EP0574478B1 - Induktiver, supraleitender stromspeicher - Google Patents

Induktiver, supraleitender stromspeicher Download PDF

Info

Publication number
EP0574478B1
EP0574478B1 EP92906193A EP92906193A EP0574478B1 EP 0574478 B1 EP0574478 B1 EP 0574478B1 EP 92906193 A EP92906193 A EP 92906193A EP 92906193 A EP92906193 A EP 92906193A EP 0574478 B1 EP0574478 B1 EP 0574478B1
Authority
EP
European Patent Office
Prior art keywords
coil
current
storage
charging
current storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92906193A
Other languages
English (en)
French (fr)
Other versions
EP0574478A1 (de
Inventor
Werner Weck
Hermann SCHÖLDERLE
Peter Ehrhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L3 Magnet Motor GmbH
Original Assignee
Magnet Motor Gesellschaft fuer Magnetmotorische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnet Motor Gesellschaft fuer Magnetmotorische Technik GmbH filed Critical Magnet Motor Gesellschaft fuer Magnetmotorische Technik GmbH
Publication of EP0574478A1 publication Critical patent/EP0574478A1/de
Application granted granted Critical
Publication of EP0574478B1 publication Critical patent/EP0574478B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps

Definitions

  • a device for image acquisition by means of magnetic resonance is known from document GB 2 205 444 A.
  • This device has a superconducting main coil for generating the required magnetic field, which is surrounded by a superconducting shielding coil through which the current flows in opposite directions, so that the space outside the device is largely free of magnetic fields.
  • the intended purpose of this device is not to store electricity in order to be able to supply a consumer if necessary.
  • the device is designed to generate a magnetic field that is best suited for image acquisition, not to store the largest possible amount of electricity in a small space.
  • a discharge switch device is not available.
  • the magnetic field present in the interior of the coil emerges at both coil ends and closes outside the coil, so that a magnetic field with a generally very high magnetic field strength prevails in the vicinity of the coil.
  • the magnetic circuit runs in a first axial direction through the interior of the inner coil and then in the opposite, second axial direction through the annular space between the inner coil and the outer coil, so that - apart from areas close to the two ends of the coil arrangement - outside there is practically no magnetic field in the coil arrangement. The magnetic field is compensated or returned in the coil arrangement.
  • the term “superconducting material” denotes materials which have been known for a long time, as a rule metallic, and which are superconducting only at temperatures slightly above absolute zero.
  • This term also applies to the mostly ceramic materials that have only been known for a few years and are still superconducting at a considerable temperature distance from absolute zero.
  • These materials are often called high-temperature superconductors, and the division limit can be chosen as the temperature of liquid nitrogen; According to this classification, high-temperature superconductors are those that are still superconducting at least at the boiling point of liquid nitrogen.
  • the storage circuit can be completely or partially discharged by means of the discharge switch device.
  • Switches constructed with superconducting material are known per se, as are means for bringing the switch into a high-resistance, normally conductive state for opening, for example a heating device, a device for applying energy to the switch (high-frequency radiation, laser radiation, etc.), a device for applying a current pulse of high current strength to the superconducting material of the switch.
  • the latter is particularly preferred in the current storage device according to the invention, in particular in an embodiment in which the current pulse is generated by discharging one or more capacitors.
  • the windings of the inner coil and the outer coil and the magnetic flux cross sections of the annular space and the inner space are preferably designed in such a way that at least substantially the same magnetic flux densities result in the annular space and in the inner space. This also applies to the circumference of the inner coil and the outer coil.
  • the superconducting material of the two coils can be used practically at all points.
  • the power store 2 essentially consists of a practically cylindrical inner coil 4 made of superconducting material, a practically cylindrical one concentrically aligned therewith Outer coil 6 made of superconducting material, a device 8 for inductively charging the coils 4 and 6, and a discharge switch device 10.
  • the inner coil 4 is wound in a first winding direction, while the outer coil 6 is wound in the opposite winding direction.
  • the annular space 12 between the outer coil 6 and the inner coil 4 has an annular magnetic flux cross-section (which can be seen in plan view in FIG. 2) which essentially corresponds to the cross-sectional area of the circular magnetic flux cross-section of the interior 14 of the inner coil 4 (which can be seen in plan view in FIG. 2) .
  • the inner coil 4 and the outer coil 6 have essentially the same number of turns and are electrically connected in series in such a way that they flow through in opposite directions during operation. This can also be achieved by connecting the inner coil 4 and the outer coil 6 appropriately if the two coils 4 and 6 are not wound in opposite directions.
  • the inner coil 4 and the outer coil 6 are axially of essentially the same length and in alignment with one another at their two axial ends.
  • the charging device 8 consists essentially of a primary coil and a secondary coil device, which is shown in FIG. 2 as a uniform arrangement 16, and two charge switches 18, 20, via which the secondary coil device is connected to a storage circuit. More detailed information is given below in connection with FIG. 3.
  • the primary coil, the secondary coil device, the connections between the secondary coil device and the two charge switches 18, 20, the two charge switches 18, 20, and the connections between the charge switches 18, 20 and the discharge switch device 10 are constructed with superconducting material.
  • the discharge switch device 10 essentially consists of a coil wound in two strands of superconducting material, as a result of which the discharge switch device 10 has a large superconducting material length.
  • the discharge switch device 10 is arranged concentrically to the inner coil 4 and the outer coil 6 at a small distance around the outer coil 6.
  • the discharge switch device 10 is electrically connected on the one hand to the charging device 8 and on the other hand to the outer coil 6 and the inner coil 4, in such a way that the two winding strands of the switch coil flow through in opposite directions. More details on this are described below in connection with FIG. 3.
  • the switch coil 10 is thus closely integrated with the arrangement of the inner coil 4 and the outer coil 6, but is located radially outside the outer coil 6 in the practically magnetic field-free space. There is practically no effect of the magnetic field of the storage coil arrangement on the discharge switch device and vice versa.
  • FIG. 3 illustrates the electrical connection of the components of the power store 2 described so far. It can be seen that the inner coil 4 and the outer coil 6 are electrically connected in series, that the charge secondary coil device has a first secondary coil 24 and a second secondary coil 26 (which are connected to one another in the center) has an electrical connection from the connection point 28 of the two charge secondary coils 24, 26 via a first discharge switch 30 to one end of the inner coil 4, and that between the free ends of the charge Secondary coils 24 and 26 are electrically connected to the outer coil 6 via the charge switches 18, 20 and a second discharge switch 32. All components and electrical connections now described in connection with FIG. 3 consist electrically of superconducting material, namely of a continuous superconducting material strand, in which only the connection point 28 between the two charge secondary coils 24, 26 and the connection points 34 and 36 to be described further below available.
  • the first discharge switch 30 is the one winding strand of the discharge switch device 10
  • the second discharge switch 32 is the second winding strand of the discharge switch device 10, the first discharge switch 30 and the second discharge switch 32 being spatially combined as a common discharge switch coil.
  • FIG. 3 it can also be seen that the upper end of the first charge secondary coil 24 is connected via an electrical connection 38 to a connection point 34 which lies in the electrical connection between the lower end of the second charge secondary coil 26 and the outer coil 6, specifically between the second charge switch 20 and the second discharge switch 32.
  • the first charge switch 18 is located in the connection 38.
  • the two secondary coils 24 and 26 act inductively together with the charge primary coil 40, which likewise consists of superconducting material and is fed with alternating current for charging the current store 2. All of the components of the power store 2 described so far in connection with FIG. 3 are located in a common cryogenic area 42 which is within the dash-dotted line in FIG. 3.
  • the charge primary coil 40 can alternatively be wound from normally conductive material and located outside the cryogenic area 42.
  • the alternating current flowing in the charge primary coil 40 induces periodically alternating signs in the two charge secondary coils 24 and 26.
  • the charge switches 18 and 20 are opened and closed accordingly alternately, so that alternately either the first charge secondary coil 24 or the second charge secondary coil 26 is switched on in the storage circuit 44 and feeds a charge current pulse there with the correct sign.
  • the storage circuit 44 thus leads from the upper end of the inner coil 4 via the first discharge switch 30, then either via the first charge secondary coil 24 and the closed, first charge switch 18 or the second charge secondary coil 26 and the closed, second charge switch 20 to the connection point 34, thence via the second discharge switch 32 to the lower end of the outer coil 6, finally from the upper end of the outer coil 6 to the lower end of the inner coil 4. It is understood that at times when the storage circuit 44 is not recharged, only one of the two charge switches 18, 20 is closed and the other of the two charge switches 18, 20 is open and that at times when the storage circuit 44 is not discharged, the two discharge switches 30, 32 are closed.
  • the switching power to be managed by each charge switch 18, 20 is substantially lower than the switching power to be managed by the discharge switch device 10, so that the Charge switches 18, 20 can be constructed less expensively and smaller than the discharge switch device 10.
  • the circuit sequence of the charge switches 18, 20 can be set up in such a way that the charge switches 18, 20 open and close in a practically current-free state.
  • connection point 36 there is a connection point 36 in the connection between the upper end of the inner coil 4 and the first discharge switch 30, and analogously there is a connection point 36 in the connection between the lower end of the inner coil 6 and the second discharge switch 32
  • Discharge connection 46 or consumer connection which is also shown in FIG. 2, out of cryogenic area 42.
  • Each discharge port 46 consists of at least the boundary of the cryogenic area 42 of normal conducting material.
  • a consumer circuit 48 connects to the discharge connections 46 and contains one or more current consumers 50 (not shown).
  • a circuit 52 with a capacitor 54 is also connected to the discharge connections 46.
  • the capacitor 54 In order to discharge the current store 2, the capacitor 54 is brought to discharge, so that a corresponding current pulse arrives in the storage circuit 44 (the current pulse does not flow through the consumer circuit 48 because this is high-impedance because of the current consumer 50).
  • the current pulse is dimensioned so high that in the discharge switches 30, 32 the superconductivity breaks down over a large length of the switch winding and this makes it highly resistive.
  • the current stored in the now opened storage circuit 44 flows through the discharge circuit 48 through the current consumer (s) 50.
  • the discharge switches 30, 32 are closed again by converting them again to the superconducting state. It is pointed out that in principle it is sufficient if the storage circuit 44 is interrupted at only one point for discharging.
  • the capacitor circuit 52 can be connected at other points in the storage circuit 44 or a separate capacitor circuit 52 connected in front of and behind it can be provided for each discharge switch 30, 32. In the latter case, one can connect so that when the capacitor 54 is discharged, the closed one of the two charge switches 18, 20 is also opened becomes.
  • cryogenic area 42 means that a temperature prevails in this area at which the superconducting material of the components and compounds described is in the superconducting state. Specifically, it is a bath made of liquid helium or liquid nitrogen, for example. This bath is also in the interior 14 of the inner coil 4 and in the annular space 12 between the inner coil 4 and the outer coil 6.
  • the inner coil 4 and / or the outer coil 6 can each be composed of a plurality of partial coils arranged one above the other, which are electrically connected in series or in parallel.
  • FIG. 4 shows an embodiment of a power store 2 in which a plurality of partial power stores 60, which are each constructed individually as described with reference to FIGS. 1 to 3, are stacked on top of one another.
  • Each partial power store 60 has a lower, plate-like support part 62 made of non-magnetizable material.
  • An inductive charging device 8 for each of the partial current stores 60 is also shown.
  • the partial current stores 60 are stacked on one another in such a way that the vertical central axes of the inner storage coils 4 coincide to form a common axis 64.
  • the magnetic field in the interior 14 is directed overall from top to bottom, while the magnetic field in the annular space 12 is directed overall from bottom to top.
  • FIG. 5 shows that the components within each partial current store 60 are connected in exactly the same way as in the current store 2 according to FIGS. 1 to 3. It can also be seen that the individual charge primary coils 40 are electrically connected in series. Alternatively, a common charge primary coil can be provided for all partial current storage devices 60. Finally, it can be seen that the discharge connections 46 of the individual storage circuits 44 are connected to one another in such a way that the storage coil pairs 4, 6 are connected in parallel to one or more consumers 50 (not shown).
  • the consumer connections 46 of the individual storage circuits 44 in such a way that the storage coils 4, 6 are connected in series to the consumer (s) 50.
  • the circuits 52 for applying a current pulse to the storage circuits 44 are not shown.
  • the current direction in the various coils is identified by the symbols x for a first current direction and for the opposite current direction.
  • the annular space 12 between the inner coil 4 or the inner coils 6 and the outer coil 6 or the outer coils 6 can, for example, also be filled with a plastic compound which produces or supports the physical cohesion of the coils.
  • the discharge switch coil 10 or the discharge coils 10 can also be combined with the outer coil 6 or the outer coils 6 by means of a plastic compound.
  • the outer coil 6 illustrates a modified coil design.
  • the outer coil 6 is divided into an upper outer coil 6a and a lower outer coil 6b.
  • the upper outer coil 6a has a first connection 46 at the top, radially on the outside.
  • a connection leads from the lower end of the upper part outer coil 6a to the upper end of the inner coil 4.
  • a connection leads from the lower end of the inner coil 4 to the upper end of the lower part outer coil 6b.
  • a second connection 46 is provided radially on the outside. In this way, no connection 46 has to be passed above or below the outer coil 6 to the inner coil 4. If it is advantageous for technical reasons, the inner coil 4 can be divided into an upper and a lower coil section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Induktiver, supraleitender Stromspeicher (2), dadurch gekennzeichnet, daß er eine aus Supraleitmaterial gewickelte Innenspule (4) und eine mit Abstand um die Innenspule (4) herum angeordnete, aus Supraleitmaterial gegensinnig zu der Innenspule (4) gewickelte Außenspule (6) aufweist, so daß im Ringraum (12) zwischen der Innenspule (4) und der Außenspule (6) der gleiche, jedoch entgegengesetzt gerichtete Magnetfluß herrscht wie im Innenraum (14) der Innenspule (4).

Description

    Induktiver, supraleitender Stromspeicher
  • Gegenstand der Erfindung ist ein induktiver , supraleitender Stromspeicher,
    • (a) der eine Anordnung mehrerer, aus Supraleitmaterial gewickelter Spulen aufweist, die zur Ausbildung eines Speicherstromkreises miteinander verbunden sind,
    • (b) und bei dem der Speicherstromkreis an einen Verbraucherstromkreis angeschlossen ist und eine mit Supraleitmaterial aufgebaute Entladungsschaltereinrichtung aufweist, die zum Unterbrechen des Speicherstromkreises und damit zum Entladen des Stromspeichers in den Verbraucherstromkreis in einen hochohmigen, normalleitenden Zustand gebracht wird,

    dadurch gekennzeichnet,
       (c) daß der Speicherstromkreis des Stromspeichers eine aus Supraleitmaterial gewickelte Innenspule und eine mit Abstand um die Innenspule herum angeordnete, aus Supraleitmaterial gewickelte Außenspule aufweist, wobei im Betrieb die Innenspule und die Außenspule mit gegensinniger Stromrichtung durchflossen sind, so daß im Ringraum zwischen der Innenspule und der Außenspule der gleiche, jedoch entgegengesetzt gerichtete Magnetfluß herrscht wie im Innenraum der Innenspule.
  • Ein induktiver, supraleitender Stromspeicher mit den oben angeführten Merkmalen (a) und (b) ist aus dem Dokument FR 2 112 054 A bekannt. Über die geometrische Anordnung der Spulen relativ zueinander ist dort nichts ausgeführt, aber entsprechend den Zeichnungen denkt man normalerweise an eine in Axialrichtung der Spulen aufeinanderfolgende Anordnung.
  • Aus dem Dokument GB 2 205 444 A ist ein Gerät zur Bildgewinnung mittels Magnetresonanz bekannt. Dieses Gerät weist eine supraleitende Hauptspule zur Erzeugung des erforderlichen Magnetfelds auf, die von einer supraleitenden, mit gegensinniger Stromrichtung durchflossenen Abschirmspule umgeben ist, so daß der Raum außerhalb des Geräts weitgehend magnetfeldfrei ist. Bestimmungszweck dieses Geräts ist jedoch nicht die Speicherung von Strom um damit bei Bedarf einen Verbraucher speisen zu können. Das Gerät ist auf Erzeugung eines für die Bildgewinnung bestgeeigneten Magnetfelds ausgelegt, nicht auf Speicherung möglichst großer Strommengen auf kleinem Raum. Eine Entladungsschaltereinrichtung ist nicht vorhanden.
  • Bei induktiven, supraleitenden Stromspeichern mit einer zylindrischen Spule als wesentlichstem Bestandteil tritt das im Innenraum der Spule vorhandene Magnetfeld an beiden Spulenenden aus und schließt sich außerhalb der Spule, so daß in der Umgebung der Spule ein Magnetfeld mit in der Regel sehr hoher magnetischer Feldstärke herrscht. Demgegenüber verläuft beim erfindungsgemäßen Stromspeicher der Magnetkreis in einer ersten Axialrichtung durch den Innenraum der Innenspule und dann in der entgegengesetzten, zweiten Axialrichtung durch den Ringraum zwischen der Innenspule und der Außenspule, so daß - abgesehen von Bereichen dicht an den beiden stirnseitigen Enden der Spulenanordnung - außerhalb der Spulenanordnung praktisch kein Magnetfeld herrscht. Das Magnetfeld wird in der Spulenanordnung kompensiert bzw. zurückgeführt.
  • Der Begriff "Supraleitmaterial" bezeichnet einerseits seit längerer Zeit bekannte, in der Regel metallische Materialien, die nur bei Temperaturen wenig oberhalb des absoluten Nullpunkts supraleitend sind. Andererseits bezeichnet dieser Begriff auch die erst seit einigen Jahren bekannten, meist keramischen Materialien, die noch bei erheblichem Temperaturabstand vom absoluten Nullpunkt supraleitend sind. Diese Materialien werden häufig Hochtemperatur-Supraleiter genannt, wobei man als Einteilungsgrenze die Temperatur von flüssigem Stickstoff wählen kann; nach dieser Einteilung sind Hochtemperatur-Supraleiter solche, die mindestens bei der Siedetemperatur flüssigen Stickstoffs noch supraleitend sind.
  • Mittels der Entladungsschaltereinrichtung kann man den Speicherstromkreis vollständig oder teilweise entladen. Mit Supraleitmaterial aufgebaute Schalter sind an sich bekannt, ebenso Mittel, um den Schalter zum öffnen in einen hochohmigen, normalleitenden Zustand zu bringen, beispielsweise eine Erwärmungseinrichtung, eine Einrichtung zum Beaufschlagen des Schalters mit energiereicher Strahlung (Hochfrequenzstrahlung, Laserstrahlung, etc.), eine Einrichtung zum Aufbringen eines Strompulses hoher Stromstärke auf das Supraleitmaterial des Schalters. Letzteres ist beim erfindungsgemäßen Stromspeicher besonders bevorzugt, insbesondere in einer Ausführungsform, bei der der Strompuls durch Entladung eines Kondensators oder mehrerer Kondensatoren erzeugt wird.
  • Vorzugsweise sind die Wicklungen der Innenspule und der Außenspule sowie die Magnetflußquerschnitte des Ringraums und des Innenraums so ausgebildet, daß sich im Ringraum und im Innenraum mindestens im wesentlichen gleiche Magnetflußdichten ergeben. Dies gilt auch für die Umfänge der Innenspule und der Außenspule. Das Supraleitmaterial der beiden Spulen kann an allen Stellen praktisch ausgenutzt werden.
  • Weitere bevorzugte Merkmale der Erfindung sind in den Ansprüchen 3 bis 17 angegeben und werden weiter unten im Zusammenhang mit der Beschreibung bevorzugter Ausführungsbeispiele noch näher erläutert.
  • Die Erfindung und Ausgestaltungen der Erfindung werden nachfolgend anhand von teilweise schematisiert zeichnerisch dargestellten Ausführungsbeispielen noch näher erläutert. Es zeigt:
  • Fig. 1
    in einem schematisierten Achsenschnitt die geometrische Anordnung wesentlicher Bestandteile eines Stromspeichers;
    Fig. 2
    in schematisierter Draufsicht den Stromspeicher von Figur 1, wobei zusätzlich eine Einrichtung zum induktiven Laden des Stromspeichers zu sehen ist;
    Fig. 3
    ein Blockschaltbild des Stromspeichers von Figuren 1 und 2;
    Fig. 4
    in einem Achsenschnitt analog Figur 1 einen Stromspeicher, der aus mehreren Teil-Stromspeichern zusammengesetzt ist, wobei eine Einrichtung zum induktiven Laden des Stromspeichers mit eingezeichnet ist;
    Fig. 5
    ein Blockschaltbild des Stromspeichers von Fig. 4;
    Fig. 6
    einen Teilschnitt wie Fig. 1 einer modifizierten Spulenausführung.
  • Der Stromspeicher 2 gemäß Figuren 1 und 2 besteht im wesentlichen aus einer praktisch zylindrischen Innenspule 4 aus Supraleitmaterial, einer konzentrisch dazu fluchtend angeordneten, praktisch zylindrischen Außenspule 6 aus Supraleitmaterial, einer Einrichtung 8 zum induktiven Laden der Spulen 4 und 6, und einer Entladungsschaltereinrichtung 10. Die Innenspule 4 ist in einer ersten Wicklungsrichtung gewickelt, während die Außenspule 6 in der entgegengesetzten Wicklungsrichtung gewickelt ist. Der Ringraum 12 zwischen der Außenspule 6 und der Innenspule 4 hat einen (in Fig. 2 in Draufsicht erkennbaren) kreisringförmigen Magnetflußquerschnitt, der dem (in Fig. 2 in Draufsicht erkennbaren) kreisförmigen Magnetflußquerschnitt des Innenraums 14 der Innenspule 4 seiner Querschnittsfläche nach im wesentlichen entspricht. Die Innenspule 4 und die Außenspule 6 haben im wesentlichen gleiche Windungszahl und sind elektrisch derart in Serie geschaltet, daß sie im Betrieb gegensinnig stromdurchflossen sind. Dies kann man durch entsprechende Verschaltung der Innenspule 4 und der Außernspule 6 auch erreichen, wenn die beiden Spulen 4 und 6 nicht gegensinnig gewickelt sind.
  • Vorzugsweise sind die Innenspule 4 und die Außenspule 6 axial im wesentlichen gleich lang und an ihren beiden Axialenden miteinander fluchtend.
  • Die Ladeeinrichtung 8 besteht im wesentlichen aus einer Primärspule und einer Sekundärspuleneinrichtung, die in Figur 2 als einheitliche Anordnung 16 gezeichnet ist, und zwei Ladungsschaltern 18, 20, über die die Sekundärspuleneinrichtung an einen Speicherstromkreis angeschlossen ist. Genaueres hierzu wird weiter unten im Zusammenhang mit Figur 3 ausgeführt. Die Primärspule, die Sekundärspuleneinrichtung, die Verbindungen zwischen der Sekundärspuleneinrichtung und den beiden Ladungsschaltern 18, 20, die beiden Ladungsschalter 18, 20, und die Verbindungen zwischen den Ladungsschaltern 18, 20 und der Entladungsschaltereinrichtung 10 sind mit Supraleitmaterial aufgebaut.
  • Die Entladungsschaltereinrichtung 10 besteht im wesentlichen aus einer zweisträngig aus Supraleitmaterial gewickelten Spule, wodurch die Entladungsschaltereinrichtung 10 eine große Supraleitmateriallänge hat. Die Entladungsschaltereinrichtung 10 ist konzentrisch zu der Innenspule 4 und der Außenspule 6 in kleinem Abstand um die Außenspule 6 herum angeordnet. Die Entladungsschaltereinrichtung 10 ist einerseits mit der Ladeeinrichtung 8 und andererseits mit der Außenspule 6 und der Innenspule 4 elektrisch verbunden, und zwar derart, daß die beiden Wickelungsstränge der Schalterspule gegensinnig stromdurchflossen sind. Genaueres hierzu wird weiter unten im Zusammenhang mit Figur 3 beschrieben. Die Schalterspule 10 ist somit eng mit der Anordnung aus Innenspule 4 und Außenspule 6 integriert, befindet sich aber im praktisch magnetfeldfreien Raum radial außerhalb der Außenspule 6. Der zweisträngige, gegensinnig stromdurchflossene Wicklungsaufbau der Schalterspule 10 führt dazu, daß die Schaltereinrichtung insgesamt induktivitätsarm ist. Es gibt praktisch keine Auswirkung des Magnetfelds der Speicherspulenanordnung auf die Entladungsschaltereinrichtung und umgekehrt.
  • Figur 3 veranschaulicht die elektrische Verschaltung der bisher beschriebenen Bestandteile des Stromspeichers 2. Man erkennt, daß die Innenspule 4 und die Außenspule 6 elektrisch in Serie geschaltet sind, daß die Ladungs-Sekundärspuleneinrichtung eine erste Sekundärspule 24 und eine zweite Sekundärspule 26 (die mittig miteinander verbunden sind) aufweist, daß von dem Verbindungspunkt 28 der beiden Ladungs-Sekundärspulen 24, 26 über einen ersten Entladungsschalter 30 eine elektrische Verbindung zu einem Ende der Innenspule 4 besteht, und daß zwischen den freien Enden der Ladungs-Sekundärspulen 24 und 26 über die Ladungsschalter 18, 20 und einen zweiten Entladungsschalter 32 eine elektrische Verbindung zu der Außenspule 6 besteht. Alle jetzt im Zusammenhang mit Figur 3 beschriebenen Bauteile und elektrischen Verbindungen bestehen elektrisch aus Supraleitmaterial, und zwar aus einem durchgehenden Supraleitmaterialstrang,bei dem lediglich der Verbindungspunkt 28 zwischen den beiden Ladungs-Sekundärspulen 24, 26 und die weiter unten noch zu beschreibenden Anschlußpunkte 34 und 36 vorhanden sind.
  • Bei dem ersten Entladungsschalter 30 handelt es sich um den einen Wicklungsstrang der Entladungsschaltereinrichtung 10, und bei dem zweiten Entladungsschalter 32 handelt es sich um den zweiten Wicklungsstrang der Entladungsschaltereinrichtung 10, wobei der erste Entladungsschalter 30 und der zweite Entladungsschalter 32 räumlich als gemeinsame Entladungsschalterspule zusammengefaßt sind.
  • In Figur 3 erkennt man ferner, daß das obere Ende der ersten Ladungs-Sekundärspule 24 über eine elektrische Verbindung 38 mit einem Verbindungspunkt 34 verbunden ist, der in der elektrischen Verbindung zwischen dem unteren Ende der zweiten Ladungs-Sekundärspule 26 und der Außenspule 6 liegt, und zwar konkret zwischen dem zweiten Ladungsschalter 20 und dem zweiten Entladungsschalter 32. In der Verbindung 38 befindet sich der erste Ladungsschalter 18. Die beiden Sekundärspulen 24 und 26 wirken induktiv zusammen mit der Ladungs-Primärspule 40, die ebenfalls aus Supraleitmaterial besteht und zum Laden des Stromspeichers 2 mit Wechselstrom gespeist wird. Alle bisher im Zusammenhang mit Figur 3 beschriebenen Bestandteile des Stromspeichers 2 befinden sich in einem gemeinsamen Kryobereich 42 der innerhalb der strichpunktierten Linie in Figur 3 ist.
  • Die Ladungs-Primärspule 40 kann alternativ aus normalleitendem Material gewickelt sein und sich außenhalb des Kryobereichs 42 befinden.
  • Der in der Ladungs-Primärspule 40 fließende Wechselstrom induziert in den beiden Ladungs-Sekundärspulen 24 und 26 Spannungen periodisch wechselnden Vorzeichens. Die Ladungsschalter 18 und 20 werden entsprechend wechselnd geöffnet und geschlossen, so daß wechselnd entweder die erste Ladungs-Sekundärspule 24 oder die zweite Ladungs-Sekundärspule 26 in den Speicherstromkreis 44 eingeschaltet ist und dorthin vorzeichenrichtig einen Ladungsstrompuls einspeist. Der Speicherstromkreis 44 führt also vom oberen Ende der Innenspule 4 über den ersten Entladungsschalter 30, dann entweder über die erste Ladungs-Sekundärspule 24 und den geschlossenen, ersten Ladungsschalter 18 oder die zweite Ladungs-Sekundärspule 26 und den geschlossenen, zweiten Ladungsschalter 20 zu dem Verbindungspunkt 34,
    von dort über den zweiten Entladungsschalter 32 zu dem unteren Ende der Außenspule 6, schließlich vom oberen Ende der Außenspule 6 zum unteren Ende der Innenspule 4. Es versteht sich, daß zu Zeiten, wenn der Speicherstromkreis 44 nicht nachgeladen wird, nur einer der beiden Ladungsschalter 18, 20 geschlossen ist und der andere der beiden Ladungsschalter 18, 20 offen ist und daß zu Zeiten, wenn der Speicherstromkreis 44 nicht entladen wird, die beiden Entladungsschalter 30, 32 geschlossen sind.
  • Das weiter vorn zur Einrichtung zum Öffnen der mit Supraleitmaterial aufgebauten Entladungsschaltereinrichtung 10 Gesagte gilt analog für die beiden Ladungsschalter 18, 20. Die von jedem Ladungsschalter 18, 20 zu bewältigende Schaltleistung ist wesentlich geringer als die von der Entladungsschaltereinrichtung 10 zu bewältigende Schaltleistung, so daß die Ladungsschalter 18, 20 unaufwendiger und kleiner gebaut sein können als die Entladungsschaltereinrichtung 10. Außerdem kann man den Schaltungsablauf der Ladungsschalter 18, 20 so einrichten, daß die Ladungsschalter 18, 20 im praktisch stromfreien Zustand öffnen und schließen.
  • Alternativ kann man mit nur einer Ladungs-Sekundärspule und nur einem Ladungsschalter arbeiten (Halbwellen-Ladungseinrichtung.
  • In der Verbindung zwischen dem oberen Ende der Innenspule 4 und dem ersten Entladungsschalter 30 befindet sich ein Verbindungspunkt 36, und analog befindet sich in der Verbindung zwischen dem unteren Ende der Innenspule 6 und dem zweiten Entladungsschalter 32 ein Verbindungspunkt 36. Von jedem Verbindungspunkt 36 führt ein Entladungsanschluß 46 bzw. Verbraucheranschluß, der auch in Figur 2 eingezeichnet ist, aus dem Kryobereich 42 heraus. Jeder Entladungsanschluß 46 besteht mindestens ab der Grenze des Kryobereichs 42 aus normalleitendem Material. An die Entladungsanschlüsse 46 schließt ein Verbraucherstromkreis 48 an, in dem ein oder mehrere, nicht eingezeichnete Stromverbraucher 50 liegen. An die Entladungsanschlüsse 46 ist ferner ein Stromkreis 52 mit einem Kondensator 54 angeschlossen.
  • Zum Entladen des Stromspeichers 2 wird der Kondensator 54 zum Entladen gebracht, so daß ein entsprechender Strompuls in den Speicherstromkreis 44 kommt (der Strompuls fließt nicht über den Verbraucherstromkreis 48, weil dieser wegen des Stromverbrauchers 50 hochohmig ist). Der Strompuls ist so hoch bemessen, daß in den Entladungsschaltern 30, 32 die Supraleitung auf großer Länge der Schalterwicklung zusammenbricht und diese dadurch hochohmig werden. Infolgedessen fließt der im jetzt geöffneten Speicherstromkreis 44 gespeicherte Strom über den Entladungsstromkreis 48 durch den oder die Stromverbraucher 50. Zum erneuten Laden des Stromspeichers 2 werden die Entladungsschalter 30, 32 dadurch wieder geschlossen, daß sie erneut in den supraleitenden Zustand überführt werden. Es wird darauf hingewiesen, daß es im Prinzip ausreichend ist, wenn der Speicherstromkreis 44 zum Entladen an nur einer Stelle unterbrochen wird.
  • Alternativ kann man den Kondensator-Stromkreis 52 an anderen Stellen des Speicherstromkreises 44 anschließen oder pro Entladungsschalter 30, 32 einen eigenen, davor und dahinter angeschlossenen Kondensator-Stromkreis 52 vorsehen. Im letztgenannten Fall kann man so anschließen, daß bei Entladung des Kondensators 54 zugleich auch der geschlossene der beiden Ladungsschalter 18, 20 geöffnet wird.
  • Der Begriff "Kryobereich" 42 bedeutet, daß in diesem Bereich eine Temperatur herrscht, bei der das Supraleitmaterial der beschriebenen Bestandteile und Verbindungen im supraleitenden Zustand ist. Konkret handelt es sich beispielsweise um ein Bad aus flüssigem Helium oder aus flüssigem Stickstoff. Dieses Bad ist auch im Innenraum 14 der Innenspule 4 und im Ringraum 12 zwischen der Innenspule 4 und der Außenspule 6.
  • Es wird darauf hingewiesen, daß bei dem Stromspeicher gemäß Figuren 1 bis 3 die Innenspule 4 und/oder die Außenspule 6 jeweils aus mehreren, übereinander angeordneten Teilspulen zusammengesetzt sein können, die elektrisch in Serie oder parallel geschaltet sind.
  • Figur 4 zeigt eine Ausführungsform eines Stromspeichers 2 bei der mehrere Teil-Stromspeicher 60, die jeweils für sich so aufgebaut sind, wie anhand der Figuren 1 bis 3 beschrieben, stapelartig aufeinandergesetzt sind. Jeder Teil-Stromspeicher 60 weist ein unteres, plattenartiges Tragteil 62 aus nicht magnetisierbarem Material auf. Eine induktive Ladeeinrichtung 8 jeweils für jede der Teil-Stromspeicher 60 ist ebenfalls eingezeichnet. Die Teil-Stromspeicher 60 sind derart aufeinander gestapelt, daß die vertikalen Zentralachsen der Speicher-Innenspulen 4 zu einer gemeinsamen Achse 64 zusammenfallen. Das gleiche gilt für die Außenspulen 6 und die Entladungsschalterspulen 10. Ferner ist eingezeichnet, daß das Magnetfeld im Innenraum 14 insgesamt von oben nach unten gerichtet ist, während das Magnetfeld im Ringraum 12 insgesamt von unten nach oben gerichtet ist.
  • Figur 5 zeigt, daß innerhalb jedes Teil-Stromspeichers 60 die Bestandteile genauso verschaltet sind, wie beim Stromspeicher 2 gemäß Figuren 1 bis 3. Man erkennt ferner, daß die einzelnen Ladungs-Primärspulen 40 elektrisch in Serie geschaltet sind. Alternativ kann eine gemeinsame Ladungs-Primärspule für alle Teil-Strom-Stromspeicher 60 vorgesehen sein. Und man erkennt schließlich, daß die Entladungsanschlüsse 46 der einzelnen Speicherstromkreise 44 derart miteinander verschaltet sind, daß die Speicherspulenpaare 4,6 insgesamt in Parallelschaltung an einem oder mehrere, nicht eingezeichnete Verbraucher 50 angeschlossen sind.
  • Alternativ ist es möglich, die Verbraucheranschlüsse 46 der einzelnen Speicherstromkreise 44 derart miteinander zu verschalten, daß die Speicherspulen 4, 6 insgesamt in Serie an den oder die Verbraucher 50 angeschlossen sind. Die Stromkreise 52 zum Aufbringen eines Strompulses auf die Speicherstromkreise 44 sind nicht eingezeichnet. Generell wird angemerkt, daß die Stromrichtung in den diversen Spulen mit den Symbolen x für eine erste Stromrichtung und für die entgegengesetzte Stromrichtung gekennzeichnet sind. Schließlich wird darauf hingewiesen, daß der Ringraum 12 zwischen der Innenspule 4 bzw. den Innenspulen 6 und der Außenspule 6 bzw. den Außenspulen 6 beispielsweise auch mit einer Kunststoffmasse ausgefüllt sein kann, die den körperlichen Zusammenhalt der Spulen herstellt oder unterstützt. Analog kann auch die Entladungsschalterspule 10 bzw. die Entladungsspulen 10 mittels einer Kunststoffmasse mit der Außenspule 6 bzw. den Außenspulen 6 zusammengefaßt sein.
  • Fig. 6 veranschaulicht eine modifizierte Spulenausführung. Die Außenspule 6 ist in eine obere Außenspule 6a und eine untere Außenspule 6b unterteilt. Die obere Außenspule 6a weist oben, radial außen einen ersten Anschluß 46 auf. Vom unteren Ende der oberen Teil-Außenspule 6a führt eine Verbindung zum oberen Ende der Innenspule 4. Vom unteren Ende der Innenspule 4 führt eine Verbindung zum oberen Ende der unteren Teil-Außenspule 6b. Am unteren Ende der unteren Spule 6b ist radial außen ein zweiter Anschluß 46 vorgesehen. Auf diese Weise muß kein Anschluß 46 oberhalb oder unterhalb der Außenspule 6 vorbei zu der Innenspule 4 geführt werden. Wenn es aus wicklungstechnischen Gründen vorteilhaft ist, kann die Innenspule 4 in eine obere und eine untere Teilspule unterteilt werden.

Claims (17)

  1. Induktiver, supraleitender Stromspeicher (2),
    (a) der eine Anordnung mehrerer, aus Supraleitmaterial gewickelter Spulen 4, 6) aufweist, die zur Ausbildung eines Speicherstromkreises (44) miteinander verbunden sind,
    (b) und bei dem der Speicherstromkreis (44) an einen Verbraucherstromkreis (48) angeschlossen ist und eine mit Supraleitmaterial aufgebaute Entladungsschaltereinrichtung (10) aufweist, die zum Unterbrechen des Speicherstromkreises (44) und damit zum Entladen des Stromspeichers (2) in den Verbraucherstromkreis (48) in einen hochohmigen, normalleitenden Zustand gebracht wird,
    dadurch gekennzeichnet,
       (c) daß der Speicherstromkreis (44) des Stromspeichers (2) eine aus Supraleitmaterial gewickelte Innenspule (4) und eine mit Abstand um die Innenspule (4) herum angeordnete, aus Supraleitmaterial gewickelte Außenspule (6) aufweist, wobei im Betrieb die Innenspule (4) und die Außenspule (6) mit gegensinniger Stromrichtung durchflossen sind, so daß im Ringraum (12) zwischen der Innenspule (4) und der Außenspule (6) der gleiche, jedoch entgegengesetzt gerichtete Magnetfluß herrscht wie im Innenraum (14) der Innenspule (4).
  2. Stromspeicher nach Anspruch 1, dadurch gekennzeichnet, daß die Wicklungen der Innenspule (4) und der Außenspule (6) sowie die Magnetflußquerschnitte des Ringraums (12) und des Innenraums so ausgebildet sind, daß sich im Ringraum (12) und im Innenraum (14) mindestens im wesentlichen gleiche Magnetflußdichten ergeben.
  3. Stromspeicher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Entladungsschaltereinrichtung (10) einen spulenartig gewickelten Supraleitmaterialabschnitt großer Länge aufweist.
  4. Stromspeicher nach Anspruch 3, dadurch gekennzeichnet, daß die Entladungsschaltereinrichtung (10) außen um die Außenspule (6) herum angeordnet ist.
  5. Stromspeicher nach mindestens einem der Ansprüche 3 und 4, dadurch gekennzeichnet, daß die Entladungsschaltereinrichtung (10) mit zwei gegensinnig spulenartig gewickelten Supraleitmaterialabschnitten großer Länge vorgesehen ist.
  6. Stromspeicher nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Speicherstromkreis (44) an zwei Stellen jeweils einen Entladungsschalter (30, 32) aufweist.
  7. Stromspeicher nach Anspruch 6, dadurch gekennzeichnet, daß die zwei Entladungsschalter (30, 32) zu der Entladungsschaltereinrichtung (10) zusammengefaßt sind.
  8. Stromspeicher nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zum induktiven Laden des Speichers (2) eine Ladungs-Primärspule (40) und eine mit dieser zusammenwirkende Ladungs-Sekundärspuleneineinrichtung (24, 26) in dem Speicherstromkreis (44), der die Innenspule (4) und die Außenspule (6) enthält, vorgesehen sind.
  9. Stromspeicher nach Anspruch 8, dadurch gekennzeichnet, daß die Ladungs-Sekundärspuleneinrichtung zwei Ladungs-Sekundärspulen (24, 26) aufweist, die unter Zwischenschaltung jeweils eines intermittierend zu öffnenden und zu schließenden Ladungsschalters (18, 20) derart mit dem Speicherstromkreis (44) verschaltet sind, daß bei beiden Stromflußrichtungen durch die Ladungs-Primärspule (40) die in den Ladungs-Sekundärspulen (24, 26) induzierten Ströme vorzeichenrichtig in den Speicherstromkreis (44) eingespeist werden.
  10. Stromspeicher nach Anspruch 9, dadurch gekennzeichnet, daß die zwei Ladungsschalter (18, 20) mit Supraleitmaterial aufgebaut sind und zum öffnen in einen hochohmigen, normalleitenden Zustand gebracht werden.
  11. Stromspeicher nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Speicher-Innenspule (4),
    die Speicher-Außenspule (6), die Entladungsschaltereinrichtung (10), die Ladungs-Sekundärspuleneinrichtung (24, 26) und ggf. der oder die Ladungsschalter (18, 20), vorzugsweise auch die Ladungs-Primärspule (40), gemeinsam in einem Kryobereich (42) des Stromspeichers (2) angeordnet sind.
  12. Stromspeicher nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Speicher-Innenspule (4) und die Speicher-Außenspule (6), vorzugsweise zusätzlich die Entladungsschaltereinrichtung (10) und/oder die Ladungs-Sekundärspuleneinrichtung (24, 26) und/oder einer der Ladungsschalter (18, 20), aus gemeinsam kontinuierlich durchgehendem Supraleitmaterial aufgebaut sind.
  13. Stromspeicher nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens die Außenspule (6) in zwei axial benachbarte Teilspulen (6a, 6b) unterteilt ist und daß die Stromzuleitungen (46) zu der Anordnung aus Innenspule (4) und Außenspule (6) nur radial außen von der Außenspule (6) vorgesehen sind.
  14. Stromspeicher nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er aus mehreren Teil-Stromspeichern (60)besteht, jeder aufweisend eine Speicher-Innenspule (4), eine SpeicherAußenspule (6), eine Entladungsschaltereinrichtung (10) und eine Ladungs-Sekundärspuleneinrichtung (24, 26) ggf. mit Ladungsschalter(n) (18, 20), wobei eine gemeinsame Ladungs-Primärspule (40) für den gesamten Stromspeicher (2) oder einzelne Ladungs-Primärspulen jeweils für einen Teil-Stromspeicher (60) vorgesehen sind.
  15. Stromspeicher nach Anspruch 14, dadurch gekennzeichnet, daß die Teil-Stromspeicher (60) in einer stapelartigen Anordnung, mindestens im wesentlichen ausgerichtet gemäß einer gemeinsamen Achse (64) der Speicher- Innenspulen (4), vorgesehen sind.
  16. Stromspeicher nach mindestens einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß die Teil-Stromspeicher (60) entladungsseitig in Serie geschaltet sind.
  17. Stromspeicher nach mindestens einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß die Teil-Stromspeicher (60) entladungsseitig parallel geschaltet sind.
EP92906193A 1991-03-04 1992-03-04 Induktiver, supraleitender stromspeicher Expired - Lifetime EP0574478B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4106859A DE4106859A1 (de) 1991-03-04 1991-03-04 Induktiver, supraleitender stromspeicher
DE4106859 1991-03-04
PCT/EP1992/000472 WO1992015999A1 (de) 1991-03-04 1992-03-04 Induktiver, supraleitender stromspeicher

Publications (2)

Publication Number Publication Date
EP0574478A1 EP0574478A1 (de) 1993-12-22
EP0574478B1 true EP0574478B1 (de) 1994-12-14

Family

ID=6426433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92906193A Expired - Lifetime EP0574478B1 (de) 1991-03-04 1992-03-04 Induktiver, supraleitender stromspeicher

Country Status (6)

Country Link
US (1) US5523914A (de)
EP (1) EP0574478B1 (de)
AU (1) AU1341592A (de)
CA (1) CA2105582C (de)
DE (2) DE4106859A1 (de)
WO (1) WO1992015999A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2363255A (en) * 2000-06-07 2001-12-12 Abb Ab Superconducting magnetic energy storage using inductive couplings
DE10065420C2 (de) * 2000-12-27 2003-08-07 Siemens Ag Flusspumpe mit Hochtemperatursupraleiter und damit zu betreibender supraleitender Elektromagnet
US7215250B2 (en) * 2002-11-22 2007-05-08 Sensormatic Electronics Corporation Proximity detaching for electronic article surveillance tags
US6960914B2 (en) * 2003-06-27 2005-11-01 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for imaging systems
US7116535B2 (en) * 2004-04-16 2006-10-03 General Electric Company Methods and apparatus for protecting an MR imaging system
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
AT8638U1 (de) * 2005-03-04 2006-10-15 Magna Steyr Fahrzeugtechnik Ag Kryo-speicher mit supraleitender windung für kraftfahrzeuge
CA2681138C (en) 2007-04-05 2016-06-07 D-Wave Systems Inc. Physical realizations of a universal adiabatic quantum computer
US8738105B2 (en) * 2010-01-15 2014-05-27 D-Wave Systems Inc. Systems and methods for superconducting integrated circuts
US10002107B2 (en) 2014-03-12 2018-06-19 D-Wave Systems Inc. Systems and methods for removing unwanted interactions in quantum devices
CN111788588B (zh) 2017-12-20 2024-08-02 D-波***公司 量子处理器中耦合量子位的***和方法
US10957473B2 (en) * 2018-11-02 2021-03-23 Hamilton Sunstrand Corporation Dual winding superconducting magnetic energy storage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2112054A1 (de) * 1970-08-14 1972-06-16 Commissariat Energie Atomique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405310A1 (de) * 1984-02-15 1985-08-22 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Supraleitendes magnetsystem fuer den betrieb bei 13k
US4622531A (en) * 1985-04-26 1986-11-11 Wisconsin Alumni Research Foundation Superconducting energy storage magnet
JPS63284805A (ja) * 1987-05-18 1988-11-22 Mitsubishi Electric Corp 超電導電磁石装置
DE3866978D1 (de) * 1987-07-17 1992-01-30 Siemens Ag Aktiv geschirmter, supraleitender magnet eines kernspin-tomographen.
DE69010770T2 (de) * 1989-05-22 1995-03-02 Toshiba Kawasaki Kk Strombegrenzungsvorrichtung.
US4962354A (en) * 1989-07-25 1990-10-09 Superconductivity, Inc. Superconductive voltage stabilizer
US5146383A (en) * 1990-06-20 1992-09-08 Westinghouse Electric Corp. Modular superconducting magnetic energy storage inductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2112054A1 (de) * 1970-08-14 1972-06-16 Commissariat Energie Atomique

Also Published As

Publication number Publication date
CA2105582C (en) 1997-08-05
DE59200985D1 (de) 1995-01-26
WO1992015999A1 (de) 1992-09-17
EP0574478A1 (de) 1993-12-22
CA2105582A1 (en) 1992-09-05
AU1341592A (en) 1992-10-06
DE4106859A1 (de) 1992-09-10
US5523914A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
EP0574478B1 (de) Induktiver, supraleitender stromspeicher
EP2228806B1 (de) Anordnung zur Strombegrenzung
DE2306917B2 (de) Drosselspule oder Transformator
DE102010042598A1 (de) Supraleitende MR-Magnetanordnung mit filamentlosem Supraleiter-Band
DE10033411C2 (de) Aktiv abgeschirmter supraleitender Magnet mit Schutzeinrichtung
DE3739411C2 (de)
DE3532396C2 (de)
EP0485395B1 (de) Supraleitende homogene hochfeldmagnetspule
DE3919465C2 (de) Strombegrenzende Drosselspule
EP2634779B1 (de) System mit einem dreiphasigen supraleitfähigen elektrischen Übertragungselement
WO2017005619A1 (de) Transformator mit supraleitenden wicklungen
DE4127909C2 (de) Supraleitende Magnetvorrichtung mit magnetischer Abschirmung
DE69402668T2 (de) Hochspannungsfilter zur Filtrierung der Oberwellensignale in einem elektrischen Netzwerk
DE102016208225A1 (de) Magnetanordnung mit Feldformelement zur Reduktion der radialen Feldkomponente im Bereich einer HTS Sektion
DE1014166B (de) Magnetische Schaltvorrichtung
DE1464646B2 (de) Vorrichtung zur formung von werkstuecken durch anwendung magnetischer impulsenergie
DE2516661A1 (de) Supraleitender schalter
DE4027546C1 (de)
EP3402062B1 (de) Kopplung von mindestens zwei modularen multilevel umrichtern
DE2143568C3 (de) Hochleistungsvorrichtung für aufeinanderfolgende Ladung und Speicherung oder Abgabe von Energie über einen Transformator
DE202006015609U1 (de) Wechselrichterbaugruppe
DE1933696U (de) Transformator.
AT406204B (de) Transformator
DE102015208470A1 (de) Elektrische Spuleneinrichtung zur Strombegrenzung
DE69320983T2 (de) Stromverteilung zwischen mehreren strängen einer supraleitenden wicklung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL SE

17Q First examination report despatched

Effective date: 19940330

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL SE

REF Corresponds to:

Ref document number: 59200985

Country of ref document: DE

Date of ref document: 19950126

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950214

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000305

EUG Se: european patent has lapsed

Ref document number: 92906193.5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030317

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030528

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST