EP0399010B1 - Paper-like or cardboard-like raw material and process for making it - Google Patents

Paper-like or cardboard-like raw material and process for making it Download PDF

Info

Publication number
EP0399010B1
EP0399010B1 EP89912436A EP89912436A EP0399010B1 EP 0399010 B1 EP0399010 B1 EP 0399010B1 EP 89912436 A EP89912436 A EP 89912436A EP 89912436 A EP89912436 A EP 89912436A EP 0399010 B1 EP0399010 B1 EP 0399010B1
Authority
EP
European Patent Office
Prior art keywords
cationic
material according
weight
inorganic
carbohydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89912436A
Other languages
German (de)
French (fr)
Other versions
EP0399010A1 (en
Inventor
Manfred Zeuner
Peter Doblanzki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT89912436T priority Critical patent/ATE85097T1/en
Publication of EP0399010A1 publication Critical patent/EP0399010A1/en
Application granted granted Critical
Publication of EP0399010B1 publication Critical patent/EP0399010B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes

Definitions

  • the invention relates to an incombustible paper, cardboard or cardboard-like material with a very high proportion of inorganic constituents, namely inorganic fibers and inorganic particulate additives, i.e. of fillers and pigments.
  • Paper-like materials are known from EP-A-0 109 782 and EP-A-0 027 705, which contain inorganic fibers, such as glass fibers or mineral wool fibers, inorganic particulate fillers, such as clay and bentonite, as well as hydrolyzed starch as an organic binder.
  • inorganic fibers such as glass fibers or mineral wool fibers
  • inorganic particulate fillers such as clay and bentonite
  • hydrolyzed starch such as an organic binder.
  • organic fibers are also used to improve strength and reduce brittleness.
  • EP-A-0 109 782 describes the addition of at least 2% by weight of cellulose fibers, but the proportion of the combustible components should not exceed 10% by weight.
  • DE-A-26 06 487 discloses a process for the continuous production of moldings which contain inorganic fibers, a silica sol and anionic starch. However, these molded parts do not contain any inorganic particulate fillers.
  • GB-A-21 27 867 discloses a low-density fiber material which contains inorganic fibers, inorganic fillers and a high proportion of cationic guar.
  • the inorganic fillers are standard fillers that are used in relatively small quantities.
  • Borax is also added to precipitate the guar onto the inorganic fibers.
  • GB-A-2 031 043 discloses a fibrous sheet material which contains inorganic fibers in a matrix of plastic clay (ball clay).
  • the material may also contain bentonite to regulate the rate of drainage.
  • Hydrolyzable starch is used as the binder.
  • the material also contains a relatively high proportion of cellulose fibers.
  • the invention has for its object to provide a paper, cardboard or cardboard-like material which is on the one hand non-flammable and on the other hand has high strength and flexibility and is easy to process. These properties were previously incompatible, i.e. For the production of fiber materials with high strength and flexibility and with good processability, a relatively high proportion of organic fibers was previously considered necessary, which naturally increased the flammability.
  • the materials according to the invention are not flammable. They meet the requirements of DIN 4102, class A. Because of their good strength properties, the materials according to the invention, like paper, cardboard and cardboard, can easily be processed further on the basis of cellulose fibers. The materials can be produced on the usual paper, cardboard or cardboard machines.
  • particle inorganic additives are not fibrous additives, since the length of the fibers is generally of the order of millimeters lies.
  • Particle size means the largest dimension of a particle, which is important, for example, in the case of flattened particles.
  • the particles of the anionic flake-forming active pigment sometimes tend to form larger agglomerates.
  • the particle size is understood to mean the size of the primary particles.
  • the improvement in the strength properties is probably due to the fact that the anionic flake-forming active pigment and the cationic polymeric carbohydrate accumulate on the one hand on the inorganic fibers and on the other hand on the inorganic particulate base fillers.
  • the basic filler particles settle on the fiber surfaces and in this way prevent the inorganic fibers, which are inherently smooth, from sliding against one another, as a result of which a non-slip fiber fleece is obtained.
  • Inorganic fibers are not able to develop strengths either by hydrogen bonding or by crosslinking in combination with shrinkage, as is the case with vegetable fibers.
  • the strength of a sheet of purely inorganic fibers is based on an "adhesion" of the individual fibers to one another at the fiber contact points with the aid of organic binders. Due to the low flexibility of inorganic fibers, such a nonwoven fabric has only relatively few fiber-fiber contact points, and the retention of organic binders during dewatering in the conventional paper-making process is extremely low. The finished product is therefore of low strength.
  • the base fillers used according to the invention can form a flake together with a suitable cationic carbohydrate on account of their surface size and structure and on account of their charge properties.
  • a suitable cationic carbohydrate on account of their surface size and structure and on account of their charge properties.
  • the inorganic fibers are embedded in the filler.
  • the number of points of contact fiber-fiber; Filler fiber; Filler-filler
  • Good structural strength is only achieved if all fiber-fiber crossing points are completely embedded without filler defects and the flocculant is evenly distributed. This is only possible with a suitably designed flake.
  • the flocculation is controlled according to the invention with the aid of the flake-forming active pigments.
  • anionic flake-forming active pigments Due to their anionic charge potential, these can shift the flocculation point and, in addition, contribute to a good distribution of the latter by forming a microfloc together with the cationic carbohydrate.
  • the anionic flake-forming active pigments can: also close defects in the filler-filler and fiber-filler composite.
  • reaction mechanism described illustrates that this is a very complex system in which synergistic effects can also occur.
  • the individual components of the materials according to the invention - that is to say fibers, base filler, anionic flake-forming active pigment and cationic carbohydrate - must therefore be precisely coordinated with one another with regard to the type and amount added.
  • An object of the invention is to provide fiber-containing materials in which the potentially carcinogenic asbestos fibers are replaced by fibers which are harmless to health. These include glass fibers, mineral fibers, silica fibers, basalt fibers and / or aluminum oxide fibers.
  • the thickness and length of the inorganic fibers can vary within wide ranges. Preferably at least 80% of the inorganic fibers have a length in the range of about 1 to 6 mm. Mixtures of inorganic fibers which differ from one another in terms of composition, length and thickness can also be used.
  • Ge are, for example SiO2, kaolin, aluminum oxide, bleaching earth, gypsum, calcium carbonate, titanium dioxide, zinc oxide, perlite, vermiculite and / or other known paper fillers or fillers for plastic materials and paints.
  • Some of these basic fillers such as gypsum and bleaching earth, release water of crystallization or adsorption water when heated and thus have a fire-retardant effect.
  • Calcium carbonate which emits carbon dioxide at higher temperatures, has a comparable effect.
  • the content of inorganic base fillers is generally 35 to 75% by weight, preferably 55 to 70% by weight, based on the dry matter of the material.
  • the inorganic base filler preferably has a particle size of ⁇ 2 ⁇ m to 35 to 99% by weight and a particle size of> 20 ⁇ m to no more than 10% by weight.
  • the anionic flake-forming active pigment is preferably aluminum hydroxide, bentonite or colloidal amorphous SiO2.
  • the content of active pigments is generally about 1 to 15, preferably 2 to 10% by weight, based on the dry matter of the material.
  • an anionic colloidal amorphous SiO2 is used, this is preferably used in the form of a 30-40% aqueous dispersion.
  • Anionic silica sols which are obtained by contacting a dilute water glass solution with an acidic cation exchanger and aging the sol obtained are preferably used. They are dispersed in an alkaline medium that reacts with the silicon dioxide surface and creates a negative charge there. Bump because of the negative charge the particles mutually from one another thus stabilize the product.
  • Suitable commercial products are available, for example, under the name Ludox (trademark of the Du Pont company), although other products can also be used.
  • aluminum hydroxide is used as the active pigment, this can be prepared statu nascendi from an alkali aluminate and an acid, preferably from sodium aluminate and sulfuric acid, or from an aluminum salt and alkali, preferably from aluminum sulfate and sodium hydroxide solution.
  • bentonite is used as the active pigment, swellable alkali bentonite is preferred.
  • the ratio between the inorganic particulate additives and the cationic polymeric carbohydrate is preferably chosen so that there is no excess charge so that an optimal floc forms.
  • Preferred polymeric carbohydrates are cationic starch, cationic amylopectin, cationic galactomannans (e.g. guar or cassia) and / or cationic carboxymethyl cellulose.
  • the carbohydrates can be cationized in a manner known per se by quaternizing the optionally hydrolyzed starting carbohydrates with quaternary ammonium compounds. However, the carbohydrates can also be cationized using the dry cationization method. Cationic polyvinyl alcohols can also be added to the cationic carbohydrates.
  • the polymeric cationic carbohydrate content is generally 1 to 5, preferably 1 to 3,% by weight, based on the dry mass of the material. This essentially depends on the desired field of application. if you want to manufacture materials with high temperature resistance, this becomes polymer cationic carbohydrate used in smaller amounts.
  • Materials for use at high temperatures include sealing materials in chemical and engine construction as well as temperature-resistant filter materials for hot gases and liquids.
  • the materials according to the invention can also be used at higher carbohydrate concentrations as insulating materials in the building industry, in particular in drywall construction, for example as cable routes and fire protection insulation, for fire doors, wall and ceiling panels, carrier layers for heat-insulating materials and as fire-resistant displays for advertising purposes (in department stores).
  • the cationic polymeric carbohydrate generally has an average molecular weight of 200,000 to 1,000,000, preferably 300,000 to 800,000, and a degree of substitution of 0.15 to 0.02.
  • the materials according to the invention can also contain cationic, anionic or nonionic retention aids. These are generally the retention aids customary in the paper industry, which are preferably added in amounts of about 0.02 to 0.2% by weight, based on the dry matter of the material.
  • a cationic polyacrylamide with a molecular weight of about 1 to 10 million or a polyethyleneimine with a molecular weight of about 80,000 to 300,000 can be used as a retention aid.
  • the materials according to the invention can also contain wet strength agents, preferably in an amount of about 0.2 to 5% by weight, based on the dry matter of the material.
  • Suitable wet strength agents are, for example, urea or melamine-formaldehyde resins, polyamidamine-epichlorohydrin resins and the like. the like
  • the invention also relates to the design of the materials according to the invention as three-dimensional shaped bodies. These include Pipes, shells, filter bodies, insulating walls, sealing elements, etc.
  • the materials according to the invention are preferably produced by mixing an aqueous dispersion of the inorganic fibers and the particulate inorganic base fillers with an aqueous suspension of the active pigment and adding the cationic polymeric carbohydrate to this mixture shortly before shaping.
  • the shape can e.g. be carried out on a paper or cardboard machine. In this case one speaks of a sheet formation.
  • the three-dimensional moldings are preferably produced by the fiber casting process. However, it is also possible to lay down and dry the still wet sheet in a three-dimensional form.
  • the shaping is preferably carried out after flakes have formed in the aqueous mixture after the addition of the cationic polymeric carbohydrate.
  • the shaping is preferably carried out after at least 10 seconds after the addition of the cationic polymeric carbohydrate.
  • the retention aid is preferably added after the addition of the cationic polymeric carbohydrate.
  • the inorganic fibers and the inorganic base fillers are used before production the dispersion is preferably subjected to wet dispersion separately, whereupon the separate dispersions are mixed with one another. This ensures that each component is optimally dispersed by selecting a suitable stirring speed, stirring time, etc.
  • the dispersion parameters depend on the nature, length and thickness of the inorganic fibers or on the nature, particle size and the specific weight of the base filler particles.
  • the aqueous dispersion of the active pigments is then added to the mixed dispersion of inorganic fibers and inorganic base filler particles, whereupon the cationic carbohydrate is added shortly (about 10 to 30 seconds) before the sheet formation.
  • the retention aid is then added.
  • the three predispersions are thoroughly mixed with a dispersion of colloidal, amorphous SiO2.
  • the water content of the dispersion is about 60-70% by weight.
  • the proportions by weight of colloidal SiO2 and cationic starch are also given in Table I.
  • Example 6 a cationic polyacrylamide is added as a retention agent (Nalco 47-32; trademark of Nalco Chemical Co.) in the amount shown in Table I.
  • the aqueous mass is transferred to a Rapid-Koethen laboratory sheet formation system, whereupon the aqueous phase is suctioned off.
  • a sheet is obtained which, after drying, has a thickness of approximately 0.3 mm.
  • the tensile strengths of the test sheets are given in Table I.
  • Comparative Examples 1 and 3 already show the influence of the particle fineness, while Comparative Examples 3 and 4 show the influence of the filler content on the mechanical strength.
  • Examples 2, 5 and 6 according to the invention show the strength increases caused by the addition of the anionic floc-forming active pigment, the strength increased according to Example 5 compared to Example 2 also being due to the higher proportion and the higher particle fineness of the base filler.
  • Example 6 shows that by using a retention aid, the strength compared to the material of the next comparable example 5 can be increased even further.
  • the fiber and filler predispersions are prepared as in Examples 1 to 6, the substances and weight ratios given in Table II being used.
  • the mixing of the predispersions with the other constituents and the sheet formation are likewise carried out as in Examples 1 to 6.
  • Example 7 an aluminum hydroxide dispersion which was prepared in situ from aluminum sulfate and sodium hydroxide is used as the active pigment instead of the colloidal, amorphous silica
  • Example 8 bentonite is used as the active pigment.
  • Example 9 was included as a comparative example (without active pigment).
  • Examples 7 to 10 are intended to show the influence of the various flake-forming active pigments on the strength properties of the non-combustible inorganic materials according to the invention.
  • the selection and the amount of the flake-forming active pigment largely depends on the properties of the basic filler.
  • the amount of organic auxiliaries, such as carbohydrates, is greatly limited by the non-combustibility requirements.
  • Example 15 a combination of two different carbohydrates was used, which also gives usable strength values.
  • Corresponding sheets can also be produced on suitable paper or cardboard machines (wire or circular screen) in any thickness.
  • the total retention is between 85 and 95% depending on the recipe and machine type.
  • the specific weight can be varied in the range from 500 to 1000 kg / m3.
  • the insulating ability and thus the possible application depends mainly on the specific weight of the material produced, while the temperature resistance depends primarily on the melting point of the fibers. In the recipe examples given, the replacement of the glass fiber with other fibers with a higher temperature resistance would be problem-free and without an adverse effect on the mechanical property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

A paper-like or cardboard-like raw material containing inorganic fibres, particulate inorganic additives and organic binders or flocculents is characterized in that (1) the particulate inorganic additives comprise 40-80 wt. % of the dry mass of the raw material; (2) the particulate inorganic additives contain (2.1) a basic filler of which at least 20 wt. % has a particle size < 2 νm and not more than 20 wt. % has a particle size > 20 νm and < 0.5 νm, and (2.2) an anionic flocculating active pigment of which at least 50 wt. % has a primary particle size < 2 νm; (3.1) the organic flocculant is a cationic polymeric carbohydrate with a mean molecular weight between 100 000 and 2 000 000 and a degree of substitution between 0.01 and 0.3 and amounts to 0.5 to 6 wt. % of the dry mass of the raw material; (3.2) 1000 g of basic filler may bind, with floc formation, not more than 0.1 mmol of cationic carbohydrate and 1000 g of anionic flocculating active pigment binds, with floc formation, at least 0.1 mmol of cationic carbohydrate.

Description

Die Erfindung betrifft einen unbrennbaren papier-, karton- oder pappenartigen Werkstoff mit einem sehr hohen Anteil an anorganischen Bestandteilen, nämlich anorganischen Fasern und anorganischen teilchenförmigen Zusätzen, d.h. von Füllstoffen und Pigmenten.The invention relates to an incombustible paper, cardboard or cardboard-like material with a very high proportion of inorganic constituents, namely inorganic fibers and inorganic particulate additives, i.e. of fillers and pigments.

Es ist allgemein bekannt, daß die Festigkeit von Papier auf der Basis von organischen Fasern durch die Ausbildung von Wasserstoffbrücken zwischen den organischen Fasern bedingt ist. Weiter ist bekannt, daß anorganische Füllstoffe durch mechanische Trennung der Fasern voneinander die für die Wasserstoffbrückenbindungen verfügbaren Faserflächen reduzieren oder bindungsfähige Stellen auf der Faser blockieren und durch schwächere Faser-Füllstoff-Faser-Bindungen ersetzen, wobei feinteilige Füllstoffe die Festigkeit besonders stark herabsetzen.It is well known that the strength of paper based on organic fibers is due to the formation of hydrogen bonds between the organic fibers. It is also known that inorganic fillers reduce the fiber areas available for hydrogen bonding by mechanical separation of the fibers from one another or block binding sites on the fiber and replace them with weaker fiber-filler-fiber bonds, finely divided fillers particularly strongly reducing the strength.

Werden also bei der Herstellung von papier- oder pappenähnlichen Werkstoffen nur anorganische Fasern und Füllstoffe, also Stoffe, die keine Wasserstoffbrückenbindungsfähigkeit besitzen, verwendet, so haben die erhaltenen Werkstoffe nur geringe Festigkeiten.Thus, if only inorganic fibers and fillers, that is to say substances which have no hydrogen bonding ability, are used in the production of paper or cardboard-like materials, the materials obtained have only low strengths.

Aus der EP-A-0 109 782 und der EP-A-0 027 705 sind papierartige Werkstoffe bekannt, die anorganische Fasern, wie Glasfasern oder Mineralwollefasern, anorganische teilchenförmige Füllstoffe, wie Ton und Bentonit, sowie hydrolysierte Stärke als organisches Bindemittel enthalten. Es werden jedoch zur Verbesserung der Festigkeit und zur Erniedrigung der Sprödigkeit darüber hinaus auch organische Fasern eingesetzt. Die EP-A-0 109 782 beschreibt die Zugabe von mindestens 2 Gew.% Cellulosefasern, wobei jedoch der Anteil der brennbaren Bestandteile nicht höher als 10 Gew.% betragen soll.Paper-like materials are known from EP-A-0 109 782 and EP-A-0 027 705, which contain inorganic fibers, such as glass fibers or mineral wool fibers, inorganic particulate fillers, such as clay and bentonite, as well as hydrolyzed starch as an organic binder. However, organic fibers are also used to improve strength and reduce brittleness. EP-A-0 109 782 describes the addition of at least 2% by weight of cellulose fibers, but the proportion of the combustible components should not exceed 10% by weight.

Aus der DE-A-26 06 487 ist ein Verfahren zur kontinuierlichen Herstellung von Formteilen bekannt, die anorganische Fasern, ein Kieselsol und anionische Stärke enthalten. Diese Formteile enthalten jedoch keine anorganischen teilchenförmigen Füllstoffe.DE-A-26 06 487 discloses a process for the continuous production of moldings which contain inorganic fibers, a silica sol and anionic starch. However, these molded parts do not contain any inorganic particulate fillers.

Aus der EP-B-0 080 986 (AT-E-13777) ist ein Papierherstellungsverfahren bekannt, wonach ein Produkt erhalten wird, das organische Fasern, d.h. Zellstoff-Fasern, mineralische Füllstoffe, anionische kolloidale Kieselsäure und kationischen Guar enthält. Unter "mineralische Füllstoffe" werden auch Glasfasern verstanden. Ein derartiges Produkt ist wegen seines hohen Anteils an organischen Fasern brennbar und daher für viele Hochtemperaturanwendungen nicht geeignet.From EP-B-0 080 986 (AT-E-13777) a paper manufacturing process is known, according to which a product is obtained which contains organic fibers, i.e. Contains pulp fibers, mineral fillers, anionic colloidal silica and cationic guar. "Mineral fillers" are also understood to mean glass fibers. Such a product is flammable because of its high proportion of organic fibers and is therefore not suitable for many high-temperature applications.

Aus der US-A-3 253 978 ist ein Verfahren zur Erzeugung eines porösen anorganischen Blattes bekannt, das anorganische Fasern und/oder größere flocken, ein anionisches Kieselsol und kationische Stärke enthält. Ein derartiges Blatt enthält jedoch keine feinteiligen anorganischen Füllstoffe und besitzt unzureichende Festigkeit.From US-A-3 253 978 a method for producing a porous inorganic sheet is known which contains inorganic fibers and / or larger flakes, an anionic silica sol and cationic starch. However, such a sheet contains no finely divided inorganic fillers and has inadequate strength.

Aus der GB-A-21 27 867 ist ein fasermaterial mit geringer Dichte bekannt, das anorganische Fasern, anorganische Füllstoffe und einem hohen Anteil an kationischem Guar enthält. Bei den anorganischen Füllstoffen handelt es sich um Standardfüllstoffe, die in verhältnismäßig kleinen Mengen eingesetzt werden. Ferner wird zur Auffällung des Guars auf die anorganischen Fasern Borax zugesetzt.GB-A-21 27 867 discloses a low-density fiber material which contains inorganic fibers, inorganic fillers and a high proportion of cationic guar. The inorganic fillers are standard fillers that are used in relatively small quantities. Borax is also added to precipitate the guar onto the inorganic fibers.

Aus der GB-A-2 031 043 ist ein faseriges Blattmaterial bekannt, das anorganische Fasern in einer Matrix aus plastischem Ton (ball clay) enthält. Das Material kann ferner Bentonit zur Regulierung der Entwässerungsgeschwindigkeit enthalten. Als Bindemittel wird hydrolysierbare Stärke verwendet. Das Material enthält ferner einen verhältnismäßig hohen Anteil an Cellulosefasern.GB-A-2 031 043 discloses a fibrous sheet material which contains inorganic fibers in a matrix of plastic clay (ball clay). The material may also contain bentonite to regulate the rate of drainage. Hydrolyzable starch is used as the binder. The material also contains a relatively high proportion of cellulose fibers.

Aus der US-A-3 702 279 ist die Herstellung eines thermischen Isoliermaterials bekannt, wobei anorganische Fasern mit einem Bindemittel aus einem anorganischen Sol vermischt werden, worauf das Sol geliert wird. Dieses Material enthält keine teilchenförmigen anorganischen Zusätze. Es werden keine organischen Bindemittel verwendet. Das Material wird nach der Trocknung gesintert.From US-A-3 702 279 the production of a thermal insulation material is known, wherein inorganic fibers are mixed with a binder made of an inorganic sol, whereupon the sol is gelled. This material does not contain any particulate inorganic additives. No organic binders are used. The material is sintered after drying.

Der Erfindung liegt die Aufgabe zugrunde, einen papier-, karton- oder pappenartigen Werkstoff zu schaffen, der einerseits unbrennbar ist und der andererseits eine hohe Festigkeit und Flexibilität hat und gut verarbeitbar ist. Diese Eigenschaften waren bisher unvereinbar, d.h. zur Herstellung von Fasermaterialien mit hoher Festigkeit und Flexibilität sowie mit guter Verarbeitbarkeit wurde bisher ein verhältnismäßig hoher Anteil an organischen Fasern für erforderlich gehalten, wodurch die Brennbarkeit natürlich zunahm.The invention has for its object to provide a paper, cardboard or cardboard-like material which is on the one hand non-flammable and on the other hand has high strength and flexibility and is easy to process. These properties were previously incompatible, i.e. For the production of fiber materials with high strength and flexibility and with good processability, a relatively high proportion of organic fibers was previously considered necessary, which naturally increased the flammability.

Zur Lösung dieser Aufgabe schlägt die Erfindung unbrennbare papier-, karton- oder pappenartige Werkstoffe, enthaltend anorganische Fasern, anorganische teilchenförmige Zusätze und organische Binde- oder Flockungsmittel vor, die dadurch gekennzeichnet sind,

  • (1) daß die teilchenförmigen anorganischen Zusätze bis 40 bis 80 Gew.-% des Werkstoffes ausmachen,
  • (2) daß die anorganischen teilchenförmigen Zusätze aus
    • (2.1) einem Basisfüllstoff, von dem mindestens 20 Gew.-% eine Teilchengröße von < 2 µm und nicht mehr als 20 Gew.-% eine Teilchengröße von > 20 µm einerseits und von < 0,5 µm andererseits haben, und
    • (2.2) einem anionischen flockenbildenden Aktivpigment, von dem mindestens 50 Gew.-% eine Primärteilchengröße von < 2 µm haben, zusammengesetzt sind,
    • (3.1) daß das organische Flockungsmittel ein kationisches polymeres Kohlenhydrat mit einem mittleren Molekulargewicht von 100 000 bis 2 000 000 und einem Substitutionsgrad von 0,01 bis 0,3 darstellt und in einer Menge von 0,5 bis 6 Gew.-%, bezogen auf die Trockenmasse des Werkstoffs, vorliegt und daß
    • (3.2) 1000 g Basisfüllstoff nicht mehr als 0,1 mMol und 1000 g anionisches flockenbildendes Aktivpigment mindestens 0,1 mMol kationisches Kohlenhydrat unter flockenbildung zu binden vermögen.
To achieve this object, the invention proposes incombustible paper, cardboard or cardboard-like materials containing inorganic fibers, inorganic particulate additives and organic binders or flocculants, which are characterized in that
  • (1) that the particulate inorganic additives make up up to 40 to 80% by weight of the material,
  • (2) that the inorganic particulate additives from
    • (2.1) a base filler, of which at least 20% by weight has a particle size of <2 µm and not more than 20% by weight has a particle size of> 20 µm on the one hand and <0.5 µm on the other hand, and
    • (2.2) an anionic flake-forming active pigment, of which at least 50% by weight has a primary particle size of <2 µm, is composed,
    • (3.1) that the organic flocculant is a cationic polymeric carbohydrate with an average molecular weight of 100,000 to 2,000,000 and a degree of substitution of 0.01 to 0.3 and in an amount of 0.5 to 6% by weight on the dry matter of the material, and that
    • (3.2) 1000 g base filler not more than 0.1 mmol and 1000 g anionic flake-forming active pigment can bind at least 0.1 mmol cationic carbohydrate with flake formation.

Die erfindungsgemäßen Werkstoffe sind nicht brennbar. Sie erfüllen die Anforderungen der DIN 4102 der Klasse A. Aufgrund ihrer guten Festigkeitseigenschaften lassen sich die erfindungsgemäßen Werkstoffe ähnlich wie Papier, Karton und Pappe auf der Grundlage von Cellulosefasern leicht weiterverarbeiten. Die Herstellung der Werkstoffe kann auf den üblichen Papier-, Karton- bzw. Pappenmaschinen erfolgen.The materials according to the invention are not flammable. They meet the requirements of DIN 4102, class A. Because of their good strength properties, the materials according to the invention, like paper, cardboard and cardboard, can easily be processed further on the basis of cellulose fibers. The materials can be produced on the usual paper, cardboard or cardboard machines.

Die guten Festigkeitseigenschaften sind deshalb überraschend, weil man bisher der Ansicht war, daß bei hohen füllstoffgehalten und bei zunehmender Teilchenfeinheit die festigkeitswerte drastisch abnehmen. Die Festigkeitswerte der erfindungsgemäßen Werkstoffe erhöhen sich dagegen innerhalb weiter Grenzen mit zunehmenden Mengen und zunehmender Teilchenfeinheit der teilchenförmigen anorganischen Zusätze.The good strength properties are surprising because it was previously thought that with high filler contents and with increasing particle fineness, the strength values decrease drastically. By contrast, the strength values of the materials according to the invention increase within wide limits with increasing amounts and increasing particle fineness of the particulate inorganic additives.

Unter "teilchenförmigen anorganischen Zusätzen" versteht man erfindungsgemäß keine faserförmigen Zusätze, da die Länge der Fasern im allgemeinen in der Größenordnung von Millimetern liegt. Unter "Teilchengröße" versteht man die größte Abmessung eines Teilchens, was z.B. bei abgeplatteten Teilchen wichtig ist. Die Teilchen des anionischen flockenbildenden Aktivpigments zeigen manchmal die Neigung, größere Agglomerate zu bilden. Erfindungsgemäß versteht man daher unter der Teilchengröße die Größe der Primärteilchen.According to the invention, "particulate inorganic additives" are not fibrous additives, since the length of the fibers is generally of the order of millimeters lies. "Particle size" means the largest dimension of a particle, which is important, for example, in the case of flattened particles. The particles of the anionic flake-forming active pigment sometimes tend to form larger agglomerates. According to the invention, the particle size is understood to mean the size of the primary particles.

Die Verbesserung der Festigkeitseigenschaften ist wahrscheinlich dadurch bedingt, daß sich das anionische flockenbildende Aktivpigment und das kationische polymere Kohlenhydrat einerseits an die anorganischen Fasern und andererseits an die anorganischen teilchenförmigen Basisfüllstoffe anlagern. Die Basisfüllstoffteilchen setzen sich auf den Faseroberflächen fest und verhindern auf diese Weise ein Aneinandergleiten der an sich glatten anorganischen Fasern, wodurch ein schiebefestes Faservlies erhalten wird. Anorganische Fasern sind nicht in der Lage, weder durch Wasserstoffbrückenbindung, noch durch Vernetzung in Kombination mit Schrumpfung, Festigkeiten auszubilden, wie es bei pflanzlichen fasern der fall ist. Die Festigkeit eines Blattes aus rein anorganischen Fasern beruht auf einer "Verklebung" der einzelnen Fasern miteinander an den Faserberührungspunkten mit Hilfe von organischen Bindemitteln. Aufgrund der geringen Flexibilität von anorganischen Fasern hat ein derartiges Faservlies nur relativ wenige Faser-Faser-Berührungspunkte, außerdem ist die Retention organischer Bindemittel bei der Entwässerung im herkömmlichen Papierherstellungsprozeß äußerst gering. Das fertige Produkt hat somit nur geringe Festigkeit.The improvement in the strength properties is probably due to the fact that the anionic flake-forming active pigment and the cationic polymeric carbohydrate accumulate on the one hand on the inorganic fibers and on the other hand on the inorganic particulate base fillers. The basic filler particles settle on the fiber surfaces and in this way prevent the inorganic fibers, which are inherently smooth, from sliding against one another, as a result of which a non-slip fiber fleece is obtained. Inorganic fibers are not able to develop strengths either by hydrogen bonding or by crosslinking in combination with shrinkage, as is the case with vegetable fibers. The strength of a sheet of purely inorganic fibers is based on an "adhesion" of the individual fibers to one another at the fiber contact points with the aid of organic binders. Due to the low flexibility of inorganic fibers, such a nonwoven fabric has only relatively few fiber-fiber contact points, and the retention of organic binders during dewatering in the conventional paper-making process is extremely low. The finished product is therefore of low strength.

Die erfindungsgemäß verwendeten Basisfüllstoffe können aufgrund ihrer Oberflächengröße und -struktur sowie aufgrund ihrer Ladungseigenschaften zusammen mit einem geeigneten kationischen Kohlenhydrat eine Flocke bilden. Bei der Flockung im wäßrigen System werden die anorganischen Fasern vom Füllstoff eingebettet. Durch die Zugabe des Füllstoffs wird demnach erfindungsgemäß sowohl die Anzahl der Berührungspunkte (Faser-Faser; Füllstoff-faser; Füllstoff-Füllstoff) als auch die Retention des Kohlenhydrats erhöht. Gute Gefügefestigkeit wird nur erzielt, wenn möglichst alle Faser-faser-Kreuzungspunkte vollständig und ohne Fehlstellen von Füllstoff eingebettet sind und das Flockungsmittel gleichmäßig verteilt ist. Dies ist nur möglich bei geeignet ausgebildeter Flocke. Die Steuerung der Flockung erfolgt erfindungsgemäß mit Hilfe der flockenbildenden Aktivpigmente. Diese können aufgrund ihres anionischen Ladungspotentials den Flockungspunkt verschieben und tragen darüber hinaus durch Ausbildung einer Mikroflocke zusammen mit dem kationischen Kohlenhydrat zu einer guten Verteilung desselben bei. Die anionischen flockenbildenden Aktivpigmente könne:. darüber hinaus fehlstellen im Füllstoff-füllstoff- und Faserfüllstoff-Verbund schließen.The base fillers used according to the invention can form a flake together with a suitable cationic carbohydrate on account of their surface size and structure and on account of their charge properties. When flocculated in the aqueous system, the inorganic fibers are embedded in the filler. By adding the filler, the number of points of contact (fiber-fiber; Filler fiber; Filler-filler) as well as the retention of the carbohydrate. Good structural strength is only achieved if all fiber-fiber crossing points are completely embedded without filler defects and the flocculant is evenly distributed. This is only possible with a suitably designed flake. The flocculation is controlled according to the invention with the aid of the flake-forming active pigments. Due to their anionic charge potential, these can shift the flocculation point and, in addition, contribute to a good distribution of the latter by forming a microfloc together with the cationic carbohydrate. The anionic flake-forming active pigments can: also close defects in the filler-filler and fiber-filler composite.

Der beschriebene Reaktionsmechanismus verdeutlicht, daß es sich hierbei um ein sehr komplexes System handelt, bei dem auch synergistische Effekte auftreten können. Die einzelnen Komponenten der erfindungsgemäßen Werkstoffe - also fasern, Basisfüllstoff, anionisches flockenbildendes Aktivpigment und kationisches Kohlenhydrat - müssen daher hinsichtlich Art und Zugabemenge genau aufeinander abgestimmt werden.The reaction mechanism described illustrates that this is a very complex system in which synergistic effects can also occur. The individual components of the materials according to the invention - that is to say fibers, base filler, anionic flake-forming active pigment and cationic carbohydrate - must therefore be precisely coordinated with one another with regard to the type and amount added.

Bezüglich der anorganischen Fasern bestehen keine Beschränkungen. Ein Ziel der Erfindung besteht jedoch darin, faserhaltige Werkstoffe bereitzustellen, in denen die potentiell cancerogenen Asbestfasern durch gesundheitlich unbedenkliche Fasern ersetzt sind. Hierzu zählen u.a. Glasfasern, Mineralfasern, Kieselsäurefasern, Basaltfasern und/oder Aluminiumoxidfasern. Die Dicke und die Länge der anorganischen Fasern kann innerhalb weiter Bereiche schwanken. Vorzugsweise haben mindestens 80% der anorganischen Fasern eine Länge im Bereich von etwa 1 bis 6 mm. Es können auch Gemische von anorganischen Fasern, die sich nach Zusammensetzung, Länge und Dicke voneinander unterscheiden, verwendet werden.There are no restrictions on the inorganic fibers. An object of the invention, however, is to provide fiber-containing materials in which the potentially carcinogenic asbestos fibers are replaced by fibers which are harmless to health. These include glass fibers, mineral fibers, silica fibers, basalt fibers and / or aluminum oxide fibers. The thickness and length of the inorganic fibers can vary within wide ranges. Preferably at least 80% of the inorganic fibers have a length in the range of about 1 to 6 mm. Mixtures of inorganic fibers which differ from one another in terms of composition, length and thickness can also be used.

Auch bezüglich der teilchenförmigen anorganischen Basisfüllstoffe bestehen keine Beschränkungen. Ge eignet sind beispielsweise SiO₂, Kaolin, Aluminiumoxid, Bleicherden, Gips, Calciumcarbonat, Titandioxid, Zinkoxid, Perlite, Vermiculite und/oder andere, an sich bekannte Papierfüllstoffe bzw. Füllstoffe für Kunststoffmassen und Farben.There are also no restrictions with regard to the particulate inorganic base fillers. Ge are, for example SiO₂, kaolin, aluminum oxide, bleaching earth, gypsum, calcium carbonate, titanium dioxide, zinc oxide, perlite, vermiculite and / or other known paper fillers or fillers for plastic materials and paints.

Einige dieser Basisfüllstoffe, wie Gips und Bleicherden, geben beim Erhitzen Kristallwasser bzw. Adsorptionswasser ab und wirken auf diese Weise feuerhemmend. Eine vergleichbare Wirkung hat Calciumcarbonat, das bei höheren Temperaturen Kohlendioxid abgibt.Some of these basic fillers, such as gypsum and bleaching earth, release water of crystallization or adsorption water when heated and thus have a fire-retardant effect. Calcium carbonate, which emits carbon dioxide at higher temperatures, has a comparable effect.

Der Gehalt an anorganischen Basisfüllstoffen beträgt im allgemeinen 35 bis 75 Gew.-%, vorzugsweise 55 bis 70 Gew.-%, bezogen auf die Trockenmasse des Werkstoffs.The content of inorganic base fillers is generally 35 to 75% by weight, preferably 55 to 70% by weight, based on the dry matter of the material.

Der anorganische Basisfüllstoff hat vorzugsweise zu 35 bis 99 Gew.-% eine Teilchengröße von < 2 µm und zu nicht mehr als 10 Gew-.-% eine Teilchengröße von > 20 µm.The inorganic base filler preferably has a particle size of <2 μm to 35 to 99% by weight and a particle size of> 20 µm to no more than 10% by weight.

Das anionische flockenbildende Aktivpigment ist vorzugsweise Aluminiumhydroxid, Bentonit oder kolloidales amorphes SiO₂. Der Gehalt an Aktivpigmenten beträgt im allgemeinen etwa 1 bis 15, vorzugsweise 2 bis 10 Gew.-%, bezogen auf die Trockenmasse des Werkstoffs.The anionic flake-forming active pigment is preferably aluminum hydroxide, bentonite or colloidal amorphous SiO₂. The content of active pigments is generally about 1 to 15, preferably 2 to 10% by weight, based on the dry matter of the material.

Verwendet man ein anionisches kolloidales amorphes SiO₂, so wird dies vorzugsweise in Form einer 30-40%igen wäßrigen Dispersion verwendet. Vorzugsweise verwendet man anionische Kieselsole, die durch Kontaktieren einer verdünnten Wasserglaslösung mit einem sauren Kationenaustauscher und Alterung des erhaltenen Sols erhalten worden sind. Sie sind in alkalischem Medium dispergiert, das mit der Siliciumdioxid-Oberfläche reagiert und dort eine negative Ladung erzeugt. Wegen der negativen Ladung stoßen sich die Teilchen gegenseitig ab nd bewirken damit eine Stabilisierung des Produktes. Geeignete Handelsprodukte sind z.B. unter der Bezeichnung Ludox (Warenzeichen der Firma Du Pont) erhältlich, obwohl auch andere Produkte verwendet werden können.If an anionic colloidal amorphous SiO₂ is used, this is preferably used in the form of a 30-40% aqueous dispersion. Anionic silica sols which are obtained by contacting a dilute water glass solution with an acidic cation exchanger and aging the sol obtained are preferably used. They are dispersed in an alkaline medium that reacts with the silicon dioxide surface and creates a negative charge there. Bump because of the negative charge the particles mutually from one another thus stabilize the product. Suitable commercial products are available, for example, under the name Ludox (trademark of the Du Pont company), although other products can also be used.

Verwendet man als Aktivpigment Aluminiumhydroxid, so kann dieses in statu nascendi aus einem Alkalialuminat und einer Säure, vorzugsweise aus Natriumaluminat und Schwefelsäure, oder aus einem Aluminiumsalz und Alkali, vorzugsweise aus Aluminiumsulfat und Natronlauge, hergestellt werden.If aluminum hydroxide is used as the active pigment, this can be prepared statu nascendi from an alkali aluminate and an acid, preferably from sodium aluminate and sulfuric acid, or from an aluminum salt and alkali, preferably from aluminum sulfate and sodium hydroxide solution.

Verwendet man als Aktivpigment Bentonit, so wird quellfähiger Alkalibentonit bevorzugt.If bentonite is used as the active pigment, swellable alkali bentonite is preferred.

Das Verhältnis zwischen den anorganischen teilchenfömrigen Zusätzen und dem kationischen polymeren Kohlenhydrat wird vorzugsweise so gewählt, daß kein Ladungsüberschuß vorhanden ist, so daß sich eine optimale flocke bildet.The ratio between the inorganic particulate additives and the cationic polymeric carbohydrate is preferably chosen so that there is no excess charge so that an optimal floc forms.

Bevorzugte polymere Kohlenhydrate sind kationische Stärke, kationisches Amylopektin, kationische Galaktomannane (z.B. Guar oder Cassia) und/oder kationische Carboxymethylcellulose. Die Kohlenhydrate können in an sich bekannter Weise dadurch kationisiert werden, daß die gegebenenfalls hydrolysierten Ausgangs-Kohlenhydrate mit quaternären Ammoniumverbindungen quaternisiert werden. Die Kohlenhydrate können aber auch nach dem Trockenkationisierverfahren kationisiert werden. Den kationischen Kohlenhydraten können auch kationische Polyvinylalkohole zugesetzt werden.Preferred polymeric carbohydrates are cationic starch, cationic amylopectin, cationic galactomannans (e.g. guar or cassia) and / or cationic carboxymethyl cellulose. The carbohydrates can be cationized in a manner known per se by quaternizing the optionally hydrolyzed starting carbohydrates with quaternary ammonium compounds. However, the carbohydrates can also be cationized using the dry cationization method. Cationic polyvinyl alcohols can also be added to the cationic carbohydrates.

Der Gehalt an polymerem kationischem Kohlenhydrat beträgt in der Regel 1 bis 5, vorzugsweise 1 bis 3 Gew.-%, bezogen auf die Trockenmasse des Werkstoffs. Dies hängt im wesentlichen von dem gewünschten Anwendungsgebiet ab. will man Werkstoffe mit hoher Temperaturbeständigkeit herstellen, so wird das polymere kationische Kohlenhydrat in geringeren Mengen verwendet. Werkstoffe für die Anwendung bei hohen Temperaturen sind beispielsweise Dichtungsmaterialien im Chemie- und Motorenbau sowie temperaturbeständige Filtermaterialien für heiße Gase und Flüssigkeiten. ferner können die erfindungsgemäßen Werkstoffe auch bei höheren Kohlenhydratkonzentrationen als Isolierwerkstoffe im Bauwesen, insbesondere im Trockenbau, z.B. als Kabeltrassen und Brandschutzisolierungen, für Brandschutztüren, Wand- und Deckenpaneele, Trägerschichten für wärmedämmende Werkstoffe sowie als feuerfeste Displays für Werbezwecke (in Kaufhäusern) verwendet werden. Ein weiteres wichtiges Anwendungsgebiet liegt im Fahrzeugbau, da die erfindungsgemäßen Werkstoffe neben ihrer Temperaturbeständigkeit ein niedriges spezifisches Gewicht haben. Auch bei einem höheren Gehalt an kationischem Kohlenhydrat findet keine Entflammung des Werkstoffs statt, da das kationische Kohlenhydrat lediglich verkohlt.The polymeric cationic carbohydrate content is generally 1 to 5, preferably 1 to 3,% by weight, based on the dry mass of the material. This essentially depends on the desired field of application. if you want to manufacture materials with high temperature resistance, this becomes polymer cationic carbohydrate used in smaller amounts. Materials for use at high temperatures include sealing materials in chemical and engine construction as well as temperature-resistant filter materials for hot gases and liquids. Furthermore, the materials according to the invention can also be used at higher carbohydrate concentrations as insulating materials in the building industry, in particular in drywall construction, for example as cable routes and fire protection insulation, for fire doors, wall and ceiling panels, carrier layers for heat-insulating materials and as fire-resistant displays for advertising purposes (in department stores). Another important area of application is in vehicle construction, since the materials according to the invention, in addition to their temperature resistance, have a low specific weight. Even with a higher content of cationic carbohydrate, there is no ignition of the material, since the cationic carbohydrate only chars.

Das kationische polymere Kohlenhydrat hat im allgemeinen ein durchschnittliches Molekulargewicht von 200 000 bis 1 000 000, vorzugsweise von 300 000 bis 800 000, und einen Substitutionsgrad von 0,15 bis 0,02.The cationic polymeric carbohydrate generally has an average molecular weight of 200,000 to 1,000,000, preferably 300,000 to 800,000, and a degree of substitution of 0.15 to 0.02.

Die erfindungsgemäßen Werkstoffe können ferner kationische, anionische oder nichtionogene Retentionshilfsmittel enthalten. Es handelt sich hierbei in der Regel um die in der Papierindustrie üblichen Retentionshilfsmittel, die vorzugsweise in Mengen von etwa 0,02 bis 0,2 Gew.-%, bezogen auf die Trockenmasse des Werkstoffs, zugesetzt werden.The materials according to the invention can also contain cationic, anionic or nonionic retention aids. These are generally the retention aids customary in the paper industry, which are preferably added in amounts of about 0.02 to 0.2% by weight, based on the dry matter of the material.

Als Retentionshilfsmittel kann beispielsweise ein kationisches Polyacrylamid mit einem Molekulargewicht von etwa 1 bis 10 Millionen oder ein Polyäthylenimin mit einem Molekulargewicht von etwa 80.000 bis 300.000 verwendet werden.A cationic polyacrylamide with a molecular weight of about 1 to 10 million or a polyethyleneimine with a molecular weight of about 80,000 to 300,000 can be used as a retention aid.

Die erfindungsgemäßen Werkstoffe können ferner Naßfestmittel enthalten, und zwar vorzugsweise in einer Menge von etwa 0,2 bis 5 Gew.-%, bezogen auf die Trockenmasse des Werkstoffs. Geeignete Naßfestmittel sind beispielsweise Harnstoff- oder Melamin-Formaldehydharze, Polyamidamin-Epichlorhydrinharze u. dgl.The materials according to the invention can also contain wet strength agents, preferably in an amount of about 0.2 to 5% by weight, based on the dry matter of the material. Suitable wet strength agents are, for example, urea or melamine-formaldehyde resins, polyamidamine-epichlorohydrin resins and the like. the like

Gegenstand der Erfindung ist auch die Ausbildung der erfindungsgemäßen Werkstoffe als dreidimensionale Formkörper. Dazu gehören u.a. Rohre, Schalen, Filterkörper, Isolierwände, Dichtungselemente usw.The invention also relates to the design of the materials according to the invention as three-dimensional shaped bodies. These include Pipes, shells, filter bodies, insulating walls, sealing elements, etc.

Die erfindungsgemäßen Werkstoffe werden vorzugsweise dadurch hergestellt, daß man eine wäßrige Dispersion der anorganischen fasern und der teilchenförmigen anorganischen Basisfüllstoffe mit einer wäßrigen Suspension des Aktivpigments vermischt und diesem Gemisch kurz vor der Formgebung das kationische polymere Kohlenhydrat zusetzt. Die Formgebung kann z.B. auf einer Papier- oder Pappenmaschine durchgeführt werden. In diesem Fall spricht man von einer Blattbildung. Die Herstellung der dreidimensionalen Formkörper erfolgt vorzugsweise nach dem Fasergußverfahren. Es ist aber auch möglich, den noch feuchten Bogen in einer dreidimensionalen form abzulegen und zu trocknen.The materials according to the invention are preferably produced by mixing an aqueous dispersion of the inorganic fibers and the particulate inorganic base fillers with an aqueous suspension of the active pigment and adding the cationic polymeric carbohydrate to this mixture shortly before shaping. The shape can e.g. be carried out on a paper or cardboard machine. In this case one speaks of a sheet formation. The three-dimensional moldings are preferably produced by the fiber casting process. However, it is also possible to lay down and dry the still wet sheet in a three-dimensional form.

Vorzugsweise führt man die Formgebung durch, nachdem sich nach Zugabe des kationischen polymeren Kohlenhydrats im wäßrigen Gemisch Flocken gebildet haben.The shaping is preferably carried out after flakes have formed in the aqueous mixture after the addition of the cationic polymeric carbohydrate.

Vorzugsweise führt man die Formgebung nach Ablauf von mindestens 10 Sekunden nach der Zugabe des kationischen polymeren Kohlenhydrats durch. Das Retentionshilfsmittel wird vorzugsweise nach der Zugabe des kationischen polymeren Kohlenhydrats zugesetzt.The shaping is preferably carried out after at least 10 seconds after the addition of the cationic polymeric carbohydrate. The retention aid is preferably added after the addition of the cationic polymeric carbohydrate.

Um homogene Produkte zu erhalten, werden die anorganischen Fasern und die anorganischen Basisfüllstoffe vor der Erzeugung der Dispersion vorzugsweise getrennt einer Naßdispergierung unterzogen, worauf man die getrennten Dispersionen miteinander vermischt. Auf diese Weise wird gewährleistet, daß jeder Bestandteil durch Auswahl einer geeigneten Rührgeschwindigkeit, Rührdauer usw. optimal dispergiert wird. Beispielsweise hängen die Dispergierparameter von der Beschaffenheit, Länge und Dicke der anorganischen fasern bzw. von der Beschaffenheit, der Teilchengröße und dem spezifischen Gewicht der Basisfüllstoffteilchen ab.In order to obtain homogeneous products, the inorganic fibers and the inorganic base fillers are used before production the dispersion is preferably subjected to wet dispersion separately, whereupon the separate dispersions are mixed with one another. This ensures that each component is optimally dispersed by selecting a suitable stirring speed, stirring time, etc. For example, the dispersion parameters depend on the nature, length and thickness of the inorganic fibers or on the nature, particle size and the specific weight of the base filler particles.

Der gemischten Dispersion aus anorganischen fasern und anorganischen Basisfüllstoffteilchen wird dann die wäßrige Dispersion der Aktivpigmente zugesetzt, worauf kurz (etwa 10 bis 30 Sekunden) vor der Blattbildung das kationische Kohlenhydrat zugesetzt wird. Anschließend wird das Retentionsmittel zugesetzt.The aqueous dispersion of the active pigments is then added to the mixed dispersion of inorganic fibers and inorganic base filler particles, whereupon the cationic carbohydrate is added shortly (about 10 to 30 seconds) before the sheet formation. The retention aid is then added.

Die Erfindung ist durch die nachstehenden Beispiele erläutert.The invention is illustrated by the examples below.

Beispiele 1 bis 6Examples 1 to 6

Langfaserige Glasfaser (2-6 mm) wird in Wasser vordispergiert. Dann wird eine getrennte Vordispersion aus Mineralfasern mit einer Faserlänge von bis zu etwa 3 mm hergestellt. Als Mineralfaser wird das Handelsprodukt "Inorphil" (Warenzeichen der Firma Laxa, Schweden, verwendet). Die Gewichtsanteile zwischen Glasfasern und Mineralfasern sind in Tab. I angegeben. Anschließend wird eine Dispersion aus Kaolin (Basisfüllstoff) hergestellt. Die Teilchengrößen und die Gewichtsanteile der verwendeten Kaolinsorten sind ebenfalls in Tab. I angegeben.Long-fiber glass fiber (2-6 mm) is predispersed in water. A separate predispersion of mineral fibers with a fiber length of up to approximately 3 mm is then produced. The commercial product "Inorphil" (trademark of Laxa, Sweden, is used as the mineral fiber). The proportions by weight between glass fibers and mineral fibers are given in Table I. Then a dispersion of kaolin (basic filler) is produced. The particle sizes and the proportions by weight of the types of kaolin used are also given in Table I.

Die drei Vordispersionen werden mit einer Dispersion von kolloidalem, amorphem SiO₂ gründlich vermischt. Der Wassergehalt der Dispersion beträgt etwa 60-70 Gew.-%.The three predispersions are thoroughly mixed with a dispersion of colloidal, amorphous SiO₂. The water content of the dispersion is about 60-70% by weight.

Dann wird eine Lösung von kationischer Stärke (Handelsprodukt Amijel, Q-Tak 210 der Firma Cerestar) zugesetzt (Feststoffgehalt der Lösung = 1 Gew.-%). Die Gewichtsanteile an kolloidalem SiO₂ und kationischer Stärke sind ebenfalls in Tab. I angegeben.A solution of cationic starch (commercial product Amijel, Q-Tak 210 from Cerestar) is then added (solids content of the solution = 1% by weight). The proportions by weight of colloidal SiO₂ and cationic starch are also given in Table I.

Nach Zugabe der kationischen Stärke bilden sich flocken. Nach Beispiel 6 wird noch ein kationisches Polyacrylamid als Retentionsmittel (Nalco 47-32; Warenzeichen der Firma Nalco Chemical Co.) in der in Tab. I angegebenen Menge zugesetzt.After the cationic starch has been added, flakes form. According to Example 6, a cationic polyacrylamide is added as a retention agent (Nalco 47-32; trademark of Nalco Chemical Co.) in the amount shown in Table I.

Etwa 20 Sekunden nach Zugabe der kationischen Stärke wird die wäßrige Masse auf eine Laborblattbildungsanlage nach Rapid-Köthen gebracht, worauf die wäßrige Phase abgesaugt wird. Man erhält ein Blatt, das nach dem Trocknen eine Dicke von etwa 0,3 mm hat. Die Zugfestigkeiten der Versuchsblätter sind in Tab. I angegeben.About 20 seconds after the addition of the cationic starch, the aqueous mass is transferred to a Rapid-Koethen laboratory sheet formation system, whereupon the aqueous phase is suctioned off. A sheet is obtained which, after drying, has a thickness of approximately 0.3 mm. The tensile strengths of the test sheets are given in Table I.

Wie aus den Beispielen 1 bis 6 hervorgeht, nimmt die Festigkeit überraschenderweise und entgegen dem heutigen Wissensstand der Papierindustrie mit zunehmendem Basisfüllstoffgehalt und größerer Teilchenfeinheit bei gleichzeitig sehr guten Retentionswerten in starkem Maße zu.As can be seen from Examples 1 to 6, the strength surprisingly and contrary to the current state of knowledge in the paper industry increases to a large extent with an increasing base filler content and greater particle fineness with very good retention values.

Bereits die Vergleichsbeispiele 1 und 3 zeigen den Einfluß der Teilchenfeinheit, während die Vergleichsbeispiele 3 und 4 den Einfluß des Füllstoffgehalts auf die mechanische Festigkeit zeigen.Comparative Examples 1 and 3 already show the influence of the particle fineness, while Comparative Examples 3 and 4 show the influence of the filler content on the mechanical strength.

Die erfindungsgemäßen Beispiele 2, 5 und 6 zeigen die durch den Zusatz des anionischen flockenbildenden Aktivpigments bedingte Festigkeitssteigerungen, wobei die nach Beispiel 5 gegenüber dem Beispiel 2 erhöhte Festigkeit auch durch den höheren Anteil und die höhere Teilchenfeinheit des Basisfüllstoffes bedingt ist.Examples 2, 5 and 6 according to the invention show the strength increases caused by the addition of the anionic floc-forming active pigment, the strength increased according to Example 5 compared to Example 2 also being due to the higher proportion and the higher particle fineness of the base filler.

Beispiel 6 zeigt, daß durch den Einsatz eines Retentionshilfsmittels die Festigkeit gegenüber dem Werkstoff des nächstvergleichbaren Beispiels 5 noch weiter gesteigert werden kann.Example 6 shows that by using a retention aid, the strength compared to the material of the next comparable example 5 can be increased even further.

Beispiele 7 - 10Examples 7-10

Die Herstellung der Faser- und Füllstoff-Vordispersionen erfolgt wie nach den Beispielen 1 bis 6, wobei die in Tab. II angegebenen Substanzen und Gewichtsverhältnisse verwendet werden. Die Vermischung der Vordispersionen mit den anderen Bestandteilen sowie die Blattbildung werden ebenfalls wie nach den Beispielen 1 bis 6 durchgeführt.The fiber and filler predispersions are prepared as in Examples 1 to 6, the substances and weight ratios given in Table II being used. The mixing of the predispersions with the other constituents and the sheet formation are likewise carried out as in Examples 1 to 6.

In Beispiel 7 wird als Aktivpigment statt der kolloidalen, amorphen Kieselsäure eine Aluminiumhydroxid-Dispersion verwendet, die in situ aus Aluminiumsulfat und Natriumhydroxid hergestellt wurdeIn Example 7, an aluminum hydroxide dispersion which was prepared in situ from aluminum sulfate and sodium hydroxide is used as the active pigment instead of the colloidal, amorphous silica

In Beispiel 8 wird als Aktivpigment Bentonit verwendet. Das Beispiel 9 wurde als Vergleichsbeispiel (ohne Aktivpigment) aufgenommen.In example 8, bentonite is used as the active pigment. Example 9 was included as a comparative example (without active pigment).

Mit den Beispielen 7 bis 10 soll der Einfluß der verschiedenen flockenbildenden Aktivpigmente auf die Festigkeitseigenschaften der erfindungsgemäßen, nichtbrennbaren anorganischen Werkstoffe gezeigt werden. Die Auswahl und die Menge des flockenbildenden Aktivpigments ist weitgehend von den Eigenschaften des Basisfüllstoffes abhängig. Die Einsatzmenge an organischen Hilfsmitteln, wie Kohlenhydraten, ist durch die Anforderungen an die Nichtbrennbarkeit in starkem Maße begrenzt. Durch den Zusatz von Aktivpigmenten zum Basisfüllstoff wird die Suspension in den jeweils günstigsten Flockungsbereich "geschoben", und erst dadurch wird eine akzeptable mechanische Festigkeit erzielt.Examples 7 to 10 are intended to show the influence of the various flake-forming active pigments on the strength properties of the non-combustible inorganic materials according to the invention. The selection and the amount of the flake-forming active pigment largely depends on the properties of the basic filler. The amount of organic auxiliaries, such as carbohydrates, is greatly limited by the non-combustibility requirements. By adding active pigments to the base filler, the suspension is "pushed" into the most favorable flocculation range, and only then is an acceptable mechanical strength achieved.

Dies wird dokumentiert durch einen Vergleich der Festigkeiten der Werkstoffe nach den Beispielen 1, 3 (Tab. I) und 9, bei denen kein Aktivpigment eingesetzt wurde, mit den jeweils zugehörigen Werten der übrigen Beispiele.This is documented by comparing the strengths of the materials according to Examples 1, 3 (Tab. I) and 9, in which no active pigment was used, with the corresponding values of the other examples.

Beispiele 11 -15Examples 11-15

Die Herstellung der Vordispersionen, das Vermischen der Dispersionen sowie die Blattbildung werden wie nach den Beispielen 1 bis 6 durchgeführt. Die einzelnen Substanzen sowie ihre Gewichtsanteile sind in Tab. III angegeben. Die in dieser Tabelle angegebenen Beispiele zeigen, daß verschiedene kationische Kohlenhydrate verwendet werden können, wenn sie einen geeigneten Substitutionsgrad (DS) und ein geeignetes Molekulargewicht aufweisen.The preparation of the predispersions, the mixing of the dispersions and the sheet formation are carried out as in Examples 1 to 6. The individual substances and their proportions by weight are given in Table III. The examples given in this table show that various cationic carbohydrates can be used if they have a suitable degree of substitution (DS) and a suitable molecular weight.

In Beispiel 15 wurde eine Kombination von zwei verschiedenen Kohlenhydraten eingesetzt, die ebenfalls brauchbare Festigkeitswerte ergibt.In Example 15 a combination of two different carbohydrates was used, which also gives usable strength values.

Entsprechende Blätter können auch auf geeigneten Papier- bzw. Pappenmaschinen (Lang- bzw. Rundsieb) in jeder beliebigen Dicke hergestellt werden. Die Gesamtretention beträgt je nach Rezeptur und Maschinentyp zwischen 85 und 95%. Abhängig von der Art und Menge der eingesetzten Fasermaterialien und Füllstoffe kann das spezifische Gewicht in Bereichen von 500 bis 1000 kg/m³ variiert werden. Die Isolationsfähigkeit und damit die Einsatzmöglichkeit hängt hauptsächlich vom spezifischen Gewicht des erzeugten Werkstoffes ab, während sich die Temperaturbeständigkeit in erster Linie nach dem Schmelzpunkt der Fasern richtet. In den angegebenen Rezepturbeispielen wäre der Ersatz der Glasfaser durch andere fasern mit einer höheren Temperaturbeständigkeit problemlos und ohne nachteilige Auswirkung auf die mechanische Eigenschaft.

Figure imgb0001
Figure imgb0002
Figure imgb0003
Corresponding sheets can also be produced on suitable paper or cardboard machines (wire or circular screen) in any thickness. The total retention is between 85 and 95% depending on the recipe and machine type. Depending on the type and amount of fiber materials and fillers used, the specific weight can be varied in the range from 500 to 1000 kg / m³. The insulating ability and thus the possible application depends mainly on the specific weight of the material produced, while the temperature resistance depends primarily on the melting point of the fibers. In the recipe examples given, the replacement of the glass fiber with other fibers with a higher temperature resistance would be problem-free and without an adverse effect on the mechanical property.
Figure imgb0001
Figure imgb0002
Figure imgb0003

Claims (25)

  1. A non-combustible paper, cardboard or paperboard-like material containing inorganic fibres, inorganic particulate additives and organic binding or flocculating agents, characterised in that
    (1) the particulate inorganic additives constitute 40-80% by weight of the dry matter of the material;
    (2) the inorganic particulate additives are composed of
    (2.1) a base filler, of which at least 20% by weight has a particle size of <2 µm and not more than 20% by weight has a particle size of >20 µm, on the one hand, and <0.5 µm, on the other hand, and
    (2.2) an anionic flocculating active pigment of which at least 50% by weight has a primary particle size of <2 µm,
    (3.1) the organic flocculating agent is a cationic polymeric carbohydrate with an average molecular weight of 100,000 to 2,000,000 and a degree of substitution of 0.01 to 0.3 and is present in a quantity of 0.5 to 6% by weight, based on the dry matter of the material, and
    (3.2) 1000 g of base filler is unable to bind more than 0.1 mMol and 1000 g of anionoic flocculating active pigment is able to bind at least 0.1 mMol cationic carbohydrate while flocculation is taking place.
  2. A material according to claim 1, characterised in that the quantity of particulate inorganic additives (1) amounts to approximately 50 to 75% by weight, preferably approximately 60 to 75% by weight, based on the dry matter of the material.
  3. A material according to claim 1 or 2, characterised in that the inorganic fibres are glass fibres, mineral fibres, silicic acid fibres, basalt fibres and/or aluminium oxide fibres.
  4. A material according to any one of claims 1 to 3, characterised in that at least 80 of the inorganic fibres have a length in the range of 1 to 6 mm.
  5. A material according to any one of claims 1 to 4, characterised in that the particulate inorganic base fillers (2.1) are SiO₂, kaolin, aluminium oxide, fuller's earth, gypsum, calcium carbonate, titanum dioxide, zinc oxide, perlite, vermiculite and/or other per se known paper fillers or fillers for synthetic substances and paints.
  6. A material according to any one of claims 1 to 5, characterised in that the content of inorganic base fillers (2.1) amounts to 35 to 75, preferably 55 to 70% by weight, based on the dry matter of the material.
  7. A material according to any one of claims 1 to 6, characterised in that 35 to 99% by weight of the inorganic base filler (2.1) has a particle size of <2 µm and not more than 10% by weight has a particle size of >20 µm.
  8. A material according to any one of claims 1 to 7 characterised in that the anionic flocculating active pigment (2.2) is aluminium hydroxide, bentonite or colloidal amorphous SiO₂.
  9. A material according to claim 8, characterised in that the aluminium hydroxide was obtained in status nascendi from an alkali aluminate and an acid, preferably from sodium aluminate and sulphuric acid, or from an aluminium salt and alkali, preferably from aluminium sulphate and caustic soda.
  10. A material according to any one of claims 1 to 9, characterised in that the ratio between the inorganic particulate additives (2) and the cationic polymeric carbohydrate (3) is such that there is no excess charge.
  11. A material according to any one of claims 1 to 10, characterised in that the cationic polymeric carbohydrate (3) is cationic starch, cationic amylopectin, a cationic galactomannan and/or cationic carboxymethylcellulose.
  12. A material according to any one of claims 1 to 11, characterised in that the content of cationic polymeric carbohydrate (3) is 1 to 5, preferably 1 to 3% by weight, based on the dry matter of the material.
  13. A material according to any one of claims 1 to 12, characterised in that the cationic polymeric carbohydrate (3) is obtained by reacting the initial carbohydrate with a quaternary ammonium compound.
  14. A material according to any one of claims 1 to 13, characterised in that the cationic polymeric carbohydrate (3) has an average molecular weight of 200,000 to 1,000,000, preferably 300,000 to 800,000, and a degree of substitution of 0.15 to 0.02.
  15. A material according to any one of claims 1 to 14, characterised in that, in addition, it contains cationic, anionic or non-ionic retention aids.
  16. A material according to any one of claims 1 to 15, characterised in that the retention aid is present in a quantity of approximately 0.02 to 0.2% by weight, based on the dry matter of the material.
  17. A material according to claim 15 or 16, characterised in that the retention aid is a cationic polyacrylamide with a molecular weight of approximately 1 to 10 million or a cationic polythylene imine with a molecular weight of approximately 80,000 to 300,000.
  18. A material according to any one of claims 1 to 17, characterised in that, in addition, it contains wet strength agents.
  19. A material according to any one of claims 1 to 18 in the form of a three-dimensional moulded body.
  20. A method of preparing a material according to any one of claims 1 to 14, characterised in that an aqueous dispersion of inorganic fibres and particulate inorganic base fillers (2.1) is mixed with an aqueous suspension of the active pigment (2.2) and the cationic plolymeric carbohydrate (3) is added to this mixture shortly before shaping.
  21. A method according to claim 20, characterised in that the shaping is carried out after flocks have formed in the aqueous mixture following the addition of the cationic polymeric carbohydrate (3).
  22. A method according to claim 20 or 21, characterised in that the shaping is carried out at the end of at least 10 seconds following the addition of cationic polymeric carbohydrate (3).
  23. A process according to any one of claims 20 to 22, characterised in that a retention aid according to any one of claims 15-17 is added following the addition of the cationic polymeric carbohydrate (3).
  24. A process according to any one of claims 20 to 23, characterised in that the inorganic fibres and the inorganic base fillers (2.1) and active pigments (2.2) are subjected separately to wet dispersing prior to production of the dispersion.
  25. A process according to any one of claims 20 to 24, characterised in that the material is prepared on a per se known paper, cardboard or paperboard machine or, if a three-dimensional moulded body is involved, is manufactured according to the fibrous casting process or by deformation of a still moist fibrous web.
EP89912436A 1988-11-07 1989-10-28 Paper-like or cardboard-like raw material and process for making it Expired - Lifetime EP0399010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89912436T ATE85097T1 (en) 1988-11-07 1989-10-28 PAPER, CARDBOARD OR PAPER-LIKE MATERIAL AND ITS PRODUCTION PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3837746A DE3837746C1 (en) 1988-11-07 1988-11-07
DE3837746 1988-11-07

Publications (2)

Publication Number Publication Date
EP0399010A1 EP0399010A1 (en) 1990-11-28
EP0399010B1 true EP0399010B1 (en) 1993-01-27

Family

ID=6366655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89912436A Expired - Lifetime EP0399010B1 (en) 1988-11-07 1989-10-28 Paper-like or cardboard-like raw material and process for making it

Country Status (14)

Country Link
EP (1) EP0399010B1 (en)
JP (1) JPH03502219A (en)
AU (1) AU620470B2 (en)
BR (1) BR8907153A (en)
CA (1) CA2001784A1 (en)
DE (2) DE3837746C1 (en)
DK (1) DK171501B1 (en)
ES (1) ES2017306A6 (en)
FI (1) FI93757C (en)
GR (1) GR1000750B (en)
IE (1) IE61832B1 (en)
NO (1) NO176028C (en)
PT (1) PT92183B (en)
WO (1) WO1990005211A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145811A (en) * 1991-07-10 1992-09-08 The Carborundum Company Inorganic ceramic papers
JPH0995044A (en) * 1995-04-10 1997-04-08 Canon Inc Recording paper and ink jet recording using recording paper
CA2550494C (en) * 2003-12-22 2013-06-25 Akzo Nobel N.V. Paper comprising quaternary nitrogen containing cellulose ether
LT2037041T (en) * 2003-12-22 2016-12-27 Akzo Nobel Chemicals International B.V. Filler for papermaking process
CN101617082B (en) * 2007-02-19 2012-12-12 3M创新有限公司 Flexible fibrous material, pollution control device, and methods of making the same
JP5855348B2 (en) * 2011-03-29 2016-02-09 アイカ工業株式会社 Non-flammable substrate
JP5876743B2 (en) * 2012-02-09 2016-03-02 大王製紙株式会社 Method for producing composite particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080986B1 (en) * 1981-11-27 1985-06-12 Eka Ab A process for papermaking

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253978A (en) * 1961-07-19 1966-05-31 C H Dexter & Sons Inc Method of forming an inorganic waterlaid sheet containing colloidal silica and cationic starch
GB1604908A (en) * 1977-08-08 1981-12-16 Minnesota Mining & Mfg Flexible intumescent sheet material with fired strength
GB2047297A (en) * 1979-04-04 1980-11-26 Ici Ltd Mineral-fibre boards
AU546999B2 (en) * 1980-05-28 1985-10-03 Eka A.B. Adding binder to paper making stock
US4578150A (en) * 1982-07-23 1986-03-25 Amf Inc. Fibrous media containing millimicron-sized particulates
US4443262A (en) * 1982-09-30 1984-04-17 Armstrong World Industries, Inc. Low density fibrous sheet material
DE3306528A1 (en) * 1982-12-30 1984-07-05 Lüchtrath, Bern, 8700 Würzburg PAPER, CARDBOARD AND PAPER-LIKE MATERIAL
DE3306478A1 (en) * 1982-12-30 1984-07-12 Bern 8700 Würzburg Lüchtrath FILLER FOR A PAPER, CARDBOARD OR PAPER-LIKE MATERIAL AND METHOD FOR PRODUCING SUCH MATERIAL
GB8621680D0 (en) * 1986-09-09 1986-10-15 Du Pont Filler compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080986B1 (en) * 1981-11-27 1985-06-12 Eka Ab A process for papermaking

Also Published As

Publication number Publication date
FI93757B (en) 1995-02-15
CA2001784A1 (en) 1990-05-07
AU620470B2 (en) 1992-02-20
PT92183B (en) 1995-08-09
FI93757C (en) 1995-05-26
NO176028C (en) 1995-01-18
IE893559L (en) 1990-05-07
NO903041D0 (en) 1990-07-06
BR8907153A (en) 1991-02-26
DE3837746C1 (en) 1990-03-29
PT92183A (en) 1990-05-31
GR1000750B (en) 1992-12-30
ES2017306A6 (en) 1991-01-16
JPH03502219A (en) 1991-05-23
DE58903410D1 (en) 1993-03-11
DK163590D0 (en) 1990-07-06
NO903041L (en) 1990-07-06
DK163590A (en) 1990-07-06
EP0399010A1 (en) 1990-11-28
GR890100627A (en) 1990-12-31
DK171501B1 (en) 1996-12-02
AU4514089A (en) 1990-05-28
WO1990005211A2 (en) 1990-05-17
FI903434A0 (en) 1990-07-06
WO1990005211A3 (en) 1990-06-28
NO176028B (en) 1994-10-10
IE61832B1 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US5294299A (en) Paper, cardboard or paperboard-like material and a process for its production
DE3415568C2 (en)
US5126013A (en) Mica and vermiculite paper and its preparation
DE2165423A1 (en) Fibrous, nonwoven structure and method for making same
DE2829759A1 (en) DIMENSIONS BASED ON MINERAL FIBER
DE3322357A1 (en) PAPER FOR PLASTER BLOCKS
DE2123509A1 (en) Tabular insulator
EP0399010B1 (en) Paper-like or cardboard-like raw material and process for making it
US3904539A (en) Insulation having a reduced thermal conductivity
DE2934007A1 (en) PAPER OR PAPER PRODUCT WITH A HIGH FILLER CONTENT
DE69831399T2 (en) Fleece of metal and glass
DE10348798A1 (en) Carbide and oxide ceramics and process for their preparation
DE1130271B (en) Process for improving the retention of mineral fillers in the formation of paper webs
DE3008755A1 (en) INORGANIC ELASTIC FOAM AND METHOD FOR THE PRODUCTION THEREOF
DE60024483T2 (en) MULTIPHASIC CALCIUM SILICATE HYDRATES, PROCESS FOR PREPARING THE SAME AND IMPROVED PAPER AND PIGMENT PRODUCTS CONTAINING THEM
DE60105603T2 (en) PREPARATION OF A COLLOIDAL SILICATE DISPERSION
EP0331666B1 (en) Process for treating cellulosic fibres, as well as fibrous cement products and compositions for their production
DE69617573T3 (en) METHOD OF PAPER MANUFACTURE
EP0131010B1 (en) Filler for a paper- or cardboard-type material
EP0256290A2 (en) Use of water-glass or a similar substance for applying to supporting materials and process for manufacturing such supporting materials
DE2624130A1 (en) METHOD FOR MANUFACTURING ARTIFICIAL FIBER PRODUCTS
DE2438838A1 (en) HIGH TEMPERATURE RESISTANT INSULATION, SEALING AND FILTRATION MATERIAL
DE2344773A1 (en) Low density shapes from beta-wollastonite - prepd. hydrothermally and formulated with fibres, clay and binder and fired at 1000 deg C
DE4225193A1 (en) Insulating boards for lining walls and ceilings etc. - made by a wet process from a mixt. of cellulose material, vermiculite, binder, clay, perlite, and flocculating agents
DE2052725A1 (en) Fiber materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910521

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 85097

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58903410

Country of ref document: DE

Date of ref document: 19930311

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EPTA Lu: last paid annual fee
26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 89912436.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970910

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970929

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970930

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971015

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971024

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971029

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19971031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19971124

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981028

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981028

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

BERE Be: lapsed

Owner name: DOBLANZKI PETER

Effective date: 19981031

Owner name: ZEUNER MANFRED

Effective date: 19981031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981028

EUG Se: european patent has lapsed

Ref document number: 89912436.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990823

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051028