EP0558308B1 - Structure émettrice de photoélectrons et tube à électrons et dispositif photodétecteur utilisant cette structure - Google Patents

Structure émettrice de photoélectrons et tube à électrons et dispositif photodétecteur utilisant cette structure Download PDF

Info

Publication number
EP0558308B1
EP0558308B1 EP19930301385 EP93301385A EP0558308B1 EP 0558308 B1 EP0558308 B1 EP 0558308B1 EP 19930301385 EP19930301385 EP 19930301385 EP 93301385 A EP93301385 A EP 93301385A EP 0558308 B1 EP0558308 B1 EP 0558308B1
Authority
EP
European Patent Office
Prior art keywords
semiconductor
emitting structure
photoelectron emitting
semiconductor film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19930301385
Other languages
German (de)
English (en)
Other versions
EP0558308A1 (fr
Inventor
Minoru C/O Hamamatsu Photonics K. K. Niigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of EP0558308A1 publication Critical patent/EP0558308A1/fr
Application granted granted Critical
Publication of EP0558308B1 publication Critical patent/EP0558308B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters

Definitions

  • This invention relates to a photoelectron emitting structure which emits photoelectrons by the incidence of photons, and an electron tube and a photodetecting device using the photoelectron emitting structure.
  • a first conventional photoelectron emitting structure disclosed in Japanese Patent Laid-Open Publication No. 133633/1987 has the energy band shown in FIG. 1.
  • a narrow-energy gap film 6 has a sufficient thickness (below 300 ⁇ ) to absorb incident photons and generate photoelectrons.
  • a wide-energy gap film 7 is thin (below 45 ⁇ ) enough to pass photoelectrons by the tunnel effect.
  • the films 6, 7 are alternately laid one on the other in a photoelectron emitting structure.
  • This photoelectron emitting structure uses the effect that the alternate superposition of two kinds of films increases a photoabsorbing coefficient for the incident photons in comparison with that of a conventional photoabsorbing layer consisted of homogeneous semiconductive materials.
  • a thickness of the wide-energy gap film 7 which is a barrier has to be thin enough, and practically has to be as thin as below 45 ⁇ . Only those of the generated photoelectrons which have successfully passed the wider-energy gap film 7 owing to the tunnel effect arrive at the photoemitting surface to be emitted to a vacuum through a Cs x O y film 8 formed on the photoemitting surface.
  • a second conventional photoelectron emitting structure disclosed in Japanese Patent Laid-Open Publication No. 133634/1987 has the energy band structure of FIG. 2.
  • a narrower-energy gap film 9 has a smaller film thickness than the film 6 of the first conventional photoelectron emitting structure.
  • a long-wavelength photodetecting device using a quantum well structure is reported by B. F. Levine (Appl. Phys. Lett. 58(14) 1991).
  • the band structure of the conduction band of this photodetecting device (a third conventional photoelectron emitting structure) is as shown in FIG. 3. Incident photons are absorbed between sub-bands of the conduction band formed in a narrow-energy gap film 12 which functions as the potential well, and photoelectrons are generated. In this case, the generated photoelectrons transfer through the X-valley of the conduction band of a wider-energy gap film 13 which functions as the potential barrier.
  • photodetector it is general that since the photoelectrons are detected as signals when they arrive at the electrode formed on the surface, electric fields formed inside the semiconductor device is small, and such photodetector is operated at biases as low as possible for suppressing noises as low as possible.
  • the first conventional photoelectron emitting structure has an intrinsic problem. That is, as a thickness of the small-energy gap film 6 is decreased, sub-bands are formed due to the quantum effect both in the valence band and the conduction band, and a threshold for the incident photon absorption rises. As a result, incident long-wavelength photons cannot be absorbed.
  • an energy difference E sg between a sub-band of the valence band and a sub-band of the conduction band is larger than a band gap E g , and as a result, an absorbed threshold wavelength of the incident photons is short.
  • the photoemitting surface As high dark currents is generated, the photoemitting surface has to be used at a remarkably low temperature by cooling down with liquid nitrogen or the like. As a result, it is difficult to be used in a general device as used at a room temperature.
  • photoelectrons are emitted from a emitting surface by incident photons on a photoabsorbing layer, which is formed of a semiconductor multi-layer comprising a plurality of semiconductor films including a first semiconductor film and a second semiconductor film.
  • the first semiconductor film with a narrow energy gap is formed in a thickness of below 300 ⁇ which allows an electron state to be quantized.
  • the second semiconductor film with a wide energy gap is formed in a thickness of above 45 ⁇ which does not allow electrons to pass the second semiconductor film owing to the tunnel effect.
  • the absorption of the incident photons and the generation of electron-hole pairs takes place between sub-bands of a conduction band or between a sub-band and a bottom of the conduction band of said first semiconductor film with the narrow energy gap, generated photoelectrons are accelerated by an internal electric field to transit to a higher energy band.
  • the photoelectrons which have been excited to a lowest energy level of the conduction band are energized to transit to a higher energy level, and are accelerated by the internal electric field.
  • An energy difference between lowest energy levels of the conduction bands formed in the respective semiconductor films making up the semiconductor multi-layer is smaller than a narrowest energy gap among energy gaps between bands of the respective semiconductor films themselves.
  • the absorption of the incident photons, and the generation of photoelectrons take place between the sub-bands of the conduction band of the first semiconductor film, or between the bottom of the conduction band and the sub-band.
  • the photoelectron emitting structure has a sensitivity to the incident light of longer wavelengths than wavelengths corresponding to an energy gap of the used semiconductors.
  • the generated photoelectrons are accelerated by an inside electric field to be easily emitted into a vacuum.
  • the photoelectron emitting structure according to this invention has much improved sensitivity in comparison with the conventional photoelectron emitting structures, and it is possible to set its threshold wavelength at a much longer wavelength.
  • Electron tubes using such photoelectron emitting structure are operative up to relatively high temperatures, and in comparison with the conventional photoelectron emitting structures, such photoelectron emitting structure exhibits very high sensitivity especially in a long-wavelength range.
  • FIG. 1 is a view of the band structure of the first conventional photoelectron emitting structure.
  • FIG. 2 is a view of the band structure of the second conventional photoelectron emitting structure.
  • FIG. 3 is a view of the band structure of the third conventional photoelectron emitting structure.
  • FIG. 4 is a sectional structural view of the photoelectron emitting structure according to one embodiment of this invention.
  • FIG. 5 is a view of a band structure of the photoelectron emitting structure according to the embodiment of FIG. 4 with no bias applied to.
  • FIG. 6 is a view of a band structure of the photoelectron emitting structure according to the embodiment of FIG. 4 with a bias applied to.
  • FIG. 7 is a sectional view of a side-on photomultiplier using the photoelectron emitting structure according to this invention.
  • FIG. 8 is a sectional view of a head-on photomultiplier using the photoelectron emitting structure according to this invention.
  • FIG. 9 is a sectional view of an image intensifier using the photoelectron emitting,structure according to this invention.
  • the photoelectron emitting structure according to one embodiment of this invention will be explained with reference to FIG. 4.
  • a photoabsorbing layer 22 is formed on a P+-GaAs substrate 21.
  • the photoabsorbing layer 22 comprises 40 undoped GaAs films of a 30 ⁇ -thickness 22a and 40 Al 0.65 Ga 0.35 As films of a 500 ⁇ -thickness 22b, and forms heterojunctions. In FIG. 4 the heterojunctions are partially shown.
  • a P ⁇ GaAs contact layer 23 is formed in a thickness of 3000 ⁇ on the photoabsorbing layer 22.
  • An Al Schottky electrode 24 is mesh-patterned on the surface of the P ⁇ GaAs contact layer 23.
  • this P ⁇ GaAs contact layer 23 On the surface of this P ⁇ GaAs contact layer 23 there is formed a very thin CsxOy film 25 by activating with Cs and O2 for the reduction of a work function of the photemitting surface.
  • An ohmic electrode 26 is formed on the underside of the P-GaAs substrate 21.
  • a constant bias voltage is supplied by a power source 27 between the Schottky electrode 24 and the ohmic electrode 26.
  • FIG. 5 shows the band structure of the photoelectron emitting structure according to this embodiment with no bias voltage applied to.
  • the respective layers in FIG. 5 has the same reference numerals as their corresponding layers in FIG. 4.
  • an energy difference between the conduction band of film 22a and the conduction band of film 22b is smaller than a minimum energy gap of the used semiconductors (undoped GaAs and Al 0.65 Ga 0.35 As) of the films 22a, 22b.
  • each GaAs film 22a which is a first semiconductor film, has a thickness of below 300 ⁇ an electron state of which is quantized, the film 22a sandwiched by adjacent ones of the films 22b of Al 0.65 Ga 0.35 As, which is a second semiconductor film, functions as a potential well.
  • Sub-bands are formed in each GaAs film 22a corresponding to a quantum level.
  • each Al 0.65 Ga 0.35 As layer 22b has a thickness above 45 ⁇ which does not allow electrons to pass therethrough owing to the tunnel effect, the sub-bands in the film 22a are always filled with bound electrons.
  • the photoelectron emitting structure according to this embodiment is intended to further excite the bound electrons to sub-bands of other quantum levels by the absorption of the incident photons. It is evident that the photoelectron emitting structure according to this embodiment is intrinsically different from the conventional photoelectron emitting structure consisted of homogeneous semiconductive materials, the first conventional photoelectron emitting structure disclosed in Japanese Patent Laid-Open Publication No. 133633/1987, and the second conventional photoelectron emitting structure disclosed in Japanese Patent Laid-Open Publication No. 133634/1987, in which the absorption of the incident photons and the generation of photoelectrons are performed between the valence band and the conduction band.
  • the photoelectron emitting structure according to this embodiment is sensitive to even to the incident photons of longer wavelengths than an energy gap of the used semiconductors.
  • the wavelengths can be optionally varied by suitably designing the heterojunction of the semiconductor multi-layer of the photoabsorbing layer 22.
  • FIG. 6 shows the band structure of the photoelectron emitting structure according to this embodiment with a bias voltage applied to.
  • the respective layers corresponding to the layers in FIG. 4 have the same reference numerals.
  • the photoelectrons generated between the sub-bands of the conduction bands of the GaAS films 22a of the photoabsorbing layer 22 by incident photons h ⁇ transfer to X valleys which are the bottoms of the conduction bands of the Al 0.65 Ga 0.35 As film 22b, which are a most lowest energy level. But since a 4 V-bias voltage is applied between the electrodes spaced from each other by 2.5 »m, and an electric field as high as about 1.6 KV/cm is formed, the generated photoelectrons are accelerated to immediately transit to ⁇ valleys which are higher energy bands. In this embodiment, where the Al 0.65 Ga 0.35 As film 22 b is an indirect transition semiconductor, such X- ⁇ transition takes place.
  • the voltage to be applied between the electrodes is about 8 V to make an electric field as intense as about 3.2 KV/cm.
  • the formation of an internal electric field in a range of 1 KV ⁇ 55 KV/cm can cause the photoelectrons as mentioned above to be efficiently emitted into a vacuum.
  • the photoelectron emitting structure according to this embodiment the photoelectrons generated by the incident photons between the sub-bands of the conduction band are accelerated by an internal electric field to transit the generated photoelectrons to higher energy bands and emit into a vacuum. That is, the photoelectron emitting structure according to this invention has an intrinsically different mechanism from, e.g., the photodetecting device reported by B. F. Levine et al.
  • the photoelectron emitting structure according to this invention can be sensitive to long-wavelength light without the use of semiconductors of narrow energy gaps. Furthermore, the generated photoelectrons are accelerated by an internal electric field, and the photoelectrons which have fallen into the X valleys transit to the ⁇ valleys which have higher energy levels, after that the photoelectrons are emitted into a vacuum.
  • the photoelectron emitting structure according to this invention has a very high sensitivity in comparison with that of the photoelectron emitting structures using the conventional structure of semiconductors.
  • the photoelectron emitting structure according to this invention can set its wavelength limit at a very long wavelength.
  • suitable designs of the kinds and structure of the heterojunction semiconductor multi-layer of the heterojunctions providing the photoabsorbing layer 22 can provide a photoelectron emitting structure which has a photodetecting characteristic having a peak at an optional wavelength.
  • the photoelectron emitting structure according to this invention has high degrees of freedom of making choices of the semiconductor multi-layer in kinds, thicknesses and numbers of the semiconductor films, and accordingly can have the sensitivity adjusted to an optional one from a wide to a narrow range.
  • the photoelectron emitting structure according to the above-described embodiment is effectively applicable to electron tubes.
  • the photoelectron emitting structure according to the above-described embodiment is used as the photoelectric transfer surfaces, i.e., a photoemitting surface.
  • the photoelectrons emitted from the photoemitting surface are secondary electron multiplied by the dynodes, and groups of the multiplied secondary electrons are detected by the anodes.
  • the photoelectron emitting structure according to the above-described embodiment is used as a photoemitting surface in the image inputting units.
  • the photoelectrons emitted from the photoemitting surface are focused by the electron lenses, and an image is formed on the phosphorous surface.
  • the photoelectron emitting structure according to the above-described embodiment is applicable also to image intensifiers (I ⁇ I tubes) in which photoelectrons converged by the electron lenses are multiplied by the microchannel plates (MCPs).
  • the photoelectron emitting structure according to the above-described embodiment is used as a photodetecting surface. The photoelectrons emitted from the photodetecting surface are detected by the anodes.
  • FIGs. 7, 8 and 9 show electron tubes each using the photoelectron emitting structure according to this invention.
  • FIG. 7 is a sectional view of a side-on photomultiplier using a reflection-type photoemitting surface.
  • FIG. 8 is a sectional view of a head-on photomultiplier using a transmission-type photoemitting surface.
  • FIG. 9 is a sectional view of an image intensifier using a transmission-type photoemitting surface.
  • the photomultiplier of FIG. 7 includes in a vacuum vessel 71 a photoemitting surface 72, a plurality of dynodes 73, and an anode 74. On the front of the photoemitting surface 72 there is provided a mesh electrode 75. In the photomultiplier of FIG. 8, there is mounted a photoemitting surface 72 on one end of a vacuum vessel 71, and a focusing electrode 76 is provided in the vacuum vessel 71. In these respective photomultipliers photoelectrons (e ⁇ ) are emitted by incident photons h ⁇ , and the photoelectrons are multiplied by the dynodes 73 and detected by the anode 74.
  • a photoemitting surface 72 is secured to the opened front of a cylindrical bulb 81, and an glass output face plate 82 with a phosphorous film 83 applied to the inside thereof is secured to the opened rear end of the cylindrical bulb 81.
  • a microchannel plate 84 Inside the cylindrical bulb 81 there is provided a microchannel plate 84.
  • These respective electron tubes using the photoelectron emitting structure according to this invention has a very high sensitivity especially in a long-wavelength range in comparison with the conventional electron tubes. Accordingly such electron tubes are very effective in the photometry, imaging, etc. at low illuminance.
  • the photoabsorbing layer 22 as the semiconductor multi-layer is formed of the heterojunction of the GaAs film 22a and Al0.65Ga0.35As film 22b but is not essentially limited to the heterojunction of these semiconductors.
  • Other III-V compound semiconductors, or Si, Ge and their mixed crystal may be used.
  • the kinds of the semiconductors are not essentially limited to two.
  • the photoabsorbing layer 22 may be formed of GaAs films and AlAs films, or their mixed crystal. InP films and InGaAs films, or their mixed crystal may be used. InP films and AlGaAs films, or their mixed crystal may be used.
  • the formation of the photoabsorbing layer 22 of these materials can produce the same effects as in the above-described embodiment.
  • the photoabsorbing layer may be formed of semiconductor multi-layer of the same kind having a p-n-i junction. In such case the same effects as those produced by the above-described embodiment can be achieved.
  • the Schottky electrode 24 is formed of Al, but the kind of the material of the Schottky electrode 24 is not specifically limited as long as the material is a metal which can form a good Schottky junction with used semiconductors. Its pattern can be optional.
  • the Schottky electrode 24 may be formed of, e.g., Ag, Au, Pt, Ti, W, Cr, WSi or alloys of these metals.
  • the Schottky electrode of these metals can produce the same effects as those produced by the above-described embodiment.
  • the Cs x O y film 25 is applied to the photoemitting surface of the photoelectron emitting structure for the reduction of the work function but the Cs x O y film 25 is not essential.
  • the film 25 may be formed of an alkali metal such as K, Na, Rb, Bi, Cs or others, or a compound, an oxide or a fluoride of any one of these metals.

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Claims (19)

  1. Structure d'émission de photoélectrons pour l'émission de photoélectrons générés par des photons incidents sur une couche photo-absorbante (22), la couche photo-absorbante formée d'une multicouche à semi-conducteur comprenant une pluralité de films de semi-conducteur (22a, 22b) comprenant un premier film de semi-conducteur (22a) et un second film de semi-conducteur (22b), le premier film de semi-conducteur (22a) possédant un intervalle d'énergie étroit formé dans une épaisseur inférieure à 300 Å, ce qui permet la quantification d'un état électronique, le second film de semi-conducteur (22b) possédant un large intervalle d'énergie formé dans une épaisseur en dessous de 45 Å, ce qui permet aux électrons de passer le second film de semi-conducteur par l'effet de tunnel, l'absorption des photons incidents et la génération de paires d'électron/trou ayant lieu entre les sous-bandes d'une bande de conduction ou entre une sous-bande et le bas d'une bande de conduction dudit premier film de semi-conducteur à intervalle d'énergie étroit,
       structure dans laquelle les photoélectrons sont accélérés par un champ électrique interne pour passer sur une plus haute bande d'énergie.
  2. Structure d'émission de photoélectrons selon la revendication 1, dans laquelle les photoélectrons qui sont excités à un plus bas niveau d'énergie de la bande de conduction sont activés pour transiter sur un plus haut niveau d'énergie, et sont accélérés par le champ électrique interne.
  3. Structure d'émission de photoélectrons selon la revendication 1, dans laquelle une différence d'énergie entre les plus bas niveau d'énergie des bandes de conduction formées dans les films respectifs de semi-conducteur constituant la multicouche de semi-conducteur est plus faible que l'intervalle d'énergie le plus étroit des films respectifs de semi-conducteur eux-mêmes.
  4. Structure d'émission de photoélectrons selon la revendication 1, dans laquelle le premier film de semi-conducteur et le second film de semi-conducteur sont formés de matériaux différents l'un de l'autre et constituent une hétéro-jonction.
  5. Structure d'émission de photoélectrons selon la revendication 4, dans laquelle les couches de film de semi-conducteur sont formées de semi-conducteurs de composé III-V ou de leur mélange cristallin.
  6. Structure d'émission de photoélectrons selon la revendication 5, dans laquelle les semi-conducteurs de composé III-V sont le GaAs et l'AlAs.
  7. Structure d'émission de photoélectrons selon la revendication 5, dans laquelle les semi-conducteurs de composé III-V sont l'InP et l'InGaAs.
  8. Structure d'émission de photoélectrons selon la revendication 5, dans laquelle les semi-conducteurs de composé III-V sont l'InP et l'AlGaAs.
  9. Structure d'émission de photoélectrons selon la revendication 1, dans laquelle le premier film de semi-conducteur et le second film de semi-conducteur sont formés de semi-conducteurs du même type de dopage avec différentes impuretés de conduction et forment une homo-jonction.
  10. Structure d'émission de photoélectrons selon la revendication 9, dans laquelle les films de semi-conducteur sont formés de Si, de Ge ou de leur mélange cristallin.
  11. Structure d'émission de photoélectrons selon la revendication 1, dans laquelle sont formés, en surface, une électrode (24) pour l'application d'un champ électrique requis à la couche photo-absorbante et un film de métal (25) pour réduire une fonction de charge de la surface photoémettrice.
  12. Structure d'émission de photoélectrons selon la revendication 11, dans laquelle l'électrode est en contact de Schottky avec la surface photoémettrice.
  13. Structure d'émission de photoélectrons selon la revendication 12, dans laquelle l'électrode est formée de Al, Ag, Au, Pt, Ti, W, Cr ou de WSi ou d'un alliage métallique de l'un quelconque de ces matériaux.
  14. Structure d'émission de photoélectrons selon la revendication 11, dans laquelle le film de métal est formé de K, Na, Rb, Bi ou de Cs ou d'un composé de métal, d'un oxyde ou d'un fluorure de l'un quelconque de ces matériaux.
  15. Tube électronique comprenant une structure d'émission de photoélectrons selon l'une quelconque des revendications 1 à 3.
  16. Photodétecteur comprenant un tube electronique selon la revendication 15.
  17. Dispositif d'émission de photoélectrons pour émettre des électrons selon des photons incidents, comprenant :
    - un support de semi-conducteur (21);
    - une multicouche de semi-conducteur comprenant une pluralité de films de semi-conducteur comprenant un premier film de semi-conducteur (22a) et un second film de semi-conducteur (22b), le premier film de semi-conducteur présentant un intervalle d'énergie étroit ayant une épaisseur inférieure à 300 Å, et le second film de semi-conducteur ayant un plus large intervalle d'énergie présentant une épaisseur supérieure à 45 Å;
    - une électrode de surface avant (24) formée sur la multicouche de semi-conducteur;
    - une unité photoémettrice comprenant une électrode arrière (26) formée sur le côté arrière du support de semi-conducteur; et
    - un moyen de génération de champ électrique interne (27) pour l'application d'une tension entre l'électrode de surface avant et l'électrode de côté arrière afin de générer un champ électrique interne dans la multicouche de semi-conducteur.
  18. Procédé pour l'utilisation d'un dispositif photoémetteur comprenant :
    - un support de semi-conducteur (21);
    - une multicouche de semi-conducteur comprenant une pluralité de films de semi-conducteur comprenant un premier film de semi-conducteur (22a) et un second film de semi-conducteur (22b), le premier film de semi-conducteur présentant un intervalle d'énergie étroit ayant une épaisseur inférieure à 300 Å, et le second film de semi-conducteur ayant un plus large intervalle d'énergie présentant une épaisseur supérieure à 45 Å;
    - une électrode de surface avant (24) formée sur la multicouche de semi-conducteur;
    - une unité photoémettrice comprenant une électrode arrière (26) formée sur le côté arrière du support de semi-conducteur; et
    - un moyen de génération de champ électrique interne (27) pour l'application d'une tension entre l'électrode de surface avant et l'électrode de côté arrière afin de générer un champ électrique interne dans la multicouche de semi-conducteur,
       procédé comprenant l'application d'une tension entre l'électrode de surface avant et l'électrode de côté arrière pour générer un champ électrique interne dans la multicouche de semi-conducteur, l'absorption des photons incidents et la génération de paires d'électron/trou entre des sous-bandes d'une bande de conduction de la bande d'énergie ou entre une sous-bande et le bas de la bande de conduction dudit premier film de semi-conducteur ayant un intervalle d'énergie étroit, l'accélération des photoélectrons générés par le champ électrique interne lui-même généré par la tension appliquée pour provoquer la transition des photoélectrons à émettre sur une plus haute bande d'énergie.
  19. Structure d'émission de photoélectrons comprenant une couche photo-absorbante (22) comprenant une pile de couches de semi-conducteur, chaque couche de semi-conducteur comprenant un premier film de semi-conducteur (22a), possédant un intervalle d'énergie relativement étroit et une épaisseur inférieure à 300 Å, et un second film de semi-conducteur (22b), possédant un intervalle d'énergie relativement grand et une épaisseur dépassant 45 Å, structure comprenant, de plus, des électrodes (24, 26) prenant en sandwich la couche photo-absorbante (22), électrodes entre lesquelles une tension peut être appliquée pour la génération d'un champ électrique interne.
EP19930301385 1992-02-25 1993-02-24 Structure émettrice de photoélectrons et tube à électrons et dispositif photodétecteur utilisant cette structure Expired - Lifetime EP0558308B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37823/92 1992-02-25
JP3782392A JPH05234501A (ja) 1992-02-25 1992-02-25 光電子放出面及びそれを用いた電子管

Publications (2)

Publication Number Publication Date
EP0558308A1 EP0558308A1 (fr) 1993-09-01
EP0558308B1 true EP0558308B1 (fr) 1995-05-10

Family

ID=12508245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930301385 Expired - Lifetime EP0558308B1 (fr) 1992-02-25 1993-02-24 Structure émettrice de photoélectrons et tube à électrons et dispositif photodétecteur utilisant cette structure

Country Status (3)

Country Link
EP (1) EP0558308B1 (fr)
JP (1) JPH05234501A (fr)
DE (1) DE69300145T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3863038B1 (fr) * 2020-02-07 2022-03-30 Hamamatsu Photonics K.K. Tube électronique, dispositif d'imagerie et dispositif de détection d'onde électromagnétique

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642147B1 (fr) * 1993-09-02 1999-07-07 Hamamatsu Photonics K.K. Photo-émetteur, tube à électrons, et photodétecteur
DE69527261T2 (de) * 1994-12-21 2002-11-21 Hamamatsu Photonics K.K., Hamamatsu Photovervielfacher mit einer aus Halbleitermaterial bestehender Photokathode
US5680007A (en) * 1994-12-21 1997-10-21 Hamamatsu Photonics K.K. Photomultiplier having a photocathode comprised of a compound semiconductor material
JP3122327B2 (ja) * 1995-02-27 2001-01-09 浜松ホトニクス株式会社 光電子放出面の使用方法および電子管の使用方法
JP3565529B2 (ja) * 1996-05-28 2004-09-15 浜松ホトニクス株式会社 半導体光電陰極およびこれを用いた半導体光電陰極装置
US6054718A (en) * 1998-03-31 2000-04-25 Lockheed Martin Corporation Quantum well infrared photocathode having negative electron affinity surface
US6563264B2 (en) 2000-07-25 2003-05-13 Hamamatsu Photonics K.K. Photocathode and electron tube
JP2003338260A (ja) * 2002-05-21 2003-11-28 Hamamatsu Photonics Kk 半導体光電面とその製造方法、及びこの半導体光電面を用いた光検出管
JP4002167B2 (ja) 2002-11-14 2007-10-31 浜松ホトニクス株式会社 光電陰極
CN102306600B (zh) * 2011-07-19 2013-09-11 东华理工大学 一种蓝延伸变带隙AlGaAs/GaAs光电阴极及其制备方法
EP3758041A1 (fr) * 2019-06-26 2020-12-30 Hamamatsu Photonics K.K. Tube d'électrons et dispositif d'imagerie
EP4002418A1 (fr) * 2020-11-12 2022-05-25 Hamamatsu Photonics K.K. Élément de métasurface, tube d'électrons et procédé de fabrication d'un tube d'électrons

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015284A (en) * 1974-03-27 1977-03-29 Hamamatsu Terebi Kabushiki Kaisha Semiconductor photoelectron emission device
FR2591033B1 (fr) * 1985-11-29 1988-01-08 Thomson Csf Photocathode a rendement eleve
GB2213634B (en) * 1987-12-08 1992-03-18 Third Generation Technology Li Photocathode structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3863038B1 (fr) * 2020-02-07 2022-03-30 Hamamatsu Photonics K.K. Tube électronique, dispositif d'imagerie et dispositif de détection d'onde électromagnétique

Also Published As

Publication number Publication date
DE69300145D1 (de) 1995-06-14
EP0558308A1 (fr) 1993-09-01
JPH05234501A (ja) 1993-09-10
DE69300145T2 (de) 1995-10-12

Similar Documents

Publication Publication Date Title
EP0642147B1 (fr) Photo-émetteur, tube à électrons, et photodétecteur
EP0558308B1 (fr) Structure émettrice de photoélectrons et tube à électrons et dispositif photodétecteur utilisant cette structure
US3644770A (en) Photoemitter having a p-type semiconductive substrate overlaid with cesium and n-type cesium oxide layers
US4829355A (en) Photocathode having internal amplification
US7030406B2 (en) Semiconductor photocathode and photoelectric tube using the same
US7365356B2 (en) Photocathode
EP0592731B1 (fr) Dispositif semi-conducteur émettant des photoélectrons
JP3524249B2 (ja) 電子管
US5710435A (en) Photomultiplier having a photocathode comprised of semiconductor material
EP0810621A1 (fr) Photocathode à semi-conducteur et appareil l'utilisant
JP2923462B2 (ja) 光電陰極および電子管
US4686556A (en) Photocathode for the infra-red range
US4749903A (en) High-performance photocathode
US5680007A (en) Photomultiplier having a photocathode comprised of a compound semiconductor material
US6563264B2 (en) Photocathode and electron tube
JPH11135003A (ja) 光電面及びそれを用いた電子管
JP3429671B2 (ja) 光電陰極及び電子管
JP3433538B2 (ja) 半導体光電陰極およびこれを用いた半導体光電陰極装置
JP2798696B2 (ja) 光電子放射体
JPH11233000A (ja) 光電陰極及び電子管
JP2752312B2 (ja) 光電子放出面およびそれを用いた電子管と光検出装置
JPH1196897A (ja) 光電陰極及びそれを用いた電子管
JP3433537B2 (ja) 半導体光電陰極およびこれを用いた半導体光電陰極装置
JP3537515B2 (ja) 半導体光電陰極およびこれを用いた半導体光電陰極装置
JP2719098B2 (ja) 光電子放出面およびそれを用いた電子管と光検出装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19930930

17Q First examination report despatched

Effective date: 19940607

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69300145

Country of ref document: DE

Date of ref document: 19950614

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020314

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060222

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070224

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070224

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228