EP0564331A1 - Fil pour renfort textile à pertes électriques contrôlées et son procédé de fabrication - Google Patents

Fil pour renfort textile à pertes électriques contrôlées et son procédé de fabrication Download PDF

Info

Publication number
EP0564331A1
EP0564331A1 EP93400781A EP93400781A EP0564331A1 EP 0564331 A1 EP0564331 A1 EP 0564331A1 EP 93400781 A EP93400781 A EP 93400781A EP 93400781 A EP93400781 A EP 93400781A EP 0564331 A1 EP0564331 A1 EP 0564331A1
Authority
EP
European Patent Office
Prior art keywords
yarn
conductive
fibers
electrical losses
controlled electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93400781A
Other languages
German (de)
English (en)
Other versions
EP0564331B1 (fr
Inventor
Jean Aucagne
Bruno Bompard
Hubert Croizat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brochier SA
Original Assignee
Brochier SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brochier SA filed Critical Brochier SA
Publication of EP0564331A1 publication Critical patent/EP0564331A1/fr
Application granted granted Critical
Publication of EP0564331B1 publication Critical patent/EP0564331B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/12Threads containing metallic filaments or strips

Definitions

  • the invention relates to a thread for textile reinforcement with controlled electrical losses, and its manufacturing process.
  • electrical losses are conventionally represented by electrical conductivity. In the case of heterogeneous media or elements, such as textiles, this physical quantity is more complex.
  • electrical losses designates the ability of a material to dissipate energy by displacement of charges. These electrical losses are part of the electrical properties of materials.
  • textile reinforcements with controlled electrical losses, which include non-conductive threads, based on mineral fibers, which ensure the mechanical and thermal resistance of the textile, and charged threads which allow electrical losses.
  • Such loaded yarns consist of a mixture of non-conductive staple fibers and conductive staple fibers. They have low conductivity and must have properties, particularly homogeneous electrical properties over their entire length.
  • the invention relates to such threads and their manufacturing process.
  • French patent FR-2,608,641 describes a process for manufacturing carbon fiber yarns, according to which carbon multifilament cables are transformed by cracking-stretching, so as to obtain long fibers.
  • French patent FR-2,634,790 describes a process for obtaining a yarn consisting of a mixture of yarns of reinforcing fibers, for example carbon fibers, and a yarn of thermoplastic fibers.
  • each of the yarns is produced by cracking-stretching a set of multifilaments.
  • the yarns are mixed, the mixture then being drawn and combined with a similar mixture; the whole being stretched again.
  • This technique makes it possible to obtain an intimate mixture of the fibers, in which the relative proportions of the reinforcing fibers and of the thermoplastic fibers are of the order of 65-35%.
  • An objective of the present invention is to provide such a wire and its manufacturing process.
  • Another objective is to allow the production of such a yarn based on mineral fibers.
  • the invention relates to a thread for textile reinforcement with controlled electrical losses, comprising non-conductive staple fibers and conductive staple fibers.
  • the fibers are approximately parallel, and the proportion by weight of conductive fibers is less than 20%.
  • the proportion by weight of conductive fibers is less than 5%.
  • the conductive fibers are advantageously carbon fibers.
  • the non-conductive fibers are preferably mineral fibers. They can also be ceramic fibers.
  • the invention also relates to a method for manufacturing these threads, in which filaments, respectively conductive and non-conductive, are used.
  • One of the manufacturing methods consists in hybridizing in successive stages a conductive yarn by non-conductive yarns. To do this, the filaments, conductive on the one hand, nonconductive on the other hand, are subjected to cracking-stretching, so as to obtain a conductive yarn and a non-conductive yarn.
  • a conducting yarn is mixed with at least one non-conducting yarn, so as to obtain a level 1 mixed yarn; this level 1 mixed yarn is drawn, then mixed with at least one non-conductive yarn, so as to obtain a level 2 mixed yarn.
  • the thread 2 is intended for the manufacture of a textile reinforcement with controlled electrical losses.
  • discontinuous means fibers whose average length is between 5 and 200 mm.
  • the conductive staple fibers 4 are carbon fibers, metallic fibers (aluminum, steel, copper, gold ).
  • the non-conductive staple fibers 6 are mineral fibers, glass fibers, silica fibers, ceramic fibers, or technical fibers with low elongation such as: aramid, polyethylene, etc.
  • aramid polyethylene
  • the conductive staple fibers 4 and the non-conductive staple fibers 6 are approximately parallel, and their proportion is determined to give textiles the desired electrical properties.
  • the mass concentration of conductive elements 4 is low, it must not exceed 20%, and preferably be of the order of 5% at most.
  • the diameter of the discontinuous filaments 4, 6 conductors, or non-conductors is between 1 and 30 micrometers.
  • the mixture of fibers, respectively conductive 4 and non-conductive 6, can be twisted, so as to give it a better cohesion and a certain mechanical resistance facilitating its textile transformation, such as doubling, weaving, knitting, needling, ... and / or its integration into other processes, such as: impregnation, injection, etc.
  • a covering yarn 7 is used to reinforce the cohesion of the yarn. This covering thread is then compatible with subsequent use, or can be eliminated.
  • Filaments respectively conductive 11 and non-conductive 12, preferably having a diameter between 1 and 30 micrometers, are respectively subjected to cracking-stretching operations.
  • the number of filaments subjected to these cracking-stretching operations depends on the yarn that one wants to obtain. There may be several non-conductive filaments, either of the same kind, for example of glass, or of different natures (glass / aramid, glass / PEEK, etc.).
  • a cracking-stretching element 13 is supplied with conductive filaments. It is composed of at least two sets of rollers 131/132, 133/134.
  • the respective speeds of these two sets of rollers are adjusted according to the material of the filaments and their diameters, so as to produce long staple fibers, that is to say whose average length is between 5 and 200 mm .
  • the cracking-stretching unit 15 performs the same treatment on the non-conductive filaments 12.
  • This level 1 mixed yarn 18 feeds a device 19, which produces a stretched mixed yarn 110 of level 1.
  • the drawing device 19 comprises two sets of rollers 191/192, 193/194 which have different rotational speeds, so as to produce the elongation of the yarn in the intermediate zone 195.
  • the drawn mixed yarn 110 is itself mixed with a yarn 16 of non-conductive fibers in the mixer 111.
  • the mixed yarn 120 of level 2 is produced;
  • This level 2 yarn 120 is itself stretched, then mixed with a new yarn 16 of non-conductive fibers ...
  • the nature of the non-conductive fibers can change, so as to allow the production of yarns with more than two components, for example glass / aramid / carbon, glass / PEEK / carbon, ... .
  • This hybrid lock undergoes a set of drawing operations making it possible to obtain the desired linear mass and ends with an operation making it possible to improve the cohesion of the wire.
  • This process is preferably a twisting operation, and / or possibly a wrapping operation.
  • This manufacturing method is not limiting. Indeed, other procedures, such as simultaneous cracking of hybrid locks, then drawing / spinning, can also be envisaged.
  • a cracked glass ribbon is produced on the one hand, and a cracked carbon ribbon on the other hand.
  • This ribbon is then stretched on a continuous spinning machine, so as to obtain a 68 tex yarn twisted at 300 rpm.
  • This yarn is then treated by assembly / twisting at 220 turns / meter at both ends.
  • the yarn obtained has a titer of 136 tex and contains: 86% glass 14% carbon
  • a hybrid glass / carbon ribbon is produced with a rate of 96% glass and 4% carbon.
  • This hybrid ribbon is stretched, so as to obtain a yarn of 68 tex without twisting, but wrapped at 500 revolutions / meter with a PVA (Polyvinyl-Acrylic) yarn of 5 tex.
  • PVA Polyvinyl-Acrylic
  • the yarn obtained has a titer of 73 tex and contains: 89% E glass 4.1% carbon 6.9% PVA (Polyvinyl-Acrylic)
  • a hybrid yarn is obtained obtained from the mixture of a cracked glass ribbon, a cracked PEEK ribbon and a cracked carbon ribbon, in the respective percentage of 60% / 35% / 5%.
  • This yarn is then treated by assembly / twisting at 250 turns / meter at both ends.
  • the yarn obtained has a titer of 136 tex and contains: 60% E glass 35% PEEK (Polyether-Ether-Ketone) 5% carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)
  • Ropes Or Cables (AREA)

Abstract

L'invention concerne un fil pour renfort textile à pertes électriques contrôlées et son procédé de fabrication, ce fil comportant des fibres discontinues non conductrices (6) et des fibres discontinues conductrices (4). Ces fibres sont approximativement parallèles, et la proportion en poids de fibres conductrices (4) n'excède pas 20 %. Les fibres conductrices (4) sont des fibres de carbone ou des fibres métalliques. Les fibres non conductrices (6) sont des fibres minérales ou des fibres de céramique, ou des fibres techniques à faible allongement. <IMAGE>

Description

  • L'invention concerne un fil pour renfort textile à pertes électriques contrôlées, et son procédé de fabrication.
  • Pour des matériaux homogènes, les pertes électriques sont classiquement représentées par la conductivité électrique. Dans le cas de milieux ou d'éléments hétérogènes, tels que les textiles, cette grandeur physique est plus complexe. On désigne ici par "pertes électriques" l'aptitude d'un matériau à dissiper de l'énergie par déplacement de charges. Ces pertes électriques font partie des propriétés électriques des matériaux.
  • Il est possible de fabriquer des renforts textiles à pertes électriques contrôlées, qui comprennent des fils non conducteurs, à base de fibres minérales, qui assurent la résistance mécanique et thermique du textile, et des fils chargés qui permettent les pertes électriques.
  • De tels fils chargés sont constitués d'un mélange de fibres discontinues non conductrices et de fibres discontinues conductrices. Ils ont une faible conductivité et doivent avoir des propriétés, particulièrement des propriétés électriques homogènes sur toute leur longueur.
  • L'invention concerne de tels fils et leur procédé de fabrication.
  • Le brevet français FR-2.608.641 décrit un procédé de fabrication de filés de fibres de carbone, selon lequel des câbles multifilaments de carbone sont transformés par craquage-étirage, de manière à obtenir des fibres longues.
  • Par ailleurs, le brevet américain US-4.180.968, par exemple, décrit un procédé de fabrication de fils composites comportant un mélange de fibres d'acétate de cellulose et de polyester, dans lequel les fibres sont tordues ensemble, de manière à former les fils ; les fibres subissent ensuite une fausse torsion.
  • Le brevet français FR-2.634.790 décrit un procédé d'obtention d'un fil constitué d'un mélange de filés de fibres de renfort, par exemple de fibres de carbone, et d'un filé de fibres thermoplastiques.
  • Selon la technique décrite dans ce document, chacun des filés est réalisé par craquage-étirage d'un ensemble de multifilaments. Les filés sont mélangés, le mélange étant ensuite étiré et associé à un mélange analogue ; l'ensemble étant à nouveau étiré.... Cette technique permet d'obtenir un mélange intime des fibres, dans lesquelles les proportions relatives des fibres de renfort et des fibres thermoplastiques sont de l'ordre de 65-35 %.
  • Aucune de ces techniques connues ne propose et permet la production de fil pour renfort textile, qui ait à la fois une faible conductivité et des propriétés électriques constantes sur toute sa longueur.
  • Un objectif de la présente invention est de proposer un tel fil et son procédé de fabrication.
  • Un autre objectif est de permettre la réalisation d'un tel fil à base de fibres minérales.
  • C'est encore un objectif de l'invention de permettre la réalisation d'un tel fil exploitable à haute température (plus de 400° C).
  • A cet effet, l'invention concerne un fil pour renfort textile à pertes électriques contrôlées, comportant des fibres discontinues non conductrices et des fibres discontinues conductrices.
  • Selon l'invention, les fibres sont approximativement parallèles, et la proportion en poids de fibres conductrices est inférieure à 20 %.
  • Dans un mode de réalisation préféré, la proportion en poids de fibres conductrices est inférieure à 5 %.
  • Les fibres conductrices sont avantageusement des fibres de carbone.
  • Les fibres non conductrices sont de préférence des fibres minérales. Elles peuvent également être des fibres de céramique.
  • L'invention concerne également un procédé de fabrication de ces fils, dans lequel des filaments, respectivement conducteurs et non conducteurs, sont utilisés.
  • Un des modes de fabrication consiste à hybrider par étapes successives un filé conducteur par des filés non conducteurs. Pour ce faire, les filaments, conducteurs d'une part, non conducteurs d'autre part, sont soumis à un craquage-étirage, de façon à obtenir un filé conducteur et un filé non conducteur.
  • Un filé conducteur est mélangé avec un filé non conducteur au moins, de manière à obtenir un filé mélangé de niveau 1 ; ce filé mélangé de niveau 1 est étiré, puis mélangé avec un filé non conducteur au moins, de manière à obtenir un filé mélangé de niveau 2.
  • Ces dernières étapes sont répétées aussi souvent que nécessaire pour obtenir un filé de niveau n, dans lequel la proportion de fibres conductrices et la masse linéique du fil correspondent aux valeurs voulues.
  • Un mode de réalisation de l'invention est décrit ci-après, en référence aux dessins annexés, dans lesquels :
    • la Figure 1 est une représentation schématique en coupe droite d'un fil selon l'invention ;
    • la Figure 2 est une vue en coupe horizontale du fil de la Figure 1 ;
    • la Figure 3 est une vue en coupe droite du fil de l'invention, lorsque les fibres sont tordues ;
    • la Figure 4 est une vue en coupe horizontale du fil de la Figure 3 ;
    • la Figure 5 est une vue en coupe droite du fil de l'invention, lorsqu'il est guipé ;
    • la Figure 6 est une vue en coupe horizontale du fil de la Figure 5
    • la Figure 7 est une représentation schématique du procédé de l'invention.
  • Le fil 2 est destiné à la fabrication d'un renfort textile à pertes électriques contrôlées.
  • Il comporte un mélange de fibres discontinues non conductrices 6 et de fibres discontinues conductrices 4. On entend ici par "discontinues" des fibres dont la longueur moyenne est comprise entre 5 et 200 mm.
  • Les fibres discontinues conductrices 4 sont des fibres de carbone, des fibres métalliques (aluminium, acier, cuivre, or...)....
  • Les fibres discontinues non conductrices 6 sont des fibres minérales, des fibres de verre, des fibres de silice, fibres de céramique, ou des fibres techniques à faible allongement telles que : aramide, polyéthylène, etc.... On peut mélanger des fibres de différentes natures (verre/aramide, verre/para-aramide, verre/PEEK (Polyéther-Ether -Kétone)...].
  • Les fibres discontinues conductrices 4 et les fibres discontinues non conductrices 6 sont approximativement parallèles, et leur proportion est déterminée pour donner aux textiles les propriétés électriques recherchées.
  • La concentration massique en éléments conducteurs 4 est faible, elle ne doit pas excéder 20 %, et être de préférence de l'ordre de 5 % au maximum.
  • De préférence, le diamètre des filaments discontinus 4, 6 conducteurs, ou non conducteurs, est compris entre 1 et 30 micromètres.
  • Le mélange de fibres, respectivement conductrices 4 et non conductrices 6, peut être tordu, de manière à lui donner une meilleure cohésion et une certaine résistance mécanique facilitant sa transformation textile, telle que doublage, tissage, tricotage, aiguilletage,... et/ou son intégration dans d'autres procédés, tels que : imprégnation, injection....
  • Dans un mode de réalisation particulier, un fil de guipage 7 est utilisé pour renforcer la cohésion du filé. Ce fil de guipage est alors compatible avec l'utilisation ultérieure, ou éliminable.
  • Un procédé de fabrication particulièrement avantageux du fil est décrit ci-après.
  • Des filaments, respectivement conducteurs 11 et non conducteurs 12, ayant de préférence un diamètre compris entre 1 et 30 micromètres, sont respectivement soumis à des opérations de craquage-étirage.
  • Le nombre de filaments soumis à ces opérations de craquage-étirage dépend du fil que l'on veut obtenir. Il peut y avoir plusieurs filaments non conducteurs, soit de même nature, par exemple de verre, soit de natures différentes (verre/aramide, verre/PEEK...).
  • Un élément de craquage-étirage 13 est alimenté en filaments conducteurs. Il est composé de deux ensembles au moins de rouleaux 131/132, 133/134.
  • Les vitesses de rotation de ces deux ensembles de cylindres sont différentes, de telle sorte qu'ils produisent un allongement des filaments dans la zone 135 comprise entre les deux ensembles de rouleaux 131/132 et 133/134.
  • Les vitesses respectives de ces deux ensembles de rouleaux sont réglées en fonction du matériau constitutif des filaments et de leurs diamètres, de manière à produire des fibres discontinues longues, c'est-à-dire dont la longueur moyenne est comprise entre 5 et 200 mm.
  • L'unité de craquage-étirage 15 effectue le même traitement sur les filaments non conducteurs 12.
  • Elle comporte deux ensembles de cylindres 151/152, 153/154.
  • Ainsi, deux filés 14, 16, respectivement conducteurs et non conducteurs, sont obtenus.
  • Ces filés 14 et 16 sont mélangés dans le mélangeur 17 de type "intersecting" et produisent un filé mélangé 18 de niveau 1.
  • Ce filé mélangé 18 de niveau 1 alimente un dispositif d'étirage 19, qui produit un filé mélangé étiré 110 de niveau 1.
  • Le dispositif d'étirage 19 comporte deux ensembles de rouleaux 191/192, 193/194 qui ont des vitesses de rotation différentes, de manière à produire l'allongement du filé dans la zone intermédiaire 195.
  • Le filé mélangé étiré 110 est lui-même mélangé à un filé 16 de fibres non conductrices dans le mélangeur 111. Ainsi, est produit le filé mélangé 120 de niveau 2 ;
  • Ce filé 120 de niveau 2 est lui-même étiré, puis mélangé à un nouveau filé 16 de fibres non conductrices....
  • D'un niveau à l'autre, la nature des fibres non conductrices peut changer, de manière à permettre l'obtention de fils à plus de deux composants, par exemple verre/aramide/carbone, verre/PEEK/carbone,....
  • Ces opérations sont reproduites jusqu'à l'obtention des proportions recherchées de fibres conductrices et de fibres non conductrices.
  • Cette mèche hybride subit un ensemble d'opérations d'étirage permettant d'obtenir la masse linéaire recherchée et se termine par une opération permettant d'améliorer la cohésion du fil. Ce procédé est de préférence une opération de torsion, et/ou éventuellement une opération de guipage.
  • Ce mode de fabrication n'est pas limitatif. En effet, d'autres modes opératoires, tels que craquage simultané de mèches hybrides, puis étirage/filage, peuvent être aussi envisagés.
  • Les trois réalisations suivantes, données à titre d'exemple, ont ainsi été obtenues.
  • Exemple N° 1
  • On réalise un ruban de verre craqué d'une part, et un ruban de carbone craqué d'autre part.
  • On mélange ces deux rubans sur une machine de type "intersecting", afin d'obtenir un ruban hybride de 86 % de verre et 14 % de carbone.
  • On étire ensuite ce ruban sur une machine continu à filer, de manière à obtenir un filé de 68 tex tordu à 300 tours/mètre.
  • Ce filé est ensuite traité par assemblage/retordage à 220 tours/mètre aux deux bouts.
  • Le fil obtenu a un titre de 136 tex et contient :
       86 % de verre
       14 % de carbone
  • Exemple N° 2
  • On réalise un ruban hybride craqué verre/carbone avec un taux de 96 % de verre et 4 % de carbone.
  • On étire ce ruban hybride, de manière à obtenir un filé de 68 tex sans torsion, mais guipé à 500 tours/mètre avec un fil PVA (Polyvinyl-Acrylique) de 5 tex.
  • Le fil obtenu a un titre de 73 tex et contient :
       89 % de verre E
       4,1 % de carbone
       6,9 % de PVA (Polyvinyl-Acrylique)
  • Exemple N° 3
  • On réalise un filé hybride obtenu à partir du mélange d'un ruban de verre craqué, d'un ruban de PEEK craqué et d'un ruban de carbone craqué, dans le pourcentage respectif de 60 %/35 %/5 %.
  • On étire pour obtenir un titre de 68 tex et tordu à 350 tours/mètre.
  • Ce filé est ensuite traité par assemblage/retordage à 250 tours/mètre aux deux bouts.
  • Le fil obtenu a un titre de 136 tex et contient :
       60 % de verre E
       35 % de PEEK (Polyéther-Ether-Kétone)
       5 % de carbone

Claims (11)

  1. Fil pour renfort textile à pertes électriques contrôlées comportant des fibres discontinues non conductrices (6) et des fibres discontinues conductrices (4), caractérisé en ce que lesdites fibres sont approximativement parallèles, et que la proportion en poids de fibres conductrices n'excède pas 20 %.
  2. Fil pour renfort textile à pertes électriques contrôlées selon la revendication 1, caractérisé en ce que les fibres conductrices (4) sont des fibres de carbone.
  3. Fil pour renfort textile à pertes électriques contrôlées selon la revendication 1, caractérisé en ce que les fibres conductrices (4) sont des fibres métalliques.
  4. Fil pour renfort textile à pertes électriques contrôlées selon l'une des revendications 1 à 3, caractérisé en ce que les fibres non conductrices (6) sont des fibres minérales.
  5. Fil pour renfort textile à pertes électriques contrôlées selon l'une des revendications 1 à 3, caractérisé en ce que les fibres non conductrices (6) sont des fibres à faible allongement.
  6. Fil pour renfort textile à pertes électriques contrôlées selon l'une des revendications 1 à 3, caractérisé en ce que les fibres non conductrices (6) sont des fibres de céramique.
  7. Fil pour renfort textile à pertes électriques contrôlées selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la proportion en poids de fibres conductrices (4) est inférieure à 5 %.
  8. Fil pour renfort textile à pertes électriques contrôlées selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte des fibres non conductrices (6) PEEK.
  9. Procédé de fabrication de fil selon l'une quelconque des revendications 1 à 7, caractérisé en ce que :
    a) des filaments, respectivement conducteurs (11) et non conducteurs (12), sont utilisés ;
    b) les filaments, conducteurs (11) d'une part, non conducteurs (12) d'autre part, sont soumis à un craquage-étirage, de façon à obtenir un filé conducteur (14) et un filé non conducteur (16) ;
    c) un filé conducteur (14) est mélangé avec un filé non conducteur (16), de manière à obtenir un filé mélangé (18) de niveau 1 ;
    d) le filé mélangé (18) de niveau 1 est étiré ;
    e) le filé mélangé étiré (110) de niveau 1 est mélangé avec un filé (16) non conducteur, de manière à obtenir un filé mélangé (120) de niveau 2 ;
    f) les étapes d) et e) sont répétées aussi souvent que nécessaire pour obtenir un filé de niveau n, dans lequel la proportion de fibres conductrices correspond à la valeur voulue, puis d'étirage pour obtenir la masse linéaire recherchée.
  10. Procédé selon la revendication 6, caractérisé en ce que le filé de niveau n, ayant subi une opération d'étirage, est soumis à une torsion.
  11. Procédé selon la revendication 6, caractérisé en ce que le filé de niveau n, ayant subi une opération d'étirage, est guipé.
EP19930400781 1992-03-31 1993-03-25 Fil pour renfort textile à pertes électriques contrÔlées et son procédé de fabrication Expired - Lifetime EP0564331B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9203904A FR2689145B1 (fr) 1992-03-31 1992-03-31 Fil pour renfort textile a pertes electriques controlees, et son procede de fabrication.
FR9203904 1992-03-31

Publications (2)

Publication Number Publication Date
EP0564331A1 true EP0564331A1 (fr) 1993-10-06
EP0564331B1 EP0564331B1 (fr) 1996-12-11

Family

ID=9428308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930400781 Expired - Lifetime EP0564331B1 (fr) 1992-03-31 1993-03-25 Fil pour renfort textile à pertes électriques contrÔlées et son procédé de fabrication

Country Status (5)

Country Link
EP (1) EP0564331B1 (fr)
DE (1) DE69306452T2 (fr)
ES (1) ES2095593T3 (fr)
FR (1) FR2689145B1 (fr)
GR (1) GR3022402T3 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989215A1 (fr) * 1998-02-18 2000-03-29 Toray Industries, Inc. Matiere a base de fibres de carbone de renforcement, lamine et procede de detection
EP1584451A1 (fr) 2004-03-29 2005-10-12 Alenia Aeronautica S.P.A. Tissus, mèches de filaments continus et brins pour fabriquer des couches de renforcement pour un élément en matière composite avec une matrice en résine
WO2008114296A1 (fr) * 2007-03-22 2008-09-25 Carraro S.R.L. Fil textile technique
ITBS20130157A1 (it) * 2013-10-31 2015-05-01 Filtes Internat S R L Con Soc Io Unico Filato per tessuti di protezione, e procedimento di fabbricazione
WO2015061828A1 (fr) 2013-10-31 2015-05-07 Ansell Limited Fils mixtes renforcés par des fibres à haute ténacité et des fibres minérales
WO2017111687A1 (fr) * 2015-12-22 2017-06-29 Inuheat Group Ab Fil électroconducteur et produit comprenant ledit fil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206326A1 (de) * 2001-10-15 2003-04-30 L & G Schoeller Gmbh Textiles fadenartiges Gewebe, textiles Flächengebilde aus Fasern, Gewebe aus textilen fadenartigen Gebilden, Bekleidungsstück sowie Baumaterial

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987613A (en) * 1965-07-29 1976-10-26 Burlington Industries, Inc. Process for preparing textiles without static charge accumulation and resulting product
CA1043088A (fr) * 1975-11-03 1978-11-28 Celanese Canada Limited/Limitee Produit textile conducteur d'electricite, et methode de fabrication connexe
US4756969A (en) * 1984-11-28 1988-07-12 Toray Industries, Inc. Highly electrically conductive filament and a process for preparation thereof
FR2634790A1 (fr) * 1988-07-29 1990-02-02 Schappe Sa Fils hybrides pour materiaux composites a matrice thermoplastique et leur procede d'obtention

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107515A (en) * 1979-02-07 1980-08-18 Toray Ind Inc Production of mixed spun yarn
JP3010673B2 (ja) * 1990-03-12 2000-02-21 東洋紡績株式会社 制電性コアヤーン
JP3010674B2 (ja) * 1990-03-16 2000-02-21 東洋紡績株式会社 制電性複合糸
JPH0491248A (ja) * 1990-08-03 1992-03-24 Toyobo Co Ltd 制電性布帛及びその製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987613A (en) * 1965-07-29 1976-10-26 Burlington Industries, Inc. Process for preparing textiles without static charge accumulation and resulting product
CA1043088A (fr) * 1975-11-03 1978-11-28 Celanese Canada Limited/Limitee Produit textile conducteur d'electricite, et methode de fabrication connexe
US4756969A (en) * 1984-11-28 1988-07-12 Toray Industries, Inc. Highly electrically conductive filament and a process for preparation thereof
FR2634790A1 (fr) * 1988-07-29 1990-02-02 Schappe Sa Fils hybrides pour materiaux composites a matrice thermoplastique et leur procede d'obtention

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPIL Section Ch, Week 9203, Derwent Publications Ltd., London, GB; Class F, AN 92-020352 & JP-A-03 269130 (TOYOBO KK) 29 Novembre 1991 *
PATENT ABSTRACTS OF JAPAN vol. 004, no. 166 (C-031)18 Novembre 1980 & JP-A-55 107515 ( TORAY IND ) 18 Août 1980 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 081 (C-915)27 Février 1992 & JP-A-03 269130 ( TOYOBO CO ) 29 Novembre 1991 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 081 (C-915)27 Février 1992 & JP-A-03 269131 ( TOYOBO CO ) 29 Novembre 1991 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 320 (C-962)14 Juillet 1992 & JP-A-04 091248 ( TOYOBO CO ) 24 Mars 1992 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989215A1 (fr) * 1998-02-18 2000-03-29 Toray Industries, Inc. Matiere a base de fibres de carbone de renforcement, lamine et procede de detection
EP0989215A4 (fr) * 1998-02-18 2006-03-29 Toray Industries Matiere a base de fibres de carbone de renforcement, lamine et procede de detection
EP1584451A1 (fr) 2004-03-29 2005-10-12 Alenia Aeronautica S.P.A. Tissus, mèches de filaments continus et brins pour fabriquer des couches de renforcement pour un élément en matière composite avec une matrice en résine
WO2008114296A1 (fr) * 2007-03-22 2008-09-25 Carraro S.R.L. Fil textile technique
US8495766B2 (en) 2007-03-22 2013-07-30 Carraro S.R.L. Engineered textile yarn
EP2868787A1 (fr) * 2013-10-31 2015-05-06 Filtes International S.r.l. Con Socio Unico Fil pour textiles de protection et sa méthode de fabrication
ITBS20130157A1 (it) * 2013-10-31 2015-05-01 Filtes Internat S R L Con Soc Io Unico Filato per tessuti di protezione, e procedimento di fabbricazione
WO2015061828A1 (fr) 2013-10-31 2015-05-07 Ansell Limited Fils mixtes renforcés par des fibres à haute ténacité et des fibres minérales
EP3063320A4 (fr) * 2013-10-31 2017-07-12 Ansell Limited Fils mixtes renforcés par des fibres à haute ténacité et des fibres minérales
AU2014344785B2 (en) * 2013-10-31 2017-11-23 Ansell Limited High tenacity fiber and mineral reinforced blended yarns
US9856584B2 (en) 2013-10-31 2018-01-02 FILTES INTERNATIONAL S.r.l. CON SOCIO UNICO Yarns for protective textiles, and manufacturing methods thereof
US11047069B2 (en) 2013-10-31 2021-06-29 Ansell Limited High tenacity fiber and mineral reinforced blended yarns
WO2017111687A1 (fr) * 2015-12-22 2017-06-29 Inuheat Group Ab Fil électroconducteur et produit comprenant ledit fil
US10829870B2 (en) 2015-12-22 2020-11-10 Inuheat Group Ab Electrically conductive yarn and a product including the yarn

Also Published As

Publication number Publication date
GR3022402T3 (en) 1997-04-30
EP0564331B1 (fr) 1996-12-11
ES2095593T3 (es) 1997-02-16
FR2689145B1 (fr) 1996-04-05
DE69306452D1 (de) 1997-01-23
FR2689145A1 (fr) 1993-10-01
DE69306452T2 (de) 1997-04-30

Similar Documents

Publication Publication Date Title
EP0466618A1 (fr) Fil hybride pour matériaux composites à matrice thermoplastique et procédé pour son obtention
US10724162B2 (en) High strength small diameter fishing line
FR2577470A1 (fr) Elements de renforcement composites et procedes pour leur fabrication
US20170283994A1 (en) Nanofiber yarns, thread, rope, cables, fabric, articles and methods of making the same
EP0564331B1 (fr) Fil pour renfort textile à pertes électriques contrÔlées et son procédé de fabrication
EP0785451B1 (fr) Câble optique à renforts périphériques extrudés
FR2836591A1 (fr) Fil composite conducteur
EP1458909A1 (fr) Procede de filature centrifuge
EP0354139B1 (fr) Fils hybrides pour matériaux composites à matrice thermoplastique et leur procédé d&#39;obtention
FR2497239A1 (fr) Fils et autres produits a base de fibres de verre et leur procede de fabrication
US5209975A (en) High elongation, high strength pitch-type carbon fiber
JPH02216222A (ja) 高強度高モジュラスピッチ系炭素繊維
EP0432100A2 (fr) Fil textile résistant au feu et utilisation de ce fil
FR2668176A1 (fr) Structure filiforme guipee comprenant des fibres metalliques.
WO2009027615A2 (fr) Fil hybride et son procede de fabrication
FR2652826A1 (fr) Fil composite comprenant une ame multifilamentaire torse, ceinturee d&#39;une gaine constituee par l&#39;enroulement d&#39;un fil fin a spires jointives.
WO1999034040A1 (fr) Fils textiles multifilamentaires a section creuse, procede de fabrication de ces fils, et surfaces textiles obtenues avec ces fils
FR2514791A1 (fr) Procede et convertisseur pour produire des meches de filature
EP0530119B1 (fr) Fibres à base de mélanges pvc/pvc chloré possèdant des propriétés mécaniques améliorées et files de fibres de ténacité améliorée obtenus à partir de ces fibres
FR2838455A1 (fr) Fil a base de poly (p-phenylene benzobisoxazole) pour la realisation d&#39;articles resistant a de hautes temperatures
LU100709B1 (fr) Nouveau cable bielastique en fibres de carbone a titre de nappe de sommet
US5407614A (en) Process of making pitch-based carbon fibers
RU2126855C1 (ru) Способ получения тонких высокопрочных углеродных нитей
FR2503203A1 (fr) Procede pour l&#39;obtention d&#39;un cable souple et resistant et nouveau type de cable ainsi realise
CN117926580A (zh) 一种有机无机复合长丝及其制备方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19930913

17Q First examination report despatched

Effective date: 19940721

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES GB GR IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REF Corresponds to:

Ref document number: 69306452

Country of ref document: DE

Date of ref document: 19970123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095593

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970125

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3022402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19980128

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980205

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980302

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980316

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980428

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980617

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990326

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19990326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

BERE Be: lapsed

Owner name: S.A. BROCHIER

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

EUG Se: european patent has lapsed

Ref document number: 93400781.6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990325

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991001

EUG Se: european patent has lapsed

Ref document number: 93400781.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050325