EP0454575A1 - Dalle de chaussée d'un pont, notamment de grande portée - Google Patents

Dalle de chaussée d'un pont, notamment de grande portée Download PDF

Info

Publication number
EP0454575A1
EP0454575A1 EP91401085A EP91401085A EP0454575A1 EP 0454575 A1 EP0454575 A1 EP 0454575A1 EP 91401085 A EP91401085 A EP 91401085A EP 91401085 A EP91401085 A EP 91401085A EP 0454575 A1 EP0454575 A1 EP 0454575A1
Authority
EP
European Patent Office
Prior art keywords
beams
concrete
paving slab
slab according
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91401085A
Other languages
German (de)
English (en)
Inventor
Jean Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Centrale dEtudes et de Realisations Routieres Scetauroute
Original Assignee
Societe Centrale dEtudes et de Realisations Routieres Scetauroute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Centrale dEtudes et de Realisations Routieres Scetauroute filed Critical Societe Centrale dEtudes et de Realisations Routieres Scetauroute
Publication of EP0454575A1 publication Critical patent/EP0454575A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed
    • E01D2101/285Composite prestressed concrete-metal

Definitions

  • the present invention relates to a pavement slab for a bridge, in particular a road bridge, which is particularly suitable for long-span bridges.
  • the pavement slab of a road bridge often consists of a reinforced or prestressed concrete slab resting on a metal framework.
  • the concrete slab can also be an integral part of the resistant section of the bridge deck and be able to support the loads resulting from the normal use of the bridge without the need to provide a support frame placed under this slab.
  • thicknesses equal to 1/30 of the free span; for example from 200 to 300 mm for spans from 6 to 9 m.
  • the capacity of these slabs is generally limited by the resistance to punching against point loads imposed by the wheels of trucks (or the axles of trains for a railway structure).
  • the weight of the floor slab quickly becomes a predominant fraction of the structure's own weight; if this weight is to be reduced, it is advisable to turn to other solutions using little or no concrete;
  • the traditionally adopted solution in suspension bridges in particular is the metal slab orthotropic; a metal plate coated with a thin layer of road surface; it is stiffened on its underside by welded troughs, generally arranged parallel to the axis of the structure. There is no support structure under the slab.
  • Tancarville bridge which has a suspended span of 600 m in span: the Robinson slab, named after its author.
  • a continuous metal sheet is used on the underside of a thin reinforced concrete slab (100 mm thick), the connection between the two materials being ensured by studs. Again, there is no support structure to provide under the slab.
  • the solution is much more economical than the orthotropic metallic slab. However, it is handicapped by the considerable number of studs to be implemented.
  • the lower sheet has no stability with respect to the buckling, and its capacity to support loads (in particular the weight of the concrete of the slab) is, at this time, very reduced. This is probably where we have to find the reason why this experience was hardly followed by other achievements.
  • the object of the present invention is to provide a pavement slab which escapes the drawbacks of the prior techniques, and in particular which, while having the advantages of lightness and resistance in the finished state of the Robinson slab, either of a lower price and can be made as part of a process comprising the construction of the bridge deck in successive stages, one of which is the pouring of concrete from the slab onto a metal plate previously put in place.
  • the present invention provides a bridge floor slab capable of supporting the loads resulting from the use of the bridge without being supported by a support structure and consisting of a continuous horizontal metal plate, forming a lost formwork.
  • a concrete slab poured on said plate anchoring fittings being fixed on the metal plate and directed upwards being at least partially embedded in the concrete to secure it to said metal plate, which has the particularity that the fittings anchor include horizontal metal beams, continuous in at least one direction, welded at their lower part to the metal plate.
  • horizontal here means parallel to the surface of the road, even if the latter is inclined.
  • the metallic structure constituted by the sheet metal and the beams is stable and resistant, which is not the case with the Robinson slab, whose studs do not cooperate with the overall resistance of the structure.
  • the weight is much lower and the length of the weld beads are two to four times less. Indeed, it is not necessary to provide a density of beams as high as that of the welded troughs, because, in the finished work, the concrete will make a very important contribution to the rigidity.
  • the metal structure alone is advantageously calculated to support by itself the self-weight of the steel and concrete assembly, so that it is not necessary, in this case, to temporarily support the deck for the pouring of the concrete .
  • the confinement of the concrete created by the presence of the beams improves both the punching resistance and the flexural strength of the slab, in comparison with the Robinson slab. It is thus possible to envisage very thin slabs, that is to say 80 to 100 mm thick on spans of 4 to 5 meters, which is the usual axis between bridge parts in a cable-stayed structure or suspended.
  • the beams can be continuous profiles, for example with an I or T section. It can also be provided that some of the beams have a structure lightened by openings in their core, or even that some of them have a lattice structure, for the purpose of greater lightness.
  • the slab will include beams arranged in two perpendicular directions.
  • essentially parallel beams for example longitudinal beams, stabilized by simple flat bars perpendicular to their direction and extending between neighboring beams. These flat bars will serve to avoid a lateral spillage of the beams when they are subjected to a significant axial compression.
  • Figure 1 is a vertical section of an orthotropic slab.
  • Figure 2 is a vertical section of a Robinson slab.
  • Figures 3 and 4 are sections perpendicular to the beams of two slab constructions according to the invention.
  • Figure 5 is a plan view of an embodiment of a slab according to the invention, before pouring the concrete.
  • Figure 6 is a plan view, similar to Figure 5, of another embodiment according to the invention.
  • Figure 7 is a section, similar to Figures 3 and 4, showing yet another embodiment of the invention.
  • Figure 1 shows in section an orthotropic metal slab, formed of a metal plate 1, covered with a thin surface layer 2, and stiffened on its underside by welded troughs 3. In general these troughs are arranged parallel to the 'axis of the book.
  • Figure 2 is a section through a Robinson slab.
  • the continuous metal plate 4 carries a series of vertical studs 5, around which a thin reinforced concrete slab 6 is poured.
  • FIG. 4 represents a variant, in which the mass of concrete 6 has been slightly reduced, so that the head 9 of the beams 7 is flush with its upper surface 10. It is obviously preferable, in this case, to provide a layer of coating (10) to protect the heads 9 of the beams against oxidation.
  • FIG. 4 there are provided, in addition to the beams 7, studs 11, similar to those of the Robinson beam, arranged between the beams 7, and intended to complete, if necessary, the joining of steel and concrete.
  • Figure 5 shows a structure in which the continuous beams 7 are connected to each other by perpendicular beams 12, so as to provide very high rigidity to this metal structure.
  • Figure 6 shows a lighter arrangement: in which a series of longitudinal beams (for example) are connected by perpendicular flat bars 13, welded both on the beams 7 and on the plate 4, so as to prevent lateral spillage beams, and therefore increase the buckling resistance of the deck.
  • the intervals between beams 7 are alternately free and provided with irons 13. Other arrangements are obviously possible.
  • Figure 7 shows a section of another embodiment, in which there is provided, in addition to the beams 7, prestressing cables 14, perpendicular to the beams, and which pass through these in holes provided for this purpose.
  • prestressing is to create a clamping force between the concrete of the slab and the lateral faces of the beams, which improves the solidarity between the concrete and the metallic structure.
  • the horizontal compression of the slab widens the punching cone created by the impact of a load, and thus makes it possible to reduce the number of beams.
  • passive reinforcements embedded in concrete. In this figure, these reinforcements are parallel to the beams 7. It is preferable to provide that they extend over a great length and cross, consequently, the transverse stiffening elements 12 or 13 that have been described above.
  • beams formed by continuous T-section profiles beams are used which are lightened by the presence of recesses in their core, the passage of the cables of prestress 14 and reinforcing bars 15 will be facilitated.
  • the panels and the main structure of the structure are then joined together by pouring joints and connectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Road Paving Structures (AREA)

Abstract

Dalle de chaussée d'un pont, notamment de grande portée, comprenant une plaque horizontale continue (4) sur laquelle sont fixées des poutres métalliques horizontales (7) continues dans au moins une direction, par exemple longitudinale, et qui forme un coffrage perdu pour une dalle en béton (6) dans laquelle sont noyées, au moins en partie, lesdites poutres. Les poutres (7) servent à raidir la plaque (4) avant la coulée du béton, et ensuite à solidariser le béton (6) avec la plaque (4).

Description

  • La présente invention est relative à une dalle de chaussée de pont, notamment de pont routier, particulièrement adaptée à des ponts de grande portée.
  • La dalle de chaussée d'un pont routier est souvent constituée d'une dalle de béton armé ou précontraint reposant sur une ossature métallique.
  • On a proposé, par exemple dans le brevet US-A-4.309.125 de constituer la dalle avec une plaque métallique continue qui supporte le béton et constitue un élément de coffrage perdu, le béton étant renforcé par des éléments métalliques soudés à la plaque et noyés dans le béton. La plaque métallique repose sur une ossature métallique de soutien.
  • La dalle de béton peut également faire partie intégrante de la section résistante du tablier du pont et être capable de supporter les charges résultant de l'utilisation normale du pont sans qu'il soit besoin de prévoir une ossature de soutien placée sous cette dalle. En général, dans ce cas, on choisit, pour la dalle, des épaisseurs égales au 1/30 de la portée libre; par exemple de 200 à 300 mm pour des portées de 6 à 9 m. La capacité de ces dalles est généralement limitée par la résistance au poinçonnement vis-à-vis des charges ponctuelles imposées par les roues des camions (ou les essieux des trains pour un ouvrage ferroviaire).
  • Dans un ouvrage de très grande portée, suspendu ou haubané, le poids de la dalle de chaussée devient vite une fraction prédominante du poids propre de l'ouvrage; si l'on veut diminuer ce poids, il convient de s'orienter vers d'autres solutions utilisant peu ou pas de béton; la solution traditionnellement adoptée (dans les ponts suspendus en particulier) est la dalle métallique orthotrope; une plaque métallique revêtue d'une couche mince de roulement forme dalle de chaussée; elle est raidie à sa face inférieure par des auges soudées, généralement disposés parallèlement à l'axe de l'ouvrage. Il n'y a pas de structure de soutien sous la dalle. Cette solution présente certains inconvénients : l'importance considérable des cordons de soudure, notamment à réaliser en place pendant la construction pour assurer la solidarisation des éléments successifs de charpente; la flexibilité de la structure : déformations et vibrations rendent difficile la tenue dans le temps du revêtement de chaussée; le coût beaucoup plus élevé que celui de la dalle de chaussée en béton. Cela explique que la dalle orthotrope n'est utilisée que lorsque le gain de poids est un élément majeur de l'économie du projet.
  • Une autre solution innovante avait été proposée pour la construction du pont de Tancarville, qui comporte une travée suspendue de 600 m de portée : la dalle Robinson, du nom de son auteur. Une tôle métallique continue est utilisée à la sous-face d'une dalle mince en béton armé (100 mm d'épaisseur), la connection entre les deux matériaux étant assurée par des goujons. Là encore, il n'y a pas structure de soutien à prévoir sous la dalle. La solution est beaucoup plus économique que la dalle orthotrope métallique. Toutefois, elle est handicapée par le nombre considérable de goujons à mettre en oeuvre. Enfin, avant le coulage du béton, la tôle inférieure n'a aucune stabilité par rapport au voilement, et sa capacité à supporter des charges (notamment le poids du béton de la dalle) est, à ce moment, très réduit. C'est probablement là qu'il faut trouver la raison pour laquelle cette expérience n'a guère été suivie d'autres réalisations.
  • Ce dernier inconvénient s'oppose à l'emploi de la dalle Robinson dans un pont à très grande portée si, lors de la construction d'un tel pont, on prévoit de faire le tablier en plusieurs étapes, la coulée du béton n'ayant lieu que vers la fin de la construction.
  • La présente invention a pour but de fournir une dalle de chaussée qui échappe aux inconvénients des techniques antérieures, et en particulier, qui, tout en ayant les avantages de légèreté et de résistance à l'état terminé de la dalle Robinson, soit d'un prix moins élevé et puisse être confectionnée dans le cadre d'un procédé comportant la construction du tablier du pont par étapes successives dont une est la coulée du béton de la dalle sur une plaque métallique mise en place au préalable.
  • Pour obtenir ce résultat, la présente invention fournit une dalle de chaussée de pont, capable de supporter les charges résultant de l'utilisation du pont sans être soutenue par une structure de support et constituée d'une plaque métallique horizontale continue, formant un coffrage perdu pour une dalle en béton coulée sur ladite plaque, des ferrures d'ancrage étant fixées sur la plaque métallique et dirigées vers le haut étant au moins en partie noyées dans le béton pour le solidariser de ladite plaque métallique, qui présente pour particularité que les ferrures d'ancrage comprennent des poutres métalliques horizontales, continues dans au moins une direction, soudées à leur partie inférieure sur la plaque métallique.
  • Bien entendu, "horizontale" signifie ici parallèle à la surface de la chaussée, même si celle-ci est inclinée.
  • Avant coulage du béton de la dalle, la structure métallique constituée par la tôle et les poutres est stable et résistante, ce qui n'est pas le cas de la dalle Robinson, dont les goujons ne coopèrent pas à résistance globale de la structure. On peut en particulier imposer à l'ouvrage en cours de construction des efforts axiaux importants, à condition de prévoir des poutres disposées longitudinalement, sans risque de flambement local. Cette particularité est intéressante dans le cas de la construction d'un pont haubané.
  • Par comparaison à une dalle métallique orthotrope, le poids est largement inférieur et la longueur des cordons de soudure est deux à quatre fois moindre. En effet, il n'est pas nécessaire de prévoir une densité de poutres aussi importante que celle des auges soudées, car, dans l'ouvrage terminé, le béton apportera une contribution très importante à la rigidité. La structure métallique seule est avantageusement calculée pour supporter par elle-même le poids propre de l'ensemble acier et béton, si bien qu'il n'est pas nécessaire, dans ce cas, d'étayer provisoirement le tablier pour le coulage du béton.
  • On peut ajouter que le confinement du béton créé par la présence des poutres améliore à la fois la résistance au poinçonnement et la résistance à la flexion de la dalle, par comparaison avec la dalle Robinson. On peut ainsi envisager des dalles très minces, c'est-à-dire de 80 à 100 mm d'épaisseur sur des portées de 4 à 5 mètres, qui est l'entre-axe habituel des pièces de pont dans un ouvrage haubané ou suspendu.
  • Les poutres, ou au moins certaines d'entre-elles, peuvent être des profilés continus, par exemple à section en I ou en T. On peut aussi prévoir que certaines des poutres ont une structure allégée par des ouvertures dans leur âme, ou même que certaines d'entre elles ont une structure en treillis, dans un but de plus grande légèreté.
  • Pour une grande rigidité, la dalle comprendra des poutres disposées dans deux directions perpendiculaires. Cependant, il est possible de prévoir des poutres essentiellement parallèles, par exemple longitudinales, stabilisées par de simples fers plats perpendiculaires à leur direction et s'étendant entre des poutres voisines. Ces fers plats serviront à éviter un déversement latéral des poutres lorsque celles-ci sont soumises à une compression axiale importante.
  • L'invention va maintenant être exposée de façon plus détaillée à l'aide d'exemples pratiques, illustrés avec les dessins parmi lesquels :
  • Figure 1 est une coupe verticale d'une dalle orthotrope.
  • Figure 2 est une coupe verticale d'une dalle Robinson.
  • Figures 3 et 4 sont des coupes, perpendiculaires aux poutres de deux réalisations de dalle selon l'invention.
  • Figure 5 est une vue en plan d'une réalisation de dalle selon l'invention, avant la coulée du béton.
  • Figure 6 est une vue en plan, analogue à la figure 5, d'une autre réalisation selon l'invention.
  • Figure 7 est une coupe, analogue aux figures 3 et 4, montrant encore une autre réalisation selon l'invention.
  • La figure 1 montre en coupe une dalle métallique orthotrope, formée d'une plaque métallique 1, recouverte d'une mince couche de roulement 2, et raidie à sa face inférieure par des auges soudées 3. En général ces auges sont disposées parallèlement à l'axe de l'ouvrage.
  • La figure 2 est une coupe d'une dalle Robinson. La plaque métallique continue 4 porte une série de goujons verticaux 5, autour desquels est coulée une dalle mince en béton armé 6.
  • Si on se reporte maintenant à la figure 3, on retrouve la plaque métallique continue 4 de la dalle Robinson, ainsi que la dalle en béton 6, mais la solidarité entre ces deux éléments est obtenue à l'aide de poutres 7, en forme de T, soudées à leur base 8 sur la plaque 4, et dont la tête 9 se trouve à faible distance au-dessous de la surface supérieure 10 du béton 6.
  • La figure 4 représente une variante, dans laquelle la masse de béton 6 a été un peu réduite, si bien que la tête 9 des poutres 7 affleure à sa surface supérieure 10. Il est évidemment préférable, dans ce cas, de prévoir une couche de revêtement (10) pour protéger les têtes 9 des poutres contre l'oxydation.
  • On relèvera également que, sur la figure 4, on a prévu, en plus des poutres 7, des goujons 11, analogues à ceux de la poutre Robinson, disposés entre les poutres 7, et destinés à compléter, si c'est nécessaire, la solidarisation de l'acier et du béton.
  • La figure 5 montre une structure dans laquelle les poutres continues 7 sont reliées les unes aux autres par des poutres perpendiculaires 12, de façon à procurer une très grande rigidité à cette structure métallique.
  • La figure 6 montre une disposition plus légère : dans laquelle une série de poutres longitudinales (par exemple) sont reliées par des fers plats perpendiculaires 13, soudés à la fois sur les poutres 7 et sur la plaque 4, de façon à empêcher un déversement latéral des poutres, et par conséquent augmenter la résistance au flambage du tablier. Sur la figure, les intervalles entre poutres 7 sont alternativement libres et pourvus de fers 13. D'autres dispositions sont évidemment possibles.
  • La figure 7 montre une coupe d'une autre réalisation, dans laquelle on a prévu, outre les poutres 7, des câbles de précontrainte 14, perpendiculaires aux poutres, et qui traversent celles-ci dans des trous ménagés à cet effet. L'avantage de la précontrainte est de créer un effort de serrage entre le béton de la dalle et les faces latérales des poutres, ce qui améliore la solidarité entre le béton et la structure métallique. En outre, la compression horizontale de la dalle élargit le cône de poinçonnement créé par l'impact d'une charge, et permet ainsi de réduire le nombre des poutres. On a représenté, sur la même figure en 15, des armatures passives, noyées dans le béton. Sur cette figure, ces armatures sont parallèles aux poutres 7. Il est préférable de prévoir qu'elles s'étendent sur une grande longueur et traversent, par conséquent, les éléments de raidissement transversaux 12 ou 13 qu'on a décrits plus haut.
  • Si, au lieu de prévoir, comme cela est indiqué, des poutres formées par des profilés continus à section en T, on utilise des poutres allégées par la présence d'évidements dans leur âme, le passage des câbles de précontrainte 14 et des fers d'armature 15 en sera facilité.
  • Les dispositions qu'on vient de décrire se prêtent naturellement fort bien au coulage sur place de la dalle en béton dans l'ossature métallique à laquelle elle s'incorpore. On peut donc mettre en place la structure métallique correspondante à l'ensemble du tablier de pont, et dans une phase ultérieure, opérer la coulée du béton.
  • On peut aussi construire, sans sortir de l'invention, des panneaux préfabriqués comprenant à la fois l'ossature métallique de la dalle et le béton de celle-ci. La solidarisation des panneaux et de l'ossature principale de l'ouvrage s'opère alors par coulage de joints et par connecteurs.

Claims (10)

  1. Dalle de chaussée de pont, capable de supporter les charges résultant de l'utilisation du pont sans être soutenue par une structure de support et constituée d'une plaque métallique horizontale continue (4), formant un coffrage perdu pour une dalle en béton (6) coulée sur ladite plaque, des ferrures d'ancrage étant fixées sur la plaque métallique et dirigées vers le haut étant au moins en partie noyées dans le béton pour le solidariser de ladite plaque métallique,
    caractérisée en ce que les ferrures d'ancrage comprennent des poutres métalliques horizontales (7, 12), continues dans au moins une direction, soudées à leur partie inférieure sur la plaque métallique.
  2. Dalle de chaussée selon la revendication 1, caractérisée en ce que au moins certaines desdites poutres (7) sont des profilés continus.
  3. Dalle de chaussée selon la revendication 1, caractérisée en ce qu'au moins certaines desdites poutres ont une structure allégée par des ouvertures dans leur âme.
  4. Dalle de chaussée selon la revendication 1, caractérisée en ce qu'au moins certaines desdites poutres (7) ont une structure en treillis.
  5. Dalle de chaussée selon l'une des revendications 1 à 4, caractérisée en ce qu'elle comprend des poutres (7, 12) disposées selon deux directions perpendiculaires.
  6. Dalle de chaussée selon l'une des revendications 1 à 5, caractérisée en ce qu'elle comprend des poutres parallèles stabilisées par des fers plats perpendiculaires à leur direction et s'étendant entre deux poutres voisines.
  7. Dalle de chaussée selon l'une des revendications 1 à 6, caractérisée en ce qu'elle est pourvue de câbles de précontrainte (14) s'étendant dans le béton et traversant les poutres, pour créer un effet de serrage entre le béton et les poutres.
  8. Dalle de chaussée selon l'une des revendications 1 à 7, caractérisée en ce que des armatures passives (15) sont incluses dans le béton, et traversent les poutres.
  9. Dalle de chaussée selon l'une des revendications 1 à 8, caractérisée en ce qu'elle comporte des goujons verticaux (11) d'ancrage du béton, fixés à la plaque métallique entre les poutres (7).
  10. Dalle de chaussée selon l'une des revendications 1 à 9, caractérisé en ce que la structure métallique constituée par la plaque et les ferrures d'ancrage est calculée pour supporter par elle-même le poids propre de l'ensemble acier et béton, si bien qu'il n'est pas nécessaire d'étayer provisoirement le tablier pour le coulage du béton.
EP91401085A 1990-04-26 1991-04-24 Dalle de chaussée d'un pont, notamment de grande portée Withdrawn EP0454575A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9005317 1990-04-26
FR9005317A FR2661433B1 (fr) 1990-04-26 1990-04-26 Dalle de chaussee d'un pont, notamment de grande portee.

Publications (1)

Publication Number Publication Date
EP0454575A1 true EP0454575A1 (fr) 1991-10-30

Family

ID=9396110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401085A Withdrawn EP0454575A1 (fr) 1990-04-26 1991-04-24 Dalle de chaussée d'un pont, notamment de grande portée

Country Status (3)

Country Link
EP (1) EP0454575A1 (fr)
JP (1) JPH04228710A (fr)
FR (1) FR2661433B1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010385A1 (fr) * 1992-10-29 1994-05-11 Granstroem Anders Procede de transmission des efforts, notamment pour ponts
FR2851779A1 (fr) * 2003-02-27 2004-09-03 Conseil Service Investissement Element prefabrique de construction
KR100685725B1 (ko) * 2003-09-05 2007-02-23 아사히 엔지니어링 가부시키가이샤 상판교의 구조
NL1031931C2 (nl) * 2006-05-31 2007-12-03 Heijmans Infrastructuur Bv Werkwijze voor het vormen van een lichaam.
ITBO20090265A1 (it) * 2009-04-30 2010-11-01 La Torretta Michele Niro Perfezionamenti negli impalcati e nelle travi primarie e secondarie per la costruzione di sottopassi stradali o ferroviari.
CN104389267A (zh) * 2014-11-20 2015-03-04 中铁工程设计咨询集团有限公司 大跨度悬索桥加劲梁桥面板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832522B2 (ja) * 1995-07-04 1998-12-09 ショーボンド建設株式会社 鋼板とコンクリートを合成してなるプレキャスト床版及びその継手構造
JP2002004222A (ja) * 2000-06-23 2002-01-09 Hitachi Zosen Corp 合成床版
JP5372587B2 (ja) * 2009-04-21 2013-12-18 株式会社横河住金ブリッジ 鋼・コンクリート合成床版
HUP1600554A2 (en) * 2016-09-28 2018-05-02 Novonovon Zrt Reinforced pavement structure and procedure for the production of said structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE644452C (de) * 1934-05-31 1937-05-03 Gottwalt Schaper Dr Ing Fahrbahn fuer staehlerne Strassenbruecken
US2112949A (en) * 1935-10-09 1938-04-05 Herbert H Bunker Slab
GB1043525A (en) * 1962-06-13 1966-09-21 Sir Evan Owen Williams K B E Improvements in or relating to the construction of floors, bridge decks and the like
US4300320A (en) * 1979-11-13 1981-11-17 Havens Steel Company Bridge section composite and method of forming same
US4309125A (en) * 1980-10-06 1982-01-05 Richardson George S Integrated bridge construction
EP0288350A1 (fr) * 1987-03-27 1988-10-26 Societe Centrale D'etudes Et De Realisations Routieres- Scetauroute Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1302183B (fr) *
DE2107936C3 (de) * 1971-02-19 1978-06-08 Asta-Werke Ag Chemische Fabrik, 4800 Bielefeld Alkylsulfonsäureester von 2-Oxo-13,2-oxazaphosphorinanen und diese enthaltende pharmazeutische Präparate
FR2526062A1 (fr) * 1982-04-28 1983-11-04 Ministere Transports Procede de construction de pont a poutrelles enrobees et precontrainte transversale, et poutrelles pour la mise en oeuvre du procede
JPS60195206A (ja) * 1984-03-14 1985-10-03 川崎製鉄株式会社 合成床版橋の構築方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE644452C (de) * 1934-05-31 1937-05-03 Gottwalt Schaper Dr Ing Fahrbahn fuer staehlerne Strassenbruecken
US2112949A (en) * 1935-10-09 1938-04-05 Herbert H Bunker Slab
GB1043525A (en) * 1962-06-13 1966-09-21 Sir Evan Owen Williams K B E Improvements in or relating to the construction of floors, bridge decks and the like
US4300320A (en) * 1979-11-13 1981-11-17 Havens Steel Company Bridge section composite and method of forming same
US4309125A (en) * 1980-10-06 1982-01-05 Richardson George S Integrated bridge construction
EP0288350A1 (fr) * 1987-03-27 1988-10-26 Societe Centrale D'etudes Et De Realisations Routieres- Scetauroute Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010385A1 (fr) * 1992-10-29 1994-05-11 Granstroem Anders Procede de transmission des efforts, notamment pour ponts
FR2851779A1 (fr) * 2003-02-27 2004-09-03 Conseil Service Investissement Element prefabrique de construction
KR100685725B1 (ko) * 2003-09-05 2007-02-23 아사히 엔지니어링 가부시키가이샤 상판교의 구조
NL1031931C2 (nl) * 2006-05-31 2007-12-03 Heijmans Infrastructuur Bv Werkwijze voor het vormen van een lichaam.
ITBO20090265A1 (it) * 2009-04-30 2010-11-01 La Torretta Michele Niro Perfezionamenti negli impalcati e nelle travi primarie e secondarie per la costruzione di sottopassi stradali o ferroviari.
CN104389267A (zh) * 2014-11-20 2015-03-04 中铁工程设计咨询集团有限公司 大跨度悬索桥加劲梁桥面板

Also Published As

Publication number Publication date
JPH04228710A (ja) 1992-08-18
FR2661433B1 (fr) 1994-06-03
FR2661433A1 (fr) 1991-10-31

Similar Documents

Publication Publication Date Title
EP0637647B1 (fr) Elément de structure pour réaliser une structure allongée mixte à section transversale du type en caisson, procédé pour la mise en oeuvre de cet élément, et structure allongée réalisée par la mise en oeuvre de ce procédé
EP0288350B1 (fr) Pont constitué d'un tablier et de moyens pour le supporter notamment pont haubané de grande portée, et son procédé de construction
EP0340051B1 (fr) Tablier pour pont de grande longueur
EP0454575A1 (fr) Dalle de chaussée d'un pont, notamment de grande portée
EP0425364B1 (fr) Station sur une ligne ferroviaire ou autre située sur un viaduc
EP0329517B1 (fr) Pont haubanné et son procédé de construction
FR2564871A1 (fr) Poutre a membrures de beton precontraint et ame d'acier
EP1065316B1 (fr) Structure de pont ou de passerelle mixte béton-acier, en particulier de pont à tablier bipoutre mixte sous chaussée
EP1660725B1 (fr) Pont metallique et son procede de realisation
FR2622907A1 (fr) Ouvrages de genie-civil,notamment ponts et procedes de construction de ceux-ci
FR2616166A1 (fr) Pont a ossature mixte et son procede de construction
EP2231947B1 (fr) Element prefabrique pour la realisation d'une dalle en beton arme et dalle ainsi realisee
FR2693492A1 (fr) Pont haubanné et son procédé de réalisation.
FR2667885A1 (fr) Procede de construction d'un pont haubane forme d'un assemblage de voussoirs.
FR2662718A1 (fr) Viaduc a trois voies.
FR2537631A1 (fr) Perfectionnements aux structures en beton precontraint
BE831670A (fr) Procede de construction d'un pont avec tablier de structure mixte en acier et en beton
FR2738580A1 (fr) Structure de tablier de pont et procede pour realiser le tablier
AU746805B2 (en) A structural element
BE843882R (fr) Procede de construction d'un pont avec tablier de structure mixte en acier et en beton
FR2693491A1 (fr) Ensemble constitué par des poutres porteuses et une armature coffrante pour ouvrage mixte acier-béton, et son procédé de réalisation.
FR2564507A1 (fr) Montant pour poutre a ame evidee, poutres et ouvrages comportant de tels montants
EP0242238A1 (fr) Structures en béton armé et en acier, notamment pour réaliser des poutres et, en particulier, des poutres à usage de pannes ou des poutres à grande portée
FR2735160A1 (fr) Procede pour augmenter la portee d'un pont.
BE404320A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19911104

17Q First examination report despatched

Effective date: 19930503

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930914