EP0430367A2 - X-ray tube - Google Patents

X-ray tube Download PDF

Info

Publication number
EP0430367A2
EP0430367A2 EP90203106A EP90203106A EP0430367A2 EP 0430367 A2 EP0430367 A2 EP 0430367A2 EP 90203106 A EP90203106 A EP 90203106A EP 90203106 A EP90203106 A EP 90203106A EP 0430367 A2 EP0430367 A2 EP 0430367A2
Authority
EP
European Patent Office
Prior art keywords
coolant
anode
bearing part
ray tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90203106A
Other languages
German (de)
French (fr)
Other versions
EP0430367A3 (en
EP0430367B1 (en
Inventor
Rolf Gölitzer
Lothar Weil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0430367A2 publication Critical patent/EP0430367A2/en
Publication of EP0430367A3 publication Critical patent/EP0430367A3/en
Application granted granted Critical
Publication of EP0430367B1 publication Critical patent/EP0430367B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/107Cooling of the bearing assemblies

Definitions

  • the invention relates to an X-ray tube with an anode body, which has a cylindrical, outwardly open cavity which can be connected to a coolant flow.
  • an X-ray tube is known from the book "Guide to Medical X-ray Technology" by van der Plaats, 1961, Fig. 21. It is a fixed anode X-ray tube.
  • the fixed anode has a cavity into which a coolant supply line projects. The coolant flows through this line to the end face of the cavity on which the fixed anode is mounted and then back past the coolant line in the cavity.
  • the object of the present invention is to design an X-ray tube of the type mentioned at the outset in such a way that good cooling also results on the lateral surfaces of the cylindrical cavity.
  • This object is achieved in that a cooler is arranged in the cavity for distributing the coolant flow, which comprises a tube, on the outer surfaces of which a coolant guide device is attached, which is designed so that the coolant in the space between the anode body and flows around the pipe several times.
  • the coolant guiding device prevents the coolant flow in the space between the tube and the inner surfaces of the anode body, which delimit the cylindrical cavity, from running exclusively in the longitudinal direction of the tube, and forces the coolant to move around the pipe flows around. This causes turbulence of the coolant flow on the inner surfaces, which results in improved cooling.
  • the coolant-guiding device could, for example, be a web which helically encloses the tube and whose outer dimensions are adapted to the opening in the anode body.
  • the coolant guiding device comprises a plurality of disks perpendicular to the longitudinal axis of the tube, that each disk is provided with an opening for the passage of the coolant, and that the openings of adjacent disks are each offset by 180 °.
  • the coolant flow can only get through an opening in a pane into the area between this pane and the subsequent pane. Since the openings in successive disks are each offset by 180 ° (based on the longitudinal axis of the tube), the coolant flow must flow from opening to opening in an arc of 180 ° around the tube.
  • the anode is a rotating anode, which is mounted by means of a bearing which has a rotating bearing part and a fixed bearing part, a liquid coolant being located between the bearing parts, and that the fixed bearing part is open to the outside has cylindrical cavity in which the cooler is arranged.
  • the described rotating anode X-ray tubes in particular those with a spiral groove bearing, show a temperature distribution during operation which requires effective cooling of the cylindrical outer surfaces of the cavity in the anode body.
  • Fig. 2 shows the arrangement of the cooling device according to the invention in a part of this X-ray tube
  • Fig. 3 is a plan view of the cooler.
  • the rotary anode X-ray tube shown in FIG. 1 has a metal piston 1 to which the cathode is fastened via a first insulator 2 and the rotary anode is fastened via a second insulator 4.
  • the rotating anode has an anode disc 5, on the surface of which is opposite the cathode 3, when a high voltage is switched on, X-ray radiation is generated, which emerges through a radiation exit window 6 in the bulb 1, which preferably consists of beryllium.
  • the anode disc 1 is connected via a bearing arrangement to a carrier body 7 which is fastened to the second insulator 4.
  • the bearing arrangement comprises a fixed bearing part 8 connected to the carrier 7 and a rotating bearing part 9 which has a rotor 10 at its lower end for driving the anode disk 5 fastened at the upper end.
  • the bearing parts 8, 9 can consist of a molybdenum alloy (TZM).
  • the bearing part 8 is provided with two herringbone groove patterns 11a, 11b which are offset with respect to one another in the axial direction.
  • the grooves are, for example, 10 ⁇ m deep, and the areas of the grooves are, for example, in a ratio of 1: 1 to the areas in between.
  • the space between the groove patterns 11a, 11b and the bearing part 9 is with a liquid lubricant filled, preferably a gallium alloy.
  • the surfaces of the fixed bearing part 8 provided with the groove patterns 11a, 11b and the surfaces of the rotating bearing part 9 lying opposite them thus form two spiral groove bearings for absorbing the radial bearing forces.
  • the bearing part has a section 12 several millimeters thick, the diameter of which is considerably larger than the diameter of the rest of the bearing part 8.
  • a section whose diameter corresponds at least approximately to the diameter of the bearing part 8 in the upper region and which is connected to the carrier body 7.
  • the inner contour of the bearing part 9 is adapted to the outer contour of the bearing part 8.
  • the rotating bearing part 9 cannot be formed in one piece, as shown schematically in the drawing, but must consist of at least two parts which are connected to one another in a suitable manner in the region of the section 12.
  • section 12 which run perpendicular to the axis of rotation 16 of the bearing part 9, are likewise provided with a herringbone-like pattern (not shown in the drawing) and, together with the parallel faces of the bearing part 9, form two further spiral groove bearings, the forces directed axially upwards and downwards can record on the rotating anode.
  • Fig. 2 shows the fixed bearing part 8 and the cooling device located therein.
  • the bearing part 8 has a cavity with a circular cylindrical outer surface and a flat end surface perpendicular to the axis 16.
  • the inside diameter of the cavity is e.g. 20mm.
  • a cooler 14 is arranged, which comprises a metal tube 141, which is provided on its outer surface with a number of disks 142, which are located in planes perpendicular to the axis of rotation 16 and whose outer diameter corresponds to the inner diameter of the opening 13 or at most a few is a tenth of a millimeter smaller than this.
  • the cooler 14 has at its end facing the end face of the fixed bearing part 8 an opening 143 in the tube 141.
  • each disk 142 has a radial opening, for example 3 mm wide slot-shaped opening 144. The openings are shown in the illustration in FIG. 2 alternately on the right or on the left side, so that the openings 144 in two successive disks are offset by 180 ° (with respect to the axis 16).
  • a coolant supply line 17 is introduced, which is also made of metal and whose outer diameter is adapted to the inner diameter of section 145.
  • the coolant flow which is indicated by the arrow 18, flows through the feed line 17 into the pipe 141 and emerges from the pipe through the opening 143 in the region of the end face of the bearing part 8.
  • the end Incoming coolant divides into two streams that flow in opposite directions in a semicircle until they reach the opening 144 in the first disc 142 on the opposite side of the tube, where they combine and pass through the opening.
  • there are again two coolant flows which flow in a semicircular shape around the pipe to the opening in the next pane, etc. until finally the coolant emerges from the opening in the last (bottom pane) and is fed back to the coolant circuit in a manner not shown becomes.
  • the coolant would flow past the inner walls of the bearing part 8 to be cooled in a substantially laminar direction.
  • the cooling effect would be low.
  • the disks create turbulence in the coolant flow, and the stronger the closer the disks are, the stronger. At these points, i.e. in the area of section 12, the greatest cooling effect results. - It follows from the above that the cooler itself does not directly serve to dissipate the heat, but rather that it forces a flow in the coolant flow which ensures good heat dissipation.
  • the coolant supply line 17 can be arranged in the interior of a high-voltage plug, not shown, which is inserted into an opening in the ceramic insulator 4.
  • the cooler 14 results between the above-mentioned high-voltage connector and the anode disk 5 via the supply line 17 , the bearing part 8, the Lubricant and the rotating bearing part 9 - an electrically conductive connection that can serve to connect the anode disk 5 to a positive high voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

The invention relates to an X-ray tube having an anode body which has a cylindrical cavity, which is open to the exterior and can be connected to a coolant flow. Cooling, which is effective especially in the area of the enveloping surfaces of the cylindrical opening, is produced in this case in that a cooler is arranged to distribute the coolant flow in the cavity, which cooler comprises a tube on whose outer surfaces there is fitted a coolant guiding device which is designed such that the coolant flows around the tube a number of times in the intermediate space between the anode body and the tube. <IMAGE>

Description

Die Erfindung betrifft eine Röntgenröhre mit einem Anodenkörper, der einen zylinderförmigen, nach außen offenen Hohlraum aufweist, der an einen Kühlmittelstrom anschließbar ist. Eine derartige Röntgenröhre ist aus dem Buch "Leitfaden der medizinischen Röntgentechnik" von van der Plaats, 1961, Abb. 21, bekannt. Es handelt sich dabei um eine Festanodenröntgenröhre. Die Festanode weist einen Hohlraum auf, in den eine Kühlmittelzuleitung hineinragt. Das Kühlmittel strömt durch diese Leitung hindurch zu der Stirnfläche des Hohlraums, auf der die Festanode angebracht ist, und dann in dem Hohlraum an der Kühlmittelleitung vorbei zurück.The invention relates to an X-ray tube with an anode body, which has a cylindrical, outwardly open cavity which can be connected to a coolant flow. Such an X-ray tube is known from the book "Guide to Medical X-ray Technology" by van der Plaats, 1961, Fig. 21. It is a fixed anode X-ray tube. The fixed anode has a cavity into which a coolant supply line projects. The coolant flows through this line to the end face of the cavity on which the fixed anode is mounted and then back past the coolant line in the cavity.

Aufgabe der vorliegenden Erfindung ist es, eine Röntgenröhre der eingangs genannten Art so auszugestalten, daß sich eine gute Kühlung auch an den Mantelflächen des zylinderförmigen Hohlraums ergibt. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zum Verteilen des Kühlmittelstromes in dem Hohlraum ein Kühler angeordnet ist, der ein Rohr umfaßt, auf dessen Außenflächen eine Kühlmittel-Leitvorrichtung angebracht ist, die so gestaltet ist, daß das Kühlmittel in dem Zwischenraum zwischen dem Anodenkörper und dem Rohr das Rohr mehrmals umströmt.The object of the present invention is to design an X-ray tube of the type mentioned at the outset in such a way that good cooling also results on the lateral surfaces of the cylindrical cavity. This object is achieved in that a cooler is arranged in the cavity for distributing the coolant flow, which comprises a tube, on the outer surfaces of which a coolant guide device is attached, which is designed so that the coolant in the space between the anode body and flows around the pipe several times.

Die Kühlmittel-Leitvorrichtung verhindert dabei, daß der Kühlmittelstrom in dem Zwischenraum zwischen dem Rohr und den Innenflächen des Anodenkörpers, die den zylinderförmigen Hohlraum begrenzen, ausschließlich in Längsrichtung des Rohres verläuft, und erzwingt, daß das Kühlmittel um das Rohr herumströmt. Dadurch werden an den Innenflächen Turbulenzen des Kühlmittelstroms hervorgerufen, woraus sich eine verbesserte Kühlung ergibt.The coolant guiding device prevents the coolant flow in the space between the tube and the inner surfaces of the anode body, which delimit the cylindrical cavity, from running exclusively in the longitudinal direction of the tube, and forces the coolant to move around the pipe flows around. This causes turbulence of the coolant flow on the inner surfaces, which results in improved cooling.

Die Kühlmittel-Leitvorrichtung könnte beispielsweise ein Steg sein, der das Rohr schraubenlinienförmig umschließt, und dessen äußere Abmessungen der Öffnung in dem Anodenkörper angepaßt sind. Eine solche Vorrichtung ist aber in der Herstellung aufwendig. Demgegenüber sieht eine Weiterbildung der Erfindung vor, daß die Kühlmittel-Leitvorrichtung mehrere zur Längsachse des Rohres senkrechte Scheiben umfaßt, daß jede Scheibe mit einer Öffnung für den Durchtritt des Kühlmittels versehen ist, und daß die Öffnungen benachbarter Scheiben jeweils um 180° versetzt sind. Der Kühlmittelstrom kann dabei nur durch eine Öffnung in einer Scheibe in den Bereich zwischen dieser Scheibe und der nachfolgenden Scheibe gelangen. Da die Öffnungen in aufeinanderfolgenden Scheiben jeweils um 180° (bezogen auf die Längsachse des Rohres) gegeneinander versetzt sind, muß der Kühlmittelstrom von Öffnung zu Öffnung in einem Bogen von 180° um das Rohr herum fließen.The coolant-guiding device could, for example, be a web which helically encloses the tube and whose outer dimensions are adapted to the opening in the anode body. However, such a device is expensive to manufacture. In contrast, a further development of the invention provides that the coolant guiding device comprises a plurality of disks perpendicular to the longitudinal axis of the tube, that each disk is provided with an opening for the passage of the coolant, and that the openings of adjacent disks are each offset by 180 °. The coolant flow can only get through an opening in a pane into the area between this pane and the subsequent pane. Since the openings in successive disks are each offset by 180 ° (based on the longitudinal axis of the tube), the coolant flow must flow from opening to opening in an arc of 180 ° around the tube.

Nach einer bevorzugten Weiterbildung ist vorgesehen, daß die Anode eine Drehanode ist, die mittels eines Lagers gelagert ist, das einen rotierenden Lagerteil und einen feststehenden Lagerteil aufweist, wobei sich zwischen den Lagerteilen ein flüssiges Kühlmittel befindet, und daß der feststehende Lagerteil einen nach außen offenen zylinderförmigen Hohlraum aufweist, in dem der Kühler angeordnet ist. Die beschriebenen Drehanoden-Röntgenröhren, insbesondere solche mit einem Spiralrillenlager, zeigen im Betrieb eine Temperaturverteilung, die eine wirksame Kühlung der zylindrischen Mantelflächen des Hohlraums in dem Anodenkörper erfordern.According to a preferred development, it is provided that the anode is a rotating anode, which is mounted by means of a bearing which has a rotating bearing part and a fixed bearing part, a liquid coolant being located between the bearing parts, and that the fixed bearing part is open to the outside has cylindrical cavity in which the cooler is arranged. The described rotating anode X-ray tubes, in particular those with a spiral groove bearing, show a temperature distribution during operation which requires effective cooling of the cylindrical outer surfaces of the cavity in the anode body.

Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Es zeigenThe invention is explained below with reference to the drawing. Show it

Fig. 1 eine Röntgenröhre, bei der die Erfindung anwendbar ist,1 is an X-ray tube in which the invention is applicable,

Fig. 2 die Anordnung der erfindungsgemäßen Kühlvorrichtung in einem Teil dieser Röntgenröhre undFig. 2 shows the arrangement of the cooling device according to the invention in a part of this X-ray tube and

Fig. 3 eine Draufsicht auf den Kühler.Fig. 3 is a plan view of the cooler.

Die in Fig. 1 dargestellte Drehanoden-Röntgenröhre besitzt einen Metallkolben 1, an dem über einen ersten Isolator 2 die Kathode und über einen zweiten Isolator 4 die Drehanode befestigt ist. Die Drehanode besitzt eine Anodenscheibe 5, auf deren der Kathode 3 gegenüberliegender Fläche beim Einschalten einer Hochspannung Röntgenstrahlung erzeugt wird, die durch ein Strahlenaustrittsfenster 6 im Kolben 1, das vorzugsweise aus Beryllium besteht, austritt. Die Anodenscheibe 1 ist über eine Lageranordnung mit einem Trägerkörper 7 verbunden, der an den zweiten Isolator 4 befestigt ist. Die Lageranordnung umfaßt einen mit dem Träger 7 verbundenen feststehenden Lagerteil 8 und einen rotierenden Lagerteil 9, der an seinem unteren Ende einen Rotor 10 zum Antrieb der am oberen Ende befestigten Anodenscheibe 5 aufweist. Die Lagerteile 8, 9 können aus einer Molybdän-Legierung (TZM) bestehen.The rotary anode X-ray tube shown in FIG. 1 has a metal piston 1 to which the cathode is fastened via a first insulator 2 and the rotary anode is fastened via a second insulator 4. The rotating anode has an anode disc 5, on the surface of which is opposite the cathode 3, when a high voltage is switched on, X-ray radiation is generated, which emerges through a radiation exit window 6 in the bulb 1, which preferably consists of beryllium. The anode disc 1 is connected via a bearing arrangement to a carrier body 7 which is fastened to the second insulator 4. The bearing arrangement comprises a fixed bearing part 8 connected to the carrier 7 and a rotating bearing part 9 which has a rotor 10 at its lower end for driving the anode disk 5 fastened at the upper end. The bearing parts 8, 9 can consist of a molybdenum alloy (TZM).

An seinem oberen Ende ist das Lagerteil 8 mit zwei in axialer Richtung gegeneinander versetzten fischgrätartigen Rillenmustern 11a, 11b versehen. Die Rillen sind z.B. 10 µm tief, und die Flächen der Rillen stehen zu den dazwischen liegenden Flächen beispielsweise im Verhältnis 1:1. Der Zwischenraum zwischen den Rillenmustern 11a, 11b und dem Lagerteil 9 ist mit einem flüssigen Schmiermittel gefüllt, vorzugsweise einer Galliumlegierung. Die mit den Rillenmustern 11a, 11b versehenen Flächen des feststehenden Lagerteils 8 und die ihnen gegenüberliegenden Flächen des rotierenden Lagerteils 9 bilden somit zwei Spiralrillenlager zur Aufnahme der radialen Lagerkräfte.At its upper end, the bearing part 8 is provided with two herringbone groove patterns 11a, 11b which are offset with respect to one another in the axial direction. The grooves are, for example, 10 μm deep, and the areas of the grooves are, for example, in a ratio of 1: 1 to the areas in between. The space between the groove patterns 11a, 11b and the bearing part 9 is with a liquid lubricant filled, preferably a gallium alloy. The surfaces of the fixed bearing part 8 provided with the groove patterns 11a, 11b and the surfaces of the rotating bearing part 9 lying opposite them thus form two spiral groove bearings for absorbing the radial bearing forces.

Im Anschluß an das untere Spiralrillenlager hat der Lagerteil einen mehrere Millimeter dicken Abschnitt 12, dessen Durchmesser wesentlich größer ist als der Durchmesser des restlichen Lagerteils 8. Darunter folgt wiederum ein Abschnitt, dessen Durchmesser zumindest annähernd dem Durchmesser des Lagerteils 8 im oberen Bereich entspricht und der mit dem Trägerkörper 7 verbunden ist. Die Innenkontur des Lagerteils 9 ist der Außenkontur des Lagerteils 8 angepaßt. Infolgedessen kann der rotierende Lagerteil 9 nicht einteilig ausgebildet sein, wie in der Zeichnung schematisch dargestellt, sondern muß aus mindestens zwei Teilen bestehen, die im Bereich des Abschnitts 12 auf geeignete Weise miteinander verbunden sind.Following the lower spiral groove bearing, the bearing part has a section 12 several millimeters thick, the diameter of which is considerably larger than the diameter of the rest of the bearing part 8. Below this, in turn, is a section whose diameter corresponds at least approximately to the diameter of the bearing part 8 in the upper region and which is connected to the carrier body 7. The inner contour of the bearing part 9 is adapted to the outer contour of the bearing part 8. As a result, the rotating bearing part 9 cannot be formed in one piece, as shown schematically in the drawing, but must consist of at least two parts which are connected to one another in a suitable manner in the region of the section 12.

Die zur Rotationsachse 16 des Lagerteils 9 senkrecht verlaufenden Stirnflächen des Abschnitts 12 sind ebenfalls mit einem fischgrätartigen Muster (in der Zeichnung nicht dargestellt) versehen und bilden zusammen mit den dazu parallelen Flächen des Lagerteils 9 zwei weitere Spiralrillenlager, die axial nach oben und unten gerichtete Kräfte auf die Drehanode aufnehmen können.The end faces of section 12, which run perpendicular to the axis of rotation 16 of the bearing part 9, are likewise provided with a herringbone-like pattern (not shown in the drawing) and, together with the parallel faces of the bearing part 9, form two further spiral groove bearings, the forces directed axially upwards and downwards can record on the rotating anode.

Durch Röntgenaufnahmen, gegebenenfalls in Verbindung mit Durchleuchtungen, erwärmt sich die Anodenscheibe stark. Diese Wärme wird teils von der Anode abgestahlt und teils über den rotierenden Lagerteil 8 geführt. Dieser Wärmestrom führt auch zu einer Erwärmung des feststehenden Lagerteils 8, wobei sich die höchsten Temperaturen in dem Abschnitt 12 einstellen.X-rays, possibly in conjunction with fluoroscopy, heat up the anode disk considerably. This heat is partly abraded from the anode and partly passed over the rotating bearing part 8. This heat flow also leads to heating of the fixed bearing part 8, the highest temperatures occurring in the section 12.

Fig. 2 zeigt den feststehenden Lagerteil 8 und die darin befindliche Kühlvorrichtung. Wie aus der Zeichnung ersichtlich, besitzt das Lagerteil 8 einen Hohlraum mit kreiszylinderförmiger Mantelfläche und ebener, zur Achse 16 senkrechter Stirnfläche. Der Innendurchmesser des Hohlraums beträgt z.B. 20mm.Fig. 2 shows the fixed bearing part 8 and the cooling device located therein. As can be seen from the drawing, the bearing part 8 has a cavity with a circular cylindrical outer surface and a flat end surface perpendicular to the axis 16. The inside diameter of the cavity is e.g. 20mm.

In dem Hohlraum ist ein Kühler 14 angeordnet, der ein Metallrohr 141 umfaßt, das auf seiner Außenfläche mit einer Anzahl von Scheiben 142 versehen ist, die sich in zur Drehachse 16 senkrechten Ebenen befinden und deren Außendurchmesser dem Innendurchmesser der Öffnung 13 entspricht bzw. allenfalls wenige zehntel Millimeter kleiner ist als dieser. Der Kühler 14 besitzt an seinem der Stirnfläche des feststehenden Lagerteils 8 zugewandten Ende eine Öffnung 143 in dem Rohr 141. Außerdem besitzt jede Scheibe 142 eine in radialer Richtung verlaufende, beispielsweise 3mm breite schlitzförmige Öffnung 144. Die Öffnungen befinden sich in der Darstellung nach Fig. 2 alternierend auf der rechten bzw. auf der linken Seite, so daß die öffnungen 144 in zwei aufeinanderfolgenden Scheiben um 180° (bezogen auf die Achse 16) versetzt sind.In the cavity, a cooler 14 is arranged, which comprises a metal tube 141, which is provided on its outer surface with a number of disks 142, which are located in planes perpendicular to the axis of rotation 16 and whose outer diameter corresponds to the inner diameter of the opening 13 or at most a few is a tenth of a millimeter smaller than this. The cooler 14 has at its end facing the end face of the fixed bearing part 8 an opening 143 in the tube 141. In addition, each disk 142 has a radial opening, for example 3 mm wide slot-shaped opening 144. The openings are shown in the illustration in FIG. 2 alternately on the right or on the left side, so that the openings 144 in two successive disks are offset by 180 ° (with respect to the axis 16).

Das von der Stirnfläche des Lagerteils 8 abgewandte Ende des Kühlers 14 mündet in einen Abschnitt 145 mit vergrößertem Durchmesser. In diesen Abschnitt ist eine Kühlmittelzuleitung 17 eingeführt, die ebenfalls aus Metall besteht und deren Außendurchmesser dem Innendurchmesser des Abschnitts 145 angepaßt ist.The end of the cooler 14 facing away from the end face of the bearing part 8 opens into a section 145 with an enlarged diameter. In this section, a coolant supply line 17 is introduced, which is also made of metal and whose outer diameter is adapted to the inner diameter of section 145.

Im Betriebszustand fließt der Kühlmittelstrom, der durch den Pfeil 18 angedeutet ist, durch die Zuleitung 17 in das Rohr 141 und tritt im Bereich der Stirnfläche des Lagerteils 8 durch die Öffnung 143 aus dem Rohr aus. Das aus tretende Kühlmittel teilt sich in zwei Ströme auf, die das Rohr gegensinnig in einem Halbbogen umfließen, bis sie zu der auf der gegenüberliegenden Seite des Rohres befindlichen Öffnung 144 in der ersten Scheibe 142 gelangen, wo sie sich vereinigen und durch die Öffnung hindurchtreten. Nach dem Durchtritt ergeben sich wiederum zwei Kühlmittelströme, die halbbogenförmig um das Rohr herumfließen bis zu der Öffnung in der nächsten Scheibe usw. bis schlußendlich das Kühlmittel aus der Öffnung in der letzten (untersten Scheibe) austritt und auf nicht näher dargestellte Weise dem Kühlmittelkreislauf wieder zugeführt wird.In the operating state, the coolant flow, which is indicated by the arrow 18, flows through the feed line 17 into the pipe 141 and emerges from the pipe through the opening 143 in the region of the end face of the bearing part 8. The end Incoming coolant divides into two streams that flow in opposite directions in a semicircle until they reach the opening 144 in the first disc 142 on the opposite side of the tube, where they combine and pass through the opening. After passing through, there are again two coolant flows, which flow in a semicircular shape around the pipe to the opening in the next pane, etc. until finally the coolant emerges from the opening in the last (bottom pane) and is fed back to the coolant circuit in a manner not shown becomes.

Wären die Scheiben 142 mit ihren Öffnungen 144 nicht vor-handen, dann würde das Kühlmittel in Richtung der Achse und im wesentlichen laminar an den zu kühlenden Innenwänden des Lagerteils 8 vorbeiströmen. Die Kühlwirkung wäre gering. Die Scheiben erzeugen Turbulenzen im Kühlmittelstrom, und zwar umso stärker, je dichter die Scheiben stehen. An diesen Stellen, d.h. im Bereich des Abschnitts 12, ergibt sich die stärkste Kühlwirkung. - Aus dem vorstehenden ergibt sich, daß der Kühler selbst nicht unmittelbar dazu dient, die Wärme abzuführen, sondern daß er in dem Kühlmittelstrom eine Strömung erzwingt, die eine gute Wärmeabfuhr gewährleistet.If the disks 142 with their openings 144 were not present, the coolant would flow past the inner walls of the bearing part 8 to be cooled in a substantially laminar direction. The cooling effect would be low. The disks create turbulence in the coolant flow, and the stronger the closer the disks are, the stronger. At these points, i.e. in the area of section 12, the greatest cooling effect results. - It follows from the above that the cooler itself does not directly serve to dissipate the heat, but rather that it forces a flow in the coolant flow which ensures good heat dissipation.

Die Kühlmittelzuleitung 17 kann im Innern eines nicht näher dargestellten Hochspannungssteckers angeordnet sein, der in eine Öffnung des Keramikisolators 4 eingeführt wird. Eine Druckfeder 19, die die Zuleitung 17 umschließt, und sich gegen den erwähnten Stecker abstützt, drückt dabei den Kühler 14 gegen die Stirnfläche des Lagerteils 8. Infolgedessen ergibt sich zwischen dem erwähnten Hochspannungsstecker und der Anodenscheibe 5 - über die Zuleitung 17, den Kühler 14, den Lagerteil 8, das Schmiermittel und den rotierenden Lagerteil 9 - eine elektrisch leitende Verbindung, die dazu dienen kann, die Anodenscheibe 5 an eine positive Hochspannung anzuschließen.The coolant supply line 17 can be arranged in the interior of a high-voltage plug, not shown, which is inserted into an opening in the ceramic insulator 4. A compression spring 19, which surrounds the supply line 17 and is supported against the aforementioned connector, presses the cooler 14 against the end face of the bearing part 8. As a result, the cooler 14 results between the above-mentioned high-voltage connector and the anode disk 5 via the supply line 17 , the bearing part 8, the Lubricant and the rotating bearing part 9 - an electrically conductive connection that can serve to connect the anode disk 5 to a positive high voltage.

Claims (5)

Röntgenröhre mit einem Anodenkörper, der einen zylinderförmigen, nach außen offenen Hohlraum aufweist, der an einen Kühlmittelstrom anschließbar ist, dadurch gekennzeichnet, daß zum Verteilen des Kühlmittelstromes in dem Hohlraum (13) ein Kühler (14) angeordnet ist, der ein Rohr (141) umfaßt, auf dessen Außenflächen eine Kühlmittel-Leitvorrichtung (142,144) angebracht ist, die so gestaltet ist, daß das Kühlmittel in dem Zwischenraum zwischen dem Anodenkörper (8) und dem Rohr (141) das Rohr mehrmals umströmt.X-ray tube with an anode body, which has a cylindrical, outwardly open cavity which can be connected to a coolant flow, characterized in that a cooler (14) is arranged in the cavity (13) for distributing the coolant flow , said cooler (14) having a tube (141) on the outer surfaces of which a coolant guiding device (142, 144) is attached, which is designed such that the coolant flows around the pipe several times in the space between the anode body (8) and the pipe (141). Röntgenröhre nach Anspruch 1, dadurch gekennzeichnet, daß die Kühlmittel-Leitvorrichtung mehrere zur Längsachse des Rohres senkrechte Scheiben (142) umfaßt, daß jede Scheibe mit einer Öffnung (144) für den Durchtritt des Kühlmittels versehen ist, und daß die Öffnungen benachbarter Scheiben jeweils um 180° versetzt sind.X-ray tube according to Claim 1, characterized in that the coolant guiding device comprises a plurality of disks (142) perpendicular to the longitudinal axis of the tube, that each disk is provided with an opening (144) for the passage of the coolant, and in that the openings of adjacent disks each around Are offset by 180 °. Röntgenröhre nach Anspruch 2, dadurch gekennzeichnet, daß die Scheiben (142) unterschiedliche Abstände voneinander haben und der erste Abstand zwischen benachbarten Scheiben an den Stellen (bei 12) am kleinsten ist, die am stärksten zu kühlen sind.X-ray tube according to Claim 2, characterized in that the disks (142) are at different distances from one another and the first distance between adjacent disks is the smallest at the points (at 12) which are to be cooled the most. Röntgenröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Anode eine Drehanode ist, die mittels eines Lagers gelagert ist, das einen rotierenden Lagerteil (9) und einen feststehenden Lagerteil (8) aufweist, wobei sich zwischen den Lagerteilen ein flüssiges Kühlmittel befindet, und daß der feststehende Lagerteil (8) einen nach außen offenen zylinderförmigen Hohlraum (13) aufweist, in dem der Kühler angeordnet ist.X-ray tube according to one of the preceding claims, characterized in that the anode is a rotating anode which is mounted by means of a bearing which has a rotating bearing part (9) and a fixed bearing part (8) having a liquid coolant between the bearing parts and that the fixed bearing part (8) has an outwardly open cylindrical cavity (13) in which the cooler is arranged. Röntgenröhre nach Anspruch 4, dadurch gekennzeichnet, daß die Hochspannung der Anode über das Rohr (141) zugeführt wird.X-ray tube according to Claim 4, characterized in that the high voltage is supplied to the anode via the tube (141).
EP90203106A 1989-11-29 1990-11-23 X-ray tube Expired - Lifetime EP0430367B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8914064U DE8914064U1 (en) 1989-11-29 1989-11-29 X-ray tube
DE8914064U 1989-11-29

Publications (3)

Publication Number Publication Date
EP0430367A2 true EP0430367A2 (en) 1991-06-05
EP0430367A3 EP0430367A3 (en) 1991-09-11
EP0430367B1 EP0430367B1 (en) 1995-08-16

Family

ID=6845002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90203106A Expired - Lifetime EP0430367B1 (en) 1989-11-29 1990-11-23 X-ray tube

Country Status (4)

Country Link
US (1) US5091927A (en)
EP (1) EP0430367B1 (en)
JP (1) JP2983617B2 (en)
DE (2) DE8914064U1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584868A1 (en) * 1992-08-20 1994-03-02 Philips Patentverwaltung GmbH Rotating anode X-ray tube with a cooling device
DE19926741A1 (en) * 1999-06-11 2001-01-11 Siemens Ag Liquid-metal plain bearing with cooling lance e.g. for X-ray tube
EP2324485B1 (en) * 2008-09-13 2015-03-11 CXR Limited X-ray tubes

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652778A (en) * 1995-10-13 1997-07-29 General Electric Company Cooling X-ray tube
US5673301A (en) * 1996-04-03 1997-09-30 General Electric Company Cooling for X-ray systems
US6249569B1 (en) * 1998-12-22 2001-06-19 General Electric Company X-ray tube having increased cooling capabilities
US6335512B1 (en) 1999-07-13 2002-01-01 General Electric Company X-ray device comprising a crack resistant weld
JP4357094B2 (en) 1999-08-10 2009-11-04 株式会社東芝 Rotating anode type X-ray tube and X-ray tube apparatus incorporating the same
JP3663111B2 (en) 1999-10-18 2005-06-22 株式会社東芝 Rotating anode X-ray tube
US6377659B1 (en) 2000-12-29 2002-04-23 Ge Medical Systems Global Technology Company, Llc X-ray tubes and x-ray systems having a thermal gradient device
US6477231B2 (en) * 2000-12-29 2002-11-05 General Electric Company Thermal energy transfer device and x-ray tubes and x-ray systems incorporating same
US6430260B1 (en) 2000-12-29 2002-08-06 General Electric Company X-ray tube anode cooling device and systems incorporating same
US6456693B1 (en) 2001-04-12 2002-09-24 Ge Medical Systems Global Technology Company, Llc Multiple row spiral groove bearing for X-ray tube
US6940947B1 (en) 2002-09-05 2005-09-06 Varian Medical Systems Technologies, Inc. Integrated bearing assembly
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
US8300770B2 (en) 2010-07-13 2012-10-30 Varian Medical Systems, Inc. Liquid metal containment in an x-ray tube
DE102017008810A1 (en) * 2017-09-20 2019-03-21 Cetteen Gmbh MBFEX tube
US11276542B2 (en) * 2019-08-21 2022-03-15 Varex Imaging Corporation Enhanced thermal transfer nozzle and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1972414A (en) * 1931-10-29 1934-09-04 Gen Electric X Ray Corp Electron discharge device
US3694685A (en) * 1971-06-28 1972-09-26 Gen Electric System for conducting heat from an electrode rotating in a vacuum
WO1983002850A1 (en) * 1982-02-16 1983-08-18 Stephen Whitaker Liquid cooled anode x-ray tubes
EP0293791A1 (en) * 1987-06-02 1988-12-07 IVERSEN, Arthur H. Liquid cooled rotating anodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622687A (en) * 1981-04-02 1986-11-11 Arthur H. Iversen Liquid cooled anode x-ray tubes
US4945562A (en) * 1989-04-24 1990-07-31 General Electric Company X-ray target cooling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1972414A (en) * 1931-10-29 1934-09-04 Gen Electric X Ray Corp Electron discharge device
US3694685A (en) * 1971-06-28 1972-09-26 Gen Electric System for conducting heat from an electrode rotating in a vacuum
WO1983002850A1 (en) * 1982-02-16 1983-08-18 Stephen Whitaker Liquid cooled anode x-ray tubes
EP0293791A1 (en) * 1987-06-02 1988-12-07 IVERSEN, Arthur H. Liquid cooled rotating anodes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584868A1 (en) * 1992-08-20 1994-03-02 Philips Patentverwaltung GmbH Rotating anode X-ray tube with a cooling device
US5416820A (en) * 1992-08-20 1995-05-16 U.S. Philips Corporation Rotary-anode X-ray tube comprising a cooling device
DE19926741A1 (en) * 1999-06-11 2001-01-11 Siemens Ag Liquid-metal plain bearing with cooling lance e.g. for X-ray tube
DE19926741C2 (en) * 1999-06-11 2002-11-07 Siemens Ag Liquid metal plain bearing with cooling lance
EP2324485B1 (en) * 2008-09-13 2015-03-11 CXR Limited X-ray tubes

Also Published As

Publication number Publication date
JP2983617B2 (en) 1999-11-29
DE59009531D1 (en) 1995-09-21
EP0430367A3 (en) 1991-09-11
EP0430367B1 (en) 1995-08-16
JPH03182037A (en) 1991-08-08
DE8914064U1 (en) 1990-02-01
US5091927A (en) 1992-02-25

Similar Documents

Publication Publication Date Title
EP0430367B1 (en) X-ray tube
EP0584868B1 (en) Rotating anode X-ray tube with a cooling device
EP0378274B1 (en) Rotary anode X-ray tube with at least two spirally grooved bearings
EP2740142B1 (en) Anode having a linear main extension direction
EP0578314B1 (en) Sliding bearing for rotating-anode X-ray tube
DE2350807B2 (en) X-ray tube with a liquid-cooled anode
DE60124823T2 (en) Rotary anode X-ray tube and X-ray tube device with such a tube
DE8801941U1 (en) X-ray tube
DE10320361B3 (en) Rotating piston X-ray radiator, has cathode and anode fixed in vacuum tube, and rotary guide body coaxially arranged between vacuum tube and coolant housing which rotates at intermediate frequency to reduce rotational power requirements
EP2168409B1 (en) Apparatus for generating a plasma jet
EP3511972A1 (en) Efficient heat dissipation over sliding bearing for a rotary anode
DE3514700A1 (en) X-ray tube
DE2025099C3 (en)
DE2901681B2 (en) X-ray tube
EP0685871B1 (en) Rotating anode X-ray tube
DE102005040856B4 (en) Rotary piston radiators
DE19926741C2 (en) Liquid metal plain bearing with cooling lance
DE202022104389U1 (en) Efficient heat dissipation via plain bearings of a rotating anode
EP0654812B1 (en) Rotating anode x-ray tube with slide bearing
DE60123367T2 (en) Rotating anode X-ray tube
DE2720640C2 (en) X-ray tube for body cavity examinations
EP1022758A2 (en) Vacuum switch
DE10353964B4 (en) X-ray tube with rotary anode
AT411116B (en) Cooling can for liquid cooling of electrical components
DE19639917A1 (en) X-ray source for diagnostic medical imaging appts.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19920311

17Q First examination report despatched

Effective date: 19940613

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950816

REF Corresponds to:

Ref document number: 59009531

Country of ref document: DE

Date of ref document: 19950921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951115

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021129

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070110

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071128

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130