metal
melting point
high melting
bath
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93610041A
Other languages
English (en)
French (fr)
Other versions
EP0578605A1 (de
Inventor
Jens Henrik Von Barner
Erik Christensen
Niels Janniksen Bjerrum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of EP0578605A1 publication Critical patent/EP0578605A1/de
Application granted granted Critical
Publication of EP0578605B1 publication Critical patent/EP0578605B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts

Definitions

  • the invention relates to a weld pool of the type specified in the introduction to claim 1.
  • Refractory metals are generally very resistant against corrosion in acidic and oxidizing media, e.g. Nb and Ta become only slightly to 200 ° C warm concentrated sulfuric acid and elemental chlorine attacked. They can also withstand high temperatures (Melting points> 2000 ° C) in a non-oxidizing atmosphere resist.
  • Coatings made of high-melting metals can be precipitated electrolytically from molten salts containing chloride and fluoride.
  • Such methods are described in the literature (GW Mellors and S. Senderoff, US Pat. 1969, No. 3,444,058, JE Perry, US Pat. 1968, No. 3,371,020, GP Capsimalis, ES Chen, RE Peterson and I. Ahmad, J Appl. Electrochem. 17 , 253 (1987), P. Los and J. Joslak, B. Electrochem. 5 , 829 (1989), P. Taxil and J. Mahenc, J. Appl. Electrochem.
  • the baths for electrolytic surface coating described above have in common that they only contain fluoride and complex fluorides as anions and in some cases chlorides (VI Konstantinov, EG Plolyakov and PT Stangrit, Electrochemica Acta 26 , 445 (1981), AN Baimakov, SA Kuznetsov, EG Polyakov and PT Stangrit, Elektrokhim 21, 597 (1985)).
  • chloride-containing baths have mostly resulted in dendritic precipitates or have caused the formation of lower, positive oxidation levels of the high-melting metals. So far, it has been assumed that even small amounts of oxide are detrimental to the precipitation quality when pure fluoride baths are used.
  • the present invention is in the introduction of claim 1 specified type, and is characterized by the features specified in the characterizing part of claim 1.
  • the previously known disadvantages are avoided, e.g. impure and disjointed surface layers, and plating with the metals mentioned can continuously with an economical and technical satisfactory result.
  • the invention also relates to a method of Introduction of claim 4 specified type, which by the in characterizing part of claim 4 specified features is shaped.
  • the molten salt baths according to the invention also include the fluoride anions also a substantial amount of oxide anions.
  • Such composite baths can be used for electrolytic Plating of fine crystalline coherent and adhesive surface layers made of high-melting Metals are used.
  • the content of the weld pool must contain metal ions of the high-melting metal to be precipitated between 1.0 and 8 atomic%, and the molar ratio between oxide and metal must be in the interval 0.1 to 1.5 lie to coherent surface layers of pure Metal at working temperatures between the melting point and reach about 900 ° C.
  • the redox level of the weld pool must be determined by adding a Redox agents are kept at a suitable value.
  • the electrolytic precipitation must be in an inert, not oxidizing atmosphere from e.g. Argon, neon, dry Nitrogen or under vacuum.
  • the bath composition according to the invention is not more corrosive, so that containers and the like from any Material that is not essential can be used the melt reacts, e.g. vitreous carbon, Graphite, stabilizing zirconium oxides, nickel and nickel-containing Materials, sialons and aluminum nitride.
  • any Material that is not essential can be used the melt reacts, e.g. vitreous carbon, Graphite, stabilizing zirconium oxides, nickel and nickel-containing Materials, sialons and aluminum nitride.
  • the cathode on which the metal is precipitated must be off an electrically conductive, solid material that does not react too much with the molten electrolyte.
  • This can be steel, alloy steel, graphite, nickel, nickel-containing Alloys or copper.
  • the anode can consist of the metal to be precipitated, e.g. in the form of bars, metal foil or plates in various geometrical designs.
  • the anode serves thus as a source for the metal to be precipitated, and holds also the oxidation level of the high-melting metal in the melt in the desired area.
  • the electrolyte bath can also be used as a metal source will.
  • an inert anode can, for example Graphite, glassy carbon or platinum be used.
  • metal ions to the melt be so that the concentration of the metal to be precipitated is kept within the desired interval.
  • a reducing agent must also be added, e.g. the relevant high-melting metal, so the oxidation level becomes correct.
  • the bath composition according to the invention is based that alkali fluoride melt mixtures with the addition of Niobium / tantalum fluorides, niobium / tantalum oxides, niobium / tantalum Oxofluorides or mixtures thereof are used as the electrolyte be sufficient, as well as oxide in order to the Metal / oxide ratio in the desired interval hold.
  • the preferred base melt is eutectic mixture of LiF-NaF-KF. This mix will Niobium / tantalum in the form of fluorides, oxofluorides, complex Fluorides / oxofluorides or oxides added. To get the correct one The oxide content of the melt will reach this possibly with admixed oxides of the 1st or 2nd main group, and / or oxides or oxofluorides of the precipitated Metal adjusted. These components make up that Electrolytic bath.
  • Niobium was plated from a melt containing 2.7 mol% niobium and 2.7 mol% oxide with eutectic LiF-NaF-KF as the base melt onto a rod made of low-carbon steel. Niobium was added as K 2 NbF 7 and the oxide as Na 2 O.
  • the anode consisted of a 1 mm thick niobium plate. Process temperature 700 ° C, current density (cathodic) 77 mA / cm 2 . Before the electrolysis, the niobium anode was immersed in the electrolyte bath for 3 hours. The cathodic current efficiency was 95%. The precipitated surface layer was crystalline, coherent and adhered well to the low carbon steel substrate. EDX analyzes showed that the layer consisted of 100% niobium.
  • Niobium was processed under the same process conditions as in Example 1 plated on carbon steel.
  • the melt electrolyte was a eutectic mixture of LiF-NaF-KF with a niobium content of 3.2 mol% and an oxide content of 3.2 mole%.
  • the precipitated surface layer consisted of pure niobium (EDX analysis), was fine crystalline, coherent and adhered well to the substrate. The cathodic current efficiency was 77%.
  • Niobium was precipitated on carbon steel under the same process conditions as in Example 1.
  • the melt electrolyte was a eutectic mixture of LiF-NaF-KF with added oxide-containing NbF 5 .
  • the contents of niobium and oxide were 2.7 and about 3.2 mol%, respectively.
  • the precipitated layer was coherent, fine crystalline and adhered well to the steel base.
  • EDX analysis showed that the surface layer was 100% niobium.
  • the cathodic current efficiency was 56%.
  • Tantalum was precipitated from a base melt of eutectic LiF-NaF-KF with added K 2 TaF 7 and Na 2 O on carbon steel.
  • the mol% of tantalum and oxide were 2.7 and about 2.0, respectively.
  • a cylinder made of 1 mm thick tantalum foil was used as the anode.
  • the anode was immersed for 3 hours before electrolysis.
  • the process temperature was 700 ° C.
  • the precipitated surface layer consisted of pure tantalum metal, was coherent, fine-crystalline and adhered well to the base of low-carbon steel.
  • the cathodic current efficiency was 78%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Schmelzbad der in Einleitung des Anspruchs 1 angegebenen Art.
Hochschmelzende Metalle (Niob, Tantal, Zirkon, Molybdän, Wolfram u.s.w.) sind im allgemeinen sehr widerstandsfähig gegenüber Korrosion in sauren und oxidierenden Medien, z.B. werden Nb und Ta nur in geringem Maße von 200° C warmer konzentrierter Schwefelsäure und elementärem Chlor angegriffen. Außerdem können sie hohen Temperaturen (Schmelzpunkte > 2000°C) in nicht oxidierender Atmosphäre widerstehen.
Die Verwendungsmöglichkeiten für Beschichtungen aus Niob- und Tantalmetall als Korrosionsschutz für besonders beanspruchte Teile in Ventilen, Durchflußmessern, Pumpen und ähnlichem sind in der chemischen Industrie und anderen Industrien zahlreich, weil hier große Forderungen an die Korrosionsfestigkeit gestellt werden.
Beschichtungen aus hochschmelzenden Metallen können elektrolytisch aus chlorid- und fluoridhaltigen Salzschmelzen ausgefällt werden. In der Literatur sind derartige Verfahren beschrieben (G.W. Mellors und S. Senderoff, US Pat. 1969, No. 3,444,058, J.E. Perry, US Pat. 1968, No. 3,371,020, G.P. Capsimalis, E.S. Chen, R.E. Peterson and I. Ahmad, J. Appl. Electrochem. 17, 253 (1987), P. Los and J. Joslak, B. Electrochem. 5, 829 (1989), P. Taxil and J. Mahenc, J. Appl. Electrochem. 17, 261 (1987)), aber es hat sich in der Praxis als sehr schwierig erwiesen, technisch und wirtschaftlich zufriedenstellende Ergebnisse zu erreichen, insbesonder bezüglich Niobbeschichtungen. Es ist unter anderem schwierig, Ausfällungen zu vermeiden, die Alkalimetalle, Oxide und komplexe Oxosalze der hochschmelzenden Metalle beinhalten.
Den oben beschriebenen Bädern für elektrolytische Oberflächenbeschichtung ist gemeinsam, daß sie als Anionen nur Fluorid und komplexe Fluoride und in einzelnen Fällen Chloride enthalten (V.I. Konstantinov, E.G. Plolyakov and P.T. Stangrit, Electrochemica Acta 26, 445 (1981), A.N. Baimakov, S.A. Kuznetsov, E.G. Polyakov and P.T. Stangrit, Elektrokhim 21, 597 (1985)). Chloridhaltige Bäder haben jedoch zumeist dendritische Ausfällungen ergeben, oder die Bildung von niedrigeren, positiven Oxidationsstufen der hochschmelzenden Metalle verursacht. Bisher hat man angenommen, daß sogar kleine Oxidmengen für die Ausfällqualität schädlich sind, wenn reine Fluoridbäder verwendet werden. In der Literatur sind allerdings Verfahren beschrieben, wo Niob aus gemischten Fluorid-Chlorid-Schmelzen mit Zusatz von K2NbF7 und Nb2O5 an der Kathode ausgefällt wird (V.I. Konstantinov, E.G. Polyakov and P.T. Stangrit, Electrochemica Acta 26, 445 (1981), A.N. Baimakov, S.A. Kuznetsov, E.G. Polyakov and P.T. Stangrit, Elektrokhim 21, 597 (1985)).
Aus der US-PS No. 1,815,054 ist ausserdem ein Verfahren bekannt, bei dem hochschmelzende Metalle, insbesondere Tantal, durch Elektrolyse von Schmelzbädern aus Alkalimetallhaliden (insbesondere Fluorid) mit Zusatz von Alkalimetall-hochschmelzendes Metall-halogenid Doppelsalzen und einem ionisierbaren Sauerstoffhaltigen Salz des hochschmelzenden Metalls hergestellt werden können. Bei diesem Verfahren erhält man das hochschmelzende Metall in Pulverform und nicht als eine zusammenhängende Oberflächenschicht auf der Kathode. Es wird keine Reduktion des Schmelzbads verwendet, und die Sauerstoffhaltige Verbindung wird an der Anode zersetzt.
Die vorliegende Erfindung ist von der in der Einleitung des Anspruchs 1 angebenen Art, und ist geprägt durch die im kennzeichnenden Teil des Anspruch 1 angegebenen Merkmale. Bei der erfindungsgemässen Verwendung von Salzschmelzbädern werden die bisher bekannten Nachteile vermieden, z.B. unreine und unzusammenhängende Oberflächenschichten, und die Plattierung mit den genannten Metallen kann kontinuierlich mit einem wirtschaftlich und technisch zufriedenstellendem Ergebnis ausgeführt werden.
Die Erfindung betrifft ebenfalls ein Verfahren der in der Einleitung des Anspruchs 4 angegeben Art, das durch die im kennzeichnenden Teil des Anspruchs 4 angegebenen Merkmale geprägt ist.
Die erfindungsgemässen Salzschmelzbäder beinhalten außer den Fluoridanionen auch eine wesentliche Menge Oxidanionen. Derart zusammengesetzte Bäder können für die elektrolytische Plattierung von feinkristallinen kohärenten und haftenden Oberflächenschichten aus hochschmelzenden Metallen verwendet werden.
Plattierungen mit hochschmelzenden Metallen aus Fluoridbädern mit Zusatz von Oxidanionen sind bisher nicht bekannt gewesen, und die Verwendung dieser Bäder hat wie erwähnt große Vorteile sowohl technischer als auch wirtschaftlicher Art. Dies ist mittels Untersuchung der Stromausbeute sowie durch Elektronmikroskopie und EDX-Analysen (Energiedispersive Röntgenspektroskopie) des ausgefällten Metalls nachgewiesen.
Bei Plattierung muß der Inhalt des Schmelzbads an Metallionen des auszufällenden hochschmelzenden Metalls zwischen 1,0 und 8 Atom % liegen, und das Molverhältnis zwischen Oxid und Metall muß im Intervall 0,1 bis 1,5 liegen, um kohärente Oberflächenschichten aus reinem Metall bei Arbeitstemperaturen zwischen dem Schmelzpunkt und etwa 900°C zu erreichen.
Das Redoxniveau des Schmelzbads muß durch Zugabe eines Redoxmittels auf einem passenden Wert gehalten werden.
Dies kann das hochschmelzende Metall in Metallform oder eine Verbindung mit der gleichen Wirkung sein.
Die elektrolytische Ausfällung muß in einer inerten, nicht oxidierenden Atmosphäre aus z.B. Argon, Neon, trockenem Stickstoff oder unter Vakuum erfolgen.
Die erfindungsgemäße Badzusammensetzung ist nicht korrosiver, so daß Behälter und ähnliches aus irgendwelchem Material verwendet werden können, das nicht wesentlich mit der Schmelze reagiert, z.B. glasartiger Kohlenstoff, Graphit, stabilisierende Zirkonoxide, Nickel und nickelhaltige Materialien, Sialone und Aluminiumnitrid.
Die Kathode, auf der das Metall ausgefällt wird, muß aus einem elektrisch leitenden, festen Material bestehen, das nicht in zu hohem Maße mit dem Schmelzelektrolyt reagiert. Dies kann Stahl, legierter Stahl, Graphit, Nickel, nickelhaltige Legierungen oder Kupfer sein.
Die Anode kann aus dem auszufällenden Metall bestehen, z.B. in Form von Stangen, Metallfolie oder Platten in verschiedenen geometrischen Ausbildungen. Die Anode dient somit als Quelle für das auszufällende Metall, und hält außerdem die Oxidationsstufe des hochschmelzenden Metalls im Schmelzbad im gewünschten Bereich fest.
Das Elektrolytbad kann auch als Metallquelle verwendet werden. In diesem Fall kann eine inerte Anode aus beispielsweise Graphit, glasartigem Kohlenstoff oder Platin verwendet werden. Bei Verwendung des Elektolytbads als Metallquelle müssen der Schmelze Metallionen zugesetzt werden, so daß die Konzentration des auszufällenden Metalls innerhalb des gewünschten Intervalls gehalten wird. Außerdem muß ein Reduktionsmittel zugeführt werden, z.B. das betreffende hochschmelzende Metall, damit die Oxidationsstufe korrekt wird.
Die erfindungsgemäße Badzusammensetzung basiert darauf, daß Alkalifluorid-Schmelzmischungen mit Zusatz von Niob/Tantal-Fluoriden, Niob/Tantal-Oxiden, Niob/Tantal Oxofluoriden oder Mischungen hiervon als Elektrolyt verwendet werden, sowie Oxid in ausreichender Menge, um das Metall/Oxid Verhältnis in dem gewünschten Intervall zu halten.
Die bevorzugte Grundschmelze (Lösungsmittel) ist die eutektische Mischung aus LiF-NaF-KF. Dieser Mischung wird Niob/Tantal in Form von Fluoriden, Oxofluoriden, komplexen Fluoriden/Oxofluoriden oder Oxiden zugesetzt. Um den korrekten Oxidinhalt der Schmelze zu erreichen, wird diese eventuell mit beigemischten Oxiden der 1. oder 2. Hauptgruppe, und/oder Oxiden oder Oxofluoriden des auszufällenden Metalls justiert. Diese Bestandteile bilden das Elektrolytbad.
Beispiel 1.
Niob wurde aus einer Schmelze mit dem Inhalt 2,7 Mol % Niob und 2,7 Mol % Oxid mit eutektischem LiF-NaF-KF als Grundschmelze auf eine Stange aus niedriggekohltem Stahl plattiert. Niob wurde als K2NbF7 und das Oxid als Na2O zugesetzt. Die Anode bestand aus einer 1 mm dicken Niob-platte. Prozeßtemperatur 700°C, Stromdichte (kathodisch) 77 mA/cm2. Vor der Elektrolyse war die Niob-Anode 3 Stunden lang in das Elektrolytbad eingetaucht. Die kathodische Stromausbeute war 95%. Die ausgefällte Oberflächenschicht war kristallin, kohärent und haftete gut am Substrat aus niedriggekohltem Stahl. EDX-Analysen zeigten, daß die Schicht aus 100% Niob bestand.
Beispiel 2
Niob wurde unter den gleichen Prozeßbedingungen wie in Beispiel 1 auf Kohlenstoffstahl plattiert. Der Schmelzelektrolyt war eine eutektische Mischung aus LiF-NaF-KF mit einem Niobinhalt von 3,2 Mol % und einem Oxidinhalt von 3,2 Mol%. Die ausgefällte Oberflächenschicht bestand aus reinem Niob (EDX-Analyse), war feinkristallin, kohärent und haftete gut am Substrat. Die kathodische Stromausbeute war 77%.
Beispiel 3.
Niob wurde unter den gleichen Prozeßumständen wie in Beispiel 1 auf Kohlenstoffstahl ausgefällt. Der Schmelzelektrolyt war eine eutektische Mischung aus LiF-NaF-KF mit beigefügtem oxidhaltigem NbF5. Der Inhalt von Niob und Oxid, war jeweils 2,7 und etwa 3,2 Mol %. Die ausgefällte Schicht war kohärent, feinkristallin und haftete gut an der Unterlage aus Stahl. EDX-Anlalysen zeigten, daß die Oberflächenschicht 100% Niob war. Die kathodische Stromausbeute war 56%.
Beispiel 4.
Tantal wurde aus einer Grundschmelze aus eutektischem LiF-NaF-KF mit zugesetztem K2TaF7 und Na2O auf Kohlenstoffstahl ausgefällt. Der Mol % von Tantal und Oxid, war jeweils 2,7 und etwa 2,0. Als Anode wurde ein Zylinder aus 1 mm dicker Tantalfolie verwendet. Vor der Elektrolyse war die Anode 3 Stunden lang eingetaucht. Die Prozeßtemperatur war 700°C. Die ausgefällte Oberflächenschicht bestand aus reinem Tantalmetall, war kohärent, feinkristallin und haftede gut an der Unterlage aus niedriggekohltem Stahl. Die kathodische Stromausbeute war 78%.

Claims (4)

  1. Schmelzbad für die elektrolystische Oberflächenbeschichtung mit einem der hochschmelzenden Metalle Nb, Ta, W oder Mo, insbesondere Niob oder Tantal, auf der Basis einer Salzschmelze aus Alkalimetallfluoriden und einem Fluorid des hochschmelzenden Metalls,
    dadurch gekennzeichnet,
    daß der Inhalt des Bades an Metallionen des hochschmelzenden Metalls zwischen 1 und 8 Atom % liegt;
    daß das Bad Oxidanionen enthält und
    mit dem hochschmelzenden Metall in metallischer Form in Berührung ist oder
    ein entsprechendes Redoxmittel enthält; und
    daß das Molverhältnis zwischen Oxidanionen und Metallionen des hochschmelzenden Metalls im Intervall 0,1 bis 1,5 liegt.
  2. Bad nach Anspruch 1, dadurch gekennzeichnet, daß die Oxidanionen in Form eines Alkalimetalloxids oder eines Oxids, Oxofluorids oder komplexen Oxofluorids des hochschmelzenden Metalls zugegeben werden.
  3. Bad nach Anspruch 1-2, dadurch gekennzeichnet, daß die Metallionen des hochschmelzenden Metalls in Form eines Fluorids, eines Chlorids, eines komplexen Fluorids, eines komplexen Chlorids, eines Oxids, eines Oxofluorids oder eines komplexen Oxofluorids des hochschmelzenden Metalls zugegeben werden.
  4. Verfahren für die elektrolystische Oberflächenbeschichtung mit einem der hochschmelzenden Metalle Nb, Ta, W oder Mo, insbesondere Niob und Tantal, in einer inerten, nicht oxidierenden Atmosphäre oder unter Vakuum, dadurch gekennzeichnet, daß für die Elektrolyse ein Bad mit einer Zusammensetzung nach einem der Ansprüche 1-3 verwendet wird.
EP93610041A 1992-07-08 1993-07-02 Schmelzbad und Verfahren zur elektrolytischen Oberflächenbeschichtung Expired - Lifetime EP0578605B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK897/92 1992-07-08
DK89792 1992-07-08
DK089792A DK169354B1 (da) 1992-07-08 1992-07-08 Smeltebad og fremgangsmåde til elektrolytisk overfladebelægning med refractory metaller fra fluoridholdige saltsmelter

Publications (2)

Publication Number Publication Date
EP0578605A1 EP0578605A1 (de) 1994-01-12
EP0578605B1 true EP0578605B1 (de) 1998-03-04

Family

ID=8098774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93610041A Expired - Lifetime EP0578605B1 (de) 1992-07-08 1993-07-02 Schmelzbad und Verfahren zur elektrolytischen Oberflächenbeschichtung

Country Status (4)

Country Link
EP (1) EP0578605B1 (de)
AT (1) ATE163691T1 (de)
DE (1) DE59308195D1 (de)
DK (1) DK169354B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK174876B1 (da) 2001-02-26 2004-01-12 Danfoss As Implantat og implantatoverflademodificeringsproces
DE112005002435B4 (de) * 2004-10-01 2014-01-02 Kyoto University Salzschmelzebad, Abscheidung erhalten unter Verwendung des Salzschmelzebades, Herstellungsverfahren für ein Metallprodukt und Metallprodukt
GB201117335D0 (en) * 2011-10-07 2011-11-23 Element Six Abrasives Sa Method of processing a composite body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905599A (en) * 1956-02-15 1959-09-22 Jerome J Wick Electrolytic cladding of zirconium on uranium

Also Published As

Publication number Publication date
DE59308195D1 (de) 1998-04-09
ATE163691T1 (de) 1998-03-15
DK169354B1 (da) 1994-10-10
DK89792D0 (da) 1992-07-08
DK89792A (da) 1994-01-09
EP0578605A1 (de) 1994-01-12

Similar Documents

Publication Publication Date Title
Mellors et al. Electrodeposition of Coherent Deposits of Refractory Metals: I. Niobium
White et al. The chemistry and electrochemistry associated with the electroplating of group VIA transition metals
US4469581A (en) Electrolytic electrode having high durability
US4459189A (en) Electrode coated with lead or a lead alloy and method of use
DD283655A5 (de) Verfahren zur elektrolytischen gewinnung eines metalls durch elektrolyse einer schmelze unter verwendung einer sich nicht verbrauchenden anode
US4484999A (en) Electrolytic electrodes having high durability
DE19523307A1 (de) Verchromungsverfahren unter Verwendung von trivalentem Chrom
DE2213083A1 (de) Elektroden für elektrochemische Verfahren
KR890003164B1 (ko) 전해전극 및 그 제조공정
DE2714487A1 (de) Yttriumoxidelektroden und ihre verwendungen
DE1034446B (de) Schmelzbad und Verfahren zum galvanischen Abscheiden festhaftender UEberzuege von Titan, Zirkon, Hafnium, Vanadium, Tantal, Niob, Chrom, Molybdaen oder Wolfram
DE2017204C2 (de) Verfahren zur Herstellung von Titan oder Titanlegierungen durch elektgrochemische Abscheidung
US4111765A (en) Silicon carbide-valve metal borides-carbon electrodes
EP0578605B1 (de) Schmelzbad und Verfahren zur elektrolytischen Oberflächenbeschichtung
DE2843147C2 (de) Verfahren zum Elektrolysieren eines geschmolzenen Chlorids
DE1256993B (de) Verfahren zum Aufbringen eines Chromidueberzuges durch Kontaktabscheidung mit gegebenenfalls zusaetzlicher aeusserer EMK auf Metallkoerpern
DE2757808C2 (de) Gesinterte Elektrode
DE2819964C2 (de) Metallisches Diaphragma
DE2049966A1 (de) Verfahren zum Aufbringen eines Ruthe niumoxyduberzugs
US4483752A (en) Valve metal electrodeposition onto graphite
DE1275284B (de) Aluminiumlegierung und daraus hergestellte galvanische Opferanode
US3479159A (en) Process for titaniding base metals
CH634954A5 (de) Verwendung von einer oder mehreren lithiumjodid-aluminiumsulfat-verbindungen als elektrolytverbindung(en) in einem festen elektrolyten.
EP0001778A2 (de) Elektroden für Elektrolysezwecke
DE2750305A1 (de) Anoden fuer elektrolysezwecke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

17P Request for examination filed

Effective date: 19940624

17Q First examination report despatched

Effective date: 19950802

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REF Corresponds to:

Ref document number: 163691

Country of ref document: AT

Date of ref document: 19980315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59308195

Country of ref document: DE

Date of ref document: 19980409

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980604

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110629

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110712

Year of fee payment: 19

Ref country code: FR

Payment date: 20110727

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110629

Year of fee payment: 19

Ref country code: AT

Payment date: 20110628

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 163691

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59308195

Country of ref document: DE

Effective date: 20130201