EP0399524B1 - Struktur zur Realisierung von Schaltkreisen und Komponenten angewendet bei Mikrowellenfrequenzen - Google Patents

Struktur zur Realisierung von Schaltkreisen und Komponenten angewendet bei Mikrowellenfrequenzen Download PDF

Info

Publication number
EP0399524B1
EP0399524B1 EP90109889A EP90109889A EP0399524B1 EP 0399524 B1 EP0399524 B1 EP 0399524B1 EP 90109889 A EP90109889 A EP 90109889A EP 90109889 A EP90109889 A EP 90109889A EP 0399524 B1 EP0399524 B1 EP 0399524B1
Authority
EP
European Patent Office
Prior art keywords
antenna structure
structure according
mechanical
dielectric
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90109889A
Other languages
English (en)
French (fr)
Other versions
EP0399524A1 (de
Inventor
Gérard Raguenet
Olivier Remondiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0399524A1 publication Critical patent/EP0399524A1/de
Application granted granted Critical
Publication of EP0399524B1 publication Critical patent/EP0399524B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the invention relates to a structure for producing circuits and components applied to microwave frequencies.
  • the means used in one case as in the other are defined by the general radio-electric characteristics required: frequency bands, necessary powers, admissible loss levels, complexity levels of the connectors, mission in the broad sense of the term, as well as by a non-specifically radio set of other criteria involving parameters such as the mass, the volume of the circuits or even the admissible temperature range that the technologies used will have to withstand. All of these additional constraints are again governed by the "mission in the broad sense” aspect; the precise choice of a technology having to integrate radio criteria as well as mechanical, structural and thermal criteria.
  • radiant elements have appeared over the past ten years that are remarkable in terms of their simplicity of construction and their characteristics of lightness and ability to be shaped: These are printed antennas, the principle of which uses a resonant element. etched on a dielectric support, the assembly being located on a ground plane. Again, such concepts make it possible to offer very competitive solutions in terms of volume, compactness and mass.
  • the dielectric substrates must also have radioelectric performances whose values depend on the physical dimensions.
  • the region between the dielectric planes is filled either with air, or with a material having a dielectric constant close to that of air (honeycomb, plastic or rubber foam, etc.).
  • the mechanical parameters on the one hand, and radioelectric parameters on the other hand cannot be optimized separately and individually, because the rigidity and the dielectric losses depend on the materials used for the different layers, as well as on their physical dimensions and of their relative provision.
  • British patent application GB-A-2 194 101 in the name of MATSUSHITA describes a planar antenna the structure of which is produced by stacking successive planes comprising conductive patterns on dielectric substrate, including a supply network printed on a first dielectric substrate , which supplies by electromagnetic coupling the radiating elements of the "patch" type printed on a second dielectric substrate, these two planes being separated from a ground plane and separated from each other by perforated dielectric spacers.
  • this antenna is constituted by a plurality of dielectric layers, at least three of which are provided with conductive elements (ground plane, radiating elements, power supplies, etc.), and the dielectric layers are assembled by means of spacers.
  • the mechanical rigidity of the assembly comes only from the dielectric substrates, the spacers being preferably perforated and made of a foam material in order to obtain a dielectric constant as close to that of air as possible.
  • the dielectric spacers are perforated so as not to present a dielectric constant appreciable only in regions where the electric fields will be weak (far from resonators and radiating elements).
  • the dielectric substrates must also have radioelectric performances whose values depend on the physical dimensions.
  • the region between the dielectric planes is therefore filled either with air, or with a material having a dielectric constant close to that of air (honeycomb, plastic or rubber foam,. ..).
  • the mechanical parameters on the one hand, and radioelectric parameters on the other hand cannot be optimized separately and individually.
  • the object of the invention is to propose an embodiment of substrates with variable permittivity.
  • said insulating medium (27) is a dielectric material, which can for example be a solid or a gas.
  • said insulating medium (27) is a vacuum.
  • the advantage of the invention results from its versatility and its considerable weight gain compared to more conventional solutions. Its simplicity of making dielectrics with any constant and its low mass make this solution very attractive for space uses.
  • the main design problem is to maintain a conductive element 10 at a precise distance from a ground plane 11 (from two planes respectively massive).
  • the medium 12 thus delimited by the conductive element 10, the ground plane (s) 11 and a characteristic distance d chosen during the design as a function of its influence on the phenomena of interaction between the electromagnetic field and the matter contained in this medium, must present the electrical characteristics ⁇ r (dielectric constant) and tg ⁇ (loss factor) chosen by the designer.
  • each of these structures is formed for example of a "carbon skin sandwich 18-" honeycomb "made of aluminum 19-carbon skin 20, the carbon skin 20 located inwards being metallized 21.
  • the material dielectric 15 can be produced in "honeycomb", in organic foam or by dielectric spacers for example.
  • the dielectric material 15 is chosen for its radioelectric performance, which allows a great latitude of choice. We can finally obtain a powerful solution from a radioelectric point of view. On the other hand, the addition of mechanical elements (stiffening of the ground planes, maintenance of the central conductor and of the dielectric medium) leads to poor mechanical performance. This type of solution is therefore well suited for small devices (surfaces typically less than 0.5 m2) and / or for devices where the ground planes are used to provide additional mechanical functions (maintenance of radiating elements of type horns or propellers for example).
  • the invention relates to a structure in which the electrical and mechanical functions are globally integrated, but locally dissociated.
  • the structure according to the invention comprises a mechanical structure 26 forming an enclosure 33 in which can be disposed a block 27 of dielectric material.
  • a layer of dielectric material 28, (29) On either side of the assembly thus formed is disposed a layer of dielectric material 28, (29), the first 28 supporting the conductive element 30 disposed above the dielectric pad 27, the other 29 supporting the plane of mass 31 metallic.
  • a bonding layer 32 is disposed between the mechanical structure and each of the two dielectric layers.
  • the medium in the vicinity of the conductive element consists of a dielectric material whose selection criteria are mainly electrical ( ⁇ r , tg ⁇ ) and which does not participate in mechanical rigidity from the whole.
  • a mechanical structure makes it possible to contain the preceding dielectric material and to guarantee the overall mechanical performance of the device.
  • the most suitable materials are PTFE (polytetrafluoroethylene) matrices with glass reinforcement.
  • PTFE polytetrafluoroethylene
  • the epoxide and polyimide matrices although they make it possible to achieve superior mechanical properties, bring up the values of ⁇ r and tg ⁇ .
  • the dielectric material is chosen for its radioelectric properties only.
  • the material constituting the structure is mainly chosen for its mechanical characteristics.
  • the gain can therefore be a factor of 4 on the R.F. losses and a factor of around 2.5 on the mass.
  • the most suitable architectures are obtained by bonding a very aerated organic material (foam, honeycomb) between the substrates supporting the elements. radiant and the ground plane by means of glue films or layers of composite materials.

Landscapes

  • Waveguide Aerials (AREA)
  • Laminated Bodies (AREA)
  • Waveguides (AREA)
  • Structure Of Printed Boards (AREA)

Claims (16)

  1. Antennenstruktur vom Patch-Typ, in der die mechanischen und elektrischen Funktionen global integriert sind und die außerdem
    - eine mechanische Struktur (26), die eine Vielzahl von Räumen bildet,
    - eine Vielzahl von leitenden Elementen (30),
    - und eine metallische Massenebene (31) aufweist,
    wobei die mechanische Struktur (26), die eine Vielzahl von Räumen bildet, sich zwischen den leitenden Elementen (30) und der Massenebene (31) befindet, dadurch gekennzeichnet, daß ein Isoliermaterial (27) in jedem Raum angebracht ist, wobei die mechanische Struktur (26) außerhalb dieser Räume liegt, und daß jedes leitende Element (30) oberhalb des isolierenden Materials (27) angeordnet ist, so daß die mechanischen und elektrischen Funktionen örtlich voneinander getrennt sind.
  2. Antennenstruktur nach Anspruch 1, dadurch gekennzeichnet, daß eine erste Schicht aus dielektrischem Material (28) jedes leitende Element (30) oberhalb des isolierenden Materials (27) trägt.
  3. Antennenstruktur nach einem beliebigen der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß eine zweite dielektrische Schicht (29) die metallische Massenebene (31) trägt.
  4. Antennenstruktur nach Anspruch 3, dadurch gekennzeichnet, daß eine Kleberschicht (32) zwischen der mechanischen Struktur (26) und jeder der beiden dielektrischen Schichten (28 und 29) angeordnet ist.
  5. Antennenstruktur nach Anspruch 1, dadurch gekennzeichnet, daß das unter den leitenden Elementen (30) verfügbare Volumen die aus elektrischer Sicht gewünschten Eigenschaften besitzt.
  6. Antennenstruktur nach Anspruch 1, dadurch gekennzeichnet, daß die mechanische Struktur aus einem Verbundmaterial besteht.
  7. Antennenstruktur nach Anspruch 6, dadurch gekennzeichnet, daß das verwendete Verbundmaterial auf der Basis von Kevlarfasern aufgebaut ist.
  8. Antennenstruktur nach Anspruch 6, dadurch gekennzeichnet, daß das verwendete Verbundmaterial auf der Basis von Kohlenstoffasern aufgebaut ist.
  9. Antennenstruktur nach Anspruch 6, dadurch gekennzeichnet, daß das verwendete Verbundmaterial auf der Basis von Glasfasern aufgebaut ist.
  10. Antennenstruktur nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das isolierende Material (27) ein dielektrisches Material ist.
  11. Antennenstruktur nach Anspruch 1, dadurch gekennzeichnet, daß der Raum (33) mit einem Gas gefüllt ist, um die gewünschte Dielektrizitätskonstante zu erreichen.
  12. Antennenstruktur nach Anspruch 11, dadurch gekennzeichnet, daß das Gas einen sehr geringen Druck besitzt.
  13. Antennenstruktur nach Anspruch 1, dadurch gekennzeichnet, daß das isolierende Material (27) Vakuum ist.
  14. Antennenstruktur nach Anspruch 10, dadurch gekennzeichnet, daß das verwendete dielektrische Material Keramikmaterial enthält.
  15. Antennenstruktur nach Anspruch 14, dadurch gekennzeichnet, daß das Keramikmaterial belüftet ist.
  16. Antennenstruktur nach einem beliebigen der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß das verwendete dielektrische Material ein organisches oder ein Verbundmaterial enthält.
EP90109889A 1989-05-24 1990-05-23 Struktur zur Realisierung von Schaltkreisen und Komponenten angewendet bei Mikrowellenfrequenzen Expired - Lifetime EP0399524B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8906783A FR2647599B1 (fr) 1989-05-24 1989-05-24 Structure de realisation de circuits et composants appliquee aux hyperfrequences
FR8906783 1989-05-24

Publications (2)

Publication Number Publication Date
EP0399524A1 EP0399524A1 (de) 1990-11-28
EP0399524B1 true EP0399524B1 (de) 1995-01-25

Family

ID=9381957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90109889A Expired - Lifetime EP0399524B1 (de) 1989-05-24 1990-05-23 Struktur zur Realisierung von Schaltkreisen und Komponenten angewendet bei Mikrowellenfrequenzen

Country Status (6)

Country Link
US (1) US5227749A (de)
EP (1) EP0399524B1 (de)
JP (1) JPH0329401A (de)
CA (1) CA2017352A1 (de)
DE (1) DE69016261D1 (de)
FR (1) FR2647599B1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69122748T2 (de) * 1990-12-26 1997-05-07 Tdk Corp Hochfrequenzvorrichtung
US5443278A (en) * 1992-12-22 1995-08-22 Berto; Joseph J. Snowmobile ski liner
JPH0750508A (ja) * 1993-08-06 1995-02-21 Fujitsu Ltd アンテナモジュール
FR2711845B1 (fr) * 1993-10-28 1995-11-24 France Telecom Antenne plane et procédé de réalisation d'une telle antenne.
US5559521A (en) * 1994-12-08 1996-09-24 Lucent Technologies Inc. Antennas with means for blocking current in ground planes
US5652595A (en) * 1995-05-04 1997-07-29 Motorola, Inc. Patch antenna including reactive loading
DE19615497A1 (de) * 1996-03-16 1997-09-18 Pates Tech Patentverwertung Planarer Strahler
US6271792B1 (en) * 1996-07-26 2001-08-07 The Whitaker Corp. Low cost reduced-loss printed patch planar array antenna
EP0922942A1 (de) 1997-12-10 1999-06-16 Endress + Hauser GmbH + Co. Mit Mikrowellen arbeitendes Füllstandsmessgerät mit einem Einsatz aus einem Dielektrikum und Verfahren zur Herstellung des Dielektrikums
US6185354B1 (en) * 1998-05-15 2001-02-06 Motorola, Inc. Printed circuit board having integral waveguide
US6131269A (en) * 1998-05-18 2000-10-17 Trw Inc. Circuit isolation technique for RF and millimeter-wave modules
US6211824B1 (en) * 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
US6409650B2 (en) 1999-08-25 2002-06-25 Terralog Technologies Usa, Inc. Method for biosolid disposal and methane generation
EP1770820B1 (de) * 2005-09-28 2009-03-11 Siemens Milltronics Process Instruments Inc. Galvanische Trennungsvorrichtung für eine ebene Schaltung
US7804385B2 (en) * 2007-04-20 2010-09-28 Rs Microwave Company Composite resonator for use in tunable or fixed filters
EP2198479B1 (de) * 2007-10-11 2016-11-30 Raytheon Company Patchantenne
US8525729B1 (en) * 2009-01-09 2013-09-03 Lockheed Martin Corporation Antenna tiles with ground cavities integrated into support structure
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10601137B2 (en) 2015-10-28 2020-03-24 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
US11876295B2 (en) 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
CN110754017B (zh) 2017-06-07 2023-04-04 罗杰斯公司 介质谐振器天线***
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10910722B2 (en) 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
WO2020117489A1 (en) 2018-12-04 2020-06-11 Rogers Corporation Dielectric electromagnetic structure and method of making the same
US10700440B1 (en) 2019-01-25 2020-06-30 Corning Incorporated Antenna stack
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721312A (en) * 1951-06-30 1955-10-18 Itt Microwave cable
US2919441A (en) * 1955-04-15 1959-12-29 Chu Lan Jen Radio-frequency-energy transmission line and antenna
US3534299A (en) * 1968-11-22 1970-10-13 Bell Telephone Labor Inc Miniature microwave isolator for strip lines
US3696433A (en) * 1970-07-17 1972-10-03 Teledyne Ryan Aeronautical Co Resonant slot antenna structure
US3936864A (en) * 1973-05-18 1976-02-03 Raytheon Company Microwave transistor package
US3868594A (en) * 1974-01-07 1975-02-25 Raytheon Co Stripline solid state microwave oscillator with half wavelength capacitive resonator
US3908185A (en) * 1974-03-06 1975-09-23 Rca Corp High frequency semiconductor device having improved metallized patterns
JPS566502A (en) * 1979-06-29 1981-01-23 Nippon Telegr & Teleph Corp <Ntt> Microstrip line
US4623893A (en) * 1983-12-06 1986-11-18 State Of Israel, Ministry Of Defense, Rafael Armament & Development Authority Microstrip antenna and antenna array
US4651159A (en) * 1984-02-13 1987-03-17 University Of Queensland Microstrip antenna
US4829309A (en) * 1986-08-14 1989-05-09 Matsushita Electric Works, Ltd. Planar antenna

Also Published As

Publication number Publication date
US5227749A (en) 1993-07-13
CA2017352A1 (fr) 1990-11-24
JPH0329401A (ja) 1991-02-07
FR2647599B1 (fr) 1991-11-29
FR2647599A1 (fr) 1990-11-30
EP0399524A1 (de) 1990-11-28
DE69016261D1 (de) 1995-03-09

Similar Documents

Publication Publication Date Title
EP0399524B1 (de) Struktur zur Realisierung von Schaltkreisen und Komponenten angewendet bei Mikrowellenfrequenzen
EP3545587B1 (de) Vertikalantennen-patch in einer hohlraumregion
EP2808946B1 (de) Vorrichtung zum Verhindern einer Ausbreitung von elektromagnetischen Wellen und ihr Herstellungsprozess
KR102002161B1 (ko) 표면 산란 안테나
EP0961344B1 (de) Funkkommunikationseinrichtung und eine Schlitz-Schleifenantenne
EP0108463B1 (de) Strahlelement für orthogonal polarisierte Signale und flache Antennengruppe mit solchen nebeneinandergestellten Elementen
US6396451B1 (en) Precision multi-layer grids fabrication technique
FR2763177A1 (fr) Filtre employant une surface a selectivite de frequence et antenne utilisant ce filtre
WO2007006982A1 (fr) Systeme d&#39;antenne a diversite d&#39;ordre 2 et carte pour appareil de communication sans fil munie d&#39;un tel systeme
EP2571098B1 (de) Rekonfiguerierbare strahlende dephasierende Zelle, die auf Spaltresonanzen und komplementären Mikrostreifen basiert
EP3540853B1 (de) Antenne mit breitbandübertragungsnetz
KR101751638B1 (ko) 전자파 흡수기
FR2800920A1 (fr) Dispositif de transmission bi-bande et antenne pour ce dispositif
Honari et al. Miniaturized-element frequency selective surface metamaterials: A solution to enhance radiation of RFICs
EP1225655A1 (de) Dualband Planarantenne und dieses enthaltendes Gerät
EP2174381A1 (de) Antennenmodul mit integrierter kuppel
Saenz et al. Highly efficient dipole antenna with planar meta-surface
Lanang et al. Study on C-band electromagnetic wave absorber made of S-ring resonator
Ma et al. Design of band-stop frequency selective surface structure with large and stable reflection band
Mavridou et al. Novel tunable frequency selective meta-surfaces
Aksimsek Design of flexible metamaterial absorber for broadband microwave applications
FR2906937A1 (fr) Decouplage des reseaux d&#39;elements rayonnants d&#39;une antenne
Yekan et al. Integrated Solar-Panel Antenna Array for CubeSats (ISAAC)
NL2001238C2 (nl) Antenne-inrichting en werkwijze.
CN115483533A (zh) 天线及通信设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19910521

17Q First examination report despatched

Effective date: 19930809

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950125

REF Corresponds to:

Ref document number: 69016261

Country of ref document: DE

Date of ref document: 19950309

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010412

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010507

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020523

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST