EP0411285B1 - Verfahren und Anordnung mit induktivem Drehgeber zur Steuerung, insbesondere des Zündzeitpunkts von Brennkraftmaschinen - Google Patents

Verfahren und Anordnung mit induktivem Drehgeber zur Steuerung, insbesondere des Zündzeitpunkts von Brennkraftmaschinen Download PDF

Info

Publication number
EP0411285B1
EP0411285B1 EP90111325A EP90111325A EP0411285B1 EP 0411285 B1 EP0411285 B1 EP 0411285B1 EP 90111325 A EP90111325 A EP 90111325A EP 90111325 A EP90111325 A EP 90111325A EP 0411285 B1 EP0411285 B1 EP 0411285B1
Authority
EP
European Patent Office
Prior art keywords
ignition
pulse
gap
coils
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90111325A
Other languages
English (en)
French (fr)
Other versions
EP0411285A3 (en
EP0411285A2 (de
Inventor
Werner Erhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pruefrex Elektro Apparatebau GmbH
Original Assignee
Pruefrex Elektro Apparatebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6385950&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0411285(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pruefrex Elektro Apparatebau GmbH filed Critical Pruefrex Elektro Apparatebau GmbH
Publication of EP0411285A2 publication Critical patent/EP0411285A2/de
Publication of EP0411285A3 publication Critical patent/EP0411285A3/de
Application granted granted Critical
Publication of EP0411285B1 publication Critical patent/EP0411285B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the invention relates to an inductive rotary encoder for controlling the ignition timing of internal combustion engines, with a coil penetrated by a permanent magnet and a yoke wheel rotated by a shaft, over the circumference of which protruding spaced tooth segments are moved past the magnetic poles for voltage induction, according to the first part of claim 1 the invention a method for ignition of internal combustion engines, in particular in lawn mowers, chainsaws or cut-off machines using such an encoder (cf. claim 2). Finally, the invention relates to a capacitor ignition arrangement with a rotary encoder of the type mentioned (cf. claim 7).
  • the electronic switch is switched through either by a third-party ignition pulse generator or by an internal ignition pulse generator, which, for example, generates the required ignition signal via a voltage divider, starting from the state of charge of the capacitor. It is common to control the ignition timing in accordance with the operating state of the internal combustion engine, in particular depending on its speed.
  • segment wheels coupled to the crankshaft of a gasoline engine is known; these are yoke wheels made of highly permeable, ferromagnetic material, with tooth segments projecting radially or axially evenly distributed over their circumference. The tooth segments interact with the pole pieces of a permanent magnet which is surrounded by a coil.
  • an additional magnetic pin or the like must be attached to the known yoke wheels in order to inform the unit triggering the ignition of the angular position of the yoke wheel.
  • An angular position detector for internal combustion engines is known (US-A-4 797 827) which has a toothed wheel which is coupled and toothed to the crankshaft, the row of teeth running in the circumferential direction having a tooth gap.
  • the coupling to the crankshaft is such that when this tooth gap moves past an electrical pulse-generating sensor, one of the cylinders of the internal combustion engine is at top dead center. Due to the inductive signaling, a downstream evaluation electronics can recognize its position in top dead center without additional Tregger elements on the toothed rotary encoder wheel and use it as a reference or reference point for an absolute angular position.
  • the object underlying the invention is raised to facilitate the derivation of said reference point from the encoder signals, and in particular to save hardware and / or computing time for the corresponding evaluation electronics.
  • two separate coils are each assigned to a magnetic pole, and the spacing of the coils and / or magnetic poles corresponds to the smaller control distance, which relates to more than just two tooth segments. In this way it is achieved that the voltage induced in the coils relative to each other approximately the constant phase shift have, ie the half waves overlap each other in a phase-locked manner.
  • tooth segments that is to say at least three tooth segments, are expediently provided.
  • nine tooth segments can be provided, between which there is a tangential control distance corresponding to an angle of 36 °, with one tooth segment being omitted in accordance with the above idea; as a result, there is a further spacing relating to only two tooth segments, corresponding to an angle of 72 °.
  • the ignition control take place in the starting phase with or after one of the tooth segments following the gap moves past the magnetic pole of the permanent magnet.
  • the third tooth segment has proven itself for triggering an ignition derived from the absolute yoke wheel rotational position.
  • a development of the method according to the invention consists in having the ignition control take place in the starting phase depending on the angular velocity measurement by means of two adjacent tooth segments.
  • the following sequence is provided for the specific embodiment of the method according to the invention: in the starting phase, the angular velocity is counted by means of the time period between the passage of the second and then the third tooth segment after the gap, and only when the counting result exceeds a certain threshold value , the ignition is triggered when the third tooth segment moves past the pole piece. From a speed of approximately 1,500 rpm, the angular speed is counted in the interval formed by the first and second tooth segments in accordance with the specific process sequence. At the same time, the ignition control in the area triggered between the second and the third tooth segment gap. This makes it possible to adjust the ignition early. At speeds above 5,000 rpm, the advance adjustment is expanded in such a way that the ignition can be controlled before the second tooth segment has moved past a (scanned) magnetic pole. This extreme early adjustment is possible because the speed fluctuations are low in this speed range.
  • induced voltage half-waves are tapped and fed to a capacitor connected to an ignition coil for charging it.
  • a discharge switch coupled to the capacitor which is expediently actuated by the above-mentioned ignition timing control, the capacitor can then be discharged at the desired point in time in accordance with an ignition map program.
  • the voltage waves of different, opposite polarities induced in the two coils each become a separate pulse shaper, the outputs of which open into a pulse evaluation part, which is completed with each complete pulse from the input pulses by means of a logic switch designed for recognizing, scanning and evaluating the tooth segment gap or the corresponding pulse gap Yoke wheel revolution generates a single pulse (per revolution); this corresponds to an absolute angular position of the Yoke wheels.
  • the pulse evaluation part can, for example, be dimensioned such that the individual pulse always occurs when the top dead center of the internal combustion engine has been reached. In any case, this single pulse can serve as an absolute reference point, from which the ignition timing can be specified by the control electronics depending on the state of the internal combustion engine and programmed operating characteristics.
  • the pulse evaluation part can be implemented by means of a microcomputer circuit with corresponding software or a hard-wired, digital switching mechanism.
  • the pulse evaluation part has a state-controlled or static memory element on the input side and a clock edge-controlled or dynamic memory element on the output side; the memory elements are expediently implemented as a flip-flop. They are arranged with one another in cascade or one behind the other, the input pulse signal based on the one of the two coils being used to take over control of the dynamic storage element on the output side and to reset both storage elements. The input pulse signal originating from the other coil is used to set the static storage element on the input side.
  • This circuit variant is primarily based on the above-mentioned design of the rotary encoder, in which the distance between the coils and / or magnetic poles corresponds to the smaller (control) distance, which relates to more than just two tooth segments. Then the half-waves derived from the separate coils overlap and those on them Schmitt trigger shaped pulses. If the gap on the circumference of the yoke wheel occurs on one of the magnetic poles, only one pulse is generated by one of the two coils, which serves to set the input-side storage element in a defined state. If subsequently only one pulse occurs from the other coil, the corresponding pulse can be driven to the output-side storage element to take over the output of the input-side storage element. If the next two tooth segments move past one magnetic pole at the same time, a pulse is generated in each coil again at the same time, and the storage elements are reset.
  • the individual pulse is fed to a total time counter for a complete revolution, and the output signal of the total time counter influences a pulse and delay generator linked to programmed ignition maps; Its output pulses then serve to control the discharge switch and, in connection therewith, to discharge the capacitor.
  • a desired, speed-dependent early adjustment of the ignition timing can be brought about if the ignition maps are encoded accordingly.
  • a switchover part implemented by hardware or software, which switches over according to the start-up phase and the normal operating phase under load, corresponding branches or curves can be traversed within the operating map, depending on the switchover state.
  • an additional switching element is interposed between the generator output and the discharge switch; This is controlled by a torque counter for speed measurement, which scans the chronological sequence of two adjacent tooth segments past the magnetic poles.
  • the control itself takes place as a function of one or more pre-programmed threshold values that correspond to the specified minimum speeds.
  • the rotary encoder 1 consists of a yoke wheel 2 and an ignition module 3.
  • the yoke wheel 2 is a with a (not shown) shaft
  • the internal combustion engine is coupled in a torsionally rigid manner and, in the example shown, has radially projecting tooth segments 41 to 49 distributed over its circumference.
  • the tooth segments have a regular tangential distance from one another corresponding to an angle of 36 °, which would result in a total of ten tooth segments if the circumference of the yoke wheel 2 were fully utilized.
  • a larger tooth segment gap 6 is formed corresponding to an angular distance of 72 ° by the tenth being omitted when the tooth segments are attached regularly.
  • Rectifier diodes DL1 and DL2 are used to measure the positive half-waves tapped at coils L1, L2 fed to the capacitor CL to charge it.
  • a free-wheeling diode DS is connected in parallel with a discharge switch Thy, in the exemplary embodiment shown a thyristor which is actuated by the output 10 of the ignition timing control 11.
  • the ignition timing control 11 can be implemented as a microcomputer or a customer-specific integrated circuit. It has one of the two coils L1, L2 assigned inputs 13 and 14, each of which is preceded by a rectifier diode DL3 or DL4 so that only the negative half-waves induced in the two coils L1, L2 are let through. Each of the two rectifier diodes DL3, DL4 is followed by an inverting pulse shaper IF1, IF2, which generates digitally processable pulses from the half-waves. For example, inverting Schmitt triggers (see FIG. 2) can be used for this.
  • the negative half-waves from the coils L1, L2 which are thereby formed into positive pulses D1, D2 are then passed into a pulse evaluation part 15, which generates an individual pulse per full revolution of the yoke wheel 2. Due to the configuration of the pulse evaluation part 15 according to the invention, this corresponds to a certain absolute angular position of the yoke wheel 2, in which the gap 6 is still opposite the pole shoe which is penetrated by the north pole magnetic field.
  • the individual pulse D3 is first fed to a function module 16 which serves to measure the speed n for an entire revolution, the measuring output 17 of which influences a pulse and delay time generator 18.
  • This functional module 18 is additionally with a memory module 19 with operating maps, the z. B. contain the machine speed n as parameters, functionally linked. Influenced by the speed measurement module 16 and by the operating map module 19, the pulse delay module 18 possibly generates actuation signals which are adjusted in advance and are supplied to the thyristor Thy, whereupon the latter switches on and thereby discharges the capacitor via the ignition coil LZ.
  • the ignition timing control 11 comprises a counter module 20 which determines the instantaneous speed or angular velocity on the basis of two adjacent toothed segments 41 to 49 and which, depending on the instantaneous angular velocity w, switches through the output 10 of the ignition timing control 11 or the pulse delay module 18 to the thyristor Thy by using its output 21 (shown in dashed lines) actuated a switching element 22 accordingly.
  • the counter module 20 additionally processes the individual pulse D3 at the output of the pulse evaluation module 15 and communicates with a further memory module 23 which contains threshold values sw corresponding to minimum angular velocities.
  • FIG. 2 shows the design of the pulse evaluation module 15 as hard-wired switching logic:
  • the negative half-waves tapped at each of the two coils L1, L2 are each fed to a Schmitt trigger ST1, ST2, which generates inverting positive pulses D1 and D2 (see the waveforms c) and d) in Fig. 3).
  • Pulse sequence D2 derived from the polarized magnetic field is supplied to the set input S1 of an RS flip-flop FF1 known per se.
  • An RC high-pass DG which consists of the capacitor C and the resistor R connected to ground, is preferably connected directly upstream of the reset input R1 as a differentiating element.
  • the complementary output Q1 of the RS flip-flop FF1 is connected directly to the data input D of a known D-flip-flop FF2 connected in cascade or series.
  • the reset input R2 of the D flip-flop FF2 is direct, and its clock input CL, which responds to positive edges, is indirectly connected via an inverting gate I to the output of the first Schmitt trigger ST1, which detects the negative half-waves of the coil through which the magnetic south pole passes L1 forms into impulses.
  • the output signal of the entire switching mechanism according to FIG. 2 is formed by the non-inverting output Q2 of the D flip-flop FF2, at which a single pulse is available per revolution of the yoke wheel 2 (cf. FIG. 1), as explained in more detail below .
  • the signal profiles a) and b) reflect the voltages induced in the coils L1, L2, the straight-line sections 24a, 24b, which run without a slope, being formed in the yoke wheel 2 due to the tooth segment gap 6 (cf. FIG. 1).
  • the signal curves c) - first pulse sequence D1 derived from the former coil L1 - and d) - second pulse sequence D2 derived from the second coil L2 - are derived from these induced vibrations by means of the Schmitt trigger ST1, ST2 (cf. FIG. 2) , the longer impulse-free sections 24c, 24d of the above, correspond to rectilinear sections 24a, 24b.
  • the RS flip-flop FF1 is set and the D flip-flop FF2 is reset.
  • Each rising, positive edge of the first pulse sequence D1 sets the clock input Cl of the D flip-flop FF2 to logic "0".
  • the differentiator DG generates corresponding needle-shaped short pulses D1.1 from the first pulse sequence D1, the length of which is dimensioned via the dimensioning of the RC high-pass filter such that the RS flip-flop FF1 is just being safely reset.
  • the inverting output Q1 of the RS flip-flop FF1 is then logic "1".
  • the subsequent rising positive edge of the second pulse sequence D2 sets the RS flip-flop FF1, which is accordingly set at time II.
  • the then falling edge of the second pulse sequence D2 has no effect.
  • the subsequent falling edge of the first pulse sequence D1 results in a rising edge or a positive pulse for the clock input C1 of the D flip-flop FF2 due to the interposed inverter I. This triggers the takeover of the level state at data input D of data flip-flop FF2 after its (non-inverting) output Q2. If data input D was previously at logic "0", output Q2 of data flip-flop FF2 does not change.
  • the subsequent pulse of the second pulse sequence D2 at time III has no effect.
  • the RS flip-flop FF1 was previously set and remains set.
  • the RS flip-flop FF1 is reset by the pulse train D1.1 generated by the differentiator DG. Now that the set pulse due to the second pulse train D2 is missing, the data input D of the D flip-flop is at logic "1". With the next falling edge of the pulse sequence D1 (cf. time V), data transfer at the input D is triggered via the inverter I at the clock input C1 of the D flip-flop FF2 and the D flip-flop FF2 is therefore set. This means the output level logically "1" at the output Q2, which forms the individual pulse D3 per revolution of the yoke wheel 2 (cf. g) in FIG. 3).
  • the function module 16 measuring the speed n for a complete revolution of the yoke wheel 2 executes a program branch 25 depending on the speed value: If the speed is below 1,500 rpm, branched into path 26, otherwise branched into path 27.
  • Path 26 is an instantaneous speed determination, e.g. B. between the second and third toothed segment (see, for example, reference numerals 42 and 43 in FIG. 1) after the toothed segment gap 6 of the yoke wheel 2, provided by the counter module determining the instantaneous angular velocity w on the basis of the second pulse signal D2 is carried out (cf. function block 28 in FIG. 4).
  • a query 31 is made as to whether the resulting speed n exceeds 5000 rpm.
  • the ignition is permitted in the interval formed by the first and second tooth segments after the gap (cf. tooth segments 41 and 42 in FIG. 1) in accordance with function block 32 with subsequent ignition block 30.
  • the ignition can, however, according to the stored operating map within the range of second and third tooth segment 42 and 43 defined interval are triggered.
  • the instantaneous angular speed w is determined or monitored in the interval defined by the first and second toothed segments 41, 42 after the gap 6 - cf. Function block 33.
  • the ignition 30 can therefore be advanced to the second tooth segment 42 within the interval defined by the second and third tooth segments 42 and 43 - cf. Function block 34.
  • the early adjustment 32, 34 takes place in each case as specified by the operating maps BKF stored in the memory module 19 (FIG. 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

  • Die Erfindung betrifft einen induktiven Drehgeber zur Steuerung des Zündzeitpunkts von Brennkraftmaschinen, mit von einem Dauermagneten durchsetzter Spule und von einer Welle gedrehtem Jochrad, über dessen Umfang verteilt vorspringende beabstandete Zahnsegmente an den Magnetpolen zur Spannungsinduktion vorbeibewegt werden, gemäß erstem Teil des Anspruchs 1. Weiter betrifft die Erfindung ein Verfahren zur Zündung von Brennkraftmaschinen, insbesondere in Rasenmähern, Motorsägen oder Trennschleifern unter Verwendung eines derartigen Drehgebers (vgl. Anspruch 2). Schließlich betrifft die Erfindung eine Kondensator-Zündanordnung mit einem Drehgeber der genannten Art (vgl. Anspruch 7).
  • Bei bekannten Kondensator-Zündanlagen erfolgt das Durchschalten des elektronischen Schalters entweder durch einen Fremd-Zündimpulsgeber oder durch einen internen Zündimpulsgeber, der beispielsweise - ausgehend vom Ladezustand des Kondensators - über einen Spannungsteiler das benötigte Zündsignal erzeugt. Dabei ist es geläufig, den Zündzeitpunkt entsprechend dem Betriebszustand der Brennkraftmaschine, insbesondere abhängig von dessen Drehzahl, zu steuern. Hierfür ist beispielsweise der Einsatz vorgenannter, mit der Kurbelwelle eines Benzinmotores gekuppelter Segmenträder bekannt; diese sind aus hochpermeablem, ferromagnetischem Material gebildete Jochräder, über deren Umfang gleichmäßig verteilt Zahnsegmente radial oder axial vorspringen. Die Zahnsegmente wirken mit den Polschuhen eines Dauermagneten zusammen, der mit einer Spule umgeben ist. Sobald sich das Jochrad dreht, wird in der Spule aufgrund der Veränderung des Luftspaltes zwischen den Polschuhen und des Jochrades und mithin des die Spulen durchsetzenden magnetischen Flusses eine Wechselspannung induziert. Zur Auslösung einer Zündung muß bei den bekannten Jochrädern ein zusätzlicher Magnetstift o. ä. angebracht werden, um der die Zündung auslösenden Einheit die Winkelstellung des Jochrades mitzuteilen.
  • Es ist ein Winkelpositionsdetektor für Verbrennungsmaschinen bekannt (US-A-4 797 827), der ein mit der Kurbelwelle gekoppeltes und gezahntes Rad aufweist, wobei die in Umfangsrichtung verlaufende Zahnreihe eine Zahnlücke besitzt. Die Kopplung mit der Kurbelwelle ist derart, daß beim Vorbeibewegen dieser Zahnlücke an einem elektrischen Pulse erzeugenden Sensor sich einer der Zylinder der Verbrennungskraftmaschine im oberen Totpunkt befindet. Aufgrund der induktiven Signalgebung kann eine nachgeschaltete Auswerteelektronik ohne zusätzliche Treggerelemente auf dem gezahnten Drehgeberrad dessen Stellung im oberen Totpunkt erkennen und als Bezugs- oder Referenzpunkt für eine Absolut-Winkeldrehstellung verwenden.
  • Demgegenüber wird die der Erfindung zugrundeliegende Aufgabe aufgeworfen, die Ableitung des genannten Referenzpunktes aus den Drehgeber-Signalen zu erleichtern, und insbesondere für die entsprechende Auswerteelektronik Hardware- und/oder Rechenzeitaufwand einzusparen. Zur Lösung wird bei einem Drehgeber mit den im ersten Teil des Anspruchs 1 genannten Merkmalen vorgeschlagen, daß zwei gesonderte Spulen je einem Magnetpol zugeordnet sind, und der Abstand der Spulen und/oder Magnetpole dem mehr als nur zwei Zahnsegmente betreffenden kleineren Regelabstand entspricht. Hierdurch wird nämlich erreicht, daß die in den Spulen induzierten Spannung zueinander etwa die konstante Phasenverschiebung aufweisen, d.h. die Halbwellen überlappen einander phasenstarr.
  • Zwar ist es bekannt (EP-A2-0 197 272), zwei Pulse erzeugende, induktive Aufnehmer im Winkelabstand voneinander anzuordnen, an die sich die vorspringenden, in Reihe mit einer Lücke angeordneten Reaktoren eines Jochrads vorbeibewegen. Jedoch ist der Winkelabstand in Abhängigkeit von den Winkelintervallen zwischen den oberen Totpunkten der Zylinder und der Anzahl der elektronisch gesteuerten Zylinder bemessen. So wird im konkret angegebenen Beispiel ein Winkelabstand der beiden induktiven Aufnehmer voneinander in Höhe von 128 Winkelgraden vorgeschlagen. Hierdurch läßt sich eine gezielte und vollständige Überlappung von Halbwellen nicht erreichen, zumal die induktiven Aufnehmer nicht von Magnetfeldern unterschiedlicher Polarität durchsetzt sind.
  • Es liegt auf der Hand, daß zweckmäßigerweise mehr als zwei Zahnsegmente, also zumindest drei Zahnsegmente vorgesehen werden. So können im Rahmen erfindungsgemäßer Weiterbildungen zum Beispiel neun Zahnsegmente vorgesehen sein, zwischen denen ein tangentialer Regelabstand entsprechend einem Winkel von 36° besteht, wobei gemäß dem obigen Gedanken ein Zahnsegment weggelassen wurde; infolgedessen entsteht ein lediglich zwei Zahnsegmente betreffender weiterer Abstand entsprechend einem Winkel von 72°.
  • Unter Anwendung des erfindungsgemäßen Drehgebers mit einem einzigen, weiteren Abstand läßt sich ein Verfahren zur Zündung von Brennkraftmaschinen, insbesondere in Rasenmähern, Motorsägen oder Trennschleifern wie folgt vorteilhaft gestalten: eine Zündzeitsteuerung leitet von dem Drehgeber Zündimpulse ab und steuert damit - verknüpt mit einprogrammierten Betriebskennfeldern - entsprechend verzögert oder frühverstellt bzw. beschleunigt ein Schaltglied an, welches einen Kondensator über die Primärwicklung einer Zündspule entlädt; dabei erfolgt in der Startphase unterhalb einer Drehzahlgrenze die Zünd-Ansteuerung abhängig vom Vorbeibewegen der von den weiter beabstandeten Zahnsegmenten gebildeten Lücke des Jochrads an den beiden Spulen beziehungsweise Magnetpolen. Hierdurch kann gewährleistet werden, daß die Zündung bezüglich des (oberen) Totpunkts der Brennkraftmaschine immer im optimalen Zeitpunkt erfolgt, weil durch die erfindungsgemäße Markierung des Jochrads an dessen Umfang die Zündzeitsteuerung stets von der absoluten Winkelstellung ausgehen kann. Damit ist es möglich, daß im Startdrehzahlbereich unabhängig von Drehlzahlschwankungen oder Schwankungen der Winkelgeschwindigkeit die Zündung immer in einer bestimmten Segmentradstellung erfolgt und daß nach Erreichen einer bestimmten Drehzahl der Zündzeitpunkt drehzahlabhängig gesteuert wird.
  • Insbesondere ist es in Weiterbildung der Erfindung denkbar, in der Startphase die Zündansteuerung mit oder nach dem Vorbeibewegen eines der der Lücke nachfolgenden Zahnsegmente am Magnetpol des Dauermagneten erfolgen zu lassen. In der Praxis hat sich hierbei das dritte Zahnsegment zur Auslösung einer von der absoluten Jochrad-Drehstellung abgeleiteten Zündung bewährt.
  • Vielfach ist es wünschenswert, daß die Zündungsauslösung mit dem dritten Zahnsegment bzw. dem davon abgeleiteten Impuls nur dann erfolgt, wenn die Drehzahl des Motors beim Vorbeibewegen des zweiten und dritten Zahnsegments nach der Lücke an den Magnetpolen bzw. Polschuhen über einen programmierten Schwellwert liegt. Zu diesem Zweck besteht eine Weiterbildung des erfindungsgemäßen Verfahrens darin, in der Startphase die Zünd-Ansteuerung abhängig von der Winkelgeschwindigkeitsmessung mittels zweier benachbarter Zahnsegmente erfolgen zu lassen.
  • In Weiterführung dieser Gedanken ist zur konkreten Ausgestaltung des Verfahrens nach der Erfindung folgender Ablauf vorgesehen: In der Startphase wird die Winkelgeschwindigkeit mittels der Zeitspanne zwischen dem Vorbeibewegen des zweiten und dann des dritten Zahnsegments nach der Lücke ausgezählt, und erst wenn das Zählergebnis einen bestimmten Schwellwert überschreitet, wird die Zündung mit der Vorbeibewegung des dritten Zahnsegments am Polschuh ausgelöst. Ab einer Drehzahl von etwa 1 500 U/min wird gemäß dem konkreten Verfahrensablauf die Winkelgeschwindigkeit im von dem ersten und zweiten Zahnsegmenten gebildeten Intervall ausgezählt. Gleichzeitig wird die Zünd-Ansteuerung im Bereich zwischen der zweiten und der dritten Zahnsegmentlücke ausgelöst. Hierdurch wird eine Frühverstellung der Zündung möglich. Bei Drehzahlen über 5 000 U/min wird die Frühverstellung derart erweitert, daß vor vollendeter Vorbeibewegung des zweiten Zahnsegments an einem (abgetasteten) Magnetpol die Zündung angesteuert werden kann. Diese extreme Frühverstellung ist möglich, weil in diesem Drehzahlbereich die Drehzahlschwankungen gering sind.
  • Auf der Basis des erfindungsgemäßen Drehgebers mit lediglich einem nur zwei Zahnsegmente betreffenden weiteren Abstand und zwei an je einem Magnetpol angeordnete, gesonderte Spulen lassen sich bekannte Kondensator-Zündanordnungen (vgl. DE-OS 36 08 740 derselben Anmelderin) vorteilhaft weiterbilden, so daß insbesondere das zuvor erläuterte Verfahren durchgeführt werden kann.
  • So werden in den beiden gesonderten Spulen induzierte Spannungshalbwellen mit jeweils gleicher Polarität abgegriffen und einem mit einer Zündspule verbundenen Kondensator zu dessen Aufladung zugeführt. Mittels eines mit dem Kondensator gekoppelten Entladeschalter, der zweckmäßig von der oben genannten Zündzeitsteuerung betätigt wird, kann dann entsprechend einem Zündkennfeldprogramm der Kondensator zum gewünschten Zeitpunkt entladen werden. Die in den beiden Spulen induzierten Spannungswellen anderer, entgegensetzter Polarität werden je einem gesonderten Impulsformer, deren Ausgänge in ein Impulsauswertungsteil münden, welcher mittels eines zum Erkennen, Abtasten und Auswerten der Zahnsegment-Lücke beziehungsweise der entsprechenden Impulslücke ausgebildeten logischen Schaltwerks aus den Eingangsimpulsen mit jeder vollständigen Jochrad-Umdrehung einen Einzelimpuls (pro Umdrehung) erzeugt; dieser entspricht dabei einer absoluten Dreh-Winkelstellung des Jochrads. Der Impulsauswertungsteil kann beispielsweise so dimensioniert sein, daß der Einzelimpuls immer dann auftritt, wenn der obere Totpunkt der Brennkraftmaschine erreicht ist. Jedenfalls kann dieser Einzelimpuls als absoluter Bezugspunkt dienen, wovon ausgehend der Zündzeitpunkt je nach Zustand der Brennkraftmaschine und einprogrammierter Betriebskennfelder von der Steuerungselektronik spezifiziert werden kann.
  • Im Rahmen der Erfindung kann der Impulsauswertungsteil mittels einer Mikrocomputerschaltung mit entsprechender Software oder einem festverdrahtetem, digitalen Schaltwerk realisiert werden. In letzte Richtung geht eine besonders vorteilhafte, aufwandsparende Schaltungsvariante: Der Impulsauswertungsteil weist eingangsseitig ein zustandsgesteuertes bzw. statisches und ausgangsseitig ein taktflankengesteuertes bzw. dynamisches Speicherelement auf; die Speicherelemente sind zweckmäßigerweise als Flip-Flop realisiert. Sie sind miteinader in Kaskade bzw. hintereinander angeordnet, wobei das auf die eine der beiden Spulen basierende Eingangspulssignal zur Übernahme-Ansteuerung des ausgangsseitigen, dynamischen Speicherelements sowie zum Rücksetzen beider Speicherelemente dient. Das auf die andere Spule zurückgehende Eingangspulssigenal wird zum Setzen des eingangsseitigen, statischen Speicherelements verwendet. Diese Schaltungsvariante ist vor allem auf die oben genannte Ausbildung des Drehgebers abgestellt, bei der der Abstand der Spulen und/oder Magnetpole dem mehr als nur zwei Zahnsegmente betreffenden, kleineren (Regel-)Abstand entspricht. Dann überlappen sich die von den gesonderten Spulen abgeleiteten Halbwellen und die darauf mittels Schmitt-Trigger geformten Impulse. Tritt die Lücke am Umfang des Jochrads an einem der Magnetpole auf, wird nur ein Impuls von einer der beiden Spulen erzeugt, der zum Setzen des eingangsseitigen Speicherelements in einen definierten Zustand dient. Tritt darauffolgend allein ein Impuls von der anderen Spule auf, kann der entsprechende Impuls das ausgangsseitige Speicherelement zur Übernahme des Ausgangs des eingangsseitigen Speicherelements angesteuert werden. Bewegen sich nunmehr die beiden nächsten Zahnsegmente gleichzeitig an je einem Magnetpol vorbei, entstehen wieder gleichzeitig in jeder Spule ein Impuls, und die Speicherelemente werden zurückgesetzt.
  • Im Rahmen einer Weiterbildung der erfindungsgemäßen Zündanordnung wird der Einzelimpuls einem Gesamtzeitzähler für eine vollständige Umdrehung zugeführt, und das Ausgangssignal des Gesamtzeitzählers beeinflußt einen mit programmierten Zündkennfeldern verknüpften Impuls- und Verzögerungs-Generator; dessen Ausgangsimpulse dienen dann zum Ansteuern des Entladeschalters und damit verbunden zum Entladen des Kondensators. Hierdurch läßt sich, insbesondere wenn die Brennkraftmaschine sich nicht mehr in dem Zustand der Startphase befindet, eine gewünschte, drehzahlabhängige Frühverstellung des Zündzeitpunkts herbeiführen, wenn die Zündkennfelder entsprechend codiert sind. Mit Hilfe eines durch Hardware oder Software realisierten Umschaltteils, der entsprechend der Startphase und der normalen, unter Last fahrenden Betriebsphase umschaltet, können entsprechende Zweige oder Kurven innerhalb des Betriebskennfelds je nach Umschaltzustand durchfahren werden.
  • Um in der Startphase der Brennkraftmaschine bei zu niedriger Momentandrehzahl eine Zündung zu verhindern, ist mit Vorteil als Weiterbildung der Erfindung vorgesehen, daß dem Generatorausgang und dem Entladeschalter ein Zusatzschaltelement zwischengeschaltet ist; dieses wird von einem Momentanzeitzähler zur Drehzahlmessung angesteuert, der die zeitliche Aufeinanderfolge zweier benachbarter Zahnsegmente an den Magnetpolen vorbei abtastet. Die Ansteuerung selbst erfolgt in Abhängigkeit von ein oder mehreren vorprogrammierten Schwellwerten, die vorgegebenen Mindestdrehzahlen entsprechen.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels der Erfindung sowie anhand der Zeichnung. Darin zeigen:
  • Fig. 1
    schematisch die Geräte- und Funktionsanordnung eines erfindungsgemäßen Kondensator-Zündsystems,
    Fig. 2
    ein Schaltbild des Impulsauswertungsteils und
    Fig. 3
    ein Impuls- und Zeitdiagramm bezüglich des Impulsauswertungsteils und
    Fig. 4
    ein Flußdiagramm betreffend eine Ausführung des erfindungsgemäßen Verfahrens.
  • Wie in Fig. 1 veranschaulicht, besteht der erfindungsgemäße Drehgeber 1 aus einem Jochrad 2 und einem Zündmodul 3. Das Jochrad 2 ist mit einer (nicht gezeigten) Welle einer Brennkraftmaschine drehstarr gekoppelt und besitzt über seinem Umfang verteilt im gezeichneten Beispiel radial vorspringende Zahnsegmente 41 bis 49. Die Zahnsegmente besitzen einen regelmäßigen Tangentialabstand voneinander entsprechend einem Winkel von 36°, was bei voller Ausnutzung des Umfangs des Jochrads 2 eine Gesamtzahl von zehn Zahnsegmente ergeben würde. Jedoch ist erfindungsgemäß - in der Darstellung etwa im linken unteren Quadranten - eine größere Zahnsegmentlücke 6 entsprechend einem Winkelabstand von 72° ausgebildet, indem beim regelmäßigen Anbringen der Zahnsegmente das zehnte weggelassen wurde. Bei Bewegung des Jochrads 2 gemäß Drehrichtung 5 werden die Zahnsegmente 41 bis 49 sukzessive an zwei Polschuhen 7, 8 vorbeibewegt. Diese sind von dem Feld eines Dauermagneten 9 durchsetzt sowie je von einer ersten Spule L1 und einer zweiten Spule L2 umgeben. Bei Drehung des Jochrads 2, welches der Herstellung eines magnetischen Rückschlusses dient, werden die Luftspalte zwischen dem Jochrad 2 und den Polschuhen 7 bzw. 8 abwechselnd vergrößert und verkleinert, was eine Änderung des magnetischen Flusses durch die beiden Spulen L1, L2 hervorruft. Dadurch wird an der Spule eine Spannung induzieert, die etwa den Signalverläufen a, b über die Zeit t gemäß Fig. 3 entspricht. Hiernach überlappen an jeder Spule abgegriffene, positive und negative Halbwellen, was dadurch zustandekommt, daß der Abstand der Polschuhe 7, 8 voneinander etwa dem (kleineren) Regelabstand der Zahnsegmente 41 bis 49 entspricht, mit Ausnahme der die größere Lücke 6 begrenzenden Zahnsegmente 41 und 49.
  • Mittels Gleichrichter-Dioden DL1 und DL2 werden die an den Spulen L1, L2 abgegriffenen, positiven Halbwellen jeweils dem Kondensator CL zu dessen Aufladung zugeführt. Einer Freilaufdiode DS parallel geschaltet ist ein Entladeschalter Thy, im gezeichneten Ausführungsbeispiel ein Thyristor, der vom Ausgang 10 der Zündzeitsteuerung 11 betätigt wird.
  • Die Zündzeitsteuerung 11 kann als Mikrorechner oder kundenspezifisch integrierter Schaltkreis realisiert sein. Sie besitzt je einer der beiden Spulen L1, L2 zugeordnete Eingänge 13 bzw. 14, denen je eine Gleichrichter-Diode DL3 bzw. DL4 so vorgeschaltet sind, daß ausschließlich die in den beiden Spulen L1, L2 induzierten negativen Halbwellen durchgelassen werden. Jeden der beiden Gleichrichter-Dioden DL3, DL4 ist ein invertierender Impulsformer IF1, IF2 nachgeschaltet, der aus den Halbwellen digital verarbeitbare Impulse erzeugt. Hierfür können beispielsweise invertierende Schmitt-Trigger (vgl. Fig. 2) eingesetzt werden. Die hierdurch zu positiven Impulsen D1, D2 geformten negativen Halbwellen aus den Spulen L1, L2 werden danach in ein Impulsauswerteteil 15 geleitet, das hieraus pro volle Umdrehung des Jochrads 2 einen Einzelimpuls generiert. Dieser entspricht aufgrund der erfindungsgemäßen Ausgestaltung des Impulsauswertungsteils 15 einer bestimmten Absolut-Winkelstellung des Jochrades 2, bei der nämlich die Lücke 6 noch dem Polschuh gegenüberliegt, der vom Nordpol-Magnetfeld durchsetzt ist.
  • Der Einzelimpuls D3 wird zunächst einem der Messung der Drehzahl n für eine ganze Umdrehung dienenden Funktionsmodul 16 zugeführt, dessen Meßausgang 17 einen Impuls- und Verzögerungszeit-Generator 18 beeinflußt. Dieser Funktionsmodul 18 ist noch zusätzlich mit einem Speichermodul 19 mit Betriebskennfeldern, die z. B. die Maschinendrehzahl n als Parameter enthalten, funktionsmäßig verknüpft. Beeinflußt vom Drehzahlmessungsmodul 16 und vom Betriebskennfeld-Modul 19 erzeugt der Impuls-Verzögerungsmodul 18 gegebenenfalls frühverstellte Ansteuerungssignale, die dem Thyristor Thy zugeführt werden, woraufhin dieser durchschaltet und dabei den Kondensator über die Zündspule LZ entlädt.
  • Ferner umfaßt die Zündzeitsteuerung 11 einen die Momentandrehzahl bzw. -winkelgeschwindigkeit anhand zweier benachbarter Zahnsegmente 41 bis 49 ermittelnden Zählermodul 20, der abhängig von der Momentan-Winkelgeschwindigkeit w den Ausgang 10 der Zündzeitsteuerung 11 bzw. des Impulsverzögerungsmoduls 18 zum Thyristor Thy durchschaltet, indem er über seinen Ausgang 21 (gestrichelt gezeichnet) ein Schaltelement 22 entsprechend betätigt. Gemäß Fig. 1 verarbeitet der Zählermodul 20 noch zusätzlich den Einzelimpuls D3 am Ausgang des Impulsauswertemoduls 15 und kommuniziert mit einem weiteren Speichermodul 23, der Mindest-Winkelgeschwindigkeiten entsprechende Schwellwerte sw enthält.
  • In Fig. 2 ist die Ausführung des Impulsauswertungsmoduls 15 als fest verdrahtete Schaltwerkslogik dargestellt: Die an je einer der beiden Spulen L1, L2 abgegriffenen, negativen Halbwellen werden je einem Schmitt-Trigger ST1, ST2 zugeführt, der hieraus invertierend positive Impulse D1 und D2 erzeugt (vgl. die Signalverläufe c) und d) in Fig. 3). Die von der ersten, gemäß Fig. 1 vom Südpol-Magnetfeld durchsetzten Spule L1 abgeleitete Impulsfolge D1 wird dem Reset-Eingang R1, und die von der anderen Spule L2 mit entgegengesetzt polarisiertem Magnetfeld abgeleitete Impulsfolge D2 dem Set-Eingang S1 eines an sich bekannten RS-Flip-Flops FF1 zugeführt. Vorzugsweise ist dem Reset-Eingang R1 ein RC-Hochpaß DG als Differenzierglied unmittelbar vorgeschaltet, der aus dem Kondensator C und dem gegen Masse geschalteten Widerstand R besteht. Der komplementäre Ausgang Q1 des RS-Flip-Flops FF1 ist unmittelbar mit dem Dateneingang D eines in Kaskade bzw. Serie nachgeschalteten, an sich bekannten D-Flip-Flops FF2 verbunden. Der Reset-Eingang R2 des D-Flip-Flops FF2 ist direkt, und dessen auf positive Flanken ansprechender Takteingang CL mittelbar über ein invertierendes Gatter I mit dem Ausgang des ersten Schmitt-Triggers ST1 verbunden, der die negativen Halbwellen der vom magnetischen Südpol durchsetzten Spule L1 zu Impulsen formt. Das Ausgangssignal des gesamten Schaltwerks gemäß Fig. 2 wird durch den nicht-invertierenden Ausgang Q2 des D-Flip-Flops FF2 gebildet, an dem pro Umdrehung des Jochrads 2 (vgl. Fig. 1) ein Einzelimpuls zur Verfügung steht, wie nachfolgend näher erläutert.
  • In Fig. 3 sind Signalverläufe a) bis g) über die Zeit t dargestellt. Die Signalverläufe a) und b) geben die in den Spulen L1, L2 induzierten Spannungen wieder, wobei die ohne Steigung verlaufenden geradlinigen Abschnitte 24a, 24b aufgrund der Zahnsegmentlücke 6 im Jochrad 2 (vgl. Fig. 1) entstehen. Aus diesen induzierten Schwingungen werden mittels der Schmitt-Trigger ST1, ST2 (vgl. Fig. 2) die Signalverläufe c) - von der ersteren Spule L1 abgeleitete erste Impulsfolge D1 - und d) - von der zweiten Spule L2 abgeleitete zweite Impulsfolge D2 - abgeleitet, wobei deren länger impulslose Abschnitte 24c, 24d den oben genannten, geradlinigen Abschnitten 24a, 24b entsprechen. Während des Zeitpunktes I ist das RS-Flip-Flop FF1 gesetzt und das D-Flip-Flop FF2 zurückgesetzt. Jede ansteigende, positive Flanke der ersten Impulsfolge D1 legt den Takteingang Cl des D-Flip-Flops FF2 auf logisch "0". Das Differenzierglied DG erzeugt aus der ersten Impulsfolge D1 entsprechende nadelförmige kurze Impulse D1.1, deren Länge über die Dimensionierung des RC-Hochpasses so bemessen ist, daß das RS-Flip-Flop FF1 gerade sicher zurückgesetzt wird. Der invertierende Ausgang Q1 des RS-Flip-Flops FF1 liegt dann auf logisch "1".
  • Die darauf folgende, ansteigende positive Flanke der zweiten Impulsfolge D2 setzt das RS-Flip-Flop FF1, das demnach zum Zeitpunkt II gesetzt ist. Die dann folgende, abfallende Flanke der zweiten Impulsfolge D2 hat dabei keine Auswirkung. Die nachfolgende, abfallende Flanke der ersten Impulsfolge D1 ergibt für den Takteingang Cl des D-Flip-Flops FF2 aufgrund des zwischengeschalteten Inverters I eine ansteigende Flanke bzw. einen positiven Impuls. Dies löst die Übernahme des Pegelzustands am Dateneingang D des Daten-Flip-Flops FF2 nach dessen (nicht invertierenden) Ausgang Q2 aus. War der Dateneingang D vorher auf logisch "0", ändert sich der Ausgang Q2 des Daten-Flip-Flops FF2 nicht. Der darauffolgende Impuls der zweiten Impulsfolge D2 zum Zeitpunkt III hat keine Auswirkung. Das RS-Flip-Flop FF1 war zuvor gesetzt und bleibt gesetzt.
  • Zum Zeitpunkt IV wird das RS-Flip-Flop FF1 durch die über das Differenzierglied DG erzeugte Impulsfolge D1.1 zurückgesetzt. Da nun der Setzimpuls aufgrund der zweiten Impulsfolge D2 fehlt, liegt der Daten-Eingang D des D-Flip-Flops auf logisch "1". Mit der nächsten abfallenden Flanke der Impulsfolge D1 (vgl. Zeitpunkt V) wird über den Inverter I am Takteingang Cl des D-Flip-Flops FF2 eine Daten-Übernahme am Eingang D ausgelöst und mithin das D-Flip-Flop FF2 gesetzt. Das bedeutet den Ausgangspegel logisch "1" am Ausgang Q2, der den Einzelimpuls D3 pro Umdrehung des Jochrads 2 bildet (vgl. g) in Fig. 3).
  • Hieraus läßt sich folgern, daß der Einzelimpuls D3 pro Umdrehung im wesentlichen durch die Impulslücke 24d der zweiten Impulsfolge D2 entsteht, die im Beispiel auf die zweite, vom magnetischen Nordpolfeld durchsetzte Spule L2 basiert.
  • Abschließend sei anhand des Flußdiagramms in Fig. 4 eine Realisierungsmöglichkeit des erfindungsgemäßen Verfahrens veranschaulicht: Der die Drehzahl n für eine ganze Umdrehung des Jochrads 2 messende Funktionsmodul 16 führt je nach Drehzahlwert eine Programmverzweigung 25 durch: Liegt die Drehzahl unter 1 500 U/min, wird in den Pfad 26, andernfalls in den Pfad 27 verzweigt. Im Pfad 26 ist eine Momentandrehzahlermittelung, z. B. zwischen dem zweiten und dritten Zahnsegment (vgl. z. B. Bezugsziffern 42 und 43 in Fig. 1) nach der Zahnsegmentlücke 6 des Jochrads 2 vorgesehen, die vom die Momentanwinkelgeschindigkeit w ermittelnden Zählermoduls anhand des zweiten Pulssignals D2 durchgeführt wird (vgl. Funktionsblock 28 in Fig. 4). Dann erfolgt eine Abfrage 29, ob die Momentanwinkelgeschwindigkeit w bestimmte im Speichermodul 23 gem. Fig. 1 abgelegte Schwellwerte SW entsprechend vorprogrammierten Mindestdrehzahlen übersteigt. Solchenfalls wird nach starr mit dem dritten Zahnsegment 43 erfolgter Zündung 30 (vgl. Warteschleife 35), andernfalls ohne Zündung zum Verfahrens- bzw. Programmstartpunkt ZÜND zurückgesprungen.
  • Wird aufgrund einer NEIN-Entscheidung der Programmverzweigung 25 in den Pfad 27 geleitet, weil die über eine gesamte Umdrehung des Jochrads 2 ermittelte Drehzahl 1 500 U/min übersteigt, erfolgt eine Abfrage 31, ob die resultierende Drehzahl n 5 000 U/min übersteigt. Solchenfalls wird die Zündung in das von dem ersten und zweiten Zahnsegment nach der Lücke gebildete Intervall (vgl. Zahnsegmente 41 und 42 in Fig. 1) zugelassen gemäß Funktionsblock 32 mit nachfolgendem Zündblock 30. Die Zündung kann aber auch entsprechend dem abgelegten Betriebskennfeld innerhalb des vom zweiten und dritten Zahnsegment 42 und 43 definierten Intervalls ausgelöst werden. Liegt die auf eine Gesamtumdrehung bezogene Drehzahl n unter 5 000 U/min, wird die momentane Winkelgeschwindigkeit w im vom ersten und zweiten Zahnsegment 41, 42 nach der Lücke 6 definierten Intervall ermittelt bzw. überwacht - vgl. Funktionsblock 33. Mithin kann innerhalb des vom zweiten und dritten Zahnsegment 42 und 43 definierten Intervalls die Zündung 30 frühverstellt bis zum zweiten Zahnsegment 42 vorgenonmmn werden - vgl. Funktionsblock 34. Die Frühverstellung 32, 34 erfolgt jeweils, wie durch die im Speichermodul 19 (Fig. 1) abgelegten Betriebskennfelder BKF spezifiziert.

Claims (10)

  1. Induktiver Drehgeber (1) zur Steuerung des Zündzeitpunkts von Brennkraftmaschinen, mit von einem Dauermagneten (9) durchsetzter Spule (L1,L2) und von einer Welle gedrehtem Jochrad (2), über dessen Umfang verteilt vorspringende, beabstandete Zahnsegmente (41-49) an den Magnetpolen (N,S) zur Spannungsinduktion vorbeibewegt werden, wobei in Umfangsrichtung benachbarte Zahnsegmente (41 bis 49) voneinander zwei unterschiedlich große Abstände (6, 39) aufweisen, und der größere Abstand einer Zahnsegmentlücke (6) entspricht, die beim Ausbilden der Zahnsegmente (41 bis 49) einheitlich im kleineren Regelabstand (39) durch Auslassen eines Zahnsegments entsteht, dadurch gekennzeichnet, daß zwei gesonderte Spulen (L1, L2) je einem Magnetpol (N,S, 7, 8) zugeordnet sind, und der Abstand der Spulen (L1, L2) und/oder Magnetpole (N, S, 7, 8) dem mehr als nur zwei Zahnsegmente (41 bis 49) betreffenden kleineren Regelabstand (39) entspricht.
  2. Verfahren zur Zündung von Brennkraftmaschinen, insbesondere Rasenmähern, Motorsägen oder Trennschleifern, gekennzeichnet durch die Verwendung eines Drehgebers (1) nach Anspruch 1 für eine Zündzeitsteuerung (11), indem diese vom Drehgeber (1) Zündimpulse (D2,D3) ableitet und damit anhand einprogrammierter Betriebskennfelder (19, BKF) gegebenenfalls verzögert oder frühverstellt ein Schaltglied (Thy) ansteuert, welches einen Kondensator (CL) über die Primärwicklung einer Zündspule (LZ) entlädt, wobei in der Startphase unterhalb einer Drehzahlgrenze (25) die Zünd-Ansteuerung abhängig vom Vorbeibewegen der von den weiter beabstandeten Zahnsegmenten (41, 49) gebildeten Lücke (6) des Jochrads (2) an den beiden Spulen (L1, L2) beziehungsweise Magnetpolen (N, S, 7, 8) erfolgt.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß im Startdrehzahlbereich unabhängig von Drehzahlschwankungen oder Schwankungen der Winkelgeschwindigkeit die Zündung (30) immer in einer bestimmten Segmentradstellung (35) erfolgt und daß nach Erreichen einer bestimmten Drehzahl (31) der Zündzeitpunkt (30) drehzahlabhängig gesteuert wird.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß in der Startphase die Ansteuerung mit oder nach dem Vorbeibewegen eines der der Lücke (6) nachfolgenden Zahnsegmente (41 - 49) am Magnetpol, vorzugsweise des dritten Zahnsegments (43), erfolgt.
  5. Verfahren nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß in der Startphase die Zünd-Ansteuerung abhängig von einer Winkelgeschwindigkeitsmessung (20,28) mittels zweier, benachbarter Zahnsegmente (42,43) erfolgt.
  6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß in der Startphase die Winkelgeschwindigkeit (w) mittels des zweiten und dritten Zahnsegments (42, 43) nach der Lücke (6) ausgezählt wird und bei deren Überschreiten eines Schwellwertes (SW) die Zünd-Ansteuerung (30) unmittelbar mit dem dritten Zahnsegment (43) nach der Lücke (6) erfolgt, daß ab einer Drehzahl (n) von mindestens 1 500 U/min die Winkelgeschwindigkeit (w) mittels des ersten und zweiten Zahnsegments (41, 42) ausgezählt wird und die Zünd-Ansteuerung (30) abhängig vom Betriebskennfeld (BKF) nach dem zweiten und vor dem vierten Zahnsegment (42, 44) erfolgt, und daß bei einer Drehzahl (n) über 5000 U/min vor vollendeter Vorbeibewegung des zweiten Zahnsegments (42) an einem Magnetpol (N, S, 7, 8) die Zünd-Ansteuerung (30) freigegeben wird.
  7. Kondensator-Zündanordnung insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 2 bis 6, gekennzeichnet durch die Verwendung eines Drehgebers (1) nach Anspruch 1, indem dessen beide Spulen (L1, L2) über je ein Gleichrichterelement (DL1, DL2) mit einem mit einer Zündspule (LZ) verbundenen Zünd-Kondensator (CL) verbunden sind, so daß dieser mittels der in den Spulen (L1,L2) induzierten Spannungshalbwellen jeweils gleicher Polarität aufladbar ist, wobei der Zünd-Kondensator (CL) mit einem von einem Zündkennfeldprogramm (BKF) gesteuerten Entladeschalters (Thy) verbunden ist, so daß der Zünd-Kondensator (CL) entsprechend einem Zündkennfeldprogramm (BKF) entladbar ist, und die Halbwellen entgegengesetzter Polarität der beiden Spulen (L1, L2) des Drehgebers (1) je einem Impulsformer (IF1, IF2) zugeführt sind, deren Ausgänge in einen Impulsauswertungsteil (15) führen, das mit einem zum Erkennen, Abtasten und Auswerten der Zahnsegment-Lücke (6) des Drehgeber-Jochrads (6) beziehungsweise der entsprechenden Impulslücke (24d) so ausgebildeten logischen Schaltwerk (FF1, FF2) realisiert ist, daß mit jeder vollendeten Jochrad-Umdrehung (5) am Ausgang des Impulsauswertungsteils (15) ein auf der Impulslücke (24d) basierender Einzelimpuls (D3) ansteht, der einer absoluten Winkelstellung des Jochrads (2) entspricht.
  8. Zündanordnung nach Anspruch 7, dadurch gekennzeichnet, daß das Schaltwerk des Impulsauswertungsteils (15) eingangsseitig ein zustandsgesteuertes und ausgangsseitig ein taktflankengesteuertes Speicherelement (FF1, FF2) aufweist, die miteinander in Kaskade angeordnet sind, wobei das auf die eine Spule (L1) basierende Eingangssignal (D1) zur Übernahme-Ansteuerung (Cl) des ausgangsseitigen Speicherelements (FF2) und das auf die andere Spule (L2) basierende Eingangssignal (D2) zum Setzen des eingangsseitigen Speicherelements (FF1) dient.
  9. Zündanordnung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Einzelimpuls (D3) pro Umdrehung des Jochrads (2) einem Gesamtzeitzähler (16) für eine vollständige Umdrehung des Jochrads zugeführt ist, und das Ausgangssignal (17) des Gesamtzeitzählers (16) einen mit programmierten Zündkennfeldern (BKF) verknüpften Impuls- und Verzögerungs-Generator (18) beeinflußt, dessen Ausgangsimpulse (10) den Entladeschalter (Thy) ansteuern.
  10. Zündanordnung nach Anspruch 9, dadurch gekennzeichnet, daß dem Generatorausgang (18, 10) und dem Entladeschalter (Thy) ein Schaltelement (22) zwischengeschaltet ist, welches von einem Zeitzähler (20) zur Messung der Momentanwinkelgeschwindigkeit (w) anhand zweier benachbarter Zahnsegmente (42, 43) angesteuert wird nach Maßgabe programmierter Schwellwerte (SW) entsprechend vorgegebener Mindestdrehzahlen.
EP90111325A 1989-07-27 1990-06-15 Verfahren und Anordnung mit induktivem Drehgeber zur Steuerung, insbesondere des Zündzeitpunkts von Brennkraftmaschinen Expired - Lifetime EP0411285B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3924843A DE3924843A1 (de) 1989-07-27 1989-07-27 Verfahren und anordnung mit induktivem drehgeber zur steuerung, insbesondere des zuendzeitpunkts von brennkraftmaschinen
DE3924843 1989-07-27

Publications (3)

Publication Number Publication Date
EP0411285A2 EP0411285A2 (de) 1991-02-06
EP0411285A3 EP0411285A3 (en) 1991-08-07
EP0411285B1 true EP0411285B1 (de) 1995-02-01

Family

ID=6385950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90111325A Expired - Lifetime EP0411285B1 (de) 1989-07-27 1990-06-15 Verfahren und Anordnung mit induktivem Drehgeber zur Steuerung, insbesondere des Zündzeitpunkts von Brennkraftmaschinen

Country Status (3)

Country Link
US (1) US5046468A (de)
EP (1) EP0411285B1 (de)
DE (3) DE3924843A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549090A (en) * 1990-07-31 1996-08-27 Blount; David H. Electronic ignition system for combustion engines
US5184590A (en) * 1991-02-12 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Engine timing control apparatus
DE10107070A1 (de) * 2000-10-13 2002-04-25 Pruefrex Elektro Appbau Inh He Drehrichtungserkennung in einer Zündanlage einer Brennkraftmaschine
SE524754C2 (sv) * 2002-01-21 2004-09-28 Indexator Ab Rotator med vridlägesgivare samt förfarande för vridlägesbestämning vid en rotator
US7170284B2 (en) * 2002-02-13 2007-01-30 Hood Technology Corporation Blade detection sensor having an active cooling system
AU2003220158A1 (en) * 2002-03-12 2003-09-29 Roya J. Fewell Jr. Processor controlled discharge ignition with fixed firing angle at startup
WO2005059929A2 (en) * 2003-12-12 2005-06-30 Xing-Xiang Li Magnetic rod apparatus and method for manipulating magnetic particles for detecting analytes
US8176896B2 (en) * 2008-10-08 2012-05-15 GM Global Technology Operations LLC Target wheel position detection systems
US9845752B2 (en) 2010-09-29 2017-12-19 GM Global Technology Operations LLC Systems and methods for determining crankshaft position based indicated mean effective pressure (IMEP)
US8612124B2 (en) 2011-02-10 2013-12-17 GM Global Technology Operations LLC Variable valve lift mechanism fault detection systems and methods
US9127604B2 (en) 2011-08-23 2015-09-08 Richard Stephen Davis Control system and method for preventing stochastic pre-ignition in an engine
US9097196B2 (en) 2011-08-31 2015-08-04 GM Global Technology Operations LLC Stochastic pre-ignition detection systems and methods
US8776737B2 (en) 2012-01-06 2014-07-15 GM Global Technology Operations LLC Spark ignition to homogenous charge compression ignition transition control systems and methods
US9121362B2 (en) 2012-08-21 2015-09-01 Brian E. Betz Valvetrain fault indication systems and methods using knock sensing
US9133775B2 (en) 2012-08-21 2015-09-15 Brian E. Betz Valvetrain fault indication systems and methods using engine misfire
US8973429B2 (en) 2013-02-25 2015-03-10 GM Global Technology Operations LLC System and method for detecting stochastic pre-ignition
US9593941B2 (en) 2014-09-24 2017-03-14 Hood Technology Corporation Clearance detection system and method using frequency identification

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496920A (en) * 1968-03-06 1970-02-24 Motorola Inc Flywheel generator for charging the capacitor of a capacitor discharge ignition system
US3809040A (en) * 1968-09-09 1974-05-07 Phelon Co Inc Ignition triggering circuit with automatic advance
DE2723265A1 (de) * 1977-05-24 1978-12-07 Bosch Gmbh Robert Verfahren und einrichtung zum steuern von betriebsparameterabhaengigen vorgaengen
DE3032173A1 (de) * 1979-08-27 1981-03-12 Mitsubishi Denki K.K., Tokyo Magnetzuendeinrichtung.
DE3343853A1 (de) * 1983-12-03 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart Zuendanlage fuer brennkraftmaschinen mit einem magnetgenerator
EP0197272A2 (de) * 1985-02-21 1986-10-15 Honda Giken Kogyo Kabushiki Kaisha Messeinrichtung für die Winkellage der Kurbenwelle einer Brennkraftmaschine während des Startens
DE3608201A1 (de) * 1986-03-12 1987-09-17 Walter Stahl Mischer
US4797827A (en) * 1983-07-02 1989-01-10 Lucas Industries Public Limited Company Angular position detector

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1319022A (fr) * 1962-04-03 1963-02-22 Motorola Inc Système d'allumage à transistrons pour moteurs à combustion interne
JPS531442B1 (de) * 1970-07-28 1978-01-19
JPS5427635A (en) * 1977-07-30 1979-03-01 Nippon Denso Co Ltd Non-contact igniter of internal combustion engine
JPS554518A (en) * 1978-06-26 1980-01-14 Hitachi Ltd Crank angle detector of engines
JPS5584863A (en) * 1978-12-19 1980-06-26 Mitsubishi Electric Corp Magnetic sparking system
DE3006288A1 (de) * 1980-02-20 1981-08-27 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur zuendung von brennkraftmaschinen
FR2477236B1 (fr) * 1980-03-03 1987-04-17 Mitsubishi Electric Corp Systeme de commande du point d'allumage pour un moteur a combustion interne
SE443406B (sv) * 1983-04-15 1986-02-24 Electrolux Ab Tendanordning for forbrenningsmotor med magnetsystem
US4553426A (en) * 1984-05-23 1985-11-19 Motorola, Inc. Reference pulse verification circuit adaptable for engine control
US4697570A (en) * 1985-02-21 1987-10-06 Wedtech Corp. Electronic ignition circuit with automatic control advance
US4610237A (en) * 1985-02-21 1986-09-09 Wedtech Corp. Ignition circuit, especially for magneto-triggered internal combustion engines
DE3608321A1 (de) * 1986-03-13 1987-09-17 Pierburg Gmbh & Co Kg Einrichtung zum erfassen der zylinderbezogenen kurbelwellenstellung
DE3608740A1 (de) * 1986-03-15 1987-10-08 Prufrex Elektro App Kondensator-zuendanlage
JP2541949B2 (ja) * 1986-11-28 1996-10-09 本田技研工業株式会社 4サイクル内燃機関の点火時期制御装置
FR2617241B1 (fr) * 1987-06-26 1989-11-10 Renault Dispositif de detection d'anomalie de signal dans un systeme d'allumage-injection electronique
DE3817471C1 (en) * 1988-05-21 1989-11-23 Pruefrex-Elektro-Apparatebau Inh. Helga Mueller, Geb. Dutschke, 8501 Cadolzburg, De Capacitor ignition system for internal combustion engines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496920A (en) * 1968-03-06 1970-02-24 Motorola Inc Flywheel generator for charging the capacitor of a capacitor discharge ignition system
US3809040A (en) * 1968-09-09 1974-05-07 Phelon Co Inc Ignition triggering circuit with automatic advance
DE2723265A1 (de) * 1977-05-24 1978-12-07 Bosch Gmbh Robert Verfahren und einrichtung zum steuern von betriebsparameterabhaengigen vorgaengen
DE3032173A1 (de) * 1979-08-27 1981-03-12 Mitsubishi Denki K.K., Tokyo Magnetzuendeinrichtung.
US4797827A (en) * 1983-07-02 1989-01-10 Lucas Industries Public Limited Company Angular position detector
DE3343853A1 (de) * 1983-12-03 1985-06-13 Robert Bosch Gmbh, 7000 Stuttgart Zuendanlage fuer brennkraftmaschinen mit einem magnetgenerator
EP0197272A2 (de) * 1985-02-21 1986-10-15 Honda Giken Kogyo Kabushiki Kaisha Messeinrichtung für die Winkellage der Kurbenwelle einer Brennkraftmaschine während des Startens
DE3608201A1 (de) * 1986-03-12 1987-09-17 Walter Stahl Mischer

Also Published As

Publication number Publication date
US5046468A (en) 1991-09-10
DE9007308U1 (de) 1990-12-20
DE3924843C2 (de) 1993-04-22
EP0411285A3 (en) 1991-08-07
DE3924843A1 (de) 1991-02-07
DE59008399D1 (de) 1995-03-16
EP0411285A2 (de) 1991-02-06

Similar Documents

Publication Publication Date Title
EP0411285B1 (de) Verfahren und Anordnung mit induktivem Drehgeber zur Steuerung, insbesondere des Zündzeitpunkts von Brennkraftmaschinen
DE2357061C2 (de) Einrichtung zur Abgabe von gleichmäßigen Impulsen bei bestimmten Winkelstellungen einer drehbaren Welle und zur Bildung von wenigstens einem Bezugssignal
EP0007984B1 (de) Einrichtung zum Steuern der Zünd- und/oder Kraftstoffeinspritzvorgänge bei Brennkraftmaschinen
EP0744807B1 (de) Verfahren zur Strombegrenzung bei einem Gleichstrommotor, und Gleichstrommotor zur Durchführung eines solchen Verfahrens
DE2624994A1 (de) Vorrichtung zur automatischen einstellung der vorzuendung im zuendsystem eines verbrennungsmotors
DE2644646C2 (de) Vorrichtung zur Erkennung eines oder mehrerer fehlender Impulse in einer sonst regelmäßigen Impulsfolge
DE3113092A1 (de) "schaltungsanordnung zur erzeugung eines drehfelds fuer eine als schwungradstarter fuer eine fahrzeug-brennkraftmaschine dienende drehstrom-synchronmaschine"
DE2511920A1 (de) Elektronische zuendzeitpunktverstelleinrichtung
DE10105693C2 (de) Hochauflösender Inkrementalpositionssensor mit Impulsschaltstrategie
EP0097826B1 (de) Verfahren zur Steuerung eines Mikrorechners
DE3932075C2 (de) Verfahren zur Erkennung eines Bezugszylinders bei einer Mehrzylinder-Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE2512166A1 (de) Verfahren zum festlegen eines sich wiederholenden vorganges, insbesondere zuendvorganges, und vorrichtung zur durchfuehrung des verfahrens
DE3883012T2 (de) Vorrichtung für die bestimmung der geschwindigkeit, der winkelposition und der rotationsrichtung einer rotierenden achse.
DE2352941C2 (de) Verfahren und Einrichtung zur Auslösung eines Impulses innerhalb eines Verstellbereiches einer Antriebsmaschine
DE19513597C2 (de) Verfahren zur Zylindererkennung bei einer Brennkraftmaschine
DE2923425C2 (de)
DE3234586C2 (de) Zündzeitpunkt-Steuerungsvorrichtung für Verbrennungsmotoren
DE3230233A1 (de) Zuendanlage fuer eine zweitaktmaschine
DE2850534A1 (de) Einrichtung, insbesondere zum steuern der zuend- und/oder kraftstoffeinspritzvorgaenge bei brennkraftmaschinen
DE69215937T2 (de) Zündsteuerungseinrichtung
DE2702208A1 (de) Verfahren und einrichtung zur ausloesung eines impulses innerhalb eines verstellbereiches
DE2827348C2 (de) Verfahren und Anordnung zur Störungsunterdrückung bei der Impulserfassung
DE2847522A1 (de) Induktiver geber und auswerteschaltung hierzu
DE3533529C2 (de)
DE3447341C2 (de) Verfahren zur Schließwinkelregelung einer fremdgezündeten Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19910712

17Q First examination report despatched

Effective date: 19930825

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950201

Ref country code: FR

Effective date: 19950201

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950201

REF Corresponds to:

Ref document number: 59008399

Country of ref document: DE

Date of ref document: 19950316

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950616

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950201

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FIRMA ANDREAS STIHL

Effective date: 19951031

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

EUG Se: european patent has lapsed

Ref document number: 90111325.8

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970626

Year of fee payment: 8

27C Opposition proceedings terminated

Effective date: 19970317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050615