EP0547946B2 - Procédé de production d'oxygène impur - Google Patents

Procédé de production d'oxygène impur Download PDF

Info

Publication number
EP0547946B2
EP0547946B2 EP92403330A EP92403330A EP0547946B2 EP 0547946 B2 EP0547946 B2 EP 0547946B2 EP 92403330 A EP92403330 A EP 92403330A EP 92403330 A EP92403330 A EP 92403330A EP 0547946 B2 EP0547946 B2 EP 0547946B2
Authority
EP
European Patent Office
Prior art keywords
column
pressure
nitrogen
impure
vaporization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92403330A
Other languages
German (de)
English (en)
Other versions
EP0547946B1 (fr
EP0547946A1 (fr
Inventor
Jean-Louis Girault
Philippe Mazières
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9420168&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0547946(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to EP96200235A priority Critical patent/EP0713069B1/fr
Publication of EP0547946A1 publication Critical patent/EP0547946A1/fr
Application granted granted Critical
Publication of EP0547946B1 publication Critical patent/EP0547946B1/fr
Publication of EP0547946B2 publication Critical patent/EP0547946B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the present invention relates to a production process of impure oxygen by air distillation in an air distillation installation double column, in accordance with preamble to claim 1.
  • Such a process is known, for example, from document US-A-5,069,699.
  • the applications concerned by the invention are those which consume large amounts of impure oxygen.
  • a known means of exploiting this pressure consists in combining the air distillation apparatus with a gas turbine: the air to be separated is taken wholly or partially at discharge of the compressor from this turbine, and the low waste gas pressure from the distillation apparatus is returned after compression to the gas turbine, impure oxygen and nitrogen being sent for use under the pressure of the column that produces them.
  • US-A-5,069,699 describes an air distillation process in an installation comprising a double column and a column operating at very high pressure.
  • One of the two condensers in the column low pressure is supplied by an air flow or a nitrogen flow from of the column operating at very high pressure.
  • the invention aims to further reduce energy expenditure necessary for the production of impure oxygen and to overcome the defects of previous systems.
  • the subject of the invention is a method according to claim 1.
  • a second, more volatile vaporizing gas can be condensed as said first vaporizing gas but less volatile than top nitrogen of the medium pressure column, at an intermediate level between those of said condensations.
  • FIG 1 represent schematically an embodiment of the method air distillation according to the invention.
  • the modes of shown in Figures 2 to 4 are not covered by the revendications.
  • the installation shown in Figure 1 is intended to produce oxygen at a purity of the order 85% under a pressure of the order of 7.4 bar absolute. It essentially comprises a double column 1 of air distillation, consisting of a medium column pressure (or “MP column”) 2 operating at 15.7 bars absolute and a low pressure column (or “BP column”) 3 operating at 6.3 bar absolute, an exchange line main thermal 4, a sub-cooler 5, a auxiliary vaporizer-condenser 6 and a turbine 7 blowing air into the low pressure column.
  • the column 3 is superimposed on column 2 and contains in tank a vaporizer-condenser 8 and, above it, a second vaporizer-condenser 9.
  • the air to be distilled arrives below average pressure via line 10 and enters the line 4. Most of this air is cooled to the vicinity of its dew point and exit at the end cold of the exchange line, the rest having left the exchange line at an intermediate temperature, relaxed at low pressure in turbine 7 to ensure the keeping the installation cold, and blown to a intermediate level in column BP 3.
  • a fraction of the fully cooled air is introduced, via a pipe 11, at the base of the column MP 2, and the rest is condensed in the vaporizer-condenser 6; part of the liquid obtained is introduced via a pipe 12 at an intermediate point from column 2, and the rest is, after sub-cooling at 5 and expansion in an expansion valve 13, introduced at an intermediate point in column BP 3.
  • the approximately pure nitrogen produced at the head of the MP column is partly evacuated from the installation in as a product, after reheating in the line exchange, via line 16, and, for the rest, sent in gaseous form via line 17, below average pressure, in the upper evaporator-condenser 9. After condensation, this nitrogen is returned to reflux in head of the MP column via a pipe 18.
  • impure nitrogen gas withdrawn in an intermediate point in column 2 and, in this example, at the same level as the lean liquid, is sent via a line 19, at medium pressure, in the lower vaporizer-condenser 8.
  • the liquid thus obtained is returned to reflux in the MP column, about close to the same level, via line 20.
  • the temperature of the liquid in the bottom of the LP column is determined by that of the gas condensed in this vaporizer-condenser.
  • the temperature of the tank liquid, which is impure oxygen is relatively high. Therefore, for a desired purity of this impure oxygen, the pressure of the BP column, i.e. the low pressure, can be increased.
  • the vaporizer-condenser upper 9 is used to provide the necessary reflux at the top in the MP column.
  • the impure oxygen is withdrawn in the form gas from column BP 3, and is simply reheated in exchange line 4 before being evacuated via the driving 24. This is particularly interesting when impure oxygen is desired under low pressure. Consequently, the vaporizer-condenser 6 is deleted.
  • a fraction of the average air pressure cooled near its dew point is sent, via a line 26, into the vaporizer-condenser lower 8 instead of the intermediate gas of the Figure 1.
  • This intermediate gas feeds a intermediate vaporizer-condenser 27 located between the vaporizers-condensers lower 8 and higher 9.
  • Liquefied air from vaporizer-condenser 8 is sent in part, via line 28, in the MP column and in part, after sub-cooling in 5 and expansion in the valve trigger 13, in the LP column.
  • the impure oxygen is withdrawn under liquid form of the BP column tank and then it is brought by a pump 23 at the desired production pressure, then vaporized and heated under this pressure in the exchange line 4 before being evacuated from the installation via line 24.
  • This average nitrogen pressure combined with a medium pressure nitrogen stream taken from line 16, is compressed again by a compressor 33 at a vaporization pressure of impure oxygen compressed by pump 23, liquefied in the exchange line, then, after expansion in a valve trigger 34, introduced at reflux at the top of the column MP.
  • the installation in Figure 4 includes also a BP 3 column with minaret 30. However, unlike the previous case, it's high air pressure, boosted to a vaporization pressure of impure oxygen by a booster 35, which ensures the vaporization of impure oxygen in the exchange line 4. In this example, this air is, after liquefaction and expansion valve in expansion valve 36 and in the trigger 13, distributed between the two columns 2 and 3. by therefore, the compressor 33 and the expansion valve 34 from Figure 3 are deleted.
  • This nitrogen pressure can be chosen between average pressure and the pressure at which nitrogen condenses at the cold end of the exchange line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé de production d'oxygène impur par distillation d'air dans une installation de distillation d'air à double colonne, conformément au préambule de la revendication 1. Un tel procédé est connu, par exemple, du document US-A-5 069 699.
Les applications concernées par l'invention sont celles qui consomment de grandes quantités d'oxygène impur. On citera les procédés de gazéification de charbon ou de résidus pétroliers, ainsi que les procédés de réduction-fusion directe du minerai de fer.
Il est connu que pour produire par distillation d'air de l'oxygène impur, c'est-à-dire ayant une pureté inférieure à 99,5 % et généralement inférieure à 98 %, il est possible de diminuer la dépense d'énergie en augmentant la pression de marche de la double colonne, à condition que l'on puisse valoriser l'énergie disponible dans la colonne basse pression sous forme de pression.
Un moyen connu de valoriser cette pression, décrit par exemple dans US-A-4.224.045, consiste à combiner l'appareil de distillation d'air à une turbine à gaz : l'air à séparer est prélevé totalement ou partiellement au refoulement du compresseur de cette turbine, et le gaz résiduaire basse pression de l'appareil de distillation est renvoyé après compression à la turbine à gaz, l'oxygène impur et l'azote étant envoyés vers l'utilisation sous la pression de la colonne qui les produit.
De cette manière, la basse pression est entièrement valorisée et l'on obtient une énergie de séparation réduite.
Dans US-A-5.069.699, on décrit un procédé de distillation d'air dans une installation comprenant une double colonne et une colonne opérant à pression très élevée. Un des deux condenseurs de la colonne basse pression est alimenté par un débit d'air ou un débit d'azote provenant de la colonne opérant à pression très élevée.
L'invention a pour but de réduire encore la dépense d'énergie nécessaire à la production de l'oxygène impur et de pallier les défauts des systèmes antérieurs.
A cet effet, l'invention a pour objet un procédé selon la revendication 1.
On peut condenser un deuxième gaz de vaporisation, plus volatil que ledit premier gaz de vaporisation mais moins volatil que l'azote de tête de la colonne moyenne pression, à un niveau intermédiaire entre ceux desdites condensations.
Suivant des modes de réalisation préférés de l'invention :
  • le troisième gaz de vaporisation est de l'azote à peu près pur ou impur produit par la double colonne et comprimé à une pression de vaporisation de l'oxygène impur sous la pression de production ;
  • le troisième gaz de vaporisation est de l'air alimentant la double colonne, comprimé à une pression de vaporisation de l'oxygène impur sous la pression de production.
Un exemple de mise en oeuvre de l'invention va maintenant être décrit en regard de la figure 1 qui représentent schématiquement un mode de réalisation du procédé de distillation d'air conforme à l'invention. Les modes de réalisation montrés aux figures 2 à 4 ne sont pas couverts par les revendications.
L'installation représentée à la Figure 1 est destinée à produire de l'oxygène à une pureté de l'ordre de 85% sous une pression de l'ordre de 7,4 bars absolus. Elle comprend essentiellement une double colonne 1 de distillation d'air, constituée d'une colonne moyenne pression (ou "colonne MP") 2 fonctionnant sous 15,7 bars absolus et d'une colonne basse pression (ou "colonne BP") 3 fonctionnant sous 6,3 bars absolus, une ligne d'échange thermique principale 4, un sous-refroidisseur 5, un vaporiseur-condenseur auxiliaire 6 et une turbine 7 d'insufflation d'air dans la colonne basse pression. La colonne 3 est superposée à la colonne 2 et contient en cuve un vaporiseur-condenseur 8 et, au-dessus de celui-ci, un second vaporiseur-condenseur 9.
L'air à distiller arrive sous la moyenne pression via une conduite 10 et pénètre dans la ligne d'échange 4. La majeure partie de cet air est refroidie jusqu'au voisinage de son point de rosée et sort au bout froid de la ligne d'échange, le reste étant sorti de la ligne d'échange à une température intermédiaire, détendu à la basse pression dans la turbine 7 pour assurer le maintien en froid de l'installation, et insufflé à un niveau intermédiaire dans la colonne BP 3.
Une fraction de l'air entièrement refroidi est introduit, via une conduite 11, à la base de la colonne MP 2, et le reste est condensé dans le vaporiseur-condenseur 6; une partie du liquide obtenu est introduit via une conduite 12 en un point intermédiaire de la colonne 2, et le reste est, après sous-refroidissement en 5 et détente dans une vanne de détente 13, introduit en un point intermédiaire de la colonne BP 3.
Le "liquide riche" (air enrichi en oxygène) recueilli en cuve de la colonne MP est, après sous-refroidissement en 5 et détente dans une vanne de détente 14, introduit en un point intermédiaire de la colonne BP. De même, du "liquide pauvre" (azote impur) soutiré en un point intermédiaire de la colonne MP est, après sous-refroidissement en 5 et détente dans une vanne de détente 15, introduit au sommet de la colonne BP.
L'azote à peu près pur produit en tête de la colonne MP est pour partie évacué de l'installation en tant que produit, après réchauffement dans la ligne d'échange, via une conduite 16, et, pour le reste, envoyé sous forme gazeuse via une conduite 17, sous la moyenne pression, dans le vaporiseur-condenseur supérieur 9. Après condensation, cet azote est renvoyé en reflux en tête de la colonne MP via une conduite 18.
De plus, de l'azote impur gazeux, soutiré en un point intermédiaire de la colonne 2 et, dans cet exemple, au même niveau que le liquide pauvre, est envoyé via une conduite 19, sous la moyenne pression, dans le vaporiseur-condenseur inférieur 8. Le liquide ainsi obtenu est renvoyé en reflux dans la colonne MP, à peu près au même niveau, via une conduite 20.
Les courants de fluides sortant de la double colonne sont :
  • au sommet de la colonne MP, de l'azote moyenne pression, dont il a été question plus haut;
  • au sommet de la colonne BP, de l'azote impur, constituant le gaz résiduaire de l'installation. Cet azote impur, après réchauffement dans le sous-refroidisseur 5 et dans la ligne d'échange 4, est évacué via une conduite 21; et
  • en cuve de la colonne BP, de l'oxygène impur liquide. Ce liquide est soutiré via une conduite 22, comprimé par une pompe 23 à la pression de production (7,4 bars absolus dans cet exemple), puis vaporisé dans le vaporiseur-condenseur 6 en condensant la fraction d'air moyenne pression qui traverse ce dernier, puis réchauffé sous forme gazeuse dans la ligne d'échange et évacué de l'installation via une conduite de production 24.
La description ci-dessus montre que, pour un écart de température donné dans le vaporiseur-condenseur 8, la température du liquide de cuve de la colonne BP est déterminée par celle du gaz condensé dans ce vaporiseur-condenseur. Comme il s'agit d'un gaz intermédiaire de la colonne MP, plus chaud que l'azote de tête de cette colonne, la température du liquide de cuve, qui est l'oxygène impur, est relativement élevée. Par suite, pour une pureté désirée de cet oxygène impur, la pression de la colonne BP, c'est-à-dire la basse pression, peut être augmentée. Finalement, on obtient de l'oxygène impur et de l'azote impur sous une pression accrue, ce qui permet de réaliser des économies sur leur valorisation, par exemple sur l'énergie nécessaire pour comprimer l'azote impur à la pression voulue dans une turbine à gaz (non représentée) couplée à l'installation, par exemple de la manière décrite dans le US-A-4 224 045 précité.
Dans ce contexte, le vaporiseur-condenseur supérieur 9 sert à fournir le reflux nécessaire en tête de la colonne MP.
Si les températures des deux gaz alimentant les deux vaporiseurs-condenseurs sont nettement différentes l'une de l'autre, il est nécessaire de prévoir un certain nombre de plateaux de distillation 25 entre ces vaporiseurs-condenseurs. Dans le cas contraire, ces plateaux peuvent être supprimés, ce qui simplifie la constructions de la colonne BP, les deux vaporiseurs-condenseurs pouvant même être intégrés en un seul échangeur de chaleur. C'est pourquoi les plateaux 25 ont été représentés en trait interrompu.
L'installation représentée à la Figure 2 ne diffère de la Figure 1 que par les points suivants.
L'oxygène impur est soutiré sous forme gazeuse de la colonne BP 3, et est simplement réchauffé dans la ligne d'échange 4 avant son évacuation via la conduite 24. Ceci est particulièrement intéressant lorsque l'oxygène impur est désiré sous la basse pression. En conséquence, le vaporiseur-condenseur 6 est supprimé.
De plus, une fraction de l'air moyenne pression refroidi au voisinage de son point de rosée est envoyée, via une conduite 26, dans le vaporiseur-condenseur inférieur 8 à la place du gaz intermédiaire de la Figure 1. Ce gaz intermédiaire, quant à lui, alimente un vaporiseur-condenseur intermédiaire 27 situé entre les vaporiseurs-condenseurs inférieur 8 et supérieur 9. Comme précédemment, il peut y avoir ou non des plateaux entre les paires de vaporiseurs-condenseurs. L'air liquéfié issu du vaporiseur-condenseur 8 est envoyé pour partie, via une conduite 28, dans la colonne MP et pour partie, après sous-refroidissement en 5 et détente dans la vanne de détente 13, dans la colonne BP.
Par rapport à la solution de la Figure 1, on obtient une température plus élevée en cuve de la colonne BP, ce qui est favorable à l'augmentation de la basse pression. En revanche, on doit vaporiser un liquide plus riche en oxygène que l'oxygène impur à produire, ce qui tend à réduire la basse pression.
Ce dernier inconvénient est supprimé dans l'installation de la Figure 3, qui permet de produire l'oxygène impur sous une pression élevée, et qui diffère de la précédente par les points suivants.
D'une part, l'oxygène impur est soutiré sous forme liquide de la cuve de la colonne BP, puis est amené par une pompe 23 à la pression de production désirée, puis vaporisé et réchauffé sous cette pression dans la ligne d'échange 4 avant d'être évacué de l'installation via la conduite 24.
D'autre part, pour compenser la perte de reflux dans la colonne MP résultant du soutirage d'oxygène liquide en cuve de la colonne BP, il est prévu un cycle azote, dit cycle de soutien de rectification, qui est utilisé en même temps pour assurer la vaporisation de l'oxygène impur : une partie de l'azote produit en tête de la colonne 3 (laquelle, dans ce cas, possède en tête un "minaret" 30 qui est alimenté à son sommet par de l'azote liquide pur provenant du vaporiseur-condenseur supérieur 9 et qui, par suite, produit de l'azote pur sous la basse pression) est, après réchauffement dans la ligne d'échange, comprimée par un compresseur 31 à la moyenne pression. Cet azote moyenne pression, réuni à un courant d'azote moyenne pression prélevé sur la conduite 16, est comprimé de nouveau par un compresseur 33 à une pression de vaporisation de l'oxygène impur comprimé par la pompe 23, liquéfié dans la ligne d'échange, puis, après détente dans une vanne de détente 34, introduit en reflux en tête de la colonne MP.
L'installation de la Figure 4 comporte également une colonne BP 3 à minaret 30. Toutefois, contrairement au cas précédent, c'est de l'air haute pression, surpressé à une pression de vaporisation de l'oxygène impur par un surpresseur 35, qui assure la vaporisation de l'oxygène impur dans la ligne d'échange 4. Dans cet exemple, cet air est, après liquéfaction et détente dans une vanne de détente 36 et dans la vanne de détente 13, réparti entre les deux colonnes 2 et 3. par conséquent, le compresseur 33 et la vanne de détente 34 de la Figure 3 sont supprimés.
De plus, l'azote issu du compresseur 31, comprimé à une pression supérieure à la moyenne pression, alimente sous forme gazeuse, après refroidissement dans la ligne d'échange, le vaporiseur-condenseur inférieur 8, et l'azote liquide résultant est, après détente dans une vanne de détente 37, réuni à l'azote liquide moyenne pression issu du vaporiseur-condenseur supérieur 9. Ceci présente l'avantage de permettre un réglage de la température de cuve de la colonne BP, et donc de la pression de cette colonne, par réglage de la pression de l'azote alimentant le vaporiseur-condenseur 8. Cette pression d'azote peut être choisie entre la moyenne pression et la pression pour laquelle l'azote se condense au bout froid de la ligne d'échange.

Claims (4)

  1. Procédé de production d'oxygène impur par distillation d'air dans une installation de distillation d'air à double colonne (1), la double colonne comprenant une colonne moyenne pression (2) et une colonne basse pression (3) comprenant les étapes de :
    faire fonctionner la colonne moyenne pression (2) sous une pression supérieure à 6 bars et de préférence au moins égale à 9 bars absolus environ;
    condenser dans un condenseur de cuve (8) de la colonne basse pression (3) un premier gaz de vaporisation moins volatil que l'azote de tête de la colonne moyenne pression (2);
    condenser de l'azote de tête de la colonne moyenne pression que l'on envoie ensuite en reflux en tête de la colonne moyenne pression dans un deuxième condenseur (9), à un niveau de la colonne basse pression (3) situé au-dessus dudit condenseur de cuve (8), le premier gaz de vaporisation étant un gaz soutiré à un niveau intermédiaire de la colonne moyenne pression (2) et -soutirer de l'oxygène impur sous forme liquide de la cuve de la colonne basse pression caractérisé en ce qu'il comprend les étapes d'amener l'oxygène impur soutiré sous forme liquide à la pression de production désirée et de le vaporiser sous cette pression par condensation d'un troisième gaz de vaporisation.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on condense un deuxième gaz de vaporisation, plus volatil que ledit premier gaz de vaporisation mais moins volatil que l'azote de tête de la colonne moyenne pression (2), à un niveau intermédiaire entre deux desdites condensations.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le troisième gaz de vaporisation est de l'azote à peu près pur ou impur produit par la double colonne et comprimé (en 33) à une pression de vaporisation de l'oxygène impur sous la pression de production.
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que le troisième gaz de vaporisation est de l'air alimentant la double colonne (1), comprimé (en 35) à une pression de vaporisation de l'oxygène impur sous la pression de production.
EP92403330A 1991-12-18 1992-12-09 Procédé de production d'oxygène impur Expired - Lifetime EP0547946B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96200235A EP0713069B1 (fr) 1991-12-18 1992-12-09 Procédé et installation de séparation d'air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9115705A FR2685459B1 (fr) 1991-12-18 1991-12-18 Procede et installation de production d'oxygene impur.
FR9115705 1991-12-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP96200235.8 Division-Into 1992-12-09
EP96200235A Division EP0713069B1 (fr) 1991-12-18 1992-12-09 Procédé et installation de séparation d'air

Publications (3)

Publication Number Publication Date
EP0547946A1 EP0547946A1 (fr) 1993-06-23
EP0547946B1 EP0547946B1 (fr) 1996-10-09
EP0547946B2 true EP0547946B2 (fr) 2000-03-22

Family

ID=9420168

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92403330A Expired - Lifetime EP0547946B2 (fr) 1991-12-18 1992-12-09 Procédé de production d'oxygène impur
EP96200235A Expired - Lifetime EP0713069B1 (fr) 1991-12-18 1992-12-09 Procédé et installation de séparation d'air

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP96200235A Expired - Lifetime EP0713069B1 (fr) 1991-12-18 1992-12-09 Procédé et installation de séparation d'air

Country Status (9)

Country Link
US (1) US5392609A (fr)
EP (2) EP0547946B2 (fr)
CN (1) CN1068428C (fr)
AU (1) AU654601B2 (fr)
BR (1) BR9205050A (fr)
CA (1) CA2085561A1 (fr)
DE (2) DE69230975T2 (fr)
ES (2) ES2145967T3 (fr)
FR (1) FR2685459B1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251451A (en) * 1992-08-28 1993-10-12 Air Products And Chemicals, Inc. Multiple reboiler, double column, air boosted, elevated pressure air separation cycle and its integration with gas turbines
US5355682A (en) * 1993-09-15 1994-10-18 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
US5454227A (en) * 1994-08-17 1995-10-03 The Boc Group, Inc. Air separation method and apparatus
US5463871A (en) * 1994-10-04 1995-11-07 Praxair Technology, Inc. Side column cryogenic rectification system for producing lower purity oxygen
US5669237A (en) * 1995-03-10 1997-09-23 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of air
US5546767A (en) * 1995-09-29 1996-08-20 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
US5600970A (en) * 1995-12-19 1997-02-11 Praxair Technology, Inc. Cryogenic rectification system with nitrogen turboexpander heat pump
US5666824A (en) * 1996-03-19 1997-09-16 Praxair Technology, Inc. Cryogenic rectification system with staged feed air condensation
US5611219A (en) * 1996-03-19 1997-03-18 Praxair Technology, Inc. Air boiling cryogenic rectification system with staged feed air condensation
US5678427A (en) * 1996-06-27 1997-10-21 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity nitrogen
US5669236A (en) * 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5664438A (en) * 1996-08-13 1997-09-09 Praxair Technology, Inc. Cryogenic side column rectification system for producing low purity oxygen and high purity nitrogen
US5682762A (en) * 1996-10-01 1997-11-04 Air Products And Chemicals, Inc. Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns
US5675977A (en) * 1996-11-07 1997-10-14 Praxair Technology, Inc. Cryogenic rectification system with kettle liquid column
US5761927A (en) * 1997-04-29 1998-06-09 Air Products And Chemicals, Inc. Process to produce nitrogen using a double column and three reboiler/condensers
US5836175A (en) * 1997-08-29 1998-11-17 Praxair Technology, Inc. Dual column cryogenic rectification system for producing nitrogen
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
DE59806363D1 (de) 1997-09-26 2003-01-02 Siemens Ag Gehäuse für eine strömungsmaschine
US5806342A (en) * 1997-10-15 1998-09-15 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5956972A (en) * 1997-12-23 1999-09-28 The Boc Group, Inc. Method of operating a lower pressure column of a double column distillation unit
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
DE10139727A1 (de) 2001-08-13 2003-02-27 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10205878A1 (de) * 2002-02-13 2003-08-21 Linde Ag Tieftemperatur-Luftzerlegungsverfahren
FR2930330B1 (fr) * 2008-04-22 2013-09-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2973865B1 (fr) 2011-04-08 2015-11-06 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US9453674B2 (en) 2013-12-16 2016-09-27 Praxair Technology, Inc. Main heat exchange system and method for reboiling
CN106989567A (zh) * 2017-04-25 2017-07-28 河南开元空分集团有限公司 一种低能耗的同时生产富氧气体和高纯氮气的装置和方法
WO2018213507A1 (fr) 2017-05-16 2018-11-22 Ebert Terrence J Appareil et procédé de liquéfaction de gaz

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210951A (en) * 1960-08-25 1965-10-12 Air Prod & Chem Method for low temperature separation of gaseous mixtures
FR2461906A1 (fr) * 1979-07-20 1981-02-06 Air Liquide Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression
JPS56124879A (en) * 1980-02-26 1981-09-30 Kobe Steel Ltd Air liquefying and separating method and apparatus
GB2079428A (en) * 1980-06-17 1982-01-20 Air Prod & Chem A method for producing gaseous oxygen
US4448595A (en) * 1982-12-02 1984-05-15 Union Carbide Corporation Split column multiple condenser-reboiler air separation process
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
JPS61190277A (ja) * 1985-02-16 1986-08-23 大同酸素株式会社 高純度窒素および酸素ガス製造装置
US4704147A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
EP0383994A3 (fr) * 1989-02-23 1990-11-07 Linde Aktiengesellschaft Procédé et dispositif de rectification d'air
US4936099A (en) * 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
US5006137A (en) * 1990-03-09 1991-04-09 Air Products And Chemicals, Inc. Nitrogen generator with dual reboiler/condensers in the low pressure distillation column
US5069699A (en) * 1990-09-20 1991-12-03 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers

Also Published As

Publication number Publication date
EP0713069B1 (fr) 2000-04-26
FR2685459B1 (fr) 1994-02-11
DE69230975D1 (de) 2000-05-31
FR2685459A1 (fr) 1993-06-25
DE69230975T2 (de) 2000-10-05
ES2092661T3 (es) 1996-12-01
DE69214409D1 (de) 1996-11-14
BR9205050A (pt) 1993-08-10
EP0713069A1 (fr) 1996-05-22
US5392609A (en) 1995-02-28
CN1068428C (zh) 2001-07-11
DE69214409T2 (de) 1997-05-22
DE69214409T3 (de) 2000-07-13
ES2145967T3 (es) 2000-07-16
AU654601B2 (en) 1994-11-10
EP0547946B1 (fr) 1996-10-09
EP0547946A1 (fr) 1993-06-23
CN1088301A (zh) 1994-06-22
AU3022192A (en) 1993-06-24
CA2085561A1 (fr) 1993-06-19

Similar Documents

Publication Publication Date Title
EP0547946B2 (fr) Procédé de production d'oxygène impur
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP2122282B1 (fr) Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et d'azote par distillation cryogénique
EP0937679B1 (fr) Procédé et installation de production de monoxyde de carbone et d'hydrogène
EP0610972B1 (fr) Procédé de production d'azote
WO2007068858A2 (fr) Procédé de séparation d'air par distillation cryogénique
EP0968959B1 (fr) Procédé de production de monoxyde de carbone
EP0694746A1 (fr) Procédé de production d'un gaz sous pression à débit variable
EP2504646B1 (fr) Procédé et appareil de séparation cryogénique d'un mélange d'azote et de monoxyde de carbone
EP0677713B1 (fr) Procédé et installation pour la production de l'oxygène par distillation de l'air
EP1189003B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
EP0732556B1 (fr) Procédé et appareil de vaporisation d'un débit liquide
EP0611218B2 (fr) Procédé et installation de production d'oxygene sous pression
EP0595673B1 (fr) Procédé et installation de production d'azote et d'oxygène
EP0612967B1 (fr) Procédé de production d'oxygène et/ou d'azote sous pression
EP1132700A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR2787561A1 (fr) Procede de separation d'air par distillation cryogenique
WO2024105022A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
WO2009136077A2 (fr) Procede et appareil de separation d'air par distillation cryogenique
EP3913310A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2795496A1 (fr) Appareil et procede de separation d'air par distillation cryogenique
FR3141995A3 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR3141996A1 (fr) Procédé et appareil de distillation de dioxyde de carbone
FR3118144A3 (fr) Procede et appareil de separation cryogenique d’un melange d’hydrogene, de methane, d’azote et de monoxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19940509

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961009

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 96200235.8 EINGEREICHT AM 02/02/96.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960925

DX Miscellaneous (deleted)
ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69214409

Country of ref document: DE

Date of ref document: 19961114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2092661

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19970707

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

RTI2 Title (correction)

Free format text: PROCESS FOR THE PRODUCTION OF IMPURE OXYGEN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991209

Year of fee payment: 8

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20000322

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE ES FR GB IT NL SE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR2 Nl: decision of opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000703

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

BERE Be: lapsed

Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20001231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011126

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051209