EP0496016B1 - Hochdruckzerstäubungsdüse - Google Patents

Hochdruckzerstäubungsdüse Download PDF

Info

Publication number
EP0496016B1
EP0496016B1 EP91100787A EP91100787A EP0496016B1 EP 0496016 B1 EP0496016 B1 EP 0496016B1 EP 91100787 A EP91100787 A EP 91100787A EP 91100787 A EP91100787 A EP 91100787A EP 0496016 B1 EP0496016 B1 EP 0496016B1
Authority
EP
European Patent Office
Prior art keywords
tube
nozzle
nozzle orifice
cover
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91100787A
Other languages
English (en)
French (fr)
Other versions
EP0496016A1 (de
Inventor
Klaus Dr. Döbbeling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to EP91100787A priority Critical patent/EP0496016B1/de
Priority to DE59105449T priority patent/DE59105449D1/de
Priority to US07/805,660 priority patent/US5269495A/en
Publication of EP0496016A1 publication Critical patent/EP0496016A1/de
Application granted granted Critical
Publication of EP0496016B1 publication Critical patent/EP0496016B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/10Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in the form of a fine jet, e.g. for use in wind-screen washers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl

Definitions

  • the invention relates to a high-pressure atomizing nozzle, comprising a nozzle body, in which a turbulence chamber is formed, which is connected to an outside space via at least one nozzle bore, and has at least one supply channel for the liquid to be atomized, through which said liquid can be supplied under pressure .
  • the invention refers to a state of the art, as it results for example from the book "LUEGER - LEXIKON DER ENERGIETECHNIK UND KRAFTMASCHINEN", DVA Stuttgart 1965, p.600, under the keyword “atomizer burner”.
  • the oil that comes to the combustion is mechanically finely divided, ie broken down into small droplets of about 10 to 400 »m in diameter (oil mist), which evaporate and burn in the flame when mixed with the combustion air.
  • so-called pressure atomizers are used for this.
  • the oil is fed under high pressure to an atomizing nozzle which is attached to a nozzle body by means of a feed pump.
  • the oil enters a swirl chamber via essentially tangential slots or channels and leaves the nozzle via a nozzle bore.
  • the tangential inflow ensures that the Oil particles get two motion components, an azimuthal and an axial.
  • the liquid rotation in the vortex chamber causes the formation of an air funnel, the tip of which extends into the vortex chamber.
  • the oil film emerging from the nozzle bore as a rotating hollow cylinder expands due to the centrifugal force into a hollow cone, the edges of which become unstable in vibration and tear into small oil droplets.
  • the atomized oil forms a cone with a more or less large opening angle.
  • Swirl nozzles of a known type are less suitable for this because they do not allow small angles of spread.
  • a distributor with a splitter chamber and drive channels is provided in the nozzle head.
  • the drive channels are arranged close to the bottom of the splitter chamber, run radially, and their mouths face each other exactly.
  • the fluid flows tangentially into a swirl chamber and then exits through the nozzle opening in the form of a hollow cone.
  • Yet another variant is the subject of FR-A-1,403,676. There, the fluid flows through holes in a laminating chamber, is deflected there and then emerges through a nozzle hole after being deflected again.
  • Patent Abstracts of Japan Vol. 14, no. 57 (C-684) (4000) describes and shows a nozzle in which the fluid flows into a first swirl chamber, leaves it through a first conical nozzle and then into a second chamber reached. From there it is released into the open through a second nozzle, which is arranged in a cap that is displaceable relative to the first nozzle. The volume of this chamber can be changed by moving the cap in the longitudinal direction of the nozzle. This in turn causes the injection angle to change.
  • the invention is based on the object of specifying a high-pressure atomization nozzle which has a simple construction, very small angle of propagation and optimal beam decay is possible even at comparatively low pressures.
  • cross-sectional area (s) of the feed channel or channels opening into the turbulence chamber is (are) larger by a factor of 2 to 10 than the cross-sectional area of the nozzle bore.
  • the nozzle outlet area is useful as a turbulence chamber inlet area.
  • Turbulence generation is achieved by means of an abrupt expansion (Carnot diffuser) into the turbulence chamber located in front of the actual nozzle hole.
  • the fluid flowing into the turbulence chamber is practically not forced to have any tangential velocity components in the turbulence chamber, but is only put into strong turbulence which is excited by shear forces.
  • the inflow into the turbulence chamber can take place via one or more feed channels, preferably essentially radially to the axis of the nozzle bore, or else axially and coaxially to the nozzle bore. In the limit case, the feed channel is an annular gap.
  • the fuel jet emerging from the nozzle bore also has essentially no tangential speed components which would lead to a conical expansion of the fuel.
  • the consequence of this is that the fluid jet is brought to rapid decay by the turbulence generated in front of the nozzle bore.
  • the resulting drop spray is characterized by small angles of spread and very small drop sizes (in the case of atomization of water ⁇ 20 »m above admission pressure ⁇ 150 bar).
  • the high-pressure atomization nozzle according to FIG. 1 comprises a nozzle body 1, consisting of a tube 2, which is closed at the bottom by a conical cover 3. In the middle of the cover 3 there is a nozzle bore 4, the longitudinal axis of which is designated 5.
  • a second tube 6 is inserted, which reaches up to the cover 3 and rests on it.
  • the annular space 7 between the tubes 2 and 6 serves to supply the fluid (water, liquid fuel).
  • the end of the tube 6 resting on the cover 3 is provided with four radial slots 8, the longitudinal axes of which are designated by 9.
  • the four longitudinal axes 9 of the slots 8 intersect with the longitudinal axis 5 of the nozzle bore 4.
  • a filler piece 10 is inserted and fastened therein. This filler 10 is spaced from the upper edge of the slots 8. In this way, a space 11 is formed between the cover 3 and the filler 10, which serves as a turbulence chamber.
  • the fluid to be atomized passes under pressure via the annular space 7 through the slits 8 into the turbulence chamber 11.
  • the jets - four in the case of the example - enter the turbulence chamber 11 essentially radially and, due to the intensive shear and their deflection in the axial direction and by the collision of the rays a very high level of turbulence. This high level of turbulence does not subside on the short path to the point where it emerges from the nozzle.
  • the fluid jet is brought to rapid disintegration by the turbulence generated in front of the nozzle bore 4 (after leaving the nozzle bore 4), with angles of propagation of 20 ° and less resulting in the exterior.
  • the cross section of the nozzle and the slots 8 results from the desired throughput (depending on the admission pressure) taking into account sufficiently high Reynolds numbers in the nozzle bore 4 and the slots 8.
  • the diagram shown in FIG. 3 illustrates the dependence of the droplet diameter d T on the admission pressure p for different limit diameters of the droplet mass distribution, measured at a distance of approximately 200 mm from the nozzle.
  • D S denotes the Sauter diameter.
  • the high-pressure atomization nozzle according to the invention can also be provided with fewer or more slits 8, or the slits can extend over almost the entire circumference of the inner tube 6, as is illustrated in FIG.
  • the individual feed channels 8 are then separated from one another only by narrow webs 8a, which serve as a spacing of the tube 6 from the cover 3. In the limit case of an infinite number of slots, an annular gap results as an inflow channel into the turbulence chamber 11.
  • the desired turbulence can also be achieved by an axial inflow, as the embodiment according to FIGS. 4 and 5 shows.
  • a metallic insert 13 is soldered into a tube 12, which seals the tube 12 to the right.
  • the interior 14 of the tube serves to supply the fuel.
  • a blind hole 15 is incorporated in the insert 13, which is connected via a radially extending bore 16 to a recess 17 in the form of a cylindrical section in the metallic insert 13.
  • This recess 17 forms the turbulence chamber and corresponds to the space 11 in FIG. 1, while the bore 16 corresponds to the slots 8 in FIG.
  • the tube 12 is provided with a nozzle bore 18 coaxial with the bore 16.
  • the longitudinal axis of the nozzle bore 18 is denoted by 19, the longitudinal axis of the bore 16 is denoted by 20. Both axes 19 and 20 coincide.
  • the inflow into the “cavity” (turbulence chamber 17) alone generates a sufficiently high level of turbulence, which continues in the nozzle bore 18 and that Fluid in the outside space decays. This also makes it possible to achieve an angle of spread of the drop spray of 20 ° and less in the exterior.
  • the diagram according to FIG. 6 illustrates the dependence of the droplet radius d T on the admission pressure p for different and at the same time gives an impression of the comparatively small dependence of the droplet radius d T on the nozzle diameter d L compared to FIG.
  • D X denotes the limit diameter which X mass% of all particles fall below.
  • D S denotes the Sauter diameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Description

    TECHNISCHES GEBIET
  • Die Erfindung bezieht sich auf eine Hochdruckzerstäubungsdüse, umfassend einen Düsenkörper, in welchem eine Turbulenzkammer ausgebildet ist, welche über mindestens eine Düsenbohrung mit einem Aussenraum in Verbindung steht, und mindestens einen Zufuhrkanal für die zu zerstäubende Flüssigkeit aufweist, durch welchen besagte Flüssigkeit unter Druck zuführbar ist.
  • Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich beispielsweise aus dem Buch "LUEGER - LEXIKON DER ENERGIETECHNIK UND KRAFTMASCHINEN", DVA Stuttgart 1965, S.600, unter dem Stichwort "Zerstäuberbrenner" ergibt.
  • TECHNOLOGISCHER HINTERGRUND UND STAND DER TECHNIK
  • In Zerstäuberbrennern wird das zur Verbrennung gelangende Oel mechanisch fein verteilt, d.h. in kleine Tröpfchen von etwa 10 bis 400 »m Durchmesser (Oelnebel) zerlegt, die unter Mischung mit der Verbrennungsluft in der Flamme verdampfen und verbrennen. Hierzu werden neben Zerstäubertypen, wie Injektions- und Drehzerstäubern, sogenannte Druckzerstäuber eingesetzt. Hier wird durch eine Förderpumpe das Oel unter hohem Druck einer Zerstäuberdüse zugeführt, die auf einem Düsenkörper befestigt ist. Das Oel gelangt über im wesentlichen tangential verlaufende Schlitze oder Kanäle in eine Wirbelkammer und verlässt über eine Düsenbohrung die Düse. Durch die tangentiale Einströmung wird erreicht, dass die Oelteilchen zwei Bewegungskomponenten, eine azimutale und eine axiale, erhalten. Die Flüssigkeitsrotation in der Wirbelkammer verursacht die Ausbildung eines Lufttrichters, dessen Spitze bis in die Wirbelkammer reicht. Der als rotierende Hohlzylinder aus der Düsenbohrung austretende Oelfilm weitet sich aufgrund der Fliehkraft zu einem Hohlkegel aus, dessen Ränder in instabile Schwingung geraten und zu kleinen Oeltröpfchen zerreissen. Das zerstäubte Oel bildet einen Kegel mehr oder weniger grossen Oeffnungswinkels.
  • Bei der emissionsarmen Verbrennung von mineralischen Brennstoffen in modernen Brennern werden besondere Anforderungen an die Zerstäubung gestellt, die sich etwa wie folgt darstellen:
    • die Tröpfchen müssen sehr klein sein, sodass sie vor der Verbrennung verdampfen können;
    • der Oeffnungswinkel (Ausbreitungswinkel) des Oelnebels sollte bei bestimmten Brennertypen, insbesondere bei Verbrennung unter erhöhtem Druck klein sein (z.B. Dieselmotor,Gasturbine;
    • die Tropfen müssen eine sehr hohe Geschwindigkeit haben, um (auch unter der z.B. in einer Gasturbinen-Brennkammer um den Faktor 5 erhöhten Dichte) noch weit genug in den Verbrennungsluftstrom eindringen zu können.
  • Dralldüsen bekannter Bauart sind hierfür weniger geeignet, weil sie keine kleine Ausbreitungswinkel erlauben.
  • Gleiches gilt für die Zerstäubungseinrichtung, wie sie beispielsweise aus der DE-C-627,972 bekannt ist. Bei dieser bekannten Düse ist im Düsenkopf ein Verteiler mit Zerteilerkammer und Treibkanälen vorgesehen. Die Treibkanäle sind dabei dicht über dem Boden der Zerteilerkammer angeordnet, verlaufen radial, und ihre Mündungen stehen sich genau gegenüber.
  • Bei einer anderen Düsenkonstruktion gemäss der GB-A-717,562 strömt das Fluid tangential in eine Wirbelkammer ein und tritt dann durch die Düsenöffnung in Form eines Hohlkegels aus. Wieder eine andere Variante ist Gegenstand der FR-A-1,403,676. Dort strömt das Fluid durch Bohrungen in eine Laminierkammer, wird dort umgelenkt und tritt dann nach erneuter Umlenkung durch eine Düsenbohrung aus.
  • Im Patent Abstracts of Japan Vol. 14, no. 57(C-684)(4000) ist eine Düse beschrieben und dargestellt, bei der das Fluid in eine erste Wirbelkammer einströmt, diese durch eine erste konische Düse verlässt und dann in eine zweite Kammer gelangt. Von dort aus gelangt es durch eine zweite Düse, die in einer gegenüber der ersten Düse verschieblichen Kappe angeordnet ist, ins Freie. Das Volumen dieser Kammer kann durch Verschieben der Kappe in Düsenlängsrichtung verändert werden. Dies wiederum bewirkt eine Veränderung des Injektionswinkels.
  • Aus der US-A-3,974,966 schliesslich ist eine Flachstrahldüse bekannt, bei der Fluid über mehrere Bohrungen in eine Wirbelkammer einströmt und von dort durch einen Schlitz in der Düsenwand ins Freie gelangt.
  • KURZE DARSTELLUNG DER ERFINDUNG
  • Der Erfindung liegt die Aufgabe zugrunde, eine Hochdruckzerstäubungsdüse anzugeben, die eine einfache Bauart aufweist, sehr kleine Ausbreitungswinkel und schon bei vergleichsweise geringen Drücken optimalen Strahlzerfall ermöglicht.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Querschnittsfläche(n) des bzw. der in die Turbulenzkammer mündenden Zufuhrkanals bzw. Zufuhrkanäle um den Faktor 2 bis 10 grösser ist (sind) als die Querschnittsfläche der Düsenbohrung. Zur Zerstäubung von Wasser mit Düsenbohrungen vum 0.5 mm ist etwa die vierfache Düsenaustrittsfläche als Turbulenzkammer-Eintrittsfläche sinnvoll.
  • Auf diese Weise wird ein Teil des zur Verfügung stehenden Düsenvordrucks zur Erzeugung hoher Turbulenzgrade im zu zerstäubenden Fluid benutzt. Die Turbulenzerzeugung wird dabei mittels einer stossartigen Erweiterung (Carnot-Diffusor) in die vor dem eigentlichen Düsenloch angeordneten Turbulenzkammer erreicht. Das in die Turbulenzkammer einströmende Fluid erhält in der Turbulenzkammer praktisch keine tangentiale Geschwindigkeitskomponenten aufgezwungen, sondern wird nur in starke, durch Scherkräfte angeregte Turbulenz versetzt. Die Einströmung in die Turbulenzkammer kann dabei über einen oder auch mehrere, vorzugsweise im wesentlichen radial zur Düsenbohrungsachse verlaufende Zufuhrkanäle oder auch axial und koaxial zur Düsenbohrung erfolgen. Im Grenzfall ist der Zuführkanal ein Ringspalt. Damit erhält man - im Gegensatz zur bekannten Dralldüse, wo die Tropfen durch Zerfall eines dünnen Flüssigkeitsfilms stromabwärts der Düsenöffnung entstehen, - auch der aus der Düsenbohrung austretendende Brennstoffstrahl im wesentlichen keine tangentialen Geschwindigeitskomponenten, die zu einer kegelförmigen Erweiterung des Brennstoffes führen würden. Die Folge davon ist, dass der Flüssigkeitsstrahl durch die vor der Düsenbohrung erzeugte Turbulenz zum raschen Zerfall gebracht wird. Das entstehende Tropfenspray zeichnet sich durch kleine Ausbreitungswinkel und sehr kleine Tropfengrössen (im Falle der Zerstäubung von Wasser ≦ 20»m oberhalb Vordrucken ≧ 150 bar) aus.
  • Im Vergleich zu einfachen Lochdüsen tritt ein Strahlzerfall schon bei wesentlich geringeren Drücken auf. Im Vergleich zu Dieseleinspritzdüsen ergibt sich durch den vor dem Spritzloch angeordneten Turbulenzerzeuger eine bessere Zerstäubungsgüte.
  • Ausführungsbeispiele der Erfindung sowie die damit erzielbaren Vorteile werden nachfolgend anhand der Zeichnung näher erläutert.
  • KURZE BESCHREIBUNG DER ZEICHNUNG
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt:
  • Fig.1
    einen Längsschnitt durch ein erstes Ausführungsbeispiel einer Hochdruckzerstäubungsdüse mit radialer Zuströmung in die Turbulenzkammer;
    Fig.2
    einen Querschnitt durch die Hochdruckzerstäubungsdüse gemäss Fig.1 längs deren Linie AA;
    Fig.2a
    einen Querschnitt durch eine Abwandlung von Fig.2 mit Zufuhrkanälen, die als Spalte ausgebildet sind;
    Fig.3
    ein Diagramm zur Veranschaulichung der Abhängigkeit der Tröpfchengrösse vom Druck einer Hochdruckzerstäubungsdüse gemäss Fig.1 bzw. 2 bei der Zerstäubung von Wasser;
    Fig.4
    ein Ausführungsbeispiel einer Hochdruckzerstäubungsdüse mit axialer Zuströmung im Längsschnitt;
    Fig.5
    ein einen Querschnitt durch die Hochdruckzerstäubungsdüse gemäss Fig.4 längs deren Linie BB.
    Fig.6
    ein Diagramm zur Veranschaulichung der Abhängigkeit der Tröpfchengrösse vom Druck einer Hochdruckzerstäubungsdüse gemäss Fig.4 bzw. 5 bei der Zerstäubung von Wasser.
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Die Hochdruckzerstäubungsdüse nach Fig.1 umfasst einen Düsenkörper 1, bestehend aus einem Rohr 2, das nach unten hin durch einen kegeligen Deckel 3 verschlossen ist. In der Mitte des Deckels 3 befindet sich eine Düsenbohrung 4, deren Längsachse mit 5 bezeichnet ist. In das Rohr 2 ist ein zweites Rohr 6 eingesetzt, das bis an den Deckel 3 heranreicht und auf diesem aufliegt. Der Ringraum 7 zwischen den Rohren 2 und 6 dient der Zufuhr des Fluids (Wasser,flüssiger Brennstoff). Das auf dem Deckel 3 aufliegende Ende des Rohres 6 ist mit vier radialen Schlitzen 8 versehen, deren Längsachsen mit 9 bezeichnet sind. Die vier Längsachsen 9 der Schlitze 8 schneiden sich mit der Längsachse der 5 der Düsenbohrung 4. Im Inneren des zweites Rohres 6 ist ein Füllstück 10 eingeschoben und darin befestigt. Dieses Füllstück 10 ist von der Oberkante der Schlitze 8 beabstandet. Auf diese Weise bildet sich zwischen dem Deckel 3 und dem Füllstück 10 ein Raum 11 aus, der als Turbulenzkammer dient.
  • Das zu zerstäubende Fluid gelangt unter Druck über den Ringraum 7 durch die Schlitze 8 in die Turbulenzkammer 11. Die Strahlen - im Beispielsfall vier - treten im wesentlichen radial in die Turbulenzkammer 11 ein und erzeugen durch die intensiven Scherungen und durch ihre Umlenkung in axiale Richtung und durch das Aufeinandertreffen der Strahlen ein sehr hohes Turbulenzniveau. Dieses hohe Turbulenzniveau klingt auf dem kurzen Weg bis zum Austritt aus der Düse nicht ab. Der Flüssigkeitsstrahl wird durch die vor der Düsenbohrung 4 erzeugte Turbulenz im Aussenraum (nach Verlassen der Düsenbohrung 4) zum raschen Zerfall gebracht, wobei sich im Aussenraum Ausbreitungswinkel von 20° und weniger ergeben. Der Querschnitt der Düse und der Schlitze 8 ergibt sich aus dem gewünschten Durchsatz (in Abhängigkeit des Vordruckes) unter Berücksichtigung genügend hoher Reynoldszahlen in der Düsenbohrung 4 und der Schlitze 8.
  • Das in Fig.3 dargestellte Diagramm veranschaulicht die Abhängigkeit des Tröpfchendurchmessers dT vom Vordruck p für verschiedene Grenzdurchmesser der Tropfenmassenverteilung, gemessen im Abstand von etwa 200 mm von der Düse. DX bezeichnet den Grenzdurchmesser, den X Massen% aller Teilchen unterschreiten mit X=10, 50, 90. DS bezeichnet den Sauterdurchmesser. Die dem Diagramm zugrunde liegende Hochdruckzerstäubungsdüse wurde dabei mit Wasser beaufschlagt und hatte folgende wesentliche Kenngrössen (vgl. Fig.1):

    d L = 0,3 mm, d t = 0,5 mm, h t = 0,3 mm, d K = 2 mm
    Figure imgb0001


    Die erfindungsgemässe Hochdruckzerstäubungsdüse kann abweichend vom dargestellten Ausführungsbeispiel auch mit weniger oder mehr Schlitzen 8 versehen sein, oder die Schlitze können sich, wie es in Fig.2a veranschaulicht ist, über nahezu den gesamten Umfang des inneren Rohres 6 erstrecken. Die einzelnen Zuführungskanäle 8 sind dann nur noch durch schmale Stege 8a, die als Distanzierung des Rohres 6 vom Deckel 3 dienen, voneinander getrennt Im Grenzfall unendlich vieler Schlitze ergibt sich ein Ringspalt als Zuströmkanal in die Turbulenzkammer 11.
  • Selbst mit einem einzigen radial verlaufenden Schlitz 8 ergibt sich der angestrebte Effekt der extrem hohen Turbulenzbildung in der Turbulenzkammerkammer 11.
  • Anstelle einer radialen Einströmung in die Turbulenzkammer 11 gemäss Fig.1 und 2 lässt sich die gewünschte Turbulenz auch durch eine axiale Zuströmung erzielen, wie es die Ausführungsform nach Fig.4 und 5 zeigt. Dort ist in ein Rohr 12 ein metallischer Einsatz 13 eingelötet, welcher das Rohr 12 nach rechts hin abdichtet. Das Innere 14 des Rohres dient der Zufuhr des Brennstoffes. Im Einsatz 13 ist eine Sacklochbohrung 15 eingearbeitet, welche über einen radial verlaufenden Bohrung 16 mit einer zylinderabschnittförmigen Ausnehmung 17 im metallischer Einsatz 13 in Verbindung steht. Diese Ausnehmung 17 bildet die Turbulenzkammer und entspricht dem Raum 11 der Fig.1, während die Bohrung 16 den Schlitzen 8 der Fig.1 entspricht. Koaxial zur Bohrung 16 ist das Rohr 12 mit einer Düsenbohrung 18 versehen. Die Längsachse der Düsenbohrung 18 ist mit 19, die Längsachse der Bohrung 16 ist mit 20 bezeichnet. Beiden Achsen 19 und 20 fallen zusammen. Obwohl bei der Ausführungsform einer Hochdruckzerstäubungsdüse nach Fig.4 und 5 keine Umlenkung des in die Turbulenzkammer 17 einströmenden Flüssigkeitsstrahles erfolgt, erzeugt allein die Einströmung in die "Kavität" (Turbulenzkammer 17) ein genügend hohes Turbulenzniveau, das sich in der Düsenbohrung 18 fortsetzt und das Fluid im Aussenraum zum Zerfall bringt. Auch hiermit lassen sich Ausbreitungswinkel des Tropfensprays im Aussenraum von 20° und weniger erzielen.
  • Das Diagramm gemäss Fig.6 veranschaulicht die Abhängigkeit des Tröpfchenradius dT vom Vordruck p für verschiedene und vermittelt im Vergleich zur Fig.3 gleichzeitig einen Eindruck von der vergleichsweise geringen Abhängigkeit des Tröpfchenradius dT vom Düsendurchmesser dL. DX bezeichnet wie im Diagramm nach Fig.3 den Grenzdurchmesser, den X Massen% aller Teilchen unterschreiten. DS bezeichnet den Sauterdurchmesser.
  • Die dem Diagramm zugrunde liegende Hochdruckzerstäubungsdüse wurde dabei mit Wasser beaufschlagt und hatte folgende wesentliche Kenngrössen:
    Durchmesser der Düsenbohrung dL: 0,12 mm
    Länge der Düsenbohrung = Wandstärke des Rohres 12: 0,35 mm
    Volumen der Turbulenzkammer: etwa 0,4 mm³
    Durchmesser der Bohrung 16: 0,3 mm

Claims (7)

  1. Hochdruckzerstäubungsdüse, umfassend einen Düsenkörper (1;12), in welchem eine Turbulenzkammer (11;17) ausgebildet ist, welche über mindestens eine Düsenbohrung (4;18) mit einem Aussenraum in Verbindung steht, und mindestens einen Zufuhrkanal (8;16) für die zu zerstäubende Flüssigkeit aufweist, durch welchen besagte Flüssigkeit unter Druck zuführbar ist, dadurch gekennzeichnet, dass die Querschnittsfläche(n) des bzw. der in die Turbulenzkammer (11;17) mündenden Zufuhrkanals bzw. Zufuhrkanäle (8;8a;16) um den Faktor 2 bis 10 grösser ist (sind) als die Querschnittsfläche der Düsenbohrung (4).
  2. Hochdruckzerstäubungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die Düsenbohrung (4) im Deckel (3) eines ersten Rohres (2) angeordnet ist, in welches ein zweites Rohr (6) kleineren Aussendurchmessers eingesetzt ist, das bis zum besagten Deckel (3) reicht, und dass im deckelseitigen Ende des zweiten Rohres mindestens ein radial verlaufender Schlitz (8,8a) vorgesehen ist, welcher den Ringraum (7) zwischen dem ersten und dem zweiten Rohr mit der Turbulenzkammer (11) verbindet, von welcher Turbulenzkammer die Düsenbohrung (4) in den Aussanraum führt.
  3. Hochdruckzerstäubungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die Düsenbohrung (4) im Deckel (3) eines ersten Rohres (2) angeordnet ist, in welches ein zweites Rohr (6) kleineren Aussendurchmessers eingesetzt ist, das unter Belassung eines Ringspaltes bis zum besagten Deckel (3) reicht, welcher Ringspalt den Ringraum (7) zwischen dem ersten und dem zweiten Rohr mit der Turbulenzkammer (11) verbindet, von welcher Turbulenzkammer die Düsenbohrung (4) in den Aussenraum führt.
  4. Hochdruckzerstäubungsdüse nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Turbulenzkammer (11) im wesentlichen durch besagten Deckel (3) und durch ein Füllstück (10) im zweiten Rohr (6) begrenzt und gegebenenfalls seitlich durch das über das Füllstück (10) herausragende Ende des zweiten Rohres (6) begrenzt ist.
  5. Hochdruckzerstäubungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die Düsenbohrung als radiale Bohrung (16) in der Wandung eines Rohres (12) ausgebildet ist, in welchem Rohr ein metallischer Einsatz (13) befestigt ist, dass in diesem Einsatz im Bereich der Düsenbohrung eine Ausnehmung (17) als Turbulenzkammer ausgebildet ist, welche über eine radial im Einsatz (13) verlaufende Bohrung (16) und eine sich daran anschliessenden axial verlaufende Bohrung (15) mit dem Innenraum des besagten Rohres (12) in Verbindung steht, wobei die Achsen der Bohrung (16) im Einsatz (13) und der Bohrung im Rohr (12) annähernd parallel verlaufen oder im Grenzfall zusammenfallen.
  6. Hochdruckzerstäubungsdüse nach Anspruch 4, dadurch gekennzeichnet, dass die besagte Ausnehmung im Einsatz (13) die Form eines Zylinderabschnitts aufweist, der in der in den Einsatz von aussen eingearbeitet ist.
  7. Hochdruckzerstäubungsdüse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Achse(n) (9;20) des Zufuhrkanals (8;16) bzw. der Zufuhrkanäle die Achse (5;19) der Düsenbohrung (4;18) schneiden oder im Grenzfall mit der letzteren zusammenfallen.
EP91100787A 1991-01-23 1991-01-23 Hochdruckzerstäubungsdüse Expired - Lifetime EP0496016B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP91100787A EP0496016B1 (de) 1991-01-23 1991-01-23 Hochdruckzerstäubungsdüse
DE59105449T DE59105449D1 (de) 1991-01-23 1991-01-23 Hochdruckzerstäubungsdüse.
US07/805,660 US5269495A (en) 1991-01-23 1991-12-12 High-pressure atomizing nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP91100787A EP0496016B1 (de) 1991-01-23 1991-01-23 Hochdruckzerstäubungsdüse

Publications (2)

Publication Number Publication Date
EP0496016A1 EP0496016A1 (de) 1992-07-29
EP0496016B1 true EP0496016B1 (de) 1995-05-10

Family

ID=8206320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91100787A Expired - Lifetime EP0496016B1 (de) 1991-01-23 1991-01-23 Hochdruckzerstäubungsdüse

Country Status (3)

Country Link
US (1) US5269495A (de)
EP (1) EP0496016B1 (de)
DE (1) DE59105449D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934555A (en) * 1996-03-05 1999-08-10 Abb Research Ltd. Pressure atomizer nozzle
US6045058A (en) * 1997-07-17 2000-04-04 Abb Research Ltd. Pressure atomizer nozzle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440558A1 (de) * 1994-11-12 1996-05-15 Abb Research Ltd Vormischbrenner
US5711488A (en) * 1995-10-13 1998-01-27 The Procter & Gamble Company High pressure swirl atomizer
EP0911583B1 (de) 1997-10-27 2003-03-12 ALSTOM (Switzerland) Ltd Verfahren zum Betrieb eines Vormischbrenners
DE10024888B4 (de) * 2000-05-16 2008-10-16 Gea Wtt Gmbh Plattenwärmeübertrager mit Kältemittelverteiler
US7735756B2 (en) * 2006-04-12 2010-06-15 Combustion Components Associates, Inc. Advanced mechanical atomization for oil burners
CN102599987B (zh) * 2012-03-31 2014-11-05 青岛易邦生物工程有限公司 药液喷头
CN105728226B (zh) * 2016-04-08 2018-07-03 王茜南 一种浆料浓缩机的两级式浆料雾化装置
CN111195476B (zh) * 2020-03-12 2022-02-15 北京北控京奥建设有限公司 一种用于液氨泄漏应急处置的水雾幕喷射装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE627972C (de) * 1936-03-26 Josef Kampschulte Duese an Geraeten zum Zerstaeuben von OEl, insbesondere Fussbodenoel
US2369357A (en) * 1942-02-26 1945-02-13 Arthur J Kunz Stream-or-spray gun
US2681829A (en) * 1952-06-13 1954-06-22 Spraying Systems Co Spray nozzle strainer or the like
GB717562A (en) * 1952-10-30 1954-10-27 Spraying Systems Co Improvements in or relating to spray nozzles
FR1403676A (fr) * 1964-03-10 1965-06-25 Pulvérisateur
US3974966A (en) * 1975-08-20 1976-08-17 Avco Corporation Miniature flat spray nozzle
US4930701A (en) * 1987-09-08 1990-06-05 Mcdonnell Douglas Corporation Confluent nozzle
SU1570787A1 (ru) * 1988-03-14 1990-06-15 Предприятие П/Я А-7731 Формирователь секторной струи
JPH01284351A (ja) * 1988-05-11 1989-11-15 Ikeuchi:Kk ノズル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934555A (en) * 1996-03-05 1999-08-10 Abb Research Ltd. Pressure atomizer nozzle
US6045058A (en) * 1997-07-17 2000-04-04 Abb Research Ltd. Pressure atomizer nozzle

Also Published As

Publication number Publication date
EP0496016A1 (de) 1992-07-29
US5269495A (en) 1993-12-14
DE59105449D1 (de) 1995-06-14

Similar Documents

Publication Publication Date Title
EP0794383B1 (de) Verfahren zum Betreiben einer Druckzerstäuberdüse
EP0892212B1 (de) Druckzerstäuberdüse
EP0902233B1 (de) Kombinierte Druckzerstäuberdüse
DE19536837B4 (de) Vorrichtung und Verfahren zum Einspritzen von Brennstoffen in komprimierte gasförmige Medien
EP1802915B1 (de) Brenner für gasturbine
EP1243343B1 (de) Zweistoffsprühdüse
DE2446398A1 (de) Axialwirbelvergaser mit zentraleinspritzung
EP1030109B1 (de) Brennstofflanze zum Eindüsen von flüssigen und/oder gasförmigen Brennstoffen in eine Brennkammer
EP0711953B1 (de) Vormischbrenner
DE2300217C3 (de) Einspritzvorrichtung zur Einspritzung flüssigen Brennstoffs in Hochöfen
DE3609960A1 (de) Vorrichtung und verfahren zum zerstaeuben von fluessigem brennstoff
EP0496016B1 (de) Hochdruckzerstäubungsdüse
DE2544361A1 (de) Kraftstoffspritzduese
EP0924460B1 (de) Zweistufige Druckzerstäuberdüse
EP0924461B1 (de) Zweistufige Druckzerstäuberdüse
EP0718550A1 (de) Einspritzdüse
DE69005435T2 (de) Turbinenmotor mit nadelinjektor.
DE10319582A1 (de) Zweistoffsprühdüse
DE4011891A1 (de) Zweistoffzerstaeubungsduese
EP0911582A1 (de) Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
EP0043908B1 (de) Zerstäuberdüse für kontinuierliche Brennstoffeinspritzung
DE19854382B4 (de) Verfahren und Vorrichtung zur Zerstäubung flüssigen Brennstoffs für eine Feuerungsanlage
DE1551648B2 (de) Zerstäubungsbrenner für flüssigen Brennstoff
DE2436795A1 (de) Brenner fuer fluessige brennstoffe
DE4401097B4 (de) Verfahren zur Reduzierung der NOX-Emissionen sowie Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19930118

17Q First examination report despatched

Effective date: 19940506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59105449

Country of ref document: DE

Date of ref document: 19950614

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100129

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110123