EP0427654B1 - Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander - Google Patents

Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander Download PDF

Info

Publication number
EP0427654B1
EP0427654B1 EP90460041A EP90460041A EP0427654B1 EP 0427654 B1 EP0427654 B1 EP 0427654B1 EP 90460041 A EP90460041 A EP 90460041A EP 90460041 A EP90460041 A EP 90460041A EP 0427654 B1 EP0427654 B1 EP 0427654B1
Authority
EP
European Patent Office
Prior art keywords
quadrifilar
antenna
helices
antenna according
helix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90460041A
Other languages
English (en)
French (fr)
Other versions
EP0427654A1 (de
Inventor
Claude Terret
Ala Sharaiha
Léonid Aupy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0427654A1 publication Critical patent/EP0427654A1/de
Application granted granted Critical
Publication of EP0427654B1 publication Critical patent/EP0427654B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas

Definitions

  • the present invention relates to a new antenna structure, having a quasi-hemispherical radiation pattern, and capable of having a relatively wide passband, so for example that two neighboring transmission subbands can be released there.
  • This type of antenna finds, for example, application in the context of satellite communications between fixed users and aeronautical, maritime or land mobiles.
  • several satellite communication systems have been or are under development in L-band (INMARSAT, MSAT, PROSAT, NAVSTAR G.P.S, ).
  • the first three systems mentioned correspond to links with geostationary satellites.
  • the specifications of the antennas intended to equip the mobiles, in these systems, require that these antennas have a radiation diagram with quasi-hemispherical coverage, due to the very different incidences, or significant variations in the incidence of the signals received or transmitted.
  • the polarization of the antennas must be circular with an ellipticity ratio better than 5 dB. (insulation 20 dB.) and special attention must be paid to the fight against multi-path phenomena for land and aeronautical mobiles. This latter specification also requires that for low elevations, the preponderant component of the electric field be vertical.
  • the specifications impose that they are operational in a bandwidth of approximately 10%, or in two sub - neighboring bands.
  • the only antenna structure compatible with a type of specification is the resonant quadrifilar helix.
  • This type of known antenna is formed by two two-wire helices 111, 112, arranged orthogonally and excited in phase quadrature.
  • FIGS. 11A, 11B The exemplary embodiment represented in FIGS. 11A, 11B is cited in the work "UHF satellite array nulls adjacent signals" Microwaves & R.F., March 1984.
  • the antenna is a resonant quadrifilar helix with strands 111A, 111B; 112A, 112B short-circuited at their non-excited end 113.
  • the passband is of the order of 10% with an opening at -3 dB of 140 ° for a strand length equal to ⁇ 0 / 2 and a helical winding on a turn around.
  • This type of antenna is not to be confused with certain helical antennas of the type disclosed for example in patent document US-4148030 (FOLDES) and which have the purpose of providing very directional axial radiation diagrams (and not almost hemispherical as in the invention) and with great gain. Their operation is of the traveling wave type, and not in resonant mode.
  • These known antennas moreover have a different structure. In particular, they have a length of several times the wavelength ⁇ of the antenna operating.
  • each helical strand is cut into resonant dipoles to operate at a specific frequency.
  • Quadrifilar helical antenna is also known, used in the mobile satellite communications system INMARSAT STANDARD-C where the antenna must operate correctly in two sub-bands (1530-1545 MHz) and (1631.5 -1646.5 MHz) corresponding respectively to reception and emission (KM KEEN "Developing a standard-C Antenna” (Development of an antenna in standard C) MSN Communication Technology, June 1988).
  • the antenna is a resonant quadrifilar helix with printed strands open at their unexcited end.
  • the power supply / adaptation module can be placed outside the antenna, around the working frequency. But when the antenna must operate in broadband, as discussed here, a power supply / internal adaptation module is generally used in the antenna structure. The most common is the so-called “balun” system (sometimes also called a balun) or its “folded balun” variant with asymmetrical input and symmetrical output.
  • FIG. 11 Such an arrangement is shown in FIG. 11, where, given the excitation and the symmetry of the antenna, the two orthogonal helices 111 and 112 have the same input impedance.
  • Each two-wire propeller 111A, 111B; 112A, 112B is supplied by a coaxial balun of the "folded balun" type.
  • the two two-wire cables are then excited in phase quadrature using a 115 hybrid coupler (90 °, -3 dB.).
  • Each coaxial (asymmetrical) input therefore sees in parallel the impedance of the two-wire helix and an adapter of length close to ⁇ / 4.
  • the balun / adapter assembly used in this type of antenna is produced for example by means of a coaxial section of length ⁇ / 4, the core and the sheath of which form a dipole; to avoid the problems due to the radiation of the sheath, the dipole can be closed between the core and an additional coaxial sheath (bazooka system) so as to avoid the circulation of a current on the sheath of the coaxial.
  • the use of adaptation devices introduces losses and often limits the band of use of the antenna.
  • the "folded balun" is placed in the body of the excited antenna at its upper end. This then produces a diffraction disturbance of the radiation patterns, particularly at high frequencies.
  • the invention aims to overcome these drawbacks.
  • the invention provides a new antenna structure having a quasi-hemispherical radiation pattern, and circular polarization, in particular (but not exclusively) in the L band.
  • Another objective of the invention is to provide such a structure avoiding the introduction of complex adaptation devices between the antenna and its excitation.
  • the invention also aims to provide an antenna having a widening of the bandwidth, or a dual band operation (dual frequency), in particular either in a bandwidth ⁇ 10%, or in two neighboring sub-bands.
  • a complementary objective of the invention is to provide an antenna of low cost, and with energy consumption compatible with the constraints of on-board systems on land, sea, air or space mobiles.
  • a resonant helical antenna with quasi-hemispherical radiation of the type comprising a quadrifilar helix made up of two bifilar helices arranged orthogonally and excited. in phase quadrature, this antenna comprising at least a second quadrifilar helix, coaxial and in electromagnetic coupling with said first quadrifilar helix, each of said quadrifilar helices being wound on a separate cylinder, of constant radius.
  • the length of the strands is less than the wavelength ⁇ of operation of said antenna, and preferably between ⁇ / 2 and ⁇ , so as to obtain the desired hemispherical radiation pattern, with operation in standing waves.
  • the strands of said second quadrifilar helix are in a situation of exact or close radial superposition with the strands of said first quadrifilar helix.
  • said coupled quadrifilar propellers are connected in parallel to a common power supply.
  • said common supply comprises, on the one hand, a coupler element, for the excitation in phase quadrature of the two orthogonal bifilar helices of each quadrifilar helix, and on the other hand a balancing element for the supply in phase opposition of each of the strands of the two-wire propellers.
  • the strands of at least one of the two quadrifilar propellers are open or short-circuited at their non-excited end.
  • At least one of the quadrifilar propellers is produced in technology printed on a dielectric support.
  • said coupling of said quadrifilar helices is carried out so as to obtain radiation from the antenna in a single wide bandwidth.
  • said coupling of said propellers quadrifilaires is carried out so as to obtain radiation from the antenna in at least two disjoint bandwidths.
  • the coupling control can be optimized, without degrading any of the other characteristics of the antenna, and in particular the circular polarization and the radiation pattern.
  • FIG. 1 A preferred embodiment of the antenna structure of the invention is shown in Figure 1. It is formed by two quadrifilar propellers 11 and 12 concentric, wound on cylindrical insulating supports 13 and 14, coaxial, of diameters d1, d2 distinct. It is clear that the structure of the antenna of the invention can be generalized obviously to more than two concentric helices.
  • Each quadrifilar helix 11 and 12 has four strands 111, 112, 113, 114 and 121, 122, 123, 124 respectively, regularly spaced and wound on the cylindrical supports 13, 14.
  • Each strand 111, 112, 113, 114; 121, 122, 123, 124 is formed by a continuous ribbon of electrically conductive material such as copper, of width W, printed on a kapton substrate, as shown in FIG. 2.
  • the kapton substrate can have a thickness of 50 »M, for a width W of copper tape of 35» m.
  • each strand is advantageously between ⁇ / 2 and ⁇ and in all cases less than or equal to ⁇ , to operate in resonant mode and obtain a quasi-hemispherical radiation diagram.
  • each helix 11,12 are open at one end 15 (upper end in FIGS. 1 and 2) and electrically connected to the other end 16 (lower end in FIGS. 1 and 2) with conductive segments 31, 32, 33, 34, arranged on the base 30 of the lower part 16 of the support cylinders 13, 14 as shown diagrammatically in FIG. 3.
  • These flat segments 31, 32, 33, 34 are advantageously made up of ribbons printed on kapton, in the form of portions of segments of decreasing width from the edge to near the center of the base 30 of the cylinders 13, 14.
  • Each of these conductive segments is connected to the central core of one of the four 50 ⁇ coaxial cables supplying the antenna structure.
  • the two quadrifilar propellers 11,12 are thus fed in parallel, strand by strand (111, 121; 112, 122; 113, 123; 114, 124).
  • each propeller 11,12 are excited across the segments 31, 32, 33, 34 according to the supply configuration shown diagrammatically in FIG. 4, using a conventional device consisting of a hybrid coupler module 41 (3 dB, 90 °) and two symmetrical modules 42,43 (3 dB, 180 °).
  • a hybrid coupler module 41 (3 dB, 90 °) and two symmetrical modules 42,43 (3 dB, 180 °).
  • One of the inputs 411, 421, 431, of each of these modules 41,42,43 is connected to ground through a 50 ⁇ resistor 44.
  • the coupler module 41 is arranged so that the two outputs 413, 414 supply the other input 422, 432 of the two balancing modules 42,43.
  • the outputs at 180 ° 423, 434 of the baluns are connected so as to supply two segments 31.34, the outputs at 0 ° 424 and 433 exciting the other two segments 33.34.
  • This set can be made compactly in printed technology and placed directly at the base of the antenna structure.
  • the coupling between the two quadrifilar propellers can be checked in several ways. It is in particular possible to act on the radial difference between the two helices, on the angular offset of the antennas around the axis of revolution of the antenna, with respect to an exact position of radial overlap strand by strand, or still on the propeller pitch of each of the propellers.
  • each antenna strand adapted in impedance for example to 50 ⁇ , is of course controlled, so as not to degrade, or as little as possible, the other characteristics of the antenna, and in particular the circular polarization and the radiation pattern.
  • Dual-frequency antenna (or double band) .
  • the antenna parameters are presented in table I, (with C: circumference; Le: length of a radiating strand; Lax: axial length; with reference to the notations in FIG. 2 )
  • the impedance presented is the impedance calculated at the input of a radiating strand of the propeller in the presence of the others, this impedance being half that of a two-wire propeller.
  • the excitation device does not require any specific mounting of additional adaptation, which overcomes the antenna of the drawbacks of the simple quadrifilar antenna.
  • FIG. 7 represents the radiation diagram of the coupled antenna, which differs little from the radiation diagrams of the quadrifilar propellers taken in isolation.
  • This implementation can of course be generalized to more than two concentric quadrifilar propellers, so as to obtain as many distinct frequency bands as there are propellers.
  • the electromagnetic coupling between the two superimposed quadrifilar helices makes it possible to obtain a single passband wider than with a monolayer propeller of the same parameters.
  • Such a configuration is obtained for example by choosing the values of the parameters from Table II.
  • the initial bandwidth is 65 Mhz for a ROS ⁇ 2.5 for the indoor antenna, and 56 Mhz for a ROS ⁇ 2 for the outdoor antenna.
  • the bandwidth for the two-layer antenna is equal to 86 MHz for an R.O.S ⁇ 2.
  • the diagram of the R.O.S. and the SMITH chart of the corresponding impedance curve are shown in Figures 8 and 9.
  • the R.O.S is less than 1.75 on a continuous frequency band from 1.535 to 1.595 GHz approximately, with a resonance frequency of 1.59 Ghz.
  • the structure of the antenna of the invention thus makes it possible to "reduce” the imaginary part of the impedance and to bring its real part around 50 ⁇ .
  • FIG. 10 representing the diagram for the coupled two-layer antenna.
  • the antenna structure of the invention finds numerous fields of application.
  • MSAT Mobile Satellite System
  • the ESA PROSAT program European Space Agency
  • PRODAT data transmission
  • the development low G / T terminals 24 dB / K
  • air navigation elevation between 10 ° and 90 °
  • maritime navigation elevation between -25 ° and 90 ° to take into account ⁇ 30 ° movements of the ship due to roll and pitch
  • terrestrial elevation between 15 ° and 90 °

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (10)

  1. Spiralförmige Resonanzantenne mit quasi halbkugelförmiger Abstrahlung, von der Art, die eine Vierfachwendel (11) umfaßt, bestehend aus zwei Doppelwendeln (11₁,11₂; 11₃,11₄), welche orthogonal angebracht sind und mit 90° Phasenverschiebung angeregt werden,
       dadurch gekennzeichnet, daß sie mindestens eine zweite, ko-axiale Vierfachwendel (12) in elektromagnetischer Koppelung mit der ersten Vierfachwendel (11) umfaßt, wobei jede der Vierfachwendeln (11, 12) auf je einem Zylinder mit eigenem konstanten Radius aufgerollt ist.
  2. Antenne gemäß Anspruch 1, dadurch gekennzeichnet, daß die Länge der Fäden (11₁,11₂; 11₃,114, 12₁,12₂,12₃,12₄) kürzer ist als die Wellenlänge λ, mit der die Antenne arbeitet und vorzugsweise zwischen λ/2 und λ liegt.
  3. Antenne gemäß irgendeinem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Fäden (12₁,12₂,12₃,124) der zweiten Vierfachwendel (12) radial auf den Fäden (11₁,11₂; 11₃,114) der ersten Vierfachwendel (11) liegen.
  4. Antenne gemäß irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die gekoppelten Vierfachwendeln (11, 12) parallel an eine gemeinsame Spannungsquelle angeschlossen sind.
  5. Antenne gemäß Anspruch 4, dadurch gekennzeichnet, daß die gemeinsame Spannungsquelle einerseits ein Koppelelement (41) für die 90° phasenverschobene Anregung der zwei orthogonalen Doppelwendeln (11, 12) umfaßt und andererseits ein Symmetrisierungselement (42, 43) für die gegenphasige Einspeisung in jedem der Fäden der Doppelwendeln umfaßt.
  6. Antenne gemäß irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Fäden von mindestens einer der Vierfachwendeln an dem nicht angeregten Ende offen oder kurzgeschlossen sind.
  7. Antenne gemäß irgendeinem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mindestens eine der Vierfachwendeln (11, 12) auf eine dielektrische Unterlage aufgedruckt ist.
  8. Antenne gemäß irgendeinem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Koppelung der Vierfachwendel (11, 12) mit Hilfe von mindestens einem der folgenden Mittel gesteuert wird:
    - Steuerung des Radialabstandes der Überlagrung der Vierfachwendeln (11, 12);
    - Steuerung der Winkelverschiebung zwischen den Vierfachwendeln (11, 12);
    - Steuerung der Steigung jeder der Vierfachwendeln (11, 12).
  9. Antenne gemäß Anspruch 8, dadurch gekennzeichnet, daß die Koppelung der Vierfachwendeln (11, 12) derart durchgeführt wird, daß man eine Antennenabstrahlung in einem einzigen, breiten Paßband erhält.
  10. Antenne gemäß Anpruch 8, dadurch gekennzeichnet, daß die Koppelung der Vierfachwendeln (11, 12) derart durchgeführt wird, daß man eine Antennenabstrahlung in mindestens zwei getrennten Paßbändern erhält.
EP90460041A 1989-11-10 1990-11-07 Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander Expired - Lifetime EP0427654B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8914952A FR2654554B1 (fr) 1989-11-10 1989-11-10 Antenne en helice, quadrifilaire, resonnante bicouche.
FR8914952 1989-11-10

Publications (2)

Publication Number Publication Date
EP0427654A1 EP0427654A1 (de) 1991-05-15
EP0427654B1 true EP0427654B1 (de) 1995-02-08

Family

ID=9387403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90460041A Expired - Lifetime EP0427654B1 (de) 1989-11-10 1990-11-07 Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander

Country Status (6)

Country Link
US (1) US5255005A (de)
EP (1) EP0427654B1 (de)
JP (1) JPH03274808A (de)
CA (1) CA2029290A1 (de)
DE (1) DE69016746T2 (de)
FR (1) FR2654554B1 (de)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185233B2 (ja) * 1991-03-18 2001-07-09 株式会社日立製作所 携帯無線機用小型アンテナ
US5541617A (en) * 1991-10-21 1996-07-30 Connolly; Peter J. Monolithic quadrifilar helix antenna
WO1993022804A1 (en) * 1992-04-24 1993-11-11 Industrial Research Limited Steerable beam helix antenna
JP3089933B2 (ja) * 1993-11-18 2000-09-18 三菱電機株式会社 アンテナ装置
EP0666612B1 (de) * 1994-02-04 2001-10-24 Orbital Sciences Corporation Sich selbst entfaltende Wendelstruktur
US5587719A (en) * 1994-02-04 1996-12-24 Orbital Sciences Corporation Axially arrayed helical antenna
US6011524A (en) * 1994-05-24 2000-01-04 Trimble Navigation Limited Integrated antenna system
US5614918A (en) * 1994-06-21 1997-03-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Global positioning system antenna fixed height tripod adapter
GB2292257B (en) * 1994-06-22 1999-04-07 Sidney John Branson An antenna
GB9417450D0 (en) * 1994-08-25 1994-10-19 Symmetricom Inc An antenna
EP0715369B1 (de) * 1994-12-01 1999-07-28 Indian Space Research Organisation Mehrband-Antennensystem
AU3677795A (en) * 1995-04-26 1996-11-18 Westinghouse Electric Corporation Helical antenna having a parasitic element and a method of u sing the same
US5635945A (en) * 1995-05-12 1997-06-03 Magellan Corporation Quadrifilar helix antenna
US5708448A (en) * 1995-06-16 1998-01-13 Qualcomm Incorporated Double helix antenna system
US5793338A (en) * 1995-08-09 1998-08-11 Qualcomm Incorporated Quadrifilar helix antenna and feed network
US5572172A (en) * 1995-08-09 1996-11-05 Qualcomm Incorporated 180° power divider for a helix antenna
US5828348A (en) * 1995-09-22 1998-10-27 Qualcomm Incorporated Dual-band octafilar helix antenna
JP3166589B2 (ja) * 1995-12-06 2001-05-14 株式会社村田製作所 チップアンテナ
GB9601250D0 (en) * 1996-01-23 1996-03-27 Symmetricom Inc An antenna
GB9603914D0 (en) * 1996-02-23 1996-04-24 Symmetricom Inc An antenna
US5760747A (en) * 1996-03-04 1998-06-02 Motorola, Inc. Energy diversity antenna
FR2746548B1 (fr) * 1996-03-19 1998-06-19 France Telecom Antenne helicoidale a moyens de duplexage integres, et procedes de fabrication correspondants
FR2746547B1 (fr) * 1996-03-19 1998-06-19 France Telecom Antenne helice a alimentation large bande integree, et procedes de fabrication correspondants
GB9606593D0 (en) * 1996-03-29 1996-06-05 Symmetricom Inc An antenna system
US5990847A (en) * 1996-04-30 1999-11-23 Qualcomm Incorporated Coupled multi-segment helical antenna
US5721558A (en) * 1996-05-03 1998-02-24 Cta Space Systems, Inc. Deployable helical antenna
US5955997A (en) * 1996-05-03 1999-09-21 Garmin Corporation Microstrip-fed cylindrical slot antenna
US5986619A (en) * 1996-05-07 1999-11-16 Leo One Ip, L.L.C. Multi-band concentric helical antenna
US5986620A (en) * 1996-07-31 1999-11-16 Qualcomm Incorporated Dual-band coupled segment helical antenna
US6278414B1 (en) * 1996-07-31 2001-08-21 Qualcomm Inc. Bent-segment helical antenna
US6184845B1 (en) 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
US5896113A (en) * 1996-12-20 1999-04-20 Ericsson Inc. Quadrifilar helix antenna systems and methods for broadband operation in separate transmit and receive frequency bands
US5920292A (en) * 1996-12-20 1999-07-06 Ericsson Inc. L-band quadrifilar helix antenna
US5909196A (en) * 1996-12-20 1999-06-01 Ericsson Inc. Dual frequency band quadrifilar helix antenna systems and methods
US6025816A (en) * 1996-12-24 2000-02-15 Ericsson Inc. Antenna system for dual mode satellite/cellular portable phone
GB2322011A (en) * 1997-02-04 1998-08-12 Ico Services Ltd Antenna and fabrication method
US5808586A (en) * 1997-02-19 1998-09-15 Motorola, Inc. Side-by-side coil-fed antenna for a portable radio
US5945964A (en) * 1997-02-19 1999-08-31 Motorola, Inc. Multi-band antenna structure for a portable radio
US6184844B1 (en) 1997-03-27 2001-02-06 Qualcomm Incorporated Dual-band helical antenna
JP3189735B2 (ja) * 1997-05-08 2001-07-16 日本電気株式会社 ヘリカルアンテナ
US6329962B2 (en) * 1998-08-04 2001-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Multiple band, multiple branch antenna for mobile phone
SE511450C2 (sv) * 1997-12-30 1999-10-04 Allgon Ab Antennsystem för cirkulärt polariserade radiovågor innefattande antennanordning och gränssnittsnätverk
US6097934A (en) * 1997-12-31 2000-08-01 Ericsson Inc. Retractable radiotelephone antennas with extended feeds
US5969681A (en) * 1998-06-05 1999-10-19 Ericsson Inc. Extended bandwidth dual-band patch antenna systems and associated methods of broadband operation
GB9813002D0 (en) 1998-06-16 1998-08-12 Symmetricom Inc An antenna
US6091370A (en) * 1998-08-27 2000-07-18 The Whitaker Corporation Method of making a multiple band antenna and an antenna made thereby
US6150994A (en) 1998-09-25 2000-11-21 Centurion Intl., Inc. Antenna for personal mobile communications or locating equipment
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna
GB9902765D0 (en) 1999-02-08 1999-03-31 Symmetricom Inc An antenna
US6088000A (en) * 1999-03-05 2000-07-11 Garmin Corporation Quadrifilar tapered slot antenna
JP2000341024A (ja) * 1999-05-13 2000-12-08 K Cera Inc ヘリカルアンテナ、その製造装置及び製造方法
GB9912441D0 (en) 1999-05-27 1999-07-28 Symmetricon Inc An antenna
SE516105C2 (sv) 1999-06-11 2001-11-19 Allgon Ab En metod för att styra strålningsmönstret hos en antenn, ett antennsystem och en radiokommunikationsanordning
US6181298B1 (en) * 1999-08-19 2001-01-30 Ems Technologies Canada, Ltd. Top-fed quadrafilar helical antenna
GB2354115A (en) 1999-09-09 2001-03-14 Univ Surrey Adaptive multifilar antenna
GB2356086B (en) * 1999-11-05 2003-11-05 Symmetricom Inc Antenna manufacture
US6229499B1 (en) 1999-11-05 2001-05-08 Xm Satellite Radio, Inc. Folded helix antenna design
US6535179B1 (en) 2001-10-02 2003-03-18 Xm Satellite Radio, Inc. Drooping helix antenna
US6720935B2 (en) 2002-07-12 2004-04-13 The Mitre Corporation Single and dual-band patch/helix antenna arrays
FR2844923B1 (fr) 2002-09-20 2006-06-16 Univ Rennes Antenne helicoidale a large bande
US7038636B2 (en) * 2003-06-18 2006-05-02 Ems Technologies Cawada, Ltd. Helical antenna
US7908080B2 (en) 2004-12-31 2011-03-15 Google Inc. Transportation routing
US7817101B2 (en) * 2006-10-24 2010-10-19 Com Dev International Ltd. Dual polarized multifilar antenna
GB0700276D0 (en) 2007-01-08 2007-02-14 Sarantel Ltd A dielectrically-loaded antenna
US7948441B2 (en) * 2007-04-12 2011-05-24 Raytheon Company Low profile antenna
US8089421B2 (en) 2008-01-08 2012-01-03 Sarantel Limited Dielectrically loaded antenna
US8106846B2 (en) 2009-05-01 2012-01-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna
US8618998B2 (en) 2009-07-21 2013-12-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna with cavity for additional devices
US9276310B1 (en) * 2011-12-31 2016-03-01 Thomas R. Apel Omnidirectional helically arrayed antenna
US10804618B2 (en) * 2016-05-27 2020-10-13 Truerc Canada Inc Compact polarized omnidirectional helical antenna
US10700428B2 (en) 2018-02-06 2020-06-30 Harris Solutions NY, Inc. Dual band octafilar antenna
CN110518370B (zh) * 2019-08-06 2021-04-13 西安电子科技大学 一种多波段共口径宽角覆盖阵列天线
CN111029737A (zh) * 2019-11-22 2020-04-17 深圳市鼎耀科技有限公司 一种紧凑型的圆极化全向天线
CN114914681B (zh) 2022-06-20 2023-01-10 安徽大学 一种多层低剖面四臂螺旋天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906509A (en) * 1974-03-11 1975-09-16 Raymond H Duhamel Circularly polarized helix and spiral antennas
US4008479A (en) * 1975-11-03 1977-02-15 Chu Associates, Inc. Dual-frequency circularly polarized spiral antenna for satellite navigation
US4148030A (en) * 1977-06-13 1979-04-03 Rca Corporation Helical antennas
US4554554A (en) * 1983-09-02 1985-11-19 The United States Of America As Represented By The Secretary Of The Navy Quadrifilar helix antenna tuning using pin diodes
JPS6098705A (ja) * 1983-11-04 1985-06-01 Gijutsu Kenkyu Kumiai Iryo Fukushi Kiki Kenkyusho ヘリカル空中線
SE443691B (sv) * 1984-07-20 1986-03-03 Ericsson Telefon Ab L M Sendar-mottagarsystem i en satellit
FR2624656B1 (fr) * 1987-12-10 1990-05-18 Centre Nat Etd Spatiales Antenne de type helice et son procede de realisation

Also Published As

Publication number Publication date
US5255005A (en) 1993-10-19
FR2654554B1 (fr) 1992-07-31
CA2029290A1 (en) 1991-05-11
EP0427654A1 (de) 1991-05-15
DE69016746D1 (de) 1995-03-23
DE69016746T2 (de) 1995-09-14
JPH03274808A (ja) 1991-12-05
FR2654554A1 (fr) 1991-05-17

Similar Documents

Publication Publication Date Title
EP0427654B1 (de) Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander
EP0403910B1 (de) Strahlendes, diplexes Element
EP0805512B1 (de) Kompakt gedruckte Antenne mit geringer Strahlung in Elevationsrichtung
FR2752646A1 (fr) Antenne imprimee plane a elements superposes court-circuites
EP0888647B1 (de) Wendelantenne mit integrierter breitbandspeisung und verfahren zu deren herstellung
EP1073143B1 (de) Dualpolarisierte gedruckte Antenne und entsprechende Gruppenantenne
EP1805848B1 (de) Mehrbandige bedruckte helixförmige schlitzantenne
FR2583226A1 (fr) Antenne omnidirectionnelle cylindrique
FR2584872A1 (fr) Antenne plate a large bande a polarisation circulaire, utilisations d'une telle antenne, applications, et procede de fabrication
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
FR2907602A1 (fr) Antenne a fils multiples a double polarisation.
EP0888648B1 (de) Wendelantenne mit integriertem duplexer und verfahren zu deren herstellung
US6288686B1 (en) Tapered direct fed quadrifilar helix antenna
EP0463263B1 (de) Zirkular polarisierte Rundum-Antenne mit grösstem Gewinn in horizontaler Richtung
EP1540768B1 (de) Helixförmige breitbandantenne
FR2570546A1 (fr) Antenne multifilaire helicoidale pour la transmission simultanee de plusieurs signaux d'emission et de reception vhf/uhf
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
EP0585250B1 (de) Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
EP0088681B1 (de) Doppelreflektorantenne mit eingebautem Polarisationswandler
WO2001047057A1 (fr) Procede de decouplage d'antennes au sein d'un systeme d'antennes co-localisees, capteur et applications correspondants
FR2814286A1 (fr) Antenne helice a brins de largeur variable
EP0850496B1 (de) Sendevorrichtung mit rundstrahlender antenne
FR2981514A1 (fr) Systeme antennaire a une ou plusieurs spirale(s) et reconfigurable
WO2002037606A1 (fr) Antenne multibande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19910709

17Q First examination report despatched

Effective date: 19930628

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRANCE TELECOM

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 69016746

Country of ref document: DE

Date of ref document: 19950323

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061026

Year of fee payment: 17

Ref country code: GB

Payment date: 20061026

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061108

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071107

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071107