EP0516735A1 - Animation method and device - Google Patents

Animation method and device

Info

Publication number
EP0516735A1
EP0516735A1 EP91905425A EP91905425A EP0516735A1 EP 0516735 A1 EP0516735 A1 EP 0516735A1 EP 91905425 A EP91905425 A EP 91905425A EP 91905425 A EP91905425 A EP 91905425A EP 0516735 A1 EP0516735 A1 EP 0516735A1
Authority
EP
European Patent Office
Prior art keywords
chamber
chambers
fluid
inflation
collapsible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91905425A
Other languages
German (de)
French (fr)
Other versions
EP0516735A4 (en
Inventor
Thomas J. Smrt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fox Valley Systems Inc
Original Assignee
Fox Valley Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/482,146 external-priority patent/US5104346A/en
Application filed by Fox Valley Systems Inc filed Critical Fox Valley Systems Inc
Publication of EP0516735A1 publication Critical patent/EP0516735A1/en
Publication of EP0516735A4 publication Critical patent/EP0516735A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/36Details; Accessories
    • A63H3/48Mounting of parts within dolls, e.g. automatic eyes or parts for animation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/06Hydraulic or pneumatic arrangements

Definitions

  • This invention relates generally to animated figures and more specifically to an apparatus and method for achieving animation or motion in such figures.
  • the apparatus and method of the present invention employ a plurality of collapsible, fluid chambers, and associated mea for controlling the fluid pressure in each of said chambers. At least two of said chambers have inflated spatial orientations which cause all or a part of the figure to assu a different position, dependent upon the level of inflation each of said chambers.
  • the chambers are arranged so.that the inflation of one such chamber exerts a physical force on the other.
  • a device for providing rotational movement comprising an assembly having (1) a first body section, (2) a second body section which is rotatably associated with the first body section, (3) a first collapsible chamber having a first and a second end, wherein one of said ends is rigidly associated with the first body section and the other of said ends is rigidly associated with the second body section and (4) a second collapsible chamber having a first and a second end, wherein one of said ends is rigidly associated with the first body section and the other of said ends is rigidly associated with the second body section, wherein the first and" second collapsible chambers have the configuration of a segment of a circle, said chambers being mounted such that when either of said chambers is collapsed, the other chamber is inflated.
  • Such a device is particularly suited for providing animation for portions of figures, such as for duplication of the rotational movement of a torso.
  • the two collapsible chambers are both located within a third chamber which is not directly inflated, but responds in configuration to the inflation, in whole or in part, of the two interior chambers.
  • two chambers are employed wherein one chamber is located within the other and only one chamber is inflatable.
  • the noninflatable chamber has a spatial orientation which is different from the spatial orientation of the inflatable chamber when inflated.
  • the figure assumes the shape of the noninflatable chamber, when the inflatable chamber is inflated, however, the inflation of the chamber causes all or a part of the figure to assume a different position, dependent upon the level of inflation of that chamber.
  • the exterior chamber will be the noninflatable chamber and the interior chamber will be the inflatable chamber, although the reverse configuration could be employed, although with more difficulty.
  • a single, inflatable chamber is employed, said chamber having section of one wall which is less elastic than the remainin portion of the wall. Due to the differential in elasticity upon inflation the chamber assumes a shape or configuration which is different from the noninflated chamber.
  • two collapsible, fluid chambers and associated means for controlling the fluid pressure in each of said chambers are provided.
  • the chambers are each helically wound in opposite directions and placed substantially parallel to one another.
  • one end of each chamber is rigidly mounted so that rotation each respective chamber at that point is not possible.
  • the opposite ends of each respective chamber are rigidly associated with each other so that rotation of one chamber causes rotation of the other in the same direction of rotation.
  • Figures IA, IB, IC, ID and IE illustrate one aspect of the first embodiment of the present invention for providing animation for the arm of a human figure.
  • Figures IA, IB and IC show a cut-away view of the arm alone, while Figures ID a IE show the arm as attached to a torso, along with the associated control equipment.
  • Figures IF, IG and IH illustrate one aspect of the firs embodiment of the present invention in which a .straight, exterior, noninflatable chamber surrounds an internal, inflatable chamber which has a curved configuration when inflated.
  • Figures 2A, 2B, 2C, 2D, 2E and 2F show another aspect the first embodiment of the present invention in which rotational animation is achieved for a torso of a human figure.
  • Figures 2D, 2E and 2F are sectional views of Figur 2A, 2B and 2C, respectively.
  • Figures 3A and 3B show an aspect of the first embodime of the present invention in which two inflatable chambers a both located within a third chamber which is not directly inflated, but responds in configuration to the inflation, i whole or in part, of the two interior chambers.
  • Figures 4A, 4B, 4C and 4D illustrate an aspect of the second embodiment of the present invention in which a singl inflatable chamber is employed, said chamber having a secti of one wall which is thickened so that it is less elastic t the remaining portion of the wall.
  • Figures 5A, 5B and 5C illustrate an aspect of the thir embodiment of the present invention in which two collapsibl fluid chambers are provided, wherein the chambers are each helically wound in opposite directions and placed substantially parallel to one another.
  • animation of figures can be achieved through th use of a simplified device and method.
  • the device can take the form of enumerable specific embodiments, all of which a within the scope of the present invention.
  • at least two collapsible chambers whi are independently connected to a fluid supply means are employed. At least two such chambers are placed in such physical relationship that the inflation of either chamber deflation of its complimentary chamber, causes an outward movement of the figure. Typically, inflation. of one chambe places a force on another, complimentary chamber.
  • the collapsible chambers used in the various aspects embodiments of the present invention may be constructed of suitable elastic material, such as natural or synthetic rubber, including styrene-butadiene rubber.
  • suitable elastic material such as natural or synthetic rubber, including styrene-butadiene rubber.
  • the compositi of the chamber is not critical as long as it is flexible a collapsible over repeated cycles of inflation and deflatio
  • the collapsible chambers should be as fluid-tight as possible, to minimize the energy necessary to change and maintain the chambers in a state of inflation or deflation
  • the fluid necessary to cause the inflation or_deflation of chambers likewise is not critical, although for ease and simplicity of design, fabrication, and operation, it is preferred to use air to inflate the chambers.
  • the pressur maintained in the chambers when inflated likewise is not critical and any pressure over atmospheric is desirable, s as from about 2 to about 200 psi. Essentially, there is n limitation upon the amount of pressure which may be employ as the components of the system may be varied in design to accommodate the desired pressure.
  • the amount of pressure employed to inflate a chamber is directly translatable int the amount of strength which may be exhibited by the anima character. Further, the pressure differential maintained between inflated chambers and deflated chambers is directl translatable into speed. The greater the differential, th more quickly that a given chamber can inflate and a second chamber, if present, deflate, allowing the figure to rapid change in outward appearance.
  • the chambers when inflated, will be infl to a pressure from about 20 psi to about 80 psi, more preferably to a pressure of about 50 psi.
  • a deflated chamber when employed, will be maintained at atmosph pressure or below.
  • the pressure necessary to operate the system will be supplied from a conventional ai compressor, capable of being operated by conventional 110 current or even batteries.
  • each chamber is placed in fluid communication with a fluid supply means which is capable of supplying fluid thereto through a fluid supply conduit.
  • Respective fluid control means, or valves control the fluid flow to each of the coll'apsible chambers.
  • the valves are of the type which are either fully open or fully closed, although in some applications valves capable of being placed in partially open positions may be employed. In typical operation, when the valve to one of the collapsible chambers is placed in a close position, the valve associated with the opposing chamber is placed in an open position.
  • both inflatable chambers may be locate within a third, encasing chamber which itself is not directly inflated.
  • both of the chambers are maintained in close physical proximity along their length and thus each chamber, upon inflation, may exert an immediate opposing force upon the other chamber along the entire length of the respective chambers.
  • the outside spatial configuratio assumed by the third chamber which houses the two inflatable chambers is determined by the degree of inflation of each of the internal, inflatable chambers.
  • more than two inflatable chambers may be employed within the exterior, encasing chamber.
  • a single, inflatable chamber is employed, said chamber having a section of one wall which is less elastic than the remaining portion of the wall. Due to. the differential in elasticity, upon inflation the chamber assumes a shape or configuration which is different from the chamber when noninflated.
  • the chamber may be constructed and employ in the same fashion as the inflatable chambers used in accordance with the first aspect of the present invention, except that the chamber has one or more wall regions which a less elastic than the remaining wall area.
  • the wall regions of less elasticity may be achieved by any number of methodologies.
  • a section of the wall of the chamber has a thickened region wherein the wall thickness is greater than that of the remaining wall.
  • the amount of thickening is not critical an may vary over several orders of magnitude.
  • the thickening is from about 1 to about 10 orders of magnitude, comparison to the thickness of the chamber-s remaining wall regions.
  • the particular wall section of lowered elasticity may be comprised of a material which is simply less elastic than that of the remaining wall regions. Modification of the surface properties of the wall may also employed, as by application of inelastic coating composition or the like, in order to achieve the desired lowered elasticity of a portion of the wall. Other means of achievi the desired result will become apparent to those of skill in the art.
  • two collapsible, fluid chambers, and associated means for controlling the fluid pressure in each of said chambers are provided.
  • the chambers are each helically woun in opposite directions and placed substantially parallel to one another.
  • At one spatial point one end of each chamber i rigidly mounted so that rotation of each respective chamber that point is not possible.
  • the other ends of each respecti chamber are rigidly associated with each other so that rotation of one chamber causes rotation of the other in the same direction of rotation.
  • rotation of that chamber occurs, causing the helical windings of that chamber to unwind while commensurately causing the other chamber to be more tightly, helically wound.
  • the previously inflated chamber Upon release of the fluid pressure, the previously inflated chamber is again caused to be helically rewound to its initial state, due to the rotational force generated by the partial unwinding of the other chamber, unti each chamber is wound back to its initial, helically wound state.
  • the partial or complete inflation of either chamber causes all or a part of the figure to assume a different spatial position, dependent upon the level of inflation of each of said chambers.
  • Figures IA through IE show an embodiment of the present invention in which two collapsible chambers 120 and 130 are contained within a flexible exterior sheath 110 which has bee shaped to represent a human arm with an attached hand 112.
  • Chamber 120 has an inflated or filled shape of a substantiall straight cylinder, while chamber 130 has an inflated or fille shape of an "L".
  • Chamber 120 is fluidly connected to conduit 122 which places chamber 120 in fluid communication with valv
  • conduit 124 which in turn is placed in fluid communication with flui supply 140 by means of conduit 126.
  • chamber 130 i connected to conduit 132 which places chamber 130 in fluid communication with valve 134, which in turn is placed in flui communication with fluid supply 140 by means of conduit 136.
  • Chamber 120 is also fluidly connected to conduit 123 which places chamber 120 in fluid communication with valve
  • conduit 125 which in turn is placed in fluid communication with flui evacuation chamber 150 by means of conduit 127.
  • chamber 130 is connected to conduit: 133 which places chamber 130 in fluid communication with valve 135, which in turn is placed in fluid communication with fluid evacuation chamber 150 by means of conduit 137.
  • Pump 160 is placed in fluid communication with' both fluid supply 140 and fluid evacuation chamber 150 by means of conduits 162 and 164, respectively.
  • Valves 124, 125, 134 and 135 are connected to actuato means 128, 129, 138 and 139, respectively (not shown).
  • Th valves may be electro-mechanical valves which are actuated electric current, as is well known in the art. Any type o valve may be employed, as well as any actuator means, including electrical, mechanical, pneumatic, or the like.
  • extension of the arm is achieved by inflating chamber 120 by opening valves 124 and 135 and closing valves 125 and 134, as shown in Figures IA and ID. this manner, fluid flowstfrom fluid supply,1 0 to fully inflate chamber 120, while fluid is drawn from cha"mber 130 into fluid reservoir 150.
  • Pump 160 is demand activated and supplies pressure, if necessary, to evacuate reservoir 150 to pressurize fluid supply 140. The speed with which the a moves from one position to another is directly dependent up the pressure differential maintained between the fluid supp 140 and the fluid reservoir 150.
  • valves 124 and 135 are closed and val 125 and 134 are opened, causing chamber 120 to be evacuated and chamber 130 to be inflated, as shown in Figures IB and By controlling the valves to allow both chambers 120 and 13 to become partially filled and partially evacuated, incremental positions between fully extended and fully bent can be achieved, as shown in Figure IC.
  • inflation either chamber 120 or chamber 130 causes the inflated chamb to exert a force on the other chamber, tending to cause collapse of that other chamber.
  • Figure 1 represen a preferred embodiment, other simplified embodiments are al possible, although less desired. Because inflation of eith chamber 120 or chamber 130 causes a collapsing force to be exerted, it is not necessary in all instances that the evacuation chamber and associated conduit be employed. Thu for example, conduits 126 and 136 can be eliminated, which would then allow the fluid, such as air, to escape to the environment, upon the opening of valves 124 or 134, once collapsing pressure is applied by virtue of the inflation of the other chamber.
  • Figures IF through IH illustrate an embodiment of the present invention in which two chambers are employed wherein one chamber 180 is located within the other chamber 170 and only chamber 180 is inflatable.
  • the noninflatable chamber 17 has a spatial orientation which is different from the spatial orientation of the inflatable chamber 180 when inflated. Whe the inflatable chamber 180 is not inflated, the figure assume the shape of the noninflatable chamber as illustrated in Figure IF.
  • the inflation of the chamber causes all or a part of the figure to assume a different position, dependent upon the level of inflation of that chamber.
  • the exterior chamber will be the noninflatable chamber and the interior chamber will be the inflatable chamber, although the reverse configuration could be employed, although with more difficulty.
  • a conduit 184 is connected to the interior of inflatable chamber 180 through aperture 182. Conduit 184 is connected to a source of pressurized fluid, not shown.
  • the spatial configuration of the combination of chambers is that of the exterior chamber 170 which is a straight tube.
  • the exterior chamber 170 which is a straight tube.
  • Figure IH shows the cross-sectional view o chambers 170 and 180 when chamber 180 is inflated, illustrating the fact that the exterior of the wall of chambe 180 impinges upon the interior of the wall of chamber 170, forcing chamber 170 to assume the configuration of a curve.
  • FIGS 2A through 2F are illustrations of another embodiment of the present invention in which 200 represents, generally, a replication of a human torso having an upper hal 202 and a lower half 204.
  • the upper half is rotationally mounted to the lower half at junction 206.
  • Collapsible chambers 220 and 230 when inflated, have the configuration a segment of a circle and are rigidly mounted at opposite e to the lower half of the torso 204 by means of attaching plates 203 and 205, respectively.
  • the collapsible chambers 220 and 230 are mounted to a common attaching plate 207 whi is also rigidly -mounted to the upper half of the torso 202.
  • Inflation of chamber 220 causes rotation of the upper half o the torso 202 in a counter-clockwise direction, as shown in Figure 2A and 2D, while inflation of chamber 230 causes rotation of the upper half of the torso 202 in a clockwise - direction, ⁇ as shown in Figures._2C and_2F.
  • the collapsible chambers may be easily placed in fluid communication with a fluid supply source and an evacuation chamber in a manner similar to that shown in
  • Partial evacuation and partial pressurization of both chambers 220 and 230 causes the upper torso 202 to be rotate to intermediate positions between full clockwise rotation an full counter-clockwise rotation, as shown in Figures 2B and 2E.
  • inflatabl chambers 320 and 330 are located within chamber 310 which encases both chambers 320 and 330.
  • Orifice 322 passes throu both chambers 310 and 320 while orifice 332 passes through chambers 310 and 330.
  • Conduits 324 and 334 respectively, pass through orifices 322 and 332 and independently are in fluid communication with a source of pressurized fluid.
  • chamber 320 is inflated completely while chamber 330 is essentially evacuated.
  • chamber 330 is inflated completely, while chamber 320 is essentially deflated.
  • Chamber 310 conforms to the spatial configuration of the inflated chamber in each of the two positions illustrated in Figures 3A and 3B.
  • Such chambers may be, for example, normally straight and normally bent tubing, respectively, as shown in Figures IA, IB, and IC.
  • Figures 4A, 4B, 4C and 4D illustrate an aspect of the second embodiment of the present invention in which a single, inflatable chamber is employed, said chamber having a section of one wall which is thickened so that it is less elastic than the remaining portion of the wall.
  • Chamber 420 has an orifice 422 located.at one end thereof, into which conduit 424 has been inserted to fluidly communicate with the interior of chamber 420.
  • the wall of chamber 420 is comprised of a relatively thin wall segment 426 and a thickened wall segment 428 which is substantially less elastic than the wall segment 426.
  • the chamber When in a deflated state, as illustrated in Figure 4A, the chamber is essentially a straight cylinder, which may be flattened, as illustrated in Figure 4B.
  • Figure 4C When fluid pressure is applied, as illustrated in Figure 4C, the chamber 420 assumes the form of an arc, due to the fact that the thickened region 428 does not stretch as much as the remaining wall segment 426, causing the deformation of the chamber when subjected to fluid pressure, such as air pressure.
  • Figure 4D is a cross-section of the inflated chamber 420 of Figure 4C, taken along line 4D-4D, showing that the chamber still has a substantially circular cross-section, when subjected to fluid inflation pressure.
  • FIGS 5A, 5B and 5C illustrate an aspect of the third embodiment of the present invention in which two collapsible, fluid chambers are provided, wherein the chambers are each helically wound in opposite directions and placed substantially parallel to one another.
  • a replication of a human arm and hand combination 510 is provided, having an upper arm portion 512, a lower arm portion 514, and a hand assembly 516.
  • chambers 540 and 550 Located within the upper and lower arm assemblies 512 and 514, are chambers 540 and 550 which are rigidly and immovably fixed at one end thereof to the upper arm portion 512 by connections 541 and 551.
  • Chambers 540 and 550 are also attached to th hand assembly 516 through connection 543 and 553.
  • Chambers 540 and 550 each have orifices 542 and 552, as illustrated in Figure 5C into which are inserted conduits 5 and 554, respectively, which communicate with a source of compressed air, not shown.
  • both chambers 540 and 550 When initially present in their deflated state, both chambers 540 and 550 are"helically wound around their longitudinal axis, * " in opposite directions. Each Chamber in its helically wound state exerts equal and opposing force o the other so that an equilibrium position is established as shown in Figure 5A, wherein the hand assembly 516 has assum a substantially vertical position.
  • chamber 550 may be maintained, causing the hand assembly 51 to assume any desired position.
  • chamber 540 may inflated and caused to unwind, with commensurate winding of chamber 550, until a "palm-down" position is achieved.
  • FIG 5C there is illustrated a composite structu which utilizes aspects of both the second and third embodiments of the present invention, in combination.
  • chambers 520 an 530 which have orifices 522 and 532, respectively. Inserte in the orifices are conduits 524 and 534, respectively, whic communicate with a source of fluid pressure, not shown.
  • Chamber 520 is rigidly fixed to upper arm 512 through connection 521, while chamber 530 is so fixe through connection 531.
  • the lower portion of chamber 520 is fixed to hand assembly 516 through connection 523 and the lower portion of chamber 530 is so fixed through connection 533.
  • chambers such as 520 having a normally straight cylindrical configuration and chamber 530 having a normally bent configuration, when inflated, can cause animation motion of portion of a figure to occur by controlling the amount of inflation or deflation of each such chamber.
  • relative motion of the lower arm portion 514 with respect to the upper arm portion 512 can be achieved through control of the inflation pressur in chambers 520 and 530.
  • rotational movement of the hand assembly 516 may be achieved through selective control of the inflation pressure within chambers 540 and 550. In such a manner, it is possible to closely simulate the movements of a human arm and hand.
  • Oth figures and appendages thereof may, of course, be achieved i similar manners through routine modification of the foregoin specific embodiments.

Landscapes

  • Toys (AREA)
  • Prostheses (AREA)

Abstract

Dans un mode de réalisation du procédé et de l'appareil, on utilise une pluralité de chambres gonflables de fluide (120, 130) et des moyens associés (140, 150) pour régler la pression de fluide dans chaque chambre (120, 180). Au moins deux de ces chambres sont physiquement agencées de sorte que le gonflement d'une des chambres et le dégonflement de l'autre chambre complémentaire amènent un personnage (110) ou une partie d'un personnage à prendre une position spatiale différente qui dépend du niveau de gonflement de chaque chambre. Dans un autre mode de réalisation, on utilise une seule chambre gonflable dont une paroi a une section moins élastique que la partie restante de la paroi. Compte-tenu de la différence d'élasticité, lorsque la chambre est gonflée elle prend une forme ou un agencement différent de celui de la chambre non gonflée. Dans un troisième mode de réalisation, deux chambres (540, 550) gonflables de fluide sont enroulées en spirale dans des directions opposées, sensiblement parallèles. Lorsqu'une pression de fluide est appliquée à l'une ou à l'autre chambre (540, 550), ladite chambre se met en rotation, déroulant des spires hélicoïdales tout en serrant dans une même mesure les spires de l'autre chambre.In one embodiment of the method and the apparatus, a plurality of inflatable fluid chambers (120, 130) and associated means (140, 150) are used to adjust the fluid pressure in each chamber (120, 180) . At least two of these chambers are physically arranged so that the swelling of one of the chambers and the deflation of the other complementary chamber cause a character (110) or part of a character to assume a different spatial position which depends on the level of swelling in each room. In another embodiment, a single inflatable chamber is used, one wall of which has a less elastic section than the remaining part of the wall. Given the difference in elasticity, when the chamber is inflated it takes a shape or arrangement different from that of the non-inflated chamber. In a third embodiment, two inflatable chambers (540, 550) are wound in a spiral in opposite directions, substantially parallel. When a fluid pressure is applied to one or the other chamber (540, 550), said chamber starts to rotate, unwinding helical coils while tightening the coils of the other chamber to the same extent.

Description

ANIMATION METHOD AND DEVICE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. Patent application no. 482,146, filed February 20, 1990.
FIELD OF THE INVENTION
This invention relates generally to animated figures and more specifically to an apparatus and method for achieving animation or motion in such figures.
BACKGROUND OF THE INVENTION
Small animated figures such as dolls or figures which are part of music boxes, clocks and the like have existed for hundreds of years. Such animation has classically been achieved through the use of mechanical gearing. In modern times, animation has been achieved through the use of electro-mechanical designs requiring extremely complex electrical circuitry and associated mechanical devices, such as expensive servo-motors and the like. More recently, with the development of amusement and theme parks, the need to animate much larger figures, such as full size human and animal replicates, has arisen.
As the size of the figure to be animated increases, the complexity of the electro-mechanical design requirements grows commensurately. In part, the one approach has been to employ pneumatics to achieve animation of such large figures. However, the resulting animation has been crude, at best, and incapable of duplicating fine motion, such as that demonstrated by a human finger. When dealing with very large figures, the devices needed to effectively animate fine, detailed motion are extremely expensive and require special electrical current, along with complicated control circuitry. Even that solution, however, cannot achieve rapid, realistic motion, as the time necessary for the figure to change from one position to another is limited by the time necessary for servo-motors to reposition themselves. Further, to realistically animate some figures, the nee also arises for the animated character to exhibit a significant degree of strength. An unfortunate drawback of the electro-mechanical means of animating figures, typically is a lack of ability to exhibit such significant strength.
Because of the complexity of the task, only the largest of companies have been able to afford to design and build large animated figures, which still suffer from the aforementioned shortcomings. Of course, the public visiting theme parks and the like displaying such animated figures ha been required to pay higher prices of admission to allow the theme park operator to recoup'"the high investment costs required to construct the figures used in the park in the first instance.
A need thus exists for a relatively simple means to achieve realistic animation or motion in figures, especially large figures, such as replications of horses, dragons and t like, without the use of expensive, electro-mechanical motor A need also exists for a means of animating figures in a manner which allows the characters to perform tasks requirin a level of strength and rapidity of motion not capable of being exhibited by figures animated through electro-mechanic servo motors and the like.
SUMMARY OF THE INVENTION
There now has been discovered a simple, straight-forwar means for animating figures through the use of the apparatus and method of the present invention. In a first embodiment, the apparatus and method of the present invention employ a plurality of collapsible, fluid chambers, and associated mea for controlling the fluid pressure in each of said chambers. At least two of said chambers have inflated spatial orientations which cause all or a part of the figure to assu a different position, dependent upon the level of inflation each of said chambers. In a typical configuration, the chambers are arranged so.that the inflation of one such chamber exerts a physical force on the other. In one aspect of the first embodiment, there is present a device for providing rotational movement comprising an assembly having (1) a first body section, (2) a second body section which is rotatably associated with the first body section, (3) a first collapsible chamber having a first and a second end, wherein one of said ends is rigidly associated with the first body section and the other of said ends is rigidly associated with the second body section and (4) a second collapsible chamber having a first and a second end, wherein one of said ends is rigidly associated with the first body section and the other of said ends is rigidly associated with the second body section, wherein the first and" second collapsible chambers have the configuration of a segment of a circle, said chambers being mounted such that when either of said chambers is collapsed, the other chamber is inflated. Such a device is particularly suited for providing animation for portions of figures, such as for duplication of the rotational movement of a torso.
In another aspect of this embodiment, the two collapsible chambers are both located within a third chamber which is not directly inflated, but responds in configuration to the inflation, in whole or in part, of the two interior chambers.
In yet another aspect of this embodiment, two chambers are employed wherein one chamber is located within the other and only one chamber is inflatable. The noninflatable chamber has a spatial orientation which is different from the spatial orientation of the inflatable chamber when inflated. When the inflatable chamber is not inflated, the figure assumes the shape of the noninflatable chamber, when the inflatable chamber is inflated, however, the inflation of the chamber causes all or a part of the figure to assume a different position, dependent upon the level of inflation of that chamber. Typically, the exterior chamber will be the noninflatable chamber and the interior chamber will be the inflatable chamber, although the reverse configuration could be employed, although with more difficulty.
In a second embodiment of the present invention, a single, inflatable chamber is employed, said chamber having section of one wall which is less elastic than the remainin portion of the wall. Due to the differential in elasticity upon inflation the chamber assumes a shape or configuration which is different from the noninflated chamber.
In a third embodiment, two collapsible, fluid chambers and associated means for controlling the fluid pressure in each of said chambers are provided. The chambers are each helically wound in opposite directions and placed substantially parallel to one another. At one spatial poin one end of each chamber is rigidly mounted so that rotation each respective chamber at that point is not possible. The opposite ends of each respective chamber are rigidly associated with each other so that rotation of one chamber causes rotation of the other in the same direction of rotation. Upon application of fluid pressure to either chamber, rotation of that chamber occurs, causing the helic windings of that chamber to unwind while commensurately causing the other chamber to be more tightly, helically wou Upon release of the fluid pressure, the previously inflated chamber is again caused to be helically rewound to its init state, due to the rotational force generated by the partial unwinding of the other chamber, until each chamber is wound back to its initial, helically wound state. The partial or complete inflation of either chamber causes all or a part of the figure to assume a different spatial position, dependent upon the level of inflation of each of said chambers.
BRIEF DESCRIPTION OF THE DRAWINGS
Figures IA, IB, IC, ID and IE illustrate one aspect of the first embodiment of the present invention for providing animation for the arm of a human figure. Figures IA, IB and IC show a cut-away view of the arm alone, while Figures ID a IE show the arm as attached to a torso, along with the associated control equipment.
Figures IF, IG and IH illustrate one aspect of the firs embodiment of the present invention in which a .straight, exterior, noninflatable chamber surrounds an internal, inflatable chamber which has a curved configuration when inflated.
Figures 2A, 2B, 2C, 2D, 2E and 2F show another aspect the first embodiment of the present invention in which rotational animation is achieved for a torso of a human figure. Figures 2D, 2E and 2F are sectional views of Figur 2A, 2B and 2C, respectively.
Figures 3A and 3B show an aspect of the first embodime of the present invention in which two inflatable chambers a both located within a third chamber which is not directly inflated, but responds in configuration to the inflation, i whole or in part, of the two interior chambers.
Figures 4A, 4B, 4C and 4D illustrate an aspect of the second embodiment of the present invention in which a singl inflatable chamber is employed, said chamber having a secti of one wall which is thickened so that it is less elastic t the remaining portion of the wall.
Figures 5A, 5B and 5C illustrate an aspect of the thir embodiment of the present invention in which two collapsibl fluid chambers are provided, wherein the chambers are each helically wound in opposite directions and placed substantially parallel to one another.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with the present invention, animation of figures, whether large or small, can be achieved through th use of a simplified device and method. The device can take the form of enumerable specific embodiments, all of which a within the scope of the present invention. In accordance w the first embodiment, at least two collapsible chambers whi are independently connected to a fluid supply means are employed. At least two such chambers are placed in such physical relationship that the inflation of either chamber deflation of its complimentary chamber, causes an outward movement of the figure. Typically, inflation. of one chambe places a force on another, complimentary chamber. Such for
tends to cause the collapse of that other chamber.
The collapsible chambers used in the various aspects embodiments of the present invention may be constructed of suitable elastic material, such as natural or synthetic rubber, including styrene-butadiene rubber. The compositi of the chamber is not critical as long as it is flexible a collapsible over repeated cycles of inflation and deflatio
The collapsible chambers should be as fluid-tight as possible, to minimize the energy necessary to change and maintain the chambers in a state of inflation or deflation The fluid necessary to cause the inflation or_deflation of chambers likewise is not critical, although for ease and simplicity of design, fabrication, and operation, it is preferred to use air to inflate the chambers. The pressur maintained in the chambers when inflated likewise is not critical and any pressure over atmospheric is desirable, s as from about 2 to about 200 psi. Essentially, there is n limitation upon the amount of pressure which may be employ as the components of the system may be varied in design to accommodate the desired pressure. The amount of pressure employed to inflate a chamber is directly translatable int the amount of strength which may be exhibited by the anima character. Further, the pressure differential maintained between inflated chambers and deflated chambers is directl translatable into speed. The greater the differential, th more quickly that a given chamber can inflate and a second chamber, if present, deflate, allowing the figure to rapid change in outward appearance.
Preferably, the chambers, when inflated, will be infl to a pressure from about 20 psi to about 80 psi, more preferably to a pressure of about 50 psi. Likewise, when employed, a deflated chamber will be maintained at atmosph pressure or below. Typically, the pressure necessary to operate the system will be supplied from a conventional ai compressor, capable of being operated by conventional 110 current or even batteries.
In accordance with the first embodiment of the presen invention, when one chamber is inflated, typically that inflated chamber will apply a force to the other, although that force need may not be fully opposing in the sense that full inflation of the one chamber would necessarily cause ful collapse of the other. Hence, the force exerted by one chamber against the other also may be tangential, as illustrated in the embodiments discussed below.
To provide for the ability to inflate the chambers, each chamber is placed in fluid communication with a fluid supply means which is capable of supplying fluid thereto through a fluid supply conduit. Respective fluid control means, or valves, control the fluid flow to each of the coll'apsible chambers. Normally the valves are of the type which are either fully open or fully closed, although in some applications valves capable of being placed in partially open positions may be employed. In typical operation, when the valve to one of the collapsible chambers is placed in a close position, the valve associated with the opposing chamber is placed in an open position.
In accordance with one aspect of the first embodiment of the present invention, both inflatable chambers may be locate within a third, encasing chamber which itself is not directly inflated. In such a construction, both of the chambers are maintained in close physical proximity along their length and thus each chamber, upon inflation, may exert an immediate opposing force upon the other chamber along the entire length of the respective chambers. The outside spatial configuratio assumed by the third chamber which houses the two inflatable chambers is determined by the degree of inflation of each of the internal, inflatable chambers. Of course, more than two inflatable chambers may be employed within the exterior, encasing chamber.
In accordance with the second embodiment of the present invention, a single, inflatable chamber is employed, said chamber having a section of one wall which is less elastic than the remaining portion of the wall. Due to. the differential in elasticity, upon inflation the chamber assumes a shape or configuration which is different from the chamber when noninflated. The chamber may be constructed and employ in the same fashion as the inflatable chambers used in accordance with the first aspect of the present invention, except that the chamber has one or more wall regions which a less elastic than the remaining wall area.
The wall regions of less elasticity may be achieved by any number of methodologies. In a preferred approach, a section of the wall of the chamber has a thickened region wherein the wall thickness is greater than that of the remaining wall. ' The amount of thickening is not critical an may vary over several orders of magnitude. Preferably, the thickening is from about 1 to about 10 orders of magnitude, comparison to the thickness of the chamber-s remaining wall regions. Alternatively, the particular wall section of lowered elasticity may be comprised of a material which is simply less elastic than that of the remaining wall regions. Modification of the surface properties of the wall may also employed, as by application of inelastic coating composition or the like, in order to achieve the desired lowered elasticity of a portion of the wall. Other means of achievi the desired result will become apparent to those of skill in the art.
In accordance with the third embodiment of the present invention, two collapsible, fluid chambers, and associated means for controlling the fluid pressure in each of said chambers are provided. The chambers are each helically woun in opposite directions and placed substantially parallel to one another. At one spatial point one end of each chamber i rigidly mounted so that rotation of each respective chamber that point is not possible. The other ends of each respecti chamber are rigidly associated with each other so that rotation of one chamber causes rotation of the other in the same direction of rotation. Upon application of fluid pressure to either chamber, rotation of that chamber occurs, causing the helical windings of that chamber to unwind while commensurately causing the other chamber to be more tightly, helically wound. Upon release of the fluid pressure, the previously inflated chamber is again caused to be helically rewound to its initial state, due to the rotational force generated by the partial unwinding of the other chamber, unti each chamber is wound back to its initial, helically wound state. The partial or complete inflation of either chamber causes all or a part of the figure to assume a different spatial position, dependent upon the level of inflation of each of said chambers.
The various aspects and embodiments of the present invention may be employed alone or in various combination to achieve the desired animation of any particular figure or figures.
The invention will be further illustrated by the Figures discussed below.
Figures IA through IE show an embodiment of the present invention in which two collapsible chambers 120 and 130 are contained within a flexible exterior sheath 110 which has bee shaped to represent a human arm with an attached hand 112. Chamber 120 has an inflated or filled shape of a substantiall straight cylinder, while chamber 130 has an inflated or fille shape of an "L". Chamber 120 is fluidly connected to conduit 122 which places chamber 120 in fluid communication with valv
124, which in turn is placed in fluid communication with flui supply 140 by means of conduit 126. Similarly, chamber 130 i connected to conduit 132 which places chamber 130 in fluid communication with valve 134, which in turn is placed in flui communication with fluid supply 140 by means of conduit 136.
Chamber 120 is also fluidly connected to conduit 123 which places chamber 120 in fluid communication with valve
125, which in turn is placed in fluid communication with flui evacuation chamber 150 by means of conduit 127. Similarly, chamber 130 is connected to conduit: 133 which places chamber 130 in fluid communication with valve 135, which in turn is placed in fluid communication with fluid evacuation chamber 150 by means of conduit 137. Pump 160 is placed in fluid communication with' both fluid supply 140 and fluid evacuation chamber 150 by means of conduits 162 and 164, respectively.
Valves 124, 125, 134 and 135 are connected to actuato means 128, 129, 138 and 139, respectively (not shown). Th valves may be electro-mechanical valves which are actuated electric current, as is well known in the art. Any type o valve may be employed, as well as any actuator means, including electrical, mechanical, pneumatic, or the like. rn operation, extension of the arm is achieved by inflating chamber 120 by opening valves 124 and 135 and closing valves 125 and 134, as shown in Figures IA and ID. this manner, fluid flowstfrom fluid supply,1 0 to fully inflate chamber 120, while fluid is drawn from cha"mber 130 into fluid reservoir 150. Pump 160 is demand activated and supplies pressure, if necessary, to evacuate reservoir 150 to pressurize fluid supply 140. The speed with which the a moves from one position to another is directly dependent up the pressure differential maintained between the fluid supp 140 and the fluid reservoir 150.
To achieve motion of the arm and movement of the arm t "bent11 configuration, valves 124 and 135 are closed and val 125 and 134 are opened, causing chamber 120 to be evacuated and chamber 130 to be inflated, as shown in Figures IB and By controlling the valves to allow both chambers 120 and 13 to become partially filled and partially evacuated, incremental positions between fully extended and fully bent can be achieved, as shown in Figure IC.
As can be readily ascertained from Fig. 1, inflation either chamber 120 or chamber 130 causes the inflated chamb to exert a force on the other chamber, tending to cause collapse of that other chamber. Although Figure 1 represen a preferred embodiment, other simplified embodiments are al possible, although less desired. Because inflation of eith chamber 120 or chamber 130 causes a collapsing force to be exerted, it is not necessary in all instances that the evacuation chamber and associated conduit be employed. Thu for example, conduits 126 and 136 can be eliminated, which would then allow the fluid, such as air, to escape to the environment, upon the opening of valves 124 or 134, once collapsing pressure is applied by virtue of the inflation of the other chamber.
Figures IF through IH illustrate an embodiment of the present invention in which two chambers are employed wherein one chamber 180 is located within the other chamber 170 and only chamber 180 is inflatable. The noninflatable chamber 17 has a spatial orientation which is different from the spatial orientation of the inflatable chamber 180 when inflated. Whe the inflatable chamber 180 is not inflated, the figure assume the shape of the noninflatable chamber as illustrated in Figure IF. When the inflatable chamber 180 is inflated, however, the inflation of the chamber causes all or a part of the figure to assume a different position, dependent upon the level of inflation of that chamber. Typically, the exterior chamber will be the noninflatable chamber and the interior chamber will be the inflatable chamber, although the reverse configuration could be employed, although with more difficulty. In Figures IF through IH, a conduit 184 is connected to the interior of inflatable chamber 180 through aperture 182. Conduit 184 is connected to a source of pressurized fluid, not shown.
In Figure IF, the spatial configuration of the combination of chambers is that of the exterior chamber 170 which is a straight tube. As illustrated in Figure IG, upon inflation of chamber 180 it assumes its inflated shape of a curve, forcing the exterior chamber 170 to also assume the shape of a curve. Figure IH shows the cross-sectional view o chambers 170 and 180 when chamber 180 is inflated, illustrating the fact that the exterior of the wall of chambe 180 impinges upon the interior of the wall of chamber 170, forcing chamber 170 to assume the configuration of a curve.
Figures 2A through 2F are illustrations of another embodiment of the present invention in which 200 represents, generally, a replication of a human torso having an upper hal 202 and a lower half 204. The upper half is rotationally mounted to the lower half at junction 206. Collapsible chambers 220 and 230, when inflated, have the configuration a segment of a circle and are rigidly mounted at opposite e to the lower half of the torso 204 by means of attaching plates 203 and 205, respectively. The collapsible chambers 220 and 230 are mounted to a common attaching plate 207 whi is also rigidly -mounted to the upper half of the torso 202. Inflation of chamber 220 causes rotation of the upper half o the torso 202 in a counter-clockwise direction, as shown in Figure 2A and 2D, while inflation of chamber 230 causes rotation of the upper half of the torso 202 in a clockwise - direction, ^as shown in Figures._2C and_2F. ^The collapsible chambers may be easily placed in fluid communication with a fluid supply source and an evacuation chamber in a manner similar to that shown in
Figure 1. From Figure 2 it is readily apparent that inflati of either chamber 220 or chamber 230 causes a directly opposing collapsing force to be applied to the other chamber The pressure differential maintained between the fluid suppl and the fluid reservoir sides of the system again controls t speed at which the torso will rotate.
Partial evacuation and partial pressurization of both chambers 220 and 230 causes the upper torso 202 to be rotate to intermediate positions between full clockwise rotation an full counter-clockwise rotation, as shown in Figures 2B and 2E.
In Figures 3A and 3B, cross-sections of two inflatable chambers are illustrated, surrounded by a third chamber whic encases the inflatable chambers. In said figures, inflatabl chambers 320 and 330 are located within chamber 310 which encases both chambers 320 and 330. Orifice 322 passes throu both chambers 310 and 320 while orifice 332 passes through chambers 310 and 330. Conduits 324 and 334, respectively, pass through orifices 322 and 332 and independently are in fluid communication with a source of pressurized fluid. As illustrated in Figure 3A, chamber 320 is inflated completely while chamber 330 is essentially evacuated. In Figure 3B, chamber 330 is inflated completely, while chamber 320 is essentially deflated. Chamber 310 conforms to the spatial configuration of the inflated chamber in each of the two positions illustrated in Figures 3A and 3B. Such chambers may be, for example, normally straight and normally bent tubing, respectively, as shown in Figures IA, IB, and IC.
Figures 4A, 4B, 4C and 4D illustrate an aspect of the second embodiment of the present invention in which a single, inflatable chamber is employed, said chamber having a section of one wall which is thickened so that it is less elastic than the remaining portion of the wall. Chamber 420 has an orifice 422 located.at one end thereof, into which conduit 424 has been inserted to fluidly communicate with the interior of chamber 420. The wall of chamber 420 is comprised of a relatively thin wall segment 426 and a thickened wall segment 428 which is substantially less elastic than the wall segment 426. When in a deflated state, as illustrated in Figure 4A, the chamber is essentially a straight cylinder, which may be flattened, as illustrated in Figure 4B. When fluid pressure is applied, as illustrated in Figure 4C, the chamber 420 assumes the form of an arc, due to the fact that the thickened region 428 does not stretch as much as the remaining wall segment 426, causing the deformation of the chamber when subjected to fluid pressure, such as air pressure. Figure 4D is a cross-section of the inflated chamber 420 of Figure 4C, taken along line 4D-4D, showing that the chamber still has a substantially circular cross-section, when subjected to fluid inflation pressure.
Figures 5A, 5B and 5C illustrate an aspect of the third embodiment of the present invention in which two collapsible, fluid chambers are provided, wherein the chambers are each helically wound in opposite directions and placed substantially parallel to one another. As illustrated in each of the three figures, a replication of a human arm and hand combination 510 is provided, having an upper arm portion 512, a lower arm portion 514, and a hand assembly 516. Located within the upper and lower arm assemblies 512 and 514, are chambers 540 and 550 which are rigidly and immovably fixed at one end thereof to the upper arm portion 512 by connections 541 and 551. Chambers 540 and 550 are also attached to th hand assembly 516 through connection 543 and 553. The lowe arm and hand assembly are both free to rotate, while the up arm 512 is fixed so that rotational motion is not possible. Chambers 540 and 550 each have orifices 542 and 552, as illustrated in Figure 5C into which are inserted conduits 5 and 554, respectively, which communicate with a source of compressed air, not shown.
When initially present in their deflated state, both chambers 540 and 550 are"helically wound around their longitudinal axis,* "in opposite directions. Each Chamber in its helically wound state exerts equal and opposing force o the other so that an equilibrium position is established as shown in Figure 5A, wherein the hand assembly 516 has assum a substantially vertical position.
Upon application of fluid pressure to either chamber 5 or 550, the chamber is caused to unwind. In Figure 5A, flu pressure has been applied to chamber 550, causing it to ful unwind, while causing chamber 540 to becomes even more tightly, helically wound about its longitudinal axis. This unwinding of chamber 550 and further winding of chamber 540 causes hand assembly 516 to rotate to a "palm-up" position shown in Figure 5B. When pressure is released from conduit 550, the increased force present in chamber 540, caused by additional winding of that chamber beyond its equilibrium point with chamber 550, causes chamber 540 to unwind and chamber 550 to wind, helically about their longitudinal axe until the equilibrium point illustrated in Figure 5A is aga reached. Of course, intermediate levels of inflation of chamber 550 may be maintained, causing the hand assembly 51 to assume any desired position. Similarly, chamber 540 may inflated and caused to unwind, with commensurate winding of chamber 550, until a "palm-down" position is achieved.
In Figure 5C, there is illustrated a composite structu which utilizes aspects of both the second and third embodiments of the present invention, in combination. Thus as illustrated in Figure 5C, in addition to the two helicall wound chambers 540 and 550 and their associated components, discussed previously, there are also present chambers 520 an 530, which have orifices 522 and 532, respectively. Inserte in the orifices are conduits 524 and 534, respectively, whic communicate with a source of fluid pressure, not shown. Chamber 520 is rigidly fixed to upper arm 512 through connection 521, while chamber 530 is so fixe through connection 531. The lower portion of chamber 520 is fixed to hand assembly 516 through connection 523 and the lower portion of chamber 530 is so fixed through connection 533.
As previously illustrated in Figures IA, IB and IC, chambers such as 520 having a normally straight cylindrical configuration and chamber 530 having a normally bent configuration, when inflated, can cause animation motion of portion of a figure to occur by controlling the amount of inflation or deflation of each such chamber. In the particularly illustrated embodiment, relative motion of the lower arm portion 514 with respect to the upper arm portion 512 can be achieved through control of the inflation pressur in chambers 520 and 530. Simultaneously, and independently, rotational movement of the hand assembly 516 may be achieved through selective control of the inflation pressure within chambers 540 and 550. In such a manner, it is possible to closely simulate the movements of a human arm and hand. Oth figures and appendages thereof may, of course, be achieved i similar manners through routine modification of the foregoin specific embodiments.
Although the invention has in various instances been specifically described in terms of pairs of two collapsible chambers, it is clear that more than two interacting chamber may be employed within the spirit and scope of the present invention, especially if more complicated motion or movement is desired. The present invention should be especially well suited for use in duplicating the complex movements, such as that exhibited by a human hand. Also, because there is no significant limitation upon the pressure which may be emplo in the system, high levels of strength may be exhibited by figures which are animated through use of the present invention.

Claims

What I claim is :
1. An apparatus for attaining motion in an animated figure comprising (1) at least two collapsible, fluid chamber which are capable of being repetitively inflated to a predetermined, desired shape and subsequently deflated, and (2) means for controlling the fluid pressure in each of said chambers, at least two of said chambers being physically arranged so that the inflation of one such chamber and deflation of the other complimentary chamber causes all or a part of the figure to assume a different spatial position, dependent upon the level of inflation of each of said chambers.
2. The apparatus of claim 1 wherein the chambers are arranged so that the inflation of one such chamber exerts a physical force on the other.
3. The apparatus of claim 2 wherein the means for controlling the fluid pressure for each of the fluid chambers comprises (1) a first valve, (2) a first conduit which is in fluid communication with said chamber and said first valve, (3) a fluid supply means, (4) a second conduit which is in fluid communication with said fluid supply means and said first valve, (5) a second valve, (6) a third conduit which places said chamber in fluid communication with said second valve, (7) a fluid evacuation chamber, (8) a fourth conduit which is in fluid communication with said fluid evacuation chamber and said second valve, (9) first means for controlling the position of said first valve, and (10) second means for controlling the position of said second valve.
4. A method for attaining animated movement in a figure comprising providing the interior of said figure with at leas two collapsible, fluid chambers which are capable of being repetitively inflated to a desired shape and subsequently deflated, wherein at least two of said chambers are physicall arranged so that the inflation of one such chamber and deflation of the other complimentary chamber causes all or part of the figure to assume a different spatial position, dependent upon the level of inflation of each of said chambers, and selectively controlling the fluid pressure in each of said chambers to achieve the desired animation.
5. The method of claim 4 wherein the chambers are arranged so that the inflation of one such chamber exerts a physical force on the other.
6. " The apparatus of claim 1 wherein at least two collapsible fluid chambers are located within a third chamb which encases both of said collapsible chambers.
7. An apparatus for attaining motion in an animated figure comprising (1) at least one collapsible, fluid chamb which is capable of being repetitively inflated to a predetermined, desired shape and subsequently deflated, and (2) means for controlling the fluid pressure in said chambe at least one of said chambers having a section of wall whic is less elastic than the remaining portion of the wall.
8. The apparatus of claim 7 wherein said section of w which is less elastic is a thickened section of wall.
9. A method for attaining animated movement in a figu comprising providing the interior of said figure with at le one collapsible, fluid chamber which is capable of being repetitively inflated to a desired shape and subsequently deflated, wherein at least one said chamber has a section o wall which is less elastic than the remaining portion of th wall and is physically arranged so that the inflation of on such chamber causes all or a part of the figure to assume a different spatial position, dependent upon the level of inflation of said chamber, and selectively controlling the fluid pressure in said chamber to achieve the desired animation.
10. The method of claim 9 wherein said section of wall which is less elastic is a thickened section of wall.
11. An apparatus for attaining motion in an animated figure comprising (1) at least two collapsible, fluid chambe which are capable of being repetitively inflated to a predetermined, desired shape and subsequently deflated, said chambers being each helically wound in opposite directions a (2) means for controlling the fluid pressure- in each of said chambers, at least two of said chambers being physically arranged so that the inflation of a first such chamber and deflation of a second complimentary chamber causes the first such chamber to unwind and the second such chamber to become more tightly, helically wound, resulting in all or a part of the figure assuming a different spatial position, dependent upon the level of inflation of each of said chambers.
12. A method for attaining animated movement in a figu comprising providing the interior of said figure with at lea two collapsible, fluid chambers which are capable of being repetitively inflated to a desired shape and subsequently deflated, said chambers being each helically wound in opposi directions, wherein at least two of said chambers are physically arranged so that the inflation of a first such chamber and deflation of a second complimentary chamber caus the first such chamber to unwind and the second such chamber to become more tightly, helically wound, resulting in all or a part of the figure assuming a differen spatial position, dependent upon the level of inflation of each of said chambers, and selectively controlling the fluid pressure in each of said chambers to achieve the desired animation.
13. A device for providing rotational movement comprising an assembly having (1) a first body section, (2) a second body section which is rotatably associated with the first body section, (3) a first collapsible chamber having first and a second end, wherein one of said ends is rigidl associated with the first body section and the other of sa ends is rigidly associated with the second body section an (4) a second collapsible chamber having a first and a seco end, wherein one of said ends is rigidly associated with t first body section and the other of said ends is rigidly associated with the second body section, wherein the first second collapsible chambers have the configuration of a c segment of a circle, said chambers being mounted such that when either of said chambers is collapsed, the other chamb is inflated.
14. The device of claim 13 wherein the first ends of both of the collapsible chambers are attached to a mountin plate which is rigidly mounted to the first body section a the second ends of the collapsible chambers are mounted to separate plates which are each independently mounted to th second body section.
15. An apparatus for attaining motion in an animated figure comprising two chambers, one of which is an inflatab fluid chamber which is capable of being repetitively inflat to a predetermined, desired shape and subsequently deflated and (2) means for controlling the fluid pressure in said inflatable chamber, one of said chambers being located with the other said chamber so that the inflation of said inflatable chamber causes all or a part of the figure to assume a different spatial position, dependent upon the lev of inflation of said inflatable chamber.
EP19910905425 1990-02-20 1991-02-20 Animation method and device Withdrawn EP0516735A4 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/482,146 US5104346A (en) 1990-02-20 1990-02-20 Animation method and device
US57598490A 1990-08-31 1990-08-31
US482146 1995-06-07
US575984 2000-05-23

Publications (2)

Publication Number Publication Date
EP0516735A1 true EP0516735A1 (en) 1992-12-09
EP0516735A4 EP0516735A4 (en) 1993-04-28

Family

ID=27047177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910905425 Withdrawn EP0516735A4 (en) 1990-02-20 1991-02-20 Animation method and device

Country Status (2)

Country Link
EP (1) EP0516735A4 (en)
WO (1) WO1991012863A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015980A1 (en) * 1991-03-05 1992-09-17 Universal City Studios, Inc. Animal prop using air bags
GB2292825A (en) * 1994-09-02 1996-03-06 Patrick Lawrence Gar Covernton Inflatable figure
DE102007005841B4 (en) * 2007-02-01 2019-02-21 Viessmann Modelltechnik Gmbh miniature model
GB202016387D0 (en) * 2020-10-15 2020-12-02 Air Giants Ltd Inflatable, moveable structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047377A (en) * 1931-02-02 1936-07-14 Adverteerings Mij Nv Display figure
US2698499A (en) * 1952-05-29 1955-01-04 Norman S Dygon Foot operated dummy
US3594942A (en) * 1969-05-07 1971-07-27 Horsman Dolls Inc Kicking doll
FR2323420A1 (en) * 1975-09-15 1977-04-08 Hasbro Development Corp WALKING DOLL

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US536512A (en) * 1895-03-26 crossley
GB189405937A (en) * 1893-09-28 1895-01-19 Alfred Fayaud Improvements in India Rubber Toys.
US4683669A (en) * 1983-04-28 1987-08-04 Greer Jr Thomas J Motor element for facially animated mannequin
US4759737A (en) * 1987-03-11 1988-07-26 Magda Ferenczi Doll having pneumatic actuated arms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047377A (en) * 1931-02-02 1936-07-14 Adverteerings Mij Nv Display figure
US2698499A (en) * 1952-05-29 1955-01-04 Norman S Dygon Foot operated dummy
US3594942A (en) * 1969-05-07 1971-07-27 Horsman Dolls Inc Kicking doll
FR2323420A1 (en) * 1975-09-15 1977-04-08 Hasbro Development Corp WALKING DOLL

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9112863A1 *

Also Published As

Publication number Publication date
WO1991012863A1 (en) 1991-09-05
EP0516735A4 (en) 1993-04-28

Similar Documents

Publication Publication Date Title
US5040626A (en) Walking robots having double acting fluid driven twistor pairs as combined joints and motors and method of locomotion
US4751868A (en) Method and system employing double-acting, fluid-driven twistor-pairs as combined joints and motors in arthrobots
US5205774A (en) Animation method and device
US6684754B2 (en) Pneumatic muscle analogs for exoskeletal robotic limbs and associated control mechanisms
US5474485A (en) Animation method and device
US4739692A (en) Liquid contractility actuator
WO1988003008A1 (en) Motorised joint
US5127867A (en) Versatile network of multiple spout balloons
US4671258A (en) Therapeutic multiple joint exerciser
US4892500A (en) Versatile network of multiple spout balloons
US20010002354A1 (en) Apparatus and method for providing inflated undulating figures
US6568984B1 (en) Toy figurine
US7100491B2 (en) Fluid-powered mechanical actuator and method for controlling
US6447361B1 (en) Balloon-shaped structure driving apparatus and discharge/suction selector valve device used for the balloon-shaped structure driving apparatus
US5769725A (en) Inflatable motion base
EP0516735A1 (en) Animation method and device
US5104346A (en) Animation method and device
US5065640A (en) Inflatable structure
US536512A (en) crossley
KR100808945B1 (en) Structure of artificial muscle
US7021988B2 (en) Expressive feature mechanism for animated characters and devices
US7226428B2 (en) Air controlled massage system
US3125827A (en) ostrander
JP2002303303A (en) Spiral tube actuator
US3599363A (en) Environmental space suit toy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB IT LI LU NL SE

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931206

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950207