EP0377596B1 - Fuel dosing process and device for diesel engines - Google Patents

Fuel dosing process and device for diesel engines Download PDF

Info

Publication number
EP0377596B1
EP0377596B1 EP88907093A EP88907093A EP0377596B1 EP 0377596 B1 EP0377596 B1 EP 0377596B1 EP 88907093 A EP88907093 A EP 88907093A EP 88907093 A EP88907093 A EP 88907093A EP 0377596 B1 EP0377596 B1 EP 0377596B1
Authority
EP
European Patent Office
Prior art keywords
fuel
internal combustion
combustion engine
lambda
fuel quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88907093A
Other languages
German (de)
French (fr)
Other versions
EP0377596A1 (en
Inventor
Ernst-Ulrich Joachim
Herman Kull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0377596A1 publication Critical patent/EP0377596A1/en
Application granted granted Critical
Publication of EP0377596B1 publication Critical patent/EP0377596B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine

Definitions

  • the invention relates to a method and a device for fuel metering according to the preamble of claims 1 and 10.
  • the amount of fuel required for the respective operating state of a diesel engine is generally dependent on the speed of the machine and the accelerator pedal position - if necessary also depending on other sizes - determined. Since there is excess air, the amount of fresh air drawn in plays only a minor role. However, demands for a reduction in harmful exhaust gases and the lowest possible particle emissions in internal combustion engines led to the amount of fresh air drawn in also being included in the determination of the amount of fuel in diesel engines.
  • DE-OS 28 03 750 a method and a device are known which take into account the amount of fresh air drawn in when determining the amount of fuel.
  • the accelerator pedal position which signals a fuel quantity request
  • the air quantity and fuel quantity are precontrolled.
  • the exact values of multi-dimensional maps are taken.
  • the air and fuel quantity are then regulated to these exact values.
  • the amount of fuel is limited by the limits stored in the characteristic diagrams; the limitation can take place via a ⁇ characteristic diagram with signals relating to the exhaust gas composition.
  • the ratio of air to fuel (lambda) affects these limitations particularly with regard to particle emissions.
  • Corresponding lambda values are stored in the maps.
  • a control device for a fuel metering system of an internal combustion engine is known from DE-OS 30 39 436.
  • a PI controller determines the fuel quantity to be injected into the internal combustion engine depending on the comparison between the target lambda value and the actual lambda value.
  • the PI constants of the controller are stored in a map depending on the load and speed. It is stated that the controller is preferably switched off in the full load state.
  • the object of the invention is to provide a method and a device with which an age-related, increased particle emission is avoided, wherein the lambda control is only active when it is needed. This object is achieved with a method and a device with the characterizing features of claims 1 and 10, respectively.
  • the method with the features of the main claim has the advantage over the prior art that the actual lambda value is measured directly and used in full-load operation to regulate the maximum permissible fuel quantity.
  • Another advantage lies in the simple way of replacing conventional lambda control of the fuel quantity with a minimum value selection. The influence system-related dead times are reduced by fast control up to a "trap curve" and subsequent slow lambda control.
  • Figure 1 shows a block diagram in which the essential elements for fuel quantity control and for fuel quantity regulation are contained
  • Figure 2 the essential elements required for regulating the maximum permissible fuel quantity are shown
  • Figure 3a shows the time course of different fuel quantity signals
  • Figure 3b shows the time course of Lambda probe signals
  • Figure 3c shows the time course of the start signal for the ramp
  • Figure 4 illustrates the dependence of the ramp slope on the speed of the internal combustion engine.
  • 100 is a diesel engine. Fresh air is supplied to this engine via an intake pipe labeled 101. The exhaust gases are discharged via the exhaust line 102.
  • a fuel pump is identified by 110. The fuel pump is connected to an actuator 111.
  • 112 is a sensor which either measures the control path of a control rod attached to the pump 110 or the closing time of a solenoid valve. The output signal of the sensor 112 is fed to the sum point in 111.
  • a further input signal of the control controller 111 is the output signal of the pump characteristic map identified by 113.
  • At 120 is a lambda probe attached to the exhaust pipe of the internal combustion engine.
  • the output signal of the lambda probe is fed to an evaluation circuit 121, the output signal of which is fed to a lambda controller 122 as an actual value.
  • the setpoint is taken from a lambda limitation, designated 123, which depends on several operating parameters, generally designated 124.
  • the minimum value selection levels are marked with 125, 134 and 138.
  • 130 denotes an idle controller which is driven by a signal labeled 131.
  • 132 is a driving behavior map in which the amount of fuel to be supplied to the internal combustion engine is determined as a function of input variables 133.
  • 140 denotes a block which, after initialization, emits a ramp-shaped output signal by means of a signal 142. The slope of the ramp depends more than 141 on the speed of the internal combustion engine.
  • the output signal of block 140 is fed to a summation point 137, to which the output signal of a torque precontrol labeled 135 is fed as a further variable. Via 136, the torque pre-control depends
  • the described device works as follows: In the operating states of start, idling and partial load, the amount of fuel to be supplied to the internal combustion engine remains unaffected by the lambda control. Depending on the operating state, the internal combustion engine becomes a quantity of fuel that is determined either by the idle controller 130, by the torque precontrol 135, or by the driving behavior map 132. Which of the possible fuel quantities will ultimately be fed to the machine depends on the minimum value selection stages 125, 134 and 138. The output signal of the minimum value selection 138 is fed to a pump map 113. In the pump map, the control signal 111 is assigned a control signal dependent on operating parameters for the fuel quantity signal. The control controller 111 regulates the amount of fuel corresponding to the signal from the pump map 113.
  • the elements pump 110, sensor 112 and actuator 111 form a closed control loop.
  • the full-load limitation with the aid of the lambda control is shown in FIGS. 2 and 3 explained.
  • FIG. 2 shows a block diagram in which only the elements required for the lambda control are contained.
  • the same reference numerals designate the same elements.
  • the torque precontrol 135 outputs a fuel quantity signal denoted by M 1.
  • the ramp 140 emits an additional signal identified by ⁇ M whenever it is switched on.
  • the signals M1 and ⁇ M are added, and together give the signal M2.
  • the two signals M2 and M Lambda are present . Since M Lambda is greater than M2 in the partial load range, the signal M2 arrives at the output of the minimum selection 125. This signal is marked with M R.
  • Signals M R and M x arrive at the minimum value selection 138, at the output of which the signal M 3 is available.
  • M x is the output signal of the minimum value selection 134 and comes from either the idle controller 131 or the driving behavior map 132.
  • the minimum value selections 125 and 138 could also be summarized, but the drawing shown is clearer.
  • Figure 3a shows the time course of the signals M1, M2, M lambda , M R M x and ⁇ M.
  • Diagram 3b shows the time course of the actual lambda value and the desired lambda value are plotted.
  • Diagram 3c shows the time range in which the ramp that generates the additional signal ⁇ M is activated.
  • the solid line in Figure 3a indicates the fuel quantity signal M3.
  • the amount of fuel M3 is determined by M x , since the relationship M x ⁇ M1 ⁇ M Lambda applies.
  • the vehicle is to be accelerated, which is signaled by actuating the foot pedal.
  • the fuel quantity M x (dash-dotted line) taken from the driving behavior map 132 now increases to the maximum possible quantity.
  • M R ⁇ M x and M1 ⁇ M Lambda ⁇ M x and M2 M1 + ⁇ M (t) If the last-mentioned condition exists, the ramp is activated by block 140 with the additional signal ⁇ M.
  • the driver releases the accelerator pedal.
  • the dash-dotted line which indicates the amount M x , drops below the value M1.
  • the minimum selection 138 causes that fed to the machine Amount M3 is equal to the amount M x .
  • the fuel supply is thus decoupled from the lambda control and is carried out in the usual way. It should also be mentioned that the start condition for the ramp 140 ceases to exist at the point in time 320, and thus additional quantity ⁇ M is reset.
  • the minimum value selections 125, 134 and 138 found a very simple detachment mechanism for the various control signals that influence the fuel quantity. Despite the specific dead times that occur in the control loop (filling dead times in the engine), the present method does not lead to a significant loss in dynamics. This is caused by the fact that the slope of the ramp depends on the one hand on the speed and on the other hand on the specific dead times. This fact is to be illustrated by Figure 4. The additional amount ⁇ M is plotted as a function of time. The dependency on other parameters is indicated by dashed lines.
  • Block diagrams were chosen for the description of the exemplary embodiment, since the method can be represented well using block diagrams. However, the same method steps can also be partial programs of a program stored in a microcomputer. It is at the discretion of the person skilled in the art to use the solution corresponding to the respective state of the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

A fuel dosing process and device for fuel engines are disclosed. The amount of fuel in the partial load range is derived from multidimensional characteristic diagrams, whereas in the full load range the amount of fuel is limited by means of a lambda control. Minimum value selection steps are used to delimit the various fuel dosing methods. In spite of the dead times inherent in the system, a dynamic and satisfactory lambda control system is achieved, since a more rapid control is used up to an intersecting curve, then the slower lambda control. The use of a lambda control as a full load limiting system results in nearly particle-free exhaust fumes.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Verfahren und einer Einrichtung zur Kraftstoffzumessung nach der Gattung des Oberbegriffs der Ansprüche 1 und 10. Die für den jeweiligen Betriebszustand einer Diesel-Brennkraftmaschine erforderliche Kraftstoffmenge wird im allgemeinen abhängig von der Drehzahl der Maschine und von der Fahrpedalstellung - gegebenenfalls auch abhängig von anderen Größen - ermittelt. Da mit Luftüberschuß gefahren wird, spielt die Menge der angesaugten Frischluft nur eine untergeordnete Rolle. Forderungen nach einer Verminderung schädlicher Abgase und möglichst geringem Partikelausstoß bei Brennkraftmaschinen führten jedoch dazu, auch bei Dieselmotoren die Menge der angesaugten Frischluft mit in die Bestimmung der Kraftstoffmenge einzubeziehen.The invention relates to a method and a device for fuel metering according to the preamble of claims 1 and 10. The amount of fuel required for the respective operating state of a diesel engine is generally dependent on the speed of the machine and the accelerator pedal position - if necessary also depending on other sizes - determined. Since there is excess air, the amount of fresh air drawn in plays only a minor role. However, demands for a reduction in harmful exhaust gases and the lowest possible particle emissions in internal combustion engines led to the amount of fresh air drawn in also being included in the determination of the amount of fuel in diesel engines.

Aus der DE-OS 28 03 750 sind ein Verfahren und eine Einrichtung bekannt, die die angesaugte Frischluftmenge bei der Bestimmung der Kraftstoffmenge berücksichtigen. Ausgehend von der Fahrpedalstellung, die einen Kraftstoffmengenwunsch signalisiert, werden Luftmenge und Kraftstoffmenge vorgesteuert. Daran anschließend werden die exakten Werte mehrdimensionalen Kennfeldern entnommen. Luft- und Kraftstoffmenge werden dann auf diese exakten Werte geregelt. Die Kraftstoffmenge wird durch in den Kennfeldern abgelegte Begrenzungen begrenzt, die Begrenzung kann über ein λ-Kennfeld mit Signalen bezüglich der Abgaszusammensetzung erfolgen. Das Verhältnis von Luft zu Kraftstoff (Lambda) beeinflußt diese Begrenzungen besonders hinsichtlich des Partikelausstoßes. Entsprechende Lambda-Werte sind in den Kennfeldern abgelegt.From DE-OS 28 03 750 a method and a device are known which take into account the amount of fresh air drawn in when determining the amount of fuel. Starting from the accelerator pedal position, which signals a fuel quantity request, the air quantity and fuel quantity are precontrolled. Then the exact values of multi-dimensional maps are taken. The air and fuel quantity are then regulated to these exact values. The amount of fuel is limited by the limits stored in the characteristic diagrams; the limitation can take place via a λ characteristic diagram with signals relating to the exhaust gas composition. The ratio of air to fuel (lambda) affects these limitations particularly with regard to particle emissions. Corresponding lambda values are stored in the maps.

Es hat sich gezeigt, daß es bei Alterung der Brennkraftmaschine zu einer Abweichung zwischen den in den Kennfeldern gespeicherten Daten und den tatsächlichen Verhältnissen des Motors kommen kann. Infolge einer solchen Abweichung ergibt sich im Vollastbetrieb häufig ein erhöhter Partikelausstoß.It has been shown that, when the internal combustion engine ages, there may be a discrepancy between the data stored in the characteristic diagrams and the actual conditions of the engine. As a result of such a deviation, there is often an increased particle emission in full-load operation.

Desweiteren ist aus der DE-OS 30 39 436 eine Regeleinrichtung für ein Kraftstoffzumeßsystem einer Brennkraftmaschine bekannt. Bei der dort beschriebenen Einrichtung bestimmt ein PI-Regler abhängig vom Vergleich zwischen Soll-Lambda-Wert und Ist-Lambda-Wert die in die Brennkraftmaschine einzuspritzende Kraftstoffmenge. Die PI Konstanten des Reglers sind in einem Kennfeld abhängig von Last und Drehzahl abgespeichert. Es ist angegeben, daß der Regler im Vollastzustand vorzugsweise ausgeschaltet ist.Furthermore, a control device for a fuel metering system of an internal combustion engine is known from DE-OS 30 39 436. In the device described there, a PI controller determines the fuel quantity to be injected into the internal combustion engine depending on the comparison between the target lambda value and the actual lambda value. The PI constants of the controller are stored in a map depending on the load and speed. It is stated that the controller is preferably switched off in the full load state.

Aufgabe der ErfindungObject of the invention

Aufgabe der Erfindung ist es, ein Verfahren und eine Einrichtung zu schaffen, mit welchem ein alterungsbedingter, erhöhter Partikelausstoß vermieden wird, wobei die Lambdaregelung nur dann aktiv ist, wenn sie benötigt wird. Diese Aufgabe wird mit einem Verfahren und einer Einrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 beziehungsweise 10 gelöst.The object of the invention is to provide a method and a device with which an age-related, increased particle emission is avoided, wherein the lambda control is only active when it is needed. This object is achieved with a method and a device with the characterizing features of claims 1 and 10, respectively.

Vorteile der ErfindungAdvantages of the invention

Das Verfahren mit den Merkmalen des Hauptanspruchs hat gegenüber dem Stand der Technik den Vorteil, daß der tatsächliche Lambda-Wert direkt gemessen und im Vollastbetrieb zur Regelung der höchst zulässigen Kraftstoffmenge herangezogen wird. Ein weiterer Vorteil liegt in der einfachen Art der Ablösung von konventioneller Lambdaregelung der Kraftstoffmenge durch eine Minimalwertauswahl. Der Einfluß systembedingter Totzeiten wird durch eine schnelle Steuerung bis zu einer "Abfangkurve" und anschließender langsamer LambdaRegelung vermindert.The method with the features of the main claim has the advantage over the prior art that the actual lambda value is measured directly and used in full-load operation to regulate the maximum permissible fuel quantity. Another advantage lies in the simple way of replacing conventional lambda control of the fuel quantity with a minimum value selection. The influence system-related dead times are reduced by fast control up to a "trap curve" and subsequent slow lambda control.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt ein Blockschaltbild, in dem die wesentlichen Elemente zur Kraftstoffmengensteuerung und zur Kraftstoffmengenregelung enthalten sind, in Figur 2 sind die wesentlichen, zur Regelung der höchstzulässigen Kraftstoffmenge erforderlichen Elemente dargestellt, Figur 3a zeigt den zeitlichen Verlauf verschiedener Kraftstoffmengensignale, Figur 3b den zeitlichen Verlauf des Lambda-Sondensignales, Figur 3c den zeitlichen Verlauf des Startsignales für die Rampe, Figur 4 verdeutlicht die Abhängigkeit der Rampensteigung von der Drehzahl der Brennkraftmaschine.An embodiment of the invention is shown in the drawing and is explained in more detail in the following description. Figure 1 shows a block diagram in which the essential elements for fuel quantity control and for fuel quantity regulation are contained, in Figure 2 the essential elements required for regulating the maximum permissible fuel quantity are shown, Figure 3a shows the time course of different fuel quantity signals, Figure 3b shows the time course of Lambda probe signals, Figure 3c shows the time course of the start signal for the ramp, Figure 4 illustrates the dependence of the ramp slope on the speed of the internal combustion engine.

Beschreibung des AusführungsbeispielesDescription of the embodiment

In Figur 1 ist mit 100 ein Dieselmotor gekennzeichnet. Diesem Motor wird über ein mit 101 gekennzeichnetes Ansaugrohr Frischluft zugeführt. Die Abgase werden über die Abgasleitung 102 abgeführt. Mit 110 ist eine Kraftstoffpumpe gekennzeichnet. Die Kraftstoffpumpe ist mit einem Stellregler 111 verbunden. Mit 112 ist ein Sensor bezeichnet, der entweder den Regelweg einer an der Pumpe 110 angebrachten Regelstange oder aber die Schließzeit eines Magnetventiles mißt. Das Ausgangssignal des Sensors 112 wird dem Summenpunkt in 111 zugeführt. Ein weiteres Eingangssignal des Stellreglers 111 ist das Ausgangssignal des mit 113 gekennzeichneten Pumpenkennfeldes. Mit 120 ist eine in der Abgasleitung der Brennkraftmaschine angebrachte Lambda-Sonde bezeichnet. Das Ausgangssignal der Lambda-Sonde wird einer Auswerteschaltung 121 zugeführt, deren Ausgangssignal als Ist-wert einem Lambda-Regler 122 zugeführt wird. Der Sollwert wird einer mit 123 bezeichneten Lambda-Begrenzung entnommen, die von mehreren, pauschal mit 124 bezeichneten Betriebskenngrößen abhängt. Mit 125, 134 und 138 sind Minimalwertauswahlstufen gekennzeichnet. 130 kennzeichnet einen Leerlaufregler, der von einem mit 131 gekennzeichneten Signal angesteuert wird. Bei 132 handelt es sich um ein Fahrverhalten-Kennfeld, in dem die der Brennkraftmaschine zuzuführende Kraftstoffmenge abhängig von Eingangsgrößen 133 ermittelt wird. Mit 140 ist ein Block gekennzeichnet, der nach Initialisierung durch ein Signal 142 ein rampenförmiges Ausgangssignal abgibt. Die Steigung der Rampe hängt über 141 von der Drehzahl der Brennkraftmaschine ab. Das Ausgangssignal des Blockes 140 wird einem Summationspunkt 137 zugeführt, dem als weitere Größe das Ausgangssignal einer mit 135 gekennzeichneten Drehmomenten-Vorsteuerung zugeführt wird. Über 136 hängt die Drehmomentenvorsteuerung von der Drehzahl der Brennkraftmaschine ab.In Figure 1, 100 is a diesel engine. Fresh air is supplied to this engine via an intake pipe labeled 101. The exhaust gases are discharged via the exhaust line 102. A fuel pump is identified by 110. The fuel pump is connected to an actuator 111. 112 is a sensor which either measures the control path of a control rod attached to the pump 110 or the closing time of a solenoid valve. The output signal of the sensor 112 is fed to the sum point in 111. A further input signal of the control controller 111 is the output signal of the pump characteristic map identified by 113. At 120 is a lambda probe attached to the exhaust pipe of the internal combustion engine. The output signal of the lambda probe is fed to an evaluation circuit 121, the output signal of which is fed to a lambda controller 122 as an actual value. The setpoint is taken from a lambda limitation, designated 123, which depends on several operating parameters, generally designated 124. The minimum value selection levels are marked with 125, 134 and 138. 130 denotes an idle controller which is driven by a signal labeled 131. 132 is a driving behavior map in which the amount of fuel to be supplied to the internal combustion engine is determined as a function of input variables 133. 140 denotes a block which, after initialization, emits a ramp-shaped output signal by means of a signal 142. The slope of the ramp depends more than 141 on the speed of the internal combustion engine. The output signal of block 140 is fed to a summation point 137, to which the output signal of a torque precontrol labeled 135 is fed as a further variable. Via 136, the torque pre-control depends on the speed of the internal combustion engine.

Die beschriebene Einrichtung arbeitet wie folgt: In den Betriebszuständen Start, Leerlauf und Teillast bleibt die der Brennkraftmaschine zuzuführende Kraftstoffmenge von der Lambda-Regelung unbeeinflußt. Abhängig vom Betriebszustand wird der Brennkraftmaschine eine Kraftstoffmenge, die entweder durch den Leerlaufregler 130, durch die Drehmomenten-Vorsteuerung 135, oder durch das Fahrverhalten-Kennfeld 132 bestimmt ist. Welche der möglichen Kraftstoffmengen letzten Endes der Maschine zugeführt wird, hängt von den Mininimalwertauswahlstufen 125, 134 und 138 ab. Das Ausgangssignal der Minimalwertauswahl 138 wird einem Pumpenkennfeld 113 zugeführt. Im Pumpenkennfeld wird dem Kraftstoffmengensignal ein von Betriebsparametern abhängiges Ansteuersignal für den Stellregler 111 zugeordnet. Der Stellregler 111 regelt auf die dem Signal des Pumpenkennfeldes 113 entsprechende Kraftstoffmenge. Die Elemente Pumpe 110, Sensor 112 und Stellregler 111 bilden dabei einen geschlossenen Regelkreis. Die bisher betrachteten Betriebszustände schließen ein Wirksamwerden der Lambda-Regelung aus, da das Ausgangssignal des Lambda-Reglers 122 im Teillastbereich stets größer ist als das Ausgangssignal der Drehmoment-Vorsteuerung 135. Die Vollastbegrenzung mit Hilfe der Lambda-Regelung wird anhand der Figuren 2 und 3 erläutert.The described device works as follows: In the operating states of start, idling and partial load, the amount of fuel to be supplied to the internal combustion engine remains unaffected by the lambda control. Depending on the operating state, the internal combustion engine becomes a quantity of fuel that is determined either by the idle controller 130, by the torque precontrol 135, or by the driving behavior map 132. Which of the possible fuel quantities will ultimately be fed to the machine depends on the minimum value selection stages 125, 134 and 138. The output signal of the minimum value selection 138 is fed to a pump map 113. In the pump map, the control signal 111 is assigned a control signal dependent on operating parameters for the fuel quantity signal. The control controller 111 regulates the amount of fuel corresponding to the signal from the pump map 113. The elements pump 110, sensor 112 and actuator 111 form a closed control loop. The operating states considered up to now preclude the lambda control from taking effect, since the output signal of the lambda controller 122 is always greater in the part-load range than the output signal of the torque precontrol 135. The full-load limitation with the aid of the lambda control is shown in FIGS. 2 and 3 explained.

Figur 2 zeigt ein Blockschaltbild, in dem nur die für die Lambda-Regelung erforderlichen Elemente enthalten sind. Gleiche Bezugszeichen bezeichnen gleiche Elemente. Die Drehmoment-Vorsteuerung 135 gibt ein mit M₁ bezeichnetes Kraftstoffmengensignal ab. Die Rampe 140 gibt immer dann, wenn sie eingeschaltet ist, ein mit Δ M gekennzeichnetes Zusatzsignal ab. Im Punkt 137 werden die Signale M₁ und Δ M addiert, und ergeben zusammen das Signal M₂. An der Minimalwertauswahl 125 stehen die beiden Signale M₂ und MLambda an. Da im Teillastbereich MLambda größer als M₂ ist, gelangt das Signal M₂ an den Ausgang der Minimalauswahl 125. Dieses Signal mit mit MR gekennzeichnet. Signale MR und Mx gelangen an die Minimalwertauswahl 138, an deren Ausgang das Signal M₃ zur Verfügung steht. Mx ist das Ausgangssignal der Minimalwertauswahl 134, und entstammt entweder dem Leerlaufregler 131 oder dem Fahrverhalten-Kennfeld 132. Grundsätzlich könnte man die Minimalwertauswahlen 125 und 138 auch zusammenfassen, doch ist die dargestellte Zeichnung übersichtlicher.FIG. 2 shows a block diagram in which only the elements required for the lambda control are contained. The same reference numerals designate the same elements. The torque precontrol 135 outputs a fuel quantity signal denoted by M 1. The ramp 140 emits an additional signal identified by Δ M whenever it is switched on. At point 137, the signals M₁ and Δ M are added, and together give the signal M₂. At the minimum value selection 125, the two signals M₂ and M Lambda are present . Since M Lambda is greater than M₂ in the partial load range, the signal M₂ arrives at the output of the minimum selection 125. This signal is marked with M R. Signals M R and M x arrive at the minimum value selection 138, at the output of which the signal M 3 is available. M x is the output signal of the minimum value selection 134 and comes from either the idle controller 131 or the driving behavior map 132. In principle, the minimum value selections 125 and 138 could also be summarized, but the drawing shown is clearer.

Figur 3a zeigt den zeitlichen Verlauf der Signale M₁, M₂, MLambda, MR Mx und Δ M. In dem darunterliegenden Diagramm 3b sind der zeitliche Verlauf des Lambda-Istwertes und des Lambda-Sollwertes aufgetragen. Im Diagramm 3c ist der Zeitbereich gekennzeichnet, in dem die Rampe, die das Zusatzsignal Δ M erzeugt, aktiviert ist.Figure 3a shows the time course of the signals M₁, M₂, M lambda , M R M x and Δ M. In the diagram 3b below, the time course of the actual lambda value and the desired lambda value are plotted. Diagram 3c shows the time range in which the ramp that generates the additional signal Δ M is activated.

Die durchgezogene Linie in Figur 3a kennzeichnet das Kraftstoffmengensignal M₃. Bis zum Zeitpunkt 310 wird die Kraftstoffmenge M₃ durch Mx bestimmt, da die Beziehung M x < M₁ < M Lambda

Figure imgb0001
gilt. Zum Zeitpunkt 310 soll das Fahrzeug beschleunigt werden, was durch Betätigen des Fußfahrgebers signalisiert wird. Die aus dem Fahrverhalten-Kennfeld 132 entnommene Kraftstoffmenge Mx (strichpunktierte Linie) steigt jetzt auf die maximal mögliche Menge an. Für Zeiten nach dem Zeitpunkt 310 gilt dann:

M R < M x
Figure imgb0002

und
M₁ < M Lambda < M x
Figure imgb0003

und
M₂ = M₁ + Δ M (t)
Figure imgb0004


Beim Vorliegen der zuletzt genannten Bedingung wird von Block 140 die Rampe mit dem Zusatzsignal Δ M aktiviert. Zum Zeitpunkt 311 ist die Kraftstoffmenge M₃ gleich der Kraftstoffmenge M₁. Ab dem Zeitpunkt 310 wird zur Kraftstoffmenge M₁ die Kraftstoffmenge Δ M, beginnend von Null, hinzuaddiert. Durch die Kraftstoffzunahme sinkt das Lambda-Istsignal (vgl. Figur 3b). Im Punkt 312 werden die Signale M₂ und MLambda gleich. Von diesem Zeitpunkt an wird die Vollastbegrenzung mit Hilfe der Lambda-Regelung vorgenommen. Es gilt, M₃ = M R = M Lambda
Figure imgb0005
. Figur 3b zeigt, daß der Lambda-Ist-wert jetzt gleich dem Lambda-Sollwert ist.The solid line in Figure 3a indicates the fuel quantity signal M₃. Until time 310, the amount of fuel M₃ is determined by M x , since the relationship M x <M₁ <M Lambda
Figure imgb0001
applies. At time 310, the vehicle is to be accelerated, which is signaled by actuating the foot pedal. The fuel quantity M x (dash-dotted line) taken from the driving behavior map 132 now increases to the maximum possible quantity. The following then applies to times after time 310:

M R <M x
Figure imgb0002

and
M₁ <M Lambda <M x
Figure imgb0003

and
M₂ = M₁ + Δ M (t)
Figure imgb0004


If the last-mentioned condition exists, the ramp is activated by block 140 with the additional signal ΔM. At time 311, the amount of fuel M₃ is equal to the amount of fuel M₁. From time 310 the amount of fuel Δ M, starting from zero, is added to the amount of fuel M 1. The actual lambda signal drops due to the increase in fuel (cf. FIG. 3b). At point 312, the signals M₂ and M Lambda are the same. From this point on, the full-load limitation is carried out using the lambda control. It applies M₃ = M R = M Lambda
Figure imgb0005
. FIG. 3b shows that the actual lambda value is now equal to the desired lambda value.

Zum Zeitpunkt 320 nimmt der Fahrer das Fahrpedal zurück. Die strichpunktierte Linie, die die Menge Mx kennzeichnet, sinkt unter den Wert M₁. Die Minimalauswahl 138 bewirkt, daß die der Maschine zugeführte Menge M₃ gleich der Menge Mx ist. Damit ist die Kraftstoffversorgung von der Lambda-Regelung abgekoppelt und wird auf die übliche Weise vorgenommen. Es sei noch erwähnt, daß zum Zeitpunkt 320 die Startbedingung für die Rampe 140 wegfällt, und somit zusätzliche Menge Δ M zurückgesetzt wird.At time 320, the driver releases the accelerator pedal. The dash-dotted line, which indicates the amount M x , drops below the value M₁. The minimum selection 138 causes that fed to the machine Amount M₃ is equal to the amount M x . The fuel supply is thus decoupled from the lambda control and is carried out in the usual way. It should also be mentioned that the start condition for the ramp 140 ceases to exist at the point in time 320, and thus additional quantity ΔM is reset.

Durch die Minimalwertauswahlen 125, 134 und 138 wurde ein sehr einfacher Ablösemechanismus für die verschiedenen, die Kraftstoffmenge beeinflussenden Steuersignale gefunden. Trotz der im Regelkreis auftretenden spezifischen Totzeiten (Füllungstotzeiten im Motor) führt das vorliegende Verfahren zu keiner erheblichen Einbuße an Dynamik. Dies wird dadurch bewirkt, daß die Steigung der Rampe einerseits von der Drehzahl, andererseits von den spezifischen Totzeiten abhängig ist. Dieser Sacherverhalt soll durch Figur 4 verdeutlicht werden. Dort ist die zusätzliche Menge Δ M in Abhängigkeit von der Zeit aufgetragen. Die Abhängigkeit von anderen Parametern ist gestrichelt gekennzeichnet.The minimum value selections 125, 134 and 138 found a very simple detachment mechanism for the various control signals that influence the fuel quantity. Despite the specific dead times that occur in the control loop (filling dead times in the engine), the present method does not lead to a significant loss in dynamics. This is caused by the fact that the slope of the ramp depends on the one hand on the speed and on the other hand on the specific dead times. This fact is to be illustrated by Figure 4. The additional amount Δ M is plotted as a function of time. The dependency on other parameters is indicated by dashed lines.

Zur Beschreibung des Ausführungsbeispieles wurden Blockschaltbilder gewählt, da sich das Verfahren anhand von Blockschaltbildern gut darstellen läßt. Dieselben Verfahrensschritte können jedoch auch Teilprogramme eines in einem Mikrorechner abgespeicherten Programmes sein. Es liegt im Ermessen des Fachmannes, die dem jeweiligen Stand der Technik entsprechende Lösung zu benutzen.Block diagrams were chosen for the description of the exemplary embodiment, since the method can be represented well using block diagrams. However, the same method steps can also be partial programs of a program stored in a microcomputer. It is at the discretion of the person skilled in the art to use the solution corresponding to the respective state of the art.

Claims (10)

  1. Method for fuel metering to a diesel internal combustion engine, in which the fuel quantity to be fed to the engine is determined as a function of the operating condition and of operating parameters of the internal combustion engine, limited at one extreme to a lambda value and fed via an adjusting controller to a fuel pump, characterised in that, outside full-load operation, the fuel quantity fed to the internal combustion engine is subject to open-loop control as a function of the operating parameters rotational speed and accelerator pedal position while, in the full-load condition, the open-loop control is replaced by closed-loop control to a lambda value dependent at least on the rotational speed of the engine, the actual lambda value being measured with the aid of a lambda probe mounted in the exhaust pipe.
  2. Method according to Claim 1, characterised in that replacement is effected by a minimum value selection.
  3. Method according to either or both of Claims 1 and 2, characterised in that the fuel quantity to be fed to the internal combustion engine is taken from characteristic diagrams.
  4. Method according to one or more of Claims 1 to 3, characterised in that the fuel quantity is subject to pilot control as a function of the desired torque of the engine.
  5. Method according to one or more of Claims 1 to 4, characterised in that full load is detected when the fuel quantity value taken from the characteristic diagram is greater than the torque-dependent pilot control value.
  6. Method according to Claim 5, characterised in that, in the case of full load, an additional signal varying with time is added to the torque-dependent fuel quantity signal.
  7. Method according to Claim 6, characterised in that the additional signal increases linearly with time (ramp).
  8. Method according to Claim 7, characterised in that the slope of the ramp depends on the rotational speed of the internal combustion engine.
  9. Method according to Claims 7 and 8, characterised in that the slope of the ramp depends on the dead time of the lambda closed-loop control.
  10. Device for carrying out the method for fuel metering into a diesel internal combustion engine according to Claims 1 to 9, with sensors for recording operating parameters of the internal combustion engine, with a control device which produces a fuel quantity signal which is dependent on operating parameters and on the operating condition of the internal combustion engine, is limited at one extreme to a lambda value and is used for controlling an adjusting controller which influences the injection pump, characterised in that a lambda probe is mounted in the exhaust pipe and in that means are provided which, outside full-load operation, subject the fuel quantity fed to the internal combustion engine to open-loop control as a function of the operating parameters rotational speed and accelerator pedal position and, in the full-load condition, replace the open-loop control by closed-loop control to a lambda value dependent at least on the rotational speed of the engine.
EP88907093A 1987-09-05 1988-07-28 Fuel dosing process and device for diesel engines Expired - Lifetime EP0377596B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3729771 1987-09-05
DE19873729771 DE3729771A1 (en) 1987-09-05 1987-09-05 METHOD AND DEVICE FOR MEASURING FUEL IN A DIESEL INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0377596A1 EP0377596A1 (en) 1990-07-18
EP0377596B1 true EP0377596B1 (en) 1992-10-21

Family

ID=6335318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88907093A Expired - Lifetime EP0377596B1 (en) 1987-09-05 1988-07-28 Fuel dosing process and device for diesel engines

Country Status (5)

Country Link
US (1) US5067461A (en)
EP (1) EP0377596B1 (en)
JP (1) JP2695217B2 (en)
DE (2) DE3729771A1 (en)
WO (1) WO1989002524A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925877C2 (en) * 1989-08-04 1998-10-08 Bosch Gmbh Robert Method and device for controlling the fuel metering in a diesel internal combustion engine
DE3928875A1 (en) * 1989-08-31 1991-03-07 Audi Ag FUEL INJECTION DEVICE FOR AN AIR COMPRESSING INTERNAL COMBUSTION ENGINE
JPH0571431A (en) * 1991-03-19 1993-03-23 Honda Motor Co Ltd Evaporated fuel controller of internal combustion engine
JPH04358750A (en) * 1991-06-05 1992-12-11 Honda Motor Co Ltd Evaporated fuel control device for internal combustion engine
DE4141481C2 (en) * 1991-12-16 2002-04-11 Oskar Schatz Method for regulating the air-fuel ratio of an internal combustion engine, in particular an internal combustion engine of the piston type
JPH05263687A (en) * 1992-03-23 1993-10-12 Zexel Corp Revolving speed control method of internal combustion engine
DE4332103A1 (en) * 1993-09-22 1995-03-23 Bayerische Motoren Werke Ag Method for metering fuel in a diesel internal combustion engine
DE19535056C2 (en) * 1995-09-21 2000-09-14 Daimler Chrysler Ag Method for controlling fuel injection in a diesel engine
DE19612453C2 (en) * 1996-03-28 1999-11-04 Siemens Ag Method for determining the fuel mass to be introduced into the intake manifold or into the cylinder of an internal combustion engine
AUPO095296A0 (en) 1996-07-10 1996-08-01 Orbital Engine Company (Australia) Proprietary Limited Engine warm-up offsets
DE19637395C1 (en) * 1996-09-13 1998-04-16 Siemens Ag Fuel delivery quantity control method for internal combustion engine
US6062197A (en) * 1998-06-15 2000-05-16 Cummins Engine Company, Inc. Hybrid power governor
US6202629B1 (en) 1999-06-01 2001-03-20 Cummins Engine Co Inc Engine speed governor having improved low idle speed stability
DE10004001A1 (en) * 2000-01-29 2001-08-02 Bosch Gmbh Robert Controling an internal combustion engine involves influencing characteristics of regular/controller using parameter characteristic of effect of injected quantity of fuel
US6493627B1 (en) * 2000-09-25 2002-12-10 General Electric Company Variable fuel limit for diesel engine
DE10249138A1 (en) * 2002-10-22 2004-05-06 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
US7010417B2 (en) * 2002-12-03 2006-03-07 Cummins, Inc. System and method for determining maximum available engine torque
DE10302263B3 (en) * 2003-01-22 2004-03-18 Mtu Friedrichshafen Gmbh Internal combustion engine revolution rate regulation involves using different characteristics for input parameter in different engine modes, changing between characteristics when condition fulfilled
US8499752B2 (en) * 2009-09-28 2013-08-06 Robert Bosch Gmbh Method to adapt the O2 signal of an O2 sensor during overrun

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650247A1 (en) * 1976-11-02 1978-05-11 Bosch Gmbh Robert PROCESS AND DEVICE FOR LIMITING THE MAXIMUM FUEL FLOW RATE OF THE FUEL INJECTION PUMP OF A DIESEL ENGINE
DE2803750A1 (en) * 1978-01-28 1979-08-02 Bosch Gmbh Robert PROCEDURE AND EQUIPMENT FOR FUEL MEASUREMENT IN COMBUSTION ENGINE
FR2475632A1 (en) * 1980-02-08 1981-08-14 Lucas Industries Ltd REGULATOR SYSTEM FOR FUEL PUMP OF INTERNAL COMBUSTION ENGINE
DE3114836A1 (en) * 1981-04-11 1982-11-04 Robert Bosch Gmbh, 7000 Stuttgart CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE3149096A1 (en) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart Exhaust gas composition control using lambda regulator - has integration time dependent upon time between consecutive regulator switching points
DE3149095A1 (en) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart ELECTRONIC CONTROL SYSTEM FOR THE FUEL AMOUNT OF AN INTERNAL COMBUSTION ENGINE
DE3204804A1 (en) * 1982-02-11 1983-08-18 Robert Bosch Gmbh, 7000 Stuttgart ELECTRONIC CONTROL SYSTEM FOR A DIESEL INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE
JPS5965524A (en) * 1982-10-07 1984-04-13 Nippon Denso Co Ltd Fuel injection amount controlling apparatus for diesel engine
JPS59211730A (en) * 1983-05-16 1984-11-30 Nippon Denso Co Ltd Fuel injection volume control device for diesel engine
US4601270A (en) * 1983-12-27 1986-07-22 United Technologies Diesel Systems, Inc. Method and apparatus for torque control of an internal combustion engine as a function of exhaust smoke level
DE3405495A1 (en) * 1984-02-16 1985-08-22 Robert Bosch Gmbh, 7000 Stuttgart ELECTRONIC CONTROL SYSTEM FOR FUEL INJECTION IN A DIESEL COMBUSTION ENGINE
JPS60190641A (en) * 1984-03-12 1985-09-28 Diesel Kiki Co Ltd Electronic type governor for internal-combustion engine
DE3436338A1 (en) * 1984-10-04 1986-04-10 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR CONTROLLING AND / OR REGULATING THE FUEL MEASUREMENT IN AN INTERNAL COMBUSTION ENGINE
JPS61138851A (en) * 1984-12-07 1986-06-26 Toyota Motor Corp Controlling method of fuel injection amount of diesel engine
JPS61294139A (en) * 1985-06-21 1986-12-24 Diesel Kiki Co Ltd Fuel injection device for internal-combustion engine
JPS62189343A (en) * 1986-02-14 1987-08-19 Diesel Kiki Co Ltd Fuel injection control device
CH672528A5 (en) * 1987-03-19 1989-11-30 Sulzer Ag

Also Published As

Publication number Publication date
EP0377596A1 (en) 1990-07-18
JP2695217B2 (en) 1997-12-24
US5067461A (en) 1991-11-26
WO1989002524A1 (en) 1989-03-23
DE3729771A1 (en) 1989-03-16
JPH03500193A (en) 1991-01-17
DE3875488D1 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
EP0377596B1 (en) Fuel dosing process and device for diesel engines
DE3020493C3 (en) METHOD FOR CONTROLLING THE INTAKE AIR FLOW IN AN INTERNAL COMBUSTION ENGINE
EP0364522B1 (en) Process and device for adjusting a fuel tank ventilator valve
DE19833909B4 (en) Apparatus and method for torque-assisted vehicle speed control
DE4321413C2 (en) Method and device for controlling the drive power of a vehicle
DE3929746A1 (en) METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
DE19619320A1 (en) Method and device for controlling an internal combustion engine
DE3901109A1 (en) Adaptive control device for the air/fuel ratio for an internal combustion engine
DE19623642C2 (en) Device for controlling the speed of an engine
EP1250525A1 (en) Method and device for controlling an internal combustion engine
DE10108788A1 (en) Motor vehicle control system
DE4120062C2 (en) Device for detecting fuel which is difficult to evaporate
DE19530274B4 (en) Method for controlling a piston internal combustion engine
DE102009027502B4 (en) Control for an internal combustion engine
DE19945396B4 (en) Internal combustion engine control device with interpolation control device
DE3919108C2 (en) Method for controlling an operating parameter of a motor vehicle in dynamic operating states
EP1317610B1 (en) Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation
DE3826573C2 (en) Device for monitoring the air / fuel ratio of an internal combustion engine
DE3828265C2 (en) Device for monitoring the air / fuel ratio in an internal combustion engine
DE19741565A1 (en) Internal combustion engine control method
DE4335726A1 (en) Process and apparatus for controlling the output power of a vehicle
DE10033946A1 (en) Fuel injection control system for a cylinder injection type internal combustion engine
EP1134390B1 (en) Method and device for controlling a combustion engine
WO1999067523A1 (en) Method for operating an internal combustion engine
DE3604200A1 (en) METHOD FOR THE LOAD AND SPEED-ADJUSTABLE ADJUSTMENT OF THE INJECTION TIME IN DIESEL ENGINES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 19911219

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3875488

Country of ref document: DE

Date of ref document: 19921126

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070921

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070718

Year of fee payment: 20