EP0448629A4 - Method of storage of palletized cargoes, specifically passenger cars and a depot (multi-storey garage) - Google Patents

Method of storage of palletized cargoes, specifically passenger cars and a depot (multi-storey garage)

Info

Publication number
EP0448629A4
EP0448629A4 EP19900901288 EP90901288A EP0448629A4 EP 0448629 A4 EP0448629 A4 EP 0448629A4 EP 19900901288 EP19900901288 EP 19900901288 EP 90901288 A EP90901288 A EP 90901288A EP 0448629 A4 EP0448629 A4 EP 0448629A4
Authority
EP
European Patent Office
Prior art keywords
depot
garage
module
cells
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19900901288
Other versions
EP0448629A1 (en
Inventor
Alexander Alekseyevich Nasedkin
Oleg Iosifovich Mukan
Victor Sergecvich Sh. Entuziastov 96 Altshuler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TATELBAUM IRA
Original Assignee
TATELBAUM IRA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SU4629889 external-priority patent/RU1814683C/en
Application filed by TATELBAUM IRA filed Critical TATELBAUM IRA
Publication of EP0448629A1 publication Critical patent/EP0448629A1/en
Publication of EP0448629A4 publication Critical patent/EP0448629A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/22Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of movable platforms for horizontal transport, i.e. cars being permanently parked on palettes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/182Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions using car-gripping transfer means
    • E04H6/183Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions using car-gripping transfer means without transverse movement of the car after leaving the transfer means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/42Devices or arrangements peculiar to garages, not covered elsewhere, e.g. securing devices, safety devices, monitoring and operating schemes; centering devices
    • E04H6/422Automatically operated car-parks

Definitions

  • the present invention relates to the field of warehousing and ' 'civil engineering , and more specifically, to the ways and means of automated storage of palletized cargoes, containers and particularly passenger cars, i.e. to multi-storey automated garages that can be adapted to any architectural environment to occupy as little space as possible.
  • a multi-storey garage that can be used for storage of cargoes features an elevator and cells in a high-rise or silo arrangement (see U.S. Patent No. 3,330,083).
  • the rows of cells form sections.
  • the process of storage consists in lifting the cargo along a special shaft and placing it on a respective shelf (bottom of the cell).
  • the throughput of such garage is limited, since other vehicles or containers are kept waiting while the elevator is occupied by one piece of cargo.
  • the elevator shaft is used exclusively for moving cargoes (cars), thereby adding extra space to the garage.
  • a person wishing to recover his (her) car will have to wait for the elevator to come up for the car and then come down, thus increasing the average waiting time. And, finally, failure of the elevator will make it impossible to load and unload, retrieve or park the car.
  • the primary object of the present invention is to permit compact arrangement of cargoes (vehicles).
  • Another object of the present invention is to increase the efficiency of the method and, consequently, the throughput of the depot (garage) and reduce the waiting time.
  • Still another object of the invention is to improve the reliability of the garage (depot) by ensuring its normal functioning even in the case of partial failure of the equipment.
  • a further object of this invention is to allow the depot (garage) to be realized in any architectural design, i.e. to ensure flexibility of construction.
  • An additional object of the present invention is to improve the fire safety of the depot (garage) by localizing the source of fire.
  • Another additional object of this invention is to raise the level of automation by providing the means for controlling the movement of cargoes either by a single operator or by fully automated facilities.
  • Still another additional object of the present invention is to enhance the repairability of the garage by making provisions for correcting any malfunction without interfering with the process of loading and unloading.
  • a further additional object of the present invention is to prevent unauthorized access to the cargo (car) as a safeguard against larceny and vandalism.
  • the object of the present invention is to provide an extremely compact, cost-effective and reliable depot (garage) with a high level of automation and minimum waiting time.
  • the items of cargo are arranged in cells forming the structure of the garage and located in random order.
  • the cells are completely identical and may be added or removed during operation of the garage.
  • the depot garage
  • the cargo (car) placed in the cell may be moved in several (one, two or three directions), in several coordinates.
  • each cell is provided with corresponding pairs of door openings, coordinate guides and a coordinate drive.
  • UTE SHEET configuration is continuously changed to optimize the arrangement of cargoes, i.e. to ensure minimum waiting time, save energy and to meet other demands programmed into the microprocessor.
  • an operator can exercise manual control over the flow of cargoes (cars), monitoring the movement thereof on the display of the control console.
  • a depot i.e. with and without the use of pen (module) for the cargo (car). Both embodiments are characterized by the incorporation of a two-coordinate drive in each cell and differ in the design of the drive and the guides. It should be borne in mind, however, that a depot (garage) may be provided with a drive, guides, and door openings for a third coordinate in each or several specially allotted cells, making it possible to expand the functional capabilities of the depot (garage) . On the other hand, a skeleton construction may utilize a number of cells in the function of a cassette store with single-coordinate movement. The above-mentioned constructions may be combined with a single depot (garage) .
  • Fig. 1 shows an external view of the building of a depot (garage) which can be erected as a separate structure at, say, an airport.
  • Fig. 2 illustrates installation of a cell in a section.
  • Figs 3, 4 illustrate how a module with a car is delivered, shutters are opened and drive gets in his car.
  • Figs . 5, 6 illustrate the arrangement of a car in a cell or module, relative arrangement of the guides and drive elements.
  • Figs 7 and 8 illustrate schematically the process of vertical movement of a module with a car.
  • Figs 1 through 8 relative dimensions are shown true to scale so that the overall design of the depot (garage) can be readily visualized. Following graphic materials are more schematized but are also more detailed to provide a comprehensive illustration of the realization of the invention.
  • Figs 8, 10 illustrate an L-shaped depot (garage) of modular design located in proximity to a supermarket or airport building.
  • Fig. 11 illustrates a proposed car departure route.
  • Fig. 12 illustrates the principle of parallel vertical movement of modules in adjacent cells.
  • Figs 13, 14 illustrate the circuit design of an electronic depot (garage) management system.
  • Figs 15 and 16 depict a module
  • Fig. 17 shows its arrangement in the cell along with the drive elements and the guides.
  • Fig. 18 shows the elements of the fire-fighting system.
  • Fig. 19 is a functional diagram of the electrical and electronic equipment of a cell.
  • Fig. 20 illustrates a depot (garage) of a more complex configuration, partially integrated into a supermarket or airport building.
  • Figs 21, 22 illustrate movement of cargoes arranged on a platform rather than a single module.
  • Figs 23, 24 and 25 (a, b) through 29, respectively, illustrate two different embodiments of a cargo handling mechanism.
  • Fig. 30 illustrates possible realization of the electrical equipment of the cell in this case.
  • EET Building 1 of the multi-storey garage consists of sections 2 with approach platforms 3.
  • the building 1 may have a complex configuration (Fig. 10), bending around, say, a supermarket building 4.
  • the sections 2 comprise cells 5 containing modules 6, vertical guides 7, horizontal guides 8, horizontal drive 9 and vertical drive 10.
  • the cells 5 are provided with pairs of door openings 11 (upper and lower) and 12 (longitudinal).
  • the module 6 comprises platform 13, side post 14, rollers 15, 16, as well as hoods 17, end (18) and side (19) sliding doors.
  • the module 6 may also incorporate coordinate pushers 20.
  • the guides 8 are made in conjunction with the guide 22.
  • the guides 7 and 8 are fitted with position sensors 23 and 24, which the cells 5 are equipped with sensors 25, 26 of the horizontal and vertical position of the module, respectively, and horizontal brake 27.
  • a drive 10 is essentially a telescoping hydraulic cylinder with a drive 28. Fitted to the end of the drive 10 is a controllable support 29, with supporting stripes 30 fitted to the module 6.
  • Reversible friction motors (drives) 9 incorporate drive 31 and the side walls of the module 6 are provided with friction coating 32 and code marker 33 of the module.
  • An identifier 34 is provided in the cell 5.
  • the building 1 is provided with roof modules 35, foundation modules 36, access modules 37, while the external cells may be provided with side panels 38.
  • the Platform 13 may feature a sliding hatch 39.
  • the module 6 may incorporate a ventilation pipe 40 connected to the exhaust pipe 41 of the ventilation and heating system, which is fitted with a drive 42 and a shut-off device 43.
  • a smoker sensor 44 and fire-fighting system 45 are housed in the module 6, with valve 46 fitted in pipe 40.
  • the repair module 6 contains guard 47 instead of the hood 17.
  • the control module 6 contains display 48, control console 49, input (50) and output (51) decoders connected to control units 52 for the modules 6, which turn on the decoder 53, an OR gate 54 and timer 55.
  • the cells 5 also contain sensor 56 of the position of hydraulic cylinder 10 and sensor 57 of the position of the motors 9.
  • Screen 58 of the display 48 has provisions for module code marker fields 59 (see Fig. 14), cell number fields 60, probable direction of movement fields 61 and fields 62 for indication of faults in the electrical equipment of the cell.
  • the fields 59 through 62 may be divided by lines 63.
  • Frames 64 of the cells 5 are joined by fasteners 65.
  • the drives 22 are mounted on brackets 66, with drives 31 mounted on brackets 67.
  • Door 18
  • EET may be made in the form of shutters 68 which can be slid along guides 70 by means of handle 69.
  • the shutters 68 are balanced by counterweight 71 and the pushers 20 are connected to the posts 72 (Fig. 17).
  • the cells 2 may be mounted on rods 100 (Fig. 2).
  • the garage serves its intended function as follows. Incoming cars drive over the modules 37 to the modules 36 and on to the respective working modules 6 of the given section 2.
  • the door 18 is opened by the passenger by means of the handle 69 and closed from the " inside by changing the position of the counterweight 71 by means of the respective drive.
  • the passenger leaves the building 1 through the door 19 and the exit 73. Further movement of the module 6 is accomplished automatically, so that during horizontal movement of the module 6 along the guides 8 the guides 7 and hydraulic cylinders 10 are moved aside and during upward or downward movement the module along the guides 7 moved aside, i.e. toward the side walls of the cells 5, are the guides 8 and the motors 9.
  • rollers 15 roll over the guides 7.
  • the supports 29 interact with two strips 30, which the hydraulic
  • EET cylinders 10 which are not involved in the displacement of the module 6 pass between the strips 30.
  • the telescoping hydraulic cylinder 10 of the lower floor lifts the module 6 to a height necessary to mount the module 6 on the support 29 of the hydraulic cylinder 10 of the upper floor.
  • the guides 7, 8 of the cells 5 are not joined together and the continuity of motion of the module 6 is ensured by the presence of the pairs of rollers 15, 16.
  • Vertical displacement of the modules 6 is effected through openings 11 and horizontal displacement, though openings 12.
  • each cell 5 of the section 2 is provided with a two-coordinate drive for displacement of the module 6.
  • All modules 6 of the given section 2 may be set in motion simultaneously.
  • the movement of the modules 6 is effected and monitored by means of console 49 and the display 48.
  • the operator or the control computer have the capability to designate in the section 2 the short-term and long-term storage areas and priority services areas.
  • the decoder 53 provides for simultaneous actuation of a number of items of electrical equipment of the cell 5.
  • the module 6 is delivered from the upper cell B to the lower cell A in response to the "deliver", "back” and "accept”, "back” signals, respectively, in the following order:
  • EET Naturally, the algorithm in question may be modified depending on the design of the electrical equipment of cells 5.
  • the information concerning the current position of the guides 7, 8 is presented on the display 48 (Fig. 14), enabling the operator to forward the module 6 with the code marker 16 from the cell “15" to the cell "16” or to the upper cell "4". Since every cell 5 incorporates drive elements, the operator may shift some of the modules 6 to clear the passage for other modules 6, and to move the modules 6 beforehand from the long-term storage area close to the module 37 to meet the deadline set by a passenger.
  • the drive 42 operates in response to a signal furnished from the console 49 or decoder 53 to fit the pipe 41 on the pipe 40 and open the shut-off device (the valve 43), following which warmed-up dry air starts coming under the hood 17.
  • the sensor 44 activates the fire-fighting system 45 which fills the space of the cell 6 with foam.
  • the valve 46 is shut off and a fire alarm is activated, say, on the display 48.
  • the console 49 may incorporate a microprocessor to effect control over the movement of the modules 6 and optimize the traveling paths thereof.
  • the decoders 50, 51 may perform other interfacing functions, such as data buffering, serial-to-parallel code conversion, level matching, signal storage.
  • the decoder 53 and the timer 55 can also be employed in conjunction with controllers operating on the basis of the algorithm described above. Besides, these devices may be synthesized in terms of the input and output sequence also determined by the aforementioned algorithm.
  • the decoder 53 activates the drive 21 and deactivates it upon operation of the sensor 24, activates the hydraulic cylinder 10 for a period of time sufficient for lowering the module -6 on the guides 8, then deactivates the support 29, activates, the drive 28 to remove the hydraulic cylinder 10, activates the drive 22 to remove the guides 7 and deactivates the drives following operation of the sensors 56, 23 or after a predetermined period of time, then activates the drive 31 to bring the motors 9 to the operating position and deactivates the drive 31 upon operation of the sensor 57.
  • the next operation is to activate the motors 9 for forward operation and deactivate the motors following operation of the sensor 25.
  • the operations listed above are accompanied by the exchange of information at the respective inputs 81-87 and outputs 88-95 of the decoder 53 (Fig. 19).
  • the position sensors may be made as a set of contact pickups (limit switches), whose output signals determine unambiguously the spatial position of the object being monitored in the vicinity of a particular module. Accordingly, Fig. 11 shows only the functional arrangement of the unit 52, with connections made through control or data buses.
  • the identifier 34 may be made in the form of a hard magnetic strip magnetized in a predetermined manner and fitted to the module 6, and a magnetic sensing element with an output register provided in the cell 6. Information is read into the register in response to a signal from the respective sensors (or one of the sensors) 25, 26.
  • the identifier 34 may also be of the optical type (in the form of a mask, radiator and photodetector) .
  • the timer 55 blocks the decoder 53 at input 78 for the period of delivery or acceptance of the module 6, with the result that the decoder 53 cannot accept a new signal at direction inputs 74-77 during this period of time..
  • the decoder 53 resets the timer 55 over output 79 (for instance, initial resetting will be made after successive activation
  • a trigger pulse for the timer 55 is developed at clock output 80 of the decoder 53.
  • the timer 55 may be made in the form of a clock pulse generator whose output is coupled to the synchronizing input of the decoder with a memory, whose other inputs are fed with the trigger and reset pulses.
  • the introduction of ⁇ the coordinate guides 7, 8 and the coordinate drives 9, 10 as part of each cell 5 makes it possible to effect continuous and simultaneous movement of all modules 6 along random, including optimal trajectories.
  • the modules 6 may have a knock-down construction to facilitate dismounting to increase the speed of operation and throughput of the garage. This makes it possible to minimize the number of passages and expand the cells 5 in the sections 2. Owing to the replacement of the passive platform by the module 6 interacting with the guides 7, 8 and the drive elements and the provision of the openings 11, 12, a car can be moved from one area of
  • one or more cells 5 are free of the modules 6, allowing the latter to the interchanged.
  • Provisions are made both for the stacking order of filling the section 2 and a programmed order, whereby a module with a car is delivered to the egress cell to meet a deadline.
  • the final operation of delivery may be accomplished by keying a private code on a console, using a magnetic identification card, etc.
  • the replacement of the open platform by an enclosed module has made it possible to move the car along the coordinates (see above) and provide local air-conditioning and fire-fighting facilities.
  • the fire hazard is greatly reduced without resorting to specialized facilities since the hood 17 prevents influx of air to the source of fire.
  • the elements of the module 6 (the pushers 20) are used for emergency delivery of the car to the user, effectively preventing any delays in the delivery of the car.
  • the module 6 is a multifunction element providing for movement and safety of a car.
  • the hydraulic cylinders 10 serve not only for vertical movement of the modules 6, but also provide the means for locking thereof, damping any oscillations that might arise and guarding against falling.
  • the modular design of the building 1 permits it to be erected in built-up and congested areas. Optically, transparent panels make it possible to observe to condition of a car and keep under control a fire or emergency situation. Small gaps between the walls of the cells 5 and the modules 6 prevent vandalism and larceny. At the same time, despite dense packing of cars in the sections 2, the repair modules 6 are fixed on the respective floors (e.g. on the ground and twelfth floor of a 24-storey section) to maintain pressure in the hydraulic drive system. The repair module 6 can also be used for storage of cars.
  • the garage can also be used as an automated depot without any changes in construction.
  • a palletized cargo depot comprises a building 101 consisting of cells 102 (Fig. 20).
  • the configuration of the building 101 may be arbitrary, it can be assembled from standard cells 102 and contain a basement 103, bend around a building 104 and incorporate built-in cells 105. Any one of the cells 102 can be used in the ingress (cell 106 in Fig. 20) or egress (cell 107) function. There may be provided a number of the cells 106, 107.
  • the cell 102 is essentially a parallelepiped (of metal construction) with coordinate-oriented openings, e.g. openings 108 along the X axis and 109 along the Z axis (Fig. 25). In relation to the Y axis, the cells 102 may be blind, as may be the walls of the building 101.
  • Each cell 102 contains a coordinate drive (operating along the X, Z axes in the case under consideration) .
  • the drive is made in the form of a frame 110 and a conveyor 111 (Figs 25, 26, 27).
  • Blind walls 112 of the cells 102 mount hydraulic cylinders 113 (a telescopic hydraulic drive) in a staggered arrangement. Turning thereof is effected by a drive 114 and a bracket 115.
  • the ends (bearing pads) 116 of the hydraulic cylinders 113 interact with rests 117 of the frame 110 which features corner rollers 118 located in guides 119.
  • the conveyor 111 comprises a belt 120 driven by a motor 121 mounted on one of shafts 122, 123.
  • the shafts 122, 123 fit gears (angular sprockets) 124.
  • the cargo handling mechanism includes reversible synchronous motors 125 coupled via a reduction gear 126 to end gears 127 symmetrically disposed about drive shafts 128.
  • the gears 127 carry chain drives 129 with gears 130 and the cells contain retractable rests 131 against which can bear the frame 110, with guides 132 disposed at the corners thereof and accommodating a carriage 133 driven by a controllable carrier 134.
  • the latter may be made in the form of a turning lever or telescopic hydraulic drive (hydraulic cylinder) with an electromagnet fitted to its end.
  • the carrier 134 serves for moving the carriage 133 along the guide 132 (for instance, of the dovetail type).
  • the guides 132, carriage 133 and carrier 134 make up a controllable grip.
  • the sprockets are linked by means of, say, gears 135 to intermediate gears 136 fitted on the left-hand shaft 128 with controllable (magnetic) clutches 137.
  • the belt 120 of the conveyor 111 may be formed by the common axles of the chain drives 138 provided on the sprockets 124.
  • the drives 138 (belt 120) and the drives 129 are fitted with trust skids 139, 140 made of fluoroplastic impregnated with graphite.
  • the skid 139 is secured to the cell 103, with the skid 140 secured to the frame 110.
  • the carriage 133 On the side of the drive 130, the carriage 133 has two pins 141 and the drive 130, projections 142.
  • the shafts 129 may be provided with damping rollers (rubber cylinders) 143 (Fig. 22).
  • EET The cells 144 (Figs. 22, 26) perform the accumulating function in the vertical shaft. These cells contain several, e.g. 5 rests 131 and carriers 134. Cargoes 145 are arranged on the conveyors 111, with conveyor belt 120 featuring elastic projections 146 (Fig. 26) of the artificial grass type, rubber flanges or other friction coating. All cells in the garage may be of accumulation type, so one may use rests 131 situated on one level in adjacent vertical shafts for horizontal movement of the cargo.
  • a control console 147 incorporating, for instance, a keyboard 148, decoder 149, register 150 and button 151 is connected to the decoders 152 of the cells 102 whose output signals are coupled to the drives 153 of the carriers 134 effecting input control of the clutches 137, motors 126 and rests 131.
  • the cells 102 are provided with frame position sensors 154 and cargo position sensors 155 (photosensors, contact sensors, etc.).
  • Figs 21, 22 show cargoes 156, 157, 158 and 159.
  • Fig. 29 shows a chamber 160, with Fig. 25 showing angle guides 161 and vertical damping supports 162. The size of the supports 162 is selected to ensure engagement of the projections 146 of the conveyors that come in contact with the supports 162.
  • the depot runs along the following lines.
  • the cargoes are arranged in the cells 102 on the belts 120 in random order.
  • the depot incorporates provisions for simultaneous movement of cargoes and changing the position thereof in any section (Figs 21, 22). If the depot does not contain accumulating cells 144, vertical movement is accomplished in a step-by-step manner (Fig. 21) or by several steps at a time if the accumulating cells are available (Fig. 22).
  • Figs 21, 22 illustrate a depot with a two-coordinate drive. According to this arrangement, it will suffice to have one to two unoccupied cells 102 in each section (in vertical cross-section) .
  • EET between the belts 120 of the adjacent cells 102 is short so that when the reversible motors 121 are simultaneously activated for operation in the same direction the cargo 56 or 58 is smoothly transferred from one cell 102 to another.
  • the cargo may be arranged in a container or set up directly on the conveyor 111 (a car).
  • the lowered conveyor 111 may be positioned slightly higher than normal (Fig. 21) or on a level with the conveyor 111 of the adjacent cell 102 (Fig. 22).
  • Cargoes come to the ingress cell 106 of a particular section of the cells 102 and are forwarded to the respective portion of the section (Fig. 20) depending on the anticipated storage term. Delivery of cargoes takes place from the cells 107.
  • movement of cargoes is effected by a single motor 125.
  • the frame 110 rests on the rests 131, the carriage 133 is disengaged from the gear 127 by means of the carrier 134 and the clutch 137 is coupled to the shaft 129.
  • the motors 125 act through the clutches 137 to drive the gears 136 linked by the gears 135 (or directly) to the sprockets 124 which carry the drives 138 of the belt 120.
  • the guides 161 direct the cargo in the opening 108.
  • the drives of the carriers 134 (the cell 102 contains four carriers) engage the pins 141 of the carriage 133 with the projections 142 of the drives 129.
  • the distance between the pins 141 is such that when the frame 110 is transferred from one cell to another the frame 110 is held by one pin 141.
  • the frame 110 is raised, the rests 131 are removed and the motor 125 acts via the reduction gear 126, gear 127 and drive 129 to effect vertical movement of the conveyor 111.
  • the clutch 137 is disengaged in this case.
  • the rests 131 are extended to provide support to the frame 110.
  • the carriers 134 disengage the carriage 133 from the fixed drive 129 and the clutches 137 are engaged for transfer to horizontal movement.
  • a decoder 152 is placed in the cells 102 between the respective outputs of the console 147 and the control inputs of the rests 131, clutches 137, motors 125, etc. Synthesis of the decoder 152 is accomplished on the basis of the
  • T specified input and output sequences which, in turn, are determined by the sequence whereby horizontal and vertical movement of cargoes is accomplished as described above.
  • the operator sets up the following combination on the keyboard 148: cells Nos 56, 57 - "forward", cell No. 61 - "down”.
  • the decoder 149 converts this data into a parallel code which is input into the buffer register 150 when the button 151 is depressed.
  • the buffer register can exchange information with the decoders 152 of the cells via a respective interface. In this case, the cells Nos 56, 57 will receive a "forward" code combination and the cells Nos 61, 62, a "down" code combination.
  • the leading edge ' of these signals causes the following signal sequence to appear at the output of the decoder 152 of the cells 102 Nos 56 and 57 adjacent in the horizontal plane (assuming that the initial condition is when the frame 110 bears against the rests 131, the clutches 137 are disengaged and the carriages 133 are moved away) : activation signals for the clutches 137 and the motors 125.
  • the signals will be removed at the instant of operation of the sensor 155 which registers the appearance or disappearance of cargo in the cell 102.
  • the clutch 137 and the motor 125 in the cell 102 are disengaged with a certain delay upon operation of the sensor 155 indicating disappearance of the cargo (e.g. a change from "1" to "0").
  • a "down" signal arrived at the cells 102 Nos 61, 62 adjacent in the vertical plane to cause the decoders 152 of the cells 102 in question to move the carriers 134 to the carriages 133, activate the electromagnets of the carriers, move the carriages 133 toward the drives 129 rotate counterclockwise, deactivate the motors 125, remove the rests 131, activate the motors 125 for operation in the reverse direction.
  • the sensors 154 act via the decoders 152 to extend the rests 131, the carriers 134 move away the carriages 133 after a certain delay and the frames 110 are transferred from the cell 102 No. 61 to the lower cell 102 No.
  • the decoder 152 may be realized by means of a control microprocessor whose operating program is based on the aforementioned or similar algorithm. Besides, the control function may be entirely concentrated in the console 147 by installing in the cells television cameras whereby the operator can monitor the arrangement and movement of cargoes.
  • the reliability of the depot can be increased by providing the clutches 137 on both shafts 129. It is also possible to provide for retrieval of the cargo in the event of failure of the motor 125 in one of the cells 102.
  • the conveyor 111 of the lower cell 102 is elevated, the rests 131 of the faulty cell 102 are removed and its conveyor 111 comes to rest against the lower cell (by the use of the damping rests 162), which is then lowered onto associated rests 131 and activated for operation in the horizontal direction.
  • the elastic elements 146 of the lower belt 120 set in motion the upper belt 120 so that the cargo is delivered to the opening 108 in the cell 102.
  • the frame 110 of the faulty cell may be fixed by opening 108, the guides in the wall 112 of the cells 102 or by other means.
  • An advantage of the embodiment considered above is the lack of drives on the movable elements, a feature which permits the reliability of the depot to be increased.
  • all or some (e.g. extreme adjacent) of the cells may be provided with additional drives or door openings as well as additional guides, if required.
  • additional drives or door openings as well as additional guides, if required.
  • a manipulator arm can be secured to the upper longitudinal edge of the adjacent cells (in nonworking position). In the operating position, the manipulator arm is used to carry the cargo 157 to the belt 120 in the adjacent cell 102 located closer to be observer in the plane of the drawing (Fig. 21).
  • This example proves that the method can be realized when there are fewer guides than the coordinates along which the cargoes are moved. Therefore, a more essential feature is the availability of pairs of door openings to match the number of coordinates along which movement is accomplished, and a drive effecting this movement.
  • EET Preliminary estimates show that 2000 cars can be accommodated with a cube with a side of 40-42m.
  • the proposed depot provides the facilities for compact arrangement of cars with minimum space requirements within a volume of arbitrary configuration which can be ideally adapted to existing architectural environment.
  • the depot (garage) possesses high throughput (the average waiting time of 57 s is determined primarily by the time required to get in and out of the car, which can be further increased by means of trestles so that several cells of a particular section serve for ingress and egress at the same time.
  • the depot has sufficiently high reliability since the failure of equipment in one of the cells does not prevent normal functioning of the equipment in the other cells, does not interrupt the flow of other cargoes, each of which may be delivered by the required time to any exit. It should be noted that the method and the depot are based on the principle of transportation which may be realized by any known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

A modular parking garage (1) is formed of cells (5) which may be added in any configuration. Each cell (5) contains guides (7), (8) for guiding a vehicle containing module (6) selectively in a vertical or horizontal direction. For vertical movement, the horizontal guides (8) are retracted and vertical actuators (10) move the module (6) on vertical guides (7). For horizontal movement, the vertical guides (7) are retracted and horizontal actuators (9) move the module (6) on horizontal guides (8). In this manner the module (6) may be freely moved about the garage (1). The invention also includes a fire fighting system (45) and a repair module (6).

Description

METHOD OF STORAGE OF PALLETIZED CARGOES, SPECIFICALLY PASSENGER CARS AND A DEPOT (MULTI-STOREY GARAGE)
Field of the Invention
The present invention relates to the field of warehousing and''civil engineering , and more specifically, to the ways and means of automated storage of palletized cargoes, containers and particularly passenger cars, i.e. to multi-storey automated garages that can be adapted to any architectural environment to occupy as little space as possible.
Background of the Invention
Normally, a multi-storey garage that can be used for storage of cargoes features an elevator and cells in a high-rise or silo arrangement (see U.S. Patent No. 3,330,083). The rows of cells form sections. The process of storage consists in lifting the cargo along a special shaft and placing it on a respective shelf (bottom of the cell). The throughput of such garage is limited, since other vehicles or containers are kept waiting while the elevator is occupied by one piece of cargo. The elevator shaft is used exclusively for moving cargoes (cars), thereby adding extra space to the garage. A person wishing to recover his (her) car will have to wait for the elevator to come up for the car and then come down, thus increasing the average waiting time. And, finally, failure of the elevator will make it impossible to load and unload, retrieve or park the car.
Also known in the art are more efficient ways of storage and multi-storey garages of greater capacity, wherein the sections are interconnected by running ways, on which travel two to three stacker cranes, so that the loading process is two-dimensional (see UK Patent No. 2167394 or No. 2175575). However, these methods and the depots (garages) based thereon possess the same essential drawbacks (low throughput, low packing density of cargoes or vehicles leading to excessive floor space requirements, low reliability). It should also be noted that known garages have a rigid structure which prevents them from being fitted in between buildings, built up or partially dismounted.
Therefore, the primary object of the present invention is to permit compact arrangement of cargoes (vehicles).
TE SHEET Another object of the present invention is to increase the efficiency of the method and, consequently, the throughput of the depot (garage) and reduce the waiting time.
Still another object of the invention is to improve the reliability of the garage (depot) by ensuring its normal functioning even in the case of partial failure of the equipment.
A further object of this invention is to allow the depot (garage) to be realized in any architectural design, i.e. to ensure flexibility of construction.
An additional object of the present invention is to improve the fire safety of the depot (garage) by localizing the source of fire.
Another additional object of this invention is to raise the level of automation by providing the means for controlling the movement of cargoes either by a single operator or by fully automated facilities.
Still another additional object of the present invention is to enhance the repairability of the garage by making provisions for correcting any malfunction without interfering with the process of loading and unloading.
A further additional object of the present invention is to prevent unauthorized access to the cargo (car) as a safeguard against larceny and vandalism.
HEET Brief Description of the Invention
Accordingly, the object of the present invention is to provide an extremely compact, cost-effective and reliable depot (garage) with a high level of automation and minimum waiting time.
This object is achieved by resorting to a novel method of arrangement and movement of cargoes (passenger cars) . The items of cargo are arranged in cells forming the structure of the garage and located in random order. The cells are completely identical and may be added or removed during operation of the garage. As a result, the depot (garage) has a flexible modular design and the cargo (car) placed in the cell may be moved in several (one, two or three directions), in several coordinates. For this purpose, each cell is provided with corresponding pairs of door openings, coordinate guides and a coordinate drive. This makes it possible to interchange adjacent cargoes (cars), set up the long-term and short-term storage areas, set up the cargo flows within the depot (garage) in order to ensure timely delivery of a definite cargo in accordance with the schedule. The flow of cargo in such a depot (garage) is controlled by a microcomputer (microprocessor) and its
UTE SHEET configuration is continuously changed to optimize the arrangement of cargoes, i.e. to ensure minimum waiting time, save energy and to meet other demands programmed into the microprocessor. At the same time, an operator can exercise manual control over the flow of cargoes (cars), monitoring the movement thereof on the display of the control console.
In the following, there will be described two preferred embodiments of the depot (garage), i.e. with and without the use of pen (module) for the cargo (car). Both embodiments are characterized by the incorporation of a two-coordinate drive in each cell and differ in the design of the drive and the guides. It should be borne in mind, however, that a depot (garage) may be provided with a drive, guides, and door openings for a third coordinate in each or several specially allotted cells, making it possible to expand the functional capabilities of the depot (garage) . On the other hand, a skeleton construction may utilize a number of cells in the function of a cassette store with single-coordinate movement. The above-mentioned constructions may be combined with a single depot (garage) .
Other object and features of of the present invention will become apparent from the following description.
ET Brief Description of the Drawings
Fig. 1 shows an external view of the building of a depot (garage) which can be erected as a separate structure at, say, an airport."
Fig. 2 illustrates installation of a cell in a section.
Figs 3, 4 illustrate how a module with a car is delivered, shutters are opened and drive gets in his car.
Figs .5, 6 illustrate the arrangement of a car in a cell or module, relative arrangement of the guides and drive elements.
Figs 7 and 8 illustrate schematically the process of vertical movement of a module with a car.
In Figs 1 through 8, relative dimensions are shown true to scale so that the overall design of the depot (garage) can be readily visualized. Following graphic materials are more schematized but are also more detailed to provide a comprehensive illustration of the realization of the invention.
So, Figs 8, 10 illustrate an L-shaped depot (garage) of modular design located in proximity to a supermarket or airport building.
Fig. 11 illustrates a proposed car departure route. Fig. 12 illustrates the principle of parallel vertical movement of modules in adjacent cells.
Figs 13, 14 illustrate the circuit design of an electronic depot (garage) management system.
Figs 15 and 16 depict a module, while Fig. 17 shows its arrangement in the cell along with the drive elements and the guides.
Fig. 18 shows the elements of the fire-fighting system.
Fig. 19 is a functional diagram of the electrical and electronic equipment of a cell.
Fig. 20 illustrates a depot (garage) of a more complex configuration, partially integrated into a supermarket or airport building.
Figs 21, 22 illustrate movement of cargoes arranged on a platform rather than a single module.
Figs 23, 24 and 25 (a, b) through 29, respectively, illustrate two different embodiments of a cargo handling mechanism.
And, finally, Fig. 30 illustrates possible realization of the electrical equipment of the cell in this case.
Preferred Embodiment of the Invention
First, consider the embodiment of a depot (garage) shown in Figs 1 through 19.
EET Building 1 of the multi-storey garage consists of sections 2 with approach platforms 3. The building 1 may have a complex configuration (Fig. 10), bending around, say, a supermarket building 4. The sections 2 comprise cells 5 containing modules 6, vertical guides 7, horizontal guides 8, horizontal drive 9 and vertical drive 10. The cells 5 are provided with pairs of door openings 11 (upper and lower) and 12 (longitudinal).
The module 6 comprises platform 13, side post 14, rollers 15, 16, as well as hoods 17, end (18) and side (19) sliding doors. The module 6 may also incorporate coordinate pushers 20.
The guides 8 are made in conjunction with the guide 22. The guides 7 and 8 are fitted with position sensors 23 and 24, which the cells 5 are equipped with sensors 25, 26 of the horizontal and vertical position of the module, respectively, and horizontal brake 27. A drive 10 is essentially a telescoping hydraulic cylinder with a drive 28. Fitted to the end of the drive 10 is a controllable support 29, with supporting stripes 30 fitted to the module 6. Reversible friction motors (drives) 9 incorporate drive 31 and the side walls of the module 6 are provided with friction coating 32 and code marker 33 of the module. An identifier 34 is provided in the cell 5.
T The building 1 is provided with roof modules 35, foundation modules 36, access modules 37, while the external cells may be provided with side panels 38.
Platform 13 may feature a sliding hatch 39. The module 6 may incorporate a ventilation pipe 40 connected to the exhaust pipe 41 of the ventilation and heating system, which is fitted with a drive 42 and a shut-off device 43. A smoker sensor 44 and fire-fighting system 45 are housed in the module 6, with valve 46 fitted in pipe 40.
The repair module 6 contains guard 47 instead of the hood 17. The control module 6 contains display 48, control console 49, input (50) and output (51) decoders connected to control units 52 for the modules 6, which turn on the decoder 53, an OR gate 54 and timer 55. The cells 5 also contain sensor 56 of the position of hydraulic cylinder 10 and sensor 57 of the position of the motors 9.
Screen 58 of the display 48 has provisions for module code marker fields 59 (see Fig. 14), cell number fields 60, probable direction of movement fields 61 and fields 62 for indication of faults in the electrical equipment of the cell. The fields 59 through 62 may be divided by lines 63.
Frames 64 of the cells 5 are joined by fasteners 65. The drives 22 are mounted on brackets 66, with drives 31 mounted on brackets 67. Door 18
EET may be made in the form of shutters 68 which can be slid along guides 70 by means of handle 69. The shutters 68 are balanced by counterweight 71 and the pushers 20 are connected to the posts 72 (Fig. 17).
The ground floor of the building 1, there may be provided exits 73 which can be simultaneously used for admission of a car 97 and departure of cars 98, 99 (Fig. 1). The cells 2 may be mounted on rods 100 (Fig. 2).
The garage serves its intended function as follows. Incoming cars drive over the modules 37 to the modules 36 and on to the respective working modules 6 of the given section 2. The door 18 is opened by the passenger by means of the handle 69 and closed from the"inside by changing the position of the counterweight 71 by means of the respective drive. The passenger leaves the building 1 through the door 19 and the exit 73. Further movement of the module 6 is accomplished automatically, so that during horizontal movement of the module 6 along the guides 8 the guides 7 and hydraulic cylinders 10 are moved aside and during upward or downward movement the module along the guides 7 moved aside, i.e. toward the side walls of the cells 5, are the guides 8 and the motors 9.
During the upward or downward movement the rollers 15 roll over the guides 7. The supports 29 interact with two strips 30, which the hydraulic
EET cylinders 10 which are not involved in the displacement of the module 6 pass between the strips 30. As shown in Fig. 6, the telescoping hydraulic cylinder 10 of the lower floor lifts the module 6 to a height necessary to mount the module 6 on the support 29 of the hydraulic cylinder 10 of the upper floor. The guides 7, 8 of the cells 5 are not joined together and the continuity of motion of the module 6 is ensured by the presence of the pairs of rollers 15, 16. Vertical displacement of the modules 6 is effected through openings 11 and horizontal displacement, though openings 12.
In this way, each cell 5 of the section 2 is provided with a two-coordinate drive for displacement of the module 6. All modules 6 of the given section 2 may be set in motion simultaneously. The movement of the modules 6 is effected and monitored by means of console 49 and the display 48. The operator or the control computer have the capability to designate in the section 2 the short-term and long-term storage areas and priority services areas. To streamline the control process, the decoder 53 provides for simultaneous actuation of a number of items of electrical equipment of the cell 5.
Consider in more detail the algorithm for controlling the movement of the module 6. To change over from the horizontal to vertical movement,
EET proceed as follows:
-install the hydraulic cylinder 10 and remove the motor 9 in the admission and recovery cells 5;
-install the vertical guides 7 in both cells and activate support 29 in the recovery cell 5;
-raise the module 6 by means of the hydraulic cylinder 10 of the recovery cell 5;
-remove the brake 27 in both cells 5;
-remove the guides 8 in both cells 5.
The algorithm for changing over from the vertical to horizontal movement is as follows:
-install the guides 8 in both cells 5 and the brake 27, in the recovery cell;
-lower the module 6 by means of the hydraulic cylinder 10 of the recovery cell 5;
-remove the support 29, hydraulic cylinder 10 and guide 7 in both cells 5;
-install the motor 9 in both cells 5 and remove the brake 27 in the recovery cell 5. The brake 27 is also removed when the horizontal movement of the module 6 is to be resumed.
The operations described above are preparatory. Movement of the modules 6 is accomplished as follows: when the module 6 is delivered from the lower cell A to the upper cell B,
ET the decoder 53 of the cell A is fed with the "deliver", "up" signals and the decoder 53 of the cell A is fed with the "deliver", "up" signals and the decoder 53 of the cell B is fed with the "accept" and "up" signals, in which the items of electrical equipment in the cells 5 are controlled in accordance with the following program.
-transfer from horizontal to vertical movement (if horizontal movement was employed) in both cells;
-activation of the hydraulic cylinder 10 in cell A;
-lowering of the hydraulic cylinder 10 and disengagement of the support 29 following operation of the sensor 26 in the cell A, activation of the support 29 and lifting of the hydraulic cylinder 10 following operation of the sensor 26 in the cell B, i.e. before lowering of the hydraulic cylinder 10 in cell A.
The module 6 is delivered from the upper cell B to the lower cell A in response to the "deliver", "back" and "accept", "back" signals, respectively, in the following order:
-transfer from horizontal to vertical movement (if horizontal movement was employed) in both cells;
-activation of the support 29, lifting of the hydraulic cylinder 10 in the cell A;
-removal of the support 29 in the cell B;
EET -lowering of the hydraulic cylinder 10 in the cell A,
Forward movement from the cell A to the cell B is accomplished in response to the "deliver", "forward" and "accept", "forward" signals in the following sequence:
-transfer from vertical to horizontal movement (if vertical movement was employed) or removal of the brake 27 (if the opposite is true) in both cells;
-activation of the motors 9 in both cells;
-deactivation of the motor 9 in the cell A at the instant of operation of the sensor 25, deactivation of the motor 9 and engagement of the brake 27 in the cell B in response to a signal from the sensor 25►
And, finally, backward movement from the cell B to the cell A is accomplished in response to the "deliver", "back", and "accept", "back" signals in the following sequence:
-transfer from vertical to horizontal movement or removal of the brakes 27 in both cells;
-activation of the motors 9 for backward operation in both cells;
-deactivation of the motors 9 in both cells and engagement of the brake 27 in the cell A in response to signals from the respective sensors 25.
EET Naturally, the algorithm in question may be modified depending on the design of the electrical equipment of cells 5. The information concerning the current position of the guides 7, 8 is presented on the display 48 (Fig. 14), enabling the operator to forward the module 6 with the code marker 16 from the cell "15" to the cell "16" or to the upper cell "4". Since every cell 5 incorporates drive elements, the operator may shift some of the modules 6 to clear the passage for other modules 6, and to move the modules 6 beforehand from the long-term storage area close to the module 37 to meet the deadline set by a passenger.
If a successive operation of the algorithm described herein before is hot performed within a predetermined period of time, 52 will operate via the decoder 50 to display on the screen 58 the trouble that occurred in the corresponding cell. In this case, the operator (the function of the operator may be performed by the successive passenger) may forward the module from a particular cell in another direction and, if this fails to correct the trouble, jammed module 6 can be pushed out of the given cell by using the pushers 20 of adjacent modules 6. For repair of the equipment of the cells 5 or the cars located in the modules 6, provision is made for the repair modules 6 delivered
ET to a respective cell in the manner described above or by applying priority control signals to a control line formed by the buses connecting the units 52 to the decoders 50 and 51. Access to a car can be gained through the hatch 39.
When the module 6 has occupied a fixed position in the cell 5, the drive 42 operates in response to a signal furnished from the console 49 or decoder 53 to fit the pipe 41 on the pipe 40 and open the shut-off device (the valve 43), following which warmed-up dry air starts coming under the hood 17. If fire breaks out in the cell 6, the sensor 44 activates the fire-fighting system 45 which fills the space of the cell 6 with foam. At the same time (in response to a signal furnished by the sensor 44), the valve 46 is shut off and a fire alarm is activated, say, on the display 48.
As has been previously mentioned, the console 49 may incorporate a microprocessor to effect control over the movement of the modules 6 and optimize the traveling paths thereof. In addition to retransmitting, multiplexing and demultiplexing, the decoders 50, 51 may perform other interfacing functions, such as data buffering, serial-to-parallel code conversion, level matching, signal storage. The decoder 53 and the timer 55 can also be employed in conjunction with controllers operating on the basis of the algorithm described above. Besides, these devices may be synthesized in terms of the input and output sequence also determined by the aforementioned algorithm. For instance, upon arrival of the "forward" and "deliver" signals at inputs 74-77 of the decoder 53 (assuming that the status of the sensors 24, 23, 56, 57 corresponds to the vertical movement and the sensors 25, 26 indicate that the module 6 is present in the particular cell 5), the decoder 53 activates the drive 21 and deactivates it upon operation of the sensor 24, activates the hydraulic cylinder 10 for a period of time sufficient for lowering the module -6 on the guides 8, then deactivates the support 29, activates, the drive 28 to remove the hydraulic cylinder 10, activates the drive 22 to remove the guides 7 and deactivates the drives following operation of the sensors 56, 23 or after a predetermined period of time, then activates the drive 31 to bring the motors 9 to the operating position and deactivates the drive 31 upon operation of the sensor 57. This completes the process of transferring from the vertical to horizontal movement. The next operation is to activate the motors 9 for forward operation and deactivate the motors following operation of the sensor 25. The operations listed above are accompanied by the exchange of information at the respective inputs 81-87 and outputs 88-95 of the decoder 53 (Fig. 19).
ET The position sensors (i.e. the sensors 24, 23, 56, 57, 25 and 26) may be made as a set of contact pickups (limit switches), whose output signals determine unambiguously the spatial position of the object being monitored in the vicinity of a particular module. Accordingly, Fig. 11 shows only the functional arrangement of the unit 52, with connections made through control or data buses. The identifier 34 may be made in the form of a hard magnetic strip magnetized in a predetermined manner and fitted to the module 6, and a magnetic sensing element with an output register provided in the cell 6. Information is read into the register in response to a signal from the respective sensors (or one of the sensors) 25, 26. The identifier 34 may also be of the optical type (in the form of a mask, radiator and photodetector) .
After the timer 55 is started by the output signal of the element 54, the timer 55 blocks the decoder 53 at input 78 for the period of delivery or acceptance of the module 6, with the result that the decoder 53 cannot accept a new signal at direction inputs 74-77 during this period of time..After the next operation is performed, the decoder 53 resets the timer 55 over output 79 (for instance, initial resetting will be made after successive activation
TE SHEET and deactivation of the drive 21 in the example covered above) . Immediately after resetting, a trigger pulse for the timer 55 is developed at clock output 80 of the decoder 53. As a result, if the subsequent operation is not performed, no reset pulse will be fed to the timer 55 which will generate an alarm signal 95 which will be sent via the decoder 50 to be displayed on the field 62 of the screen 58. The timer 55 may be made in the form of a clock pulse generator whose output is coupled to the synchronizing input of the decoder with a memory, whose other inputs are fed with the trigger and reset pulses.
From the above-said, it follows that the introduction of the coordinate guides 7, 8 and the coordinate drives 9, 10 as part of each cell 5 makes it possible to effect continuous and simultaneous movement of all modules 6 along random, including optimal trajectories. The modules 6 may have a knock-down construction to facilitate dismounting to increase the speed of operation and throughput of the garage. This makes it possible to minimize the number of passages and expand the cells 5 in the sections 2. Owing to the replacement of the passive platform by the module 6 interacting with the guides 7, 8 and the drive elements and the provision of the openings 11, 12, a car can be moved from one area of
EET the garage to another without crossing the path of other cars being moved. Under this arrangement, one or more cells 5 are free of the modules 6, allowing the latter to the interchanged. Provisions are made both for the stacking order of filling the section 2 and a programmed order, whereby a module with a car is delivered to the egress cell to meet a deadline. The final operation of delivery may be accomplished by keying a private code on a console, using a magnetic identification card, etc.
The replacement of the open platform by an enclosed module has made it possible to move the car along the coordinates (see above) and provide local air-conditioning and fire-fighting facilities. The fire hazard is greatly reduced without resorting to specialized facilities since the hood 17 prevents influx of air to the source of fire. Moreover, the elements of the module 6 (the pushers 20) are used for emergency delivery of the car to the user, effectively preventing any delays in the delivery of the car. Thus, the module 6 is a multifunction element providing for movement and safety of a car.
The hydraulic cylinders 10 serve not only for vertical movement of the modules 6, but also provide the means for locking thereof, damping any oscillations that might arise and guarding against falling.
ET The modular design of the building 1 permits it to be erected in built-up and congested areas. Optically, transparent panels make it possible to observe to condition of a car and keep under control a fire or emergency situation. Small gaps between the walls of the cells 5 and the modules 6 prevent vandalism and larceny. At the same time, despite dense packing of cars in the sections 2, the repair modules 6 are fixed on the respective floors (e.g. on the ground and twelfth floor of a 24-storey section) to maintain pressure in the hydraulic drive system. The repair module 6 can also be used for storage of cars.
The garage can also be used as an automated depot without any changes in construction.
Now consider an embodiment of the depot (garage) illustrated in Figs 20 through 30.
A palletized cargo depot comprises a building 101 consisting of cells 102 (Fig. 20). The configuration of the building 101 may be arbitrary, it can be assembled from standard cells 102 and contain a basement 103, bend around a building 104 and incorporate built-in cells 105. Any one of the cells 102 can be used in the ingress (cell 106 in Fig. 20) or egress (cell 107) function. There may be provided a number of the cells 106, 107.
T The cell 102 is essentially a parallelepiped (of metal construction) with coordinate-oriented openings, e.g. openings 108 along the X axis and 109 along the Z axis (Fig. 25). In relation to the Y axis, the cells 102 may be blind, as may be the walls of the building 101. Each cell 102 contains a coordinate drive (operating along the X, Z axes in the case under consideration) . The drive is made in the form of a frame 110 and a conveyor 111 (Figs 25, 26, 27).
Blind walls 112 of the cells 102 (Fig. 24) mount hydraulic cylinders 113 (a telescopic hydraulic drive) in a staggered arrangement. Turning thereof is effected by a drive 114 and a bracket 115. The ends (bearing pads) 116 of the hydraulic cylinders 113 interact with rests 117 of the frame 110 which features corner rollers 118 located in guides 119. The conveyor 111 comprises a belt 120 driven by a motor 121 mounted on one of shafts 122, 123. The shafts 122, 123 fit gears (angular sprockets) 124.
In the cell 102 shown in Figs 25 -29, the cargo handling mechanism includes reversible synchronous motors 125 coupled via a reduction gear 126 to end gears 127 symmetrically disposed about drive shafts 128.
EET The gears 127 carry chain drives 129 with gears 130 and the cells contain retractable rests 131 against which can bear the frame 110, with guides 132 disposed at the corners thereof and accommodating a carriage 133 driven by a controllable carrier 134. The latter may be made in the form of a turning lever or telescopic hydraulic drive (hydraulic cylinder) with an electromagnet fitted to its end. The carrier 134 serves for moving the carriage 133 along the guide 132 (for instance, of the dovetail type). The guides 132, carriage 133 and carrier 134 make up a controllable grip.
The sprockets are linked by means of, say, gears 135 to intermediate gears 136 fitted on the left-hand shaft 128 with controllable (magnetic) clutches 137. The belt 120 of the conveyor 111 may be formed by the common axles of the chain drives 138 provided on the sprockets 124. The drives 138 (belt 120) and the drives 129 are fitted with trust skids 139, 140 made of fluoroplastic impregnated with graphite. The skid 139 is secured to the cell 103, with the skid 140 secured to the frame 110.
On the side of the drive 130, the carriage 133 has two pins 141 and the drive 130, projections 142. The shafts 129 may be provided with damping rollers (rubber cylinders) 143 (Fig. 22).
EET The cells 144 (Figs. 22, 26) perform the accumulating function in the vertical shaft. These cells contain several, e.g. 5 rests 131 and carriers 134. Cargoes 145 are arranged on the conveyors 111, with conveyor belt 120 featuring elastic projections 146 (Fig. 26) of the artificial grass type, rubber flanges or other friction coating. All cells in the garage may be of accumulation type, so one may use rests 131 situated on one level in adjacent vertical shafts for horizontal movement of the cargo.
A control console 147 incorporating, for instance, a keyboard 148, decoder 149, register 150 and button 151 is connected to the decoders 152 of the cells 102 whose output signals are coupled to the drives 153 of the carriers 134 effecting input control of the clutches 137, motors 126 and rests 131. The cells 102 are provided with frame position sensors 154 and cargo position sensors 155 (photosensors, contact sensors, etc.). Figs 21, 22 show cargoes 156, 157, 158 and 159. Fig. 29 shows a chamber 160, with Fig. 25 showing angle guides 161 and vertical damping supports 162. The size of the supports 162 is selected to ensure engagement of the projections 146 of the conveyors that come in contact with the supports 162.
The depot runs along the following lines. The cargoes are arranged in the cells 102 on the belts 120 in random order. The depot incorporates provisions for simultaneous movement of cargoes and changing the position thereof in any section (Figs 21, 22). If the depot does not contain accumulating cells 144, vertical movement is accomplished in a step-by-step manner (Fig. 21) or by several steps at a time if the accumulating cells are available (Fig. 22). Figs 21, 22 illustrate a depot with a two-coordinate drive. According to this arrangement, it will suffice to have one to two unoccupied cells 102 in each section (in vertical cross-section) .
Vertical movement of cargoes is accomplished by way of displacement of the frame 110 and horizontal movement, by the movement of the belt 120. -Instead of a belt of the conveyor one can use a horizontal guide for a wheel of a car and a roller pusher, situated behind the wheel. In the embodiment illustrated in Figs 23, 24 the belt 120 (two chain drives linked by axles or a caterpillar drive) is moved by gears 124. The conveyor 111 may be elevated by the telescopic hydraulic cylinders 113 which by turn support the frame 110. When the frame 110 passes the pair of the hydraulic cylinders 113 of a particular cell 102, the cylinders are brought to the operating position by means of the lever 115 to support the frame 110. The horizontal distance
EET between the belts 120 of the adjacent cells 102 is short so that when the reversible motors 121 are simultaneously activated for operation in the same direction the cargo 56 or 58 is smoothly transferred from one cell 102 to another. The cargo may be arranged in a container or set up directly on the conveyor 111 (a car). In this case, the lowered conveyor 111 may be positioned slightly higher than normal (Fig. 21) or on a level with the conveyor 111 of the adjacent cell 102 (Fig. 22). Cargoes come to the ingress cell 106 of a particular section of the cells 102 and are forwarded to the respective portion of the section (Fig. 20) depending on the anticipated storage term. Delivery of cargoes takes place from the cells 107.
In the embodiment illustrated in Figs 25 through 29, movement of cargoes is effected by a single motor 125. During horizontal movement, the frame 110 rests on the rests 131, the carriage 133 is disengaged from the gear 127 by means of the carrier 134 and the clutch 137 is coupled to the shaft 129. The motors 125 act through the clutches 137 to drive the gears 136 linked by the gears 135 (or directly) to the sprockets 124 which carry the drives 138 of the belt 120. The guides 161 direct the cargo in the opening 108. To transfer to vertical movement, the drives of the carriers 134 (the cell 102 contains four carriers) engage the pins 141 of the carriage 133 with the projections 142 of the drives 129. The distance between the pins 141 is such that when the frame 110 is transferred from one cell to another the frame 110 is held by one pin 141. The frame 110 is raised, the rests 131 are removed and the motor 125 acts via the reduction gear 126, gear 127 and drive 129 to effect vertical movement of the conveyor 111. The clutch 137 is disengaged in this case. After vertical movement of the frame 110 has been completed, the rests 131 are extended to provide support to the frame 110. Next, the carriers 134 disengage the carriage 133 from the fixed drive 129 and the clutches 137 are engaged for transfer to horizontal movement.
If the walls 112 of the cells are made transparent, the operator has the capability to control the movement of cargoes directly by means of the console 147 by engaging the clutches 137, moving the carriage 133 and so on. To facilitate the operator's job, a decoder 152 is placed in the cells 102 between the respective outputs of the console 147 and the control inputs of the rests 131, clutches 137, motors 125, etc. Synthesis of the decoder 152 is accomplished on the basis of the
T specified input and output sequences which, in turn, are determined by the sequence whereby horizontal and vertical movement of cargoes is accomplished as described above. For example, the operator sets up the following combination on the keyboard 148: cells Nos 56, 57 - "forward", cell No. 61 - "down". The decoder 149 converts this data into a parallel code which is input into the buffer register 150 when the button 151 is depressed. The buffer register can exchange information with the decoders 152 of the cells via a respective interface. In this case, the cells Nos 56, 57 will receive a "forward" code combination and the cells Nos 61, 62, a "down" code combination. The leading edge' of these signals causes the following signal sequence to appear at the output of the decoder 152 of the cells 102 Nos 56 and 57 adjacent in the horizontal plane (assuming that the initial condition is when the frame 110 bears against the rests 131, the clutches 137 are disengaged and the carriages 133 are moved away) : activation signals for the clutches 137 and the motors 125. The signals will be removed at the instant of operation of the sensor 155 which registers the appearance or disappearance of cargo in the cell 102. In order for the cargo to transfer from the cell 102 No. 56 to the cell 102 No. 57, the clutch 137 and the motor 125 in the cell 102 are disengaged with a certain delay upon operation of the sensor 155 indicating disappearance of the cargo (e.g. a change from "1" to "0").
At the same time, a "down" signal arrived at the cells 102 Nos 61, 62 adjacent in the vertical plane to cause the decoders 152 of the cells 102 in question to move the carriers 134 to the carriages 133, activate the electromagnets of the carriers, move the carriages 133 toward the drives 129 rotate counterclockwise, deactivate the motors 125, remove the rests 131, activate the motors 125 for operation in the reverse direction. When the frames 110 approach the rests 131, the sensors 154 act via the decoders 152 to extend the rests 131, the carriers 134 move away the carriages 133 after a certain delay and the frames 110 are transferred from the cell 102 No. 61 to the lower cell 102 No. 62, the frame 110 of this cell moves still lower, etc. It should be borne in mind that any versions of the given algorithm are possible, such as downward movement by half a step, quarter of a step, etc. The decoder 152 may be realized by means of a control microprocessor whose operating program is based on the aforementioned or similar algorithm. Besides, the control function may be entirely concentrated in the console 147 by installing in the cells television cameras whereby the operator can monitor the arrangement and movement of cargoes.
HEET The reliability of the depot can be increased by providing the clutches 137 on both shafts 129. It is also possible to provide for retrieval of the cargo in the event of failure of the motor 125 in one of the cells 102. To this end, the conveyor 111 of the lower cell 102 is elevated, the rests 131 of the faulty cell 102 are removed and its conveyor 111 comes to rest against the lower cell (by the use of the damping rests 162), which is then lowered onto associated rests 131 and activated for operation in the horizontal direction. The elastic elements 146 of the lower belt 120 set in motion the upper belt 120 so that the cargo is delivered to the opening 108 in the cell 102. The frame 110 of the faulty cell may be fixed by opening 108, the guides in the wall 112 of the cells 102 or by other means.
An advantage of the embodiment considered above is the lack of drives on the movable elements, a feature which permits the reliability of the depot to be increased.
As has already been noted, all or some (e.g. extreme adjacent) of the cells may be provided with additional drives or door openings as well as additional guides, if required. These elements are not shown in the pertinent figures, but in a simplified arrangement a manipulator arm can be secured to the upper longitudinal edge of the adjacent cells (in nonworking position). In the operating position, the manipulator arm is used to carry the cargo 157 to the belt 120 in the adjacent cell 102 located closer to be observer in the plane of the drawing (Fig. 21). This example proves that the method can be realized when there are fewer guides than the coordinates along which the cargoes are moved. Therefore, a more essential feature is the availability of pairs of door openings to match the number of coordinates along which movement is accomplished, and a drive effecting this movement. A multiplicity of embodiments of the drive and guides may be proposed which will, however, in no way affect the basic concept of the method offered. Consideration should also be given to the fact that to ensure easy handling of cargoes (cars), a certain (however small) number of cells should be left unoccupied, and this number is the smaller of the greater the anticipated storage term in a particular area of the depot.
All the embodiments described herein before make it possible to optimize the movement of cargoes and reduce the waiting time. The parts used are neither high-precision nor cost-intensive. If the wall of the building l (101) and the cells 2 (102) is made transparent, the process of cargo (car) movement makes a sight interesting enough to attract tourists.
EET Preliminary estimates show that 2000 cars can be accommodated with a cube with a side of 40-42m. In this way, the proposed depot (garage) provides the facilities for compact arrangement of cars with minimum space requirements within a volume of arbitrary configuration which can be ideally adapted to existing architectural environment. The depot (garage) possesses high throughput (the average waiting time of 57 s is determined primarily by the time required to get in and out of the car, which can be further increased by means of trestles so that several cells of a particular section serve for ingress and egress at the same time. At the same time, the depot has sufficiently high reliability since the failure of equipment in one of the cells does not prevent normal functioning of the equipment in the other cells, does not interrupt the flow of other cargoes, each of which may be delivered by the required time to any exit. It should be noted that the method and the depot are based on the principle of transportation which may be realized by any known means.
EET

Claims

AMENDED CLAIMS
[received by the International Bureau on 8 May 1990 (08.05.9C) original claim 36 cancelled; original claims 1,3,11.14,
19,22,27 and 33 amended; other claims unchanged (10 pages)]
1. A method of storage of palletized cargoes, more specifically passenger cars, involving movement of cargoes to designated cells, storage of cargoes in the designated cells and movement of cargoes therefrom, with the movement of cargoes to and from the designated cells accomplished in sequential steps in two or three coordinates through the door openings provided in adjacent cells located along the traveling path and emptied for this purpose also by moving the cargoes to adjacent cells, the cells forming a homogeneous spatial structure to establish a depot (garage) and being used both for storing of cargoes and for coordinate transportation of cargoes.
2. A storage method according to claim 1 whereby all cells are divided into the storage areas with a specified storage term and, upon arrival of the cargo (car), the anticipated time of delivery thereof is registered and the cargo (car) is forwarded to an area with a specified storage term and to the exit from the depot (garage) immediately before it is due for delivery.
3. A cargo depot more specifically, a multi-storey garage comprising a number of individual vertical or horizontal shafts each of which defines a plurality of cells forming a homogeneous spatial structure, and contains openings for movement of cargo to the adjacent shaft, and coordinate drive, comprising a number of moveable supporting elements for cargo and means for translation linear movement of supporting elements along the shaft with a possibility of stopping in any of the cells of the shaft, in at least one fixed position, and of supporting elements or cargoes to the adjacent shaft.
4s. The depot (garage) according to claim 3 in which the shafts are vertical and the supporting elements have means for moving cargo from one supporting element to another in horizontal direction.
5. The depot (garage) according to claim 3, wherein only some of the cells are equipped with a drive and door openings for a third coordinate.
6. The depot (garage) according to claim 5 additionally provided with a guide for a third coordinate.
7. The depot (garage) according to claim 3 wherein control of the coordinate drive is effected by a control microcomputer. 8. The depot (garage) according to claim 4 wherein the coordinate drive is made in the form of a frame with a conveyor, conveyor drive and the mechanism for vertical positioning of the frame.
9. The depot (garage) according to claim 8 wherein the horizontal openings are provided with angle guides.
10. The depot (garage) according to claim 8 wherein the frame vertical positioning mechanism is comprised of two hydraulic cylinders with drives disposed in adjacent cells in a staggered arrangement, and frame guides, and the conveyor drive consists of a motor mounted on the conveyor shaft.
11. The depot (garage) according to claim 8 wherein the frame vertical positioning mechanism is comprised of two reversible motors linked to the drive shafts having two end gears, each of which carries a chain drive, with the drive shafts disposed horizontally along the ribs of the base of the cell which is provided with retractable rests for the frame which is provided with a controllable grip. 12. The depot (garage) according to claim 11 wherein the conveyor and conveyor drive are made in the form of a belt chain drive with four angular sprockets linked to the respective intermediate gears, fitted in pairs at least on one of the drive shafts, with the intermediate gears featuring controllable clutches.
13. The depot (garage) according to claim 12 wherein the chain drives are provided with thrust skids made of antifriction material.
14. The depot (garage) according to claim 11 wherein the controllable grip of the frame is comprised of a carriage with a carrier and two pins on the side of the chain drive, with the links thereof provided with external projections and side chamfers, the carrier being mounted in the cell.
15. The depot (garage) according to claim 12 wherein the drive shafts are provided with damping rollers disposed in between intermediate gears.
16. The depot (garage) according to claim 14 wherein provision is made for accumulating cells with n retractable rests and n carriers of controllable grips each. 17. The depot (garage) according to claim 3 wherein the cells are provided with decoders, frame vertical position and cargo horizontal position sensors whose outputs are coupled to the first group of decoder inputs, with the second group of inputs thereof connected to the outputs of the control console, and the decoder outputs connected to the control inputs of the reversible motors, retractable rests, carriage carriers and controllable clutches in a particular cell.
18. The depot (garage) according to claim 8 wherein the frames are provided with vertical damping supports.
19. The depot (garage) according to claim 3 wherein the supporting elements are made in the form of working modules whose number is less than the number of cells.
20. The depot (garage) according to claim 19 wherein the working module is made in the form of a platform with a post and coordinate rollers, and a hood with end and side sliding doors.
21. The depot (garage) according to claim 19 wherein the working module is provided with coordinate pushers. 22. The depot (garage) according to claim 19 wherein the cells are made with horizontal and vertical drives for modules and horizontal and vertical guides with drives and position sensors, and are provided with sensors of the vertical and horizontal position of the module and horizontal and vertical brakes for the module.
23. The depot (garage) according to claim 22 wherein the vertical drive and vertical brake of the module are comprised of a telescopic cylinder with a drive disposed on the side wall of the respective cell, and also a controllable -support attached to the working end of the hydraulic cylinder, with the module featuring three lateral bearing strips and the hydraulic cylinders in the vertical column of the cells having a staggered arrangement.
24. The depot (garage) according to claim 20 wherein the number of pairs of the module rollers for each coordinate and the distance between the rollers in the pair is selected from the following relationships: p = 2q; d is less than s, where: p is the number of the module roller pairs for a particular coordinate; q is the number of guides for a particular coordinate; d is the distance between the rollers in the pair; s is the distance between like guides for a particular coordinate.
25. The depot (garage) according to claim 22 wherein the horizontal drive of the module is comprised of four reversible friction motors with the associated drives and the side walls of the module have a friction coating.
26. The depot (garage) according to claim 19 wherein the sensors of the horizontal and vertical position of the module feature a module code marker identifier.
27. The depot (garage) according to claim 19 wherein the depot is arranged in a plurality of sections or packets of shafts, and each section is provided with roof modules, foundation modules and entrance modules, arranged respectively on the upper cells of the section, under the lower cells of the section and on the entrance areas.
28. The depot (garage) according to claim 27 wherein the outer cells of the sections are provided with side panels. 29. The depot (garage) according to claim 28 wherein the side panels of the cells and the hoods of the working modules are made of optically transparent material.
30. The depot (garage) according to claim 20 wherein the module platform features a sliding hatch.
31. The depot (garage) according to claim 19 wherein the modules are provided with ventilation pipes, and the shafts are provided with a ventilation and heating system, with the outlet pipes thereof featuring a drive and a shut-off device and disposed in the cells.
32. The depot (garage) according to claim 31 wherein the working modules are provided with smoke sensors, a valve and a fire-fighting system, with the trigger input thereof connected to the output of the smoke sensor and the control input of the valve disposed in the ventilation pipe.
33. The depot (garage) according to claim 27 wherein each packet of shafts is provided with k repair modules comprised of a platform with a post and coordinate rollers and a guard with bearing strips and a friction coating, and L pumping modules and a control module, with the number of repair and pumping modules determined providing that: -01 -
L+k+1 is less than m, where m is the difference between the number of cells and the number of working modules.
34. The depot (garage) according to claim 33 wherein the control module incorporates a display, a control console and input and output decoders, the working and repair modules incorporate control units, with the outputs of the module control units connected via the input decoder of the control module to the inputs of the display of the control module, and the outputs of the control console of the control module connected via the output decoder of the control module to the inputs of the module control units.
35. The depot (garage) according to claim 34 wherein the module control unit is comprised of a decoder, an OR gate and a timer, in which case the inputs of the control unit are connected to a group of mode control inputs and a group of decoder direction control inputs, with the information inputs of the decoder connected to the outputs of the position sensors of the horizontal guides, vertical guides, hydraulic cylinder, reversible friction motors, module vertical and horizontal position sensors, the decoder direction control input group connected to the inputs of the OR gate -oZ—
whose output is coupled to the first trigger input of the timer, with the second trigger input of the timer connected to the clock output of the decoder whose control inputs are connected to the control inputs of the reversible functional motors, controllable support, hydraulic cylinder and horizontal brake, as well as to the control inputs of the drives of the horizontal guides, vertical guides, hydraulic cylinder and reversible friction motors, with the synchronization output of the decoder connected to the reset input of the timer whose enable output is connected to the blocking input of the decoder, the outputs of the module horizontal and vertical position sensors connected to the clock inputs of the module code marker identifier and the outputs of the control unit connected to the information outputs of the timer, module code marker identifier and decoder.
EP19900901288 1988-12-16 1989-12-11 Method of storage of palletized cargoes, specifically passenger cars and a depot (multi-storey garage) Withdrawn EP0448629A4 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SU4629889 RU1814683C (en) 1988-12-16 1988-12-16 Many-storied garage
SU4629889 1988-12-16
SU4711772 1989-06-30
SU4711772 1989-06-30

Publications (2)

Publication Number Publication Date
EP0448629A1 EP0448629A1 (en) 1991-10-02
EP0448629A4 true EP0448629A4 (en) 1993-02-17

Family

ID=26666199

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900901288 Withdrawn EP0448629A4 (en) 1988-12-16 1989-12-11 Method of storage of palletized cargoes, specifically passenger cars and a depot (multi-storey garage)

Country Status (2)

Country Link
EP (1) EP0448629A4 (en)
WO (1) WO1990007043A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH680812A5 (en) * 1990-09-28 1992-11-13 Coenco Sa
US5190427A (en) * 1991-10-02 1993-03-02 Necer International Co., Ltd. Computer-controlled block to block shifting type multi-floor multi-block equipment conveying and storage system
KR100219852B1 (en) * 1997-08-16 1999-09-01 이종수 Control device and method in machinery parking facilities
CN106065721B (en) * 2016-06-14 2018-07-03 浙江工贸职业技术学院 A kind of stereo garage formed using container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529274A (en) * 1991-07-25 1993-02-05 Mitsubishi Electric Corp Semiconductor manufacturing device and cleaning method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899086A (en) * 1959-08-11 Thaon de saint-andre
US2823810A (en) * 1954-03-19 1958-02-18 Stoner David Derelius Parking lift
US2930497A (en) * 1957-08-27 1960-03-29 James E Wheeler Two-level storage apparatus
US3085700A (en) * 1961-01-03 1963-04-16 O'sullivan Eugene Vehicle storage apparatus
US3035717A (en) * 1961-01-27 1962-05-22 John K Stone Shiftable stall structures for parking automobiles
FR1293625A (en) * 1961-04-06 1962-05-18 Ateliers Jaspar Garage method and device for vehicles
US3294260A (en) * 1964-09-11 1966-12-27 John W Erangos Storage system
US3710957A (en) * 1970-09-14 1973-01-16 G Small Method and apparatus for locking vehicles on movable platforms
JPS529274A (en) * 1975-07-10 1977-01-24 Kawasaki Steel Corp Conveyer carriage type garage
GB1546431A (en) * 1976-11-01 1979-05-23 Hickey C D D Storage of wheeled vehicles
JPS5385076A (en) * 1976-12-29 1978-07-27 Shin Meiwa Ind Co Ltd Five-stage parking facility
US4167365A (en) * 1977-08-22 1979-09-11 Spiridon Constantinescu Car parking system
US4768914A (en) * 1986-01-13 1988-09-06 Peter Sing Storage system
JPS63262306A (en) * 1987-04-20 1988-10-28 Hitachi Ltd Sky-parking zone operational system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529274A (en) * 1991-07-25 1993-02-05 Mitsubishi Electric Corp Semiconductor manufacturing device and cleaning method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9007043A1 *

Also Published As

Publication number Publication date
EP0448629A1 (en) 1991-10-02
WO1990007043A1 (en) 1990-06-28

Similar Documents

Publication Publication Date Title
US5176484A (en) Multi-storey depot for storing cargo and automobiles
CN109422166B (en) Intelligent multi-well elevator system
EP0376621B1 (en) Multi-level storage structure
US3148785A (en) Handling and storage system
US8632290B2 (en) Automated parking system
EP0388814B1 (en) Passenger transport installation
FI114409B (en) Device for storing objects in a storage block
US7381022B1 (en) Automated 3-dimensional multitasking, stocking, storage, and distribution system
US20090148259A1 (en) Automated Vehicle Parking Garage with Catwalk Installation
US2712875A (en) Garage construction
GB2596626A (en) Robotic parking device and handling method
EP0448629A4 (en) Method of storage of palletized cargoes, specifically passenger cars and a depot (multi-storey garage)
AU2004312205A1 (en) Object storage
CA2005558A1 (en) Method of storage of palletized cargoes, specifically passenger cars and a depot
US3008590A (en) Automatic vehicular parking device
JPH05508201A (en) How to store palletized cargo, especially passenger cars, and garages (multi-vehicle garages)
JP3140634B2 (en) Multi-level parking
RU2241812C2 (en) Multideck garage for car parking
JP2970406B2 (en) Safety device for mechanical parking equipment
KR950013887B1 (en) Modular strorage and retrieval system for automobiles
JP2003278396A (en) Multistory parking garage
JP2790012B2 (en) Elevator parking equipment, etc.
JPS5930872B2 (en) Containment system and method
RU2212508C2 (en) Automated multistory garage-storehouse and gear for longitudinal translation of tray
JPH01133802A (en) Traveling method between chambers of device for taking load in and out

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 19921230

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940701