EP1317610B1 - Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation - Google Patents

Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation Download PDF

Info

Publication number
EP1317610B1
EP1317610B1 EP01971683A EP01971683A EP1317610B1 EP 1317610 B1 EP1317610 B1 EP 1317610B1 EP 01971683 A EP01971683 A EP 01971683A EP 01971683 A EP01971683 A EP 01971683A EP 1317610 B1 EP1317610 B1 EP 1317610B1
Authority
EP
European Patent Office
Prior art keywords
lambda
value
fuel
adjustment
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01971683A
Other languages
German (de)
French (fr)
Other versions
EP1317610A1 (en
Inventor
Gholamabas Esteghlal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1317610A1 publication Critical patent/EP1317610A1/en
Application granted granted Critical
Publication of EP1317610B1 publication Critical patent/EP1317610B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the invention relates to the technical environment of tank ventilation in internal combustion engines with gasoline direct injection.
  • Engines with gasoline direct injection can be operated both in the shift mode and in the homogeneous operation mode.
  • the engine In stratified operation, the engine is operated with a highly stratified cylinder charge and high excess air to achieve the lowest possible fuel consumption.
  • the stratified charge is achieved by a late fuel injection, which ideally leads to the division of the combustion chamber into two zones: the first zone contains a combustible air-fuel mixture cloud at the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas.
  • the potential for optimizing consumption arises from the possibility of operating the engine largely unthrottled while avoiding charge cycle losses.
  • the shift operation is preferred at comparatively low load.
  • the engine is operated with homogeneous cylinder filling.
  • the homogeneous cylinder filling results from an early fuel injection during the intake process. As a result, a longer time is available for mixture formation until combustion.
  • the potential of this mode of performance optimization results, for example, from the utilization of the entire combustion chamber volume for filling with a combustible mixture.
  • an engine with Intake manifold injection from DE 38 13 220 known to learn a measure FTEAD for the fuel content of the regeneration gas from the known variables in the control unit such as the fuel flow through the injectors, the amount of Regeniergases with open tank vent valve, the intake air amount of the engine and the signal of an exhaust gas probe.
  • the learned measure is used to tune the reduction of the fuel flow through the injectors to the fuel flow through the tank vent valve with the aim of controlling the composition of the entire fuel / air mixture.
  • the invention aims at eliminating said disturbances and thus at improving the predictability of the influence of the tank ventilation on the mixture composition in stratified operation.
  • the invention is based on the finding that in stratified operation the measured lambda value can deviate comparatively strongly from the physically present lambda value.
  • the cause may be probe specimen scattering, aging effects and strongly fluctuating exhaust gas temperatures in stratified operation with non-regulated probe heating. Regardless of which cause ultimately exists, the problem of the deviation between probe signal and actually existing lambda value occurs in any case.
  • the solution according to the invention provides an adjustment of the probe signal in the shift mode when closed Tank venting valve before.
  • the probe signal is decoupled from the absolute lambda value. If the influence of the regeneration gas is then added when the tank-venting valve is open, this influence can be determined from the relative change in the probe signal.
  • An embodiment of the invention provides that a measured lambda value (lambdamess) is formed from the signal of the exhaust gas probe and that the difference of the measured lambda value from the product of the adjustment factor and the difference of the lambda desired value (lambda setpoint) from the value 1 is determined and integrated.
  • a measured lambda value (lambdamess) is formed from the signal of the exhaust gas probe and that the difference of the measured lambda value from the product of the adjustment factor and the difference of the lambda desired value (lambda setpoint) from the value 1 is determined and integrated.
  • a further embodiment is characterized in that the balancing factor in the steady state corresponds to the mean quotient (Lambdamess -1) / (Lambda setpoint - 1).
  • This function has the advantage that fluctuations of lambdamess are averaged out during the alignment process by the integration process and thus do not falsify the balancing factor.
  • a further embodiment provides that a new adjustment in the shift operation is carried out at a working point change of the internal combustion engine or when changing certain environmental conditions.
  • a further embodiment provides that the ambient temperature and the altitude at which the engine is operated are such environmental conditions.
  • Another embodiment is characterized in that an operating point change is defined by a minimum change in the Lambda setpoint.
  • an adjustment is terminated when the absolute value of the integrator input falls below a predetermined threshold.
  • the invention is also directed to an electronic control device for carrying out at least one of the above-mentioned methods and embodiments.
  • Fig. 1 shows the technical environment of the invention and Fig. 2 discloses an embodiment of the invention in the form of functional blocks.
  • FIG. 1 in FIG. 1 represents the combustion chamber of a cylinder of an internal combustion engine.
  • An inlet valve 2 controls the flow of air to the combustion chamber.
  • the air is sucked in via a suction pipe 3.
  • the intake air amount can be varied via a throttle valve 4, which is controlled by a control unit 5.
  • a signal about the engine speed n of a tachometer 7 and a signal on the amount ml of the sucked air of a control unit signals about the torque request of the driver Supplied air flow meter 8 and a signal Us via the exhaust gas composition and / or exhaust gas temperature supplied from an exhaust gas sensor 16.
  • Exhaust gas sensor 12 may be, for example, a lambda probe whose Nernst voltage or, depending on the type of probe, the pumping current of which indicates the oxygen content in the exhaust gas.
  • the exhaust gas is passed through at least one catalytic converter 15 in which pollutants are converted from the exhaust gas and / or temporarily stored.
  • control unit 5 From these and possibly other input signals via further parameters of the internal combustion engine such as intake air and coolant temperature and so on, the control unit 5 outputs output signals for adjusting the throttle angle alpha by an actuator 9 and for controlling a fuel injection valve 10, dosed by the fuel into the combustion chamber of the engine becomes.
  • the triggering of the ignition via an ignition device 11 is controlled by the control unit.
  • the throttle valve angle alpha and the injection pulse width ti are essential control variables to be coordinated with each other for realizing the desired torque.
  • Another key variable for influencing the torque is the angular position of the ignition relative to the piston movement.
  • the determination of the manipulated variables for adjusting the torque is the subject of DE 1 98 51 990, which should be included in the extent to the disclosure.
  • controller controls a tank ventilation 12 and other functions to achieve efficient combustion of the fuel / air mixture in the combustion chamber.
  • the gas power resulting from the combustion is converted by the piston 13 and crank mechanism 14 into a torque.
  • the tank ventilation system 12 consists of an activated carbon filter 15, which communicates via corresponding lines or connections to the tank, the ambient air and the intake manifold of the internal combustion engine, wherein a tank vent valve 16 is arranged in the line to the intake manifold.
  • the activated carbon filter 15 stores in the tank 5 evaporating fuel.
  • air is sucked from the environment 17 through the activated carbon filter, which discharges the stored fuel into the air.
  • This fuel-air mixture also referred to as a tank venting mixture or else as a regeneration gas, influences the composition of the mixture as a whole supplied to the internal combustion engine.
  • the proportion of fuel in the mixture is also determined by metering fuel via the fuel metering device 10, which is adapted to the intake air quantity.
  • the fuel sucked in via the tank ventilation system can correspond in extreme cases to a proportion of about one third to half of the total fuel quantity.
  • Fig. 2 shows a functional block diagram of the method according to the invention.
  • Block 2.1 provides the measured lambda value obtained from the signal Us of the exhaust gas probe.
  • Block 2.2. provides the setpoint for the composition lambda of the entire mixture burned by the internal combustion engine.
  • the difference between the Setpoint of value 1. This difference is linked in block 2.4 with a matching factor.
  • block 2.5 the difference between the measured lambda value and the value 1 is formed.
  • block 2.6 the deviation of the difference of the measured lambda value from the product of the adjustment factor and the difference of the lambda setpoint value of 1 is determined. This deviation is fed to an integrator 2.7.
  • Block 2.8 provides a correction value for operating points in the neighborhood of the operating point where the adjustment is made. Under the steady state condition given above, block 2.8 returns the value 1, so that the output value of integrator 2.7 is not changed by the result of the links in blocks 2.9 to 2.11.
  • the output value of the integrator is fed back directly as a compensation factor and linked to the desired lambda setpoint.
  • This structure has the following function:
  • the integrator input is positive and the integrator output increases. This will increase the adjustment factor. This increases the o.a. Product. As a result, the distance of the product decreases from the deviation of the measured lambda value of 1.
  • the integrator input is smaller.
  • the integrator output grows slower.
  • This function has the advantage that fluctuations of lambdamess are averaged out during the alignment process by the integration process and thus do not falsify the balancing factor.
  • the actual lambda is proportional to the quotient of total air volume and total fuel quantity.
  • the total amount of air is composed of the amount of air that flows through the throttle valve and the air content of the regeneration gas from the tank ventilation.
  • the proportion of air in the regeneration gas corresponds approximately to the amount of regeneration gas. This can be derived from variables known in the control unit, such as intake manifold pressure and the drive duty cycle. The proportion of air is therefore known. The same applies to the amount of air flowing through the throttle valve, which can be detected for example by a H discloseinuftmassenmesser.
  • the amount of fuel flowing through the injectors is derivable from the An Kunststoffimpuls lecturen and the pressure in the fuel system, ie from known sizes.
  • the fuel fraction of the tank ventilation can be determined by the inventive method also in stratified operation with the aid of the adjustment factor from the measured lambda value.
  • the blocks 2.12 to 2.17 represent a structure for triggering the adjustment.
  • a new adjustment in the stratified operation is carried out at a working point change of the internal combustion engine or when changing certain environmental conditions.
  • environmental conditions are the ambient temperature, which can be provided, for example, by an intake air temperature sensor and the altitude at which the engine is operated. Information about this altitude is available in modern engine controls. It is determined, for example, from the signal of an ambient pressure sensor or calculated from the load detection (intake air quantity, cylinder filling).
  • An operating point change can be defined, for example, as a minimum change in the lambda setpoint value, for example by a minimum value of 0.3. If one of these conditions occurs, Block 2.12 activates via the flip-flop 2.13 a closing of the Tanlentungsventils in block 2.14 and a start of the Integrator 2.7.
  • Block 2.15 provides a threshold DLAMSCE and block 2.16 provides the positive absolute value of the integrator input. If the said amount falls below the said threshold value, this is detected in block 2.17 and the closing command for the tank-venting valve is canceled by resetting the flip-flop 2.13.
  • Blocks 2.8 to 2.11 allow for the consideration of small lambda setpoint changes, which are not yet considered as working point changes in o.a. Meaning.
  • the relationship between the probe voltage and the lambda value is generally not linear.
  • block 2.7 replaces a correction variable, for example on the basis of a mathematical linearization of the relationship between Us and lambda setpoint in an environment of the adjusted operating point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A method for determining the fuel content of a regeneration gas during regeneration of an intermediate fuel vapor storage unit in internal combustion engines with gasoline direct injection in lean (stratified) mode. Stored fuel vapor is supplied to the engine as regeneration gas via a controllable tank venting valve. The signal of an exhaust gas analyzer probe in the exhaust gas is considered for determining the fuel content of the regeneration gas. An adjustment between the analyzer probe signal and a preselected setpoint occurs while the tank venting valve is closed. The analyzer probe signal is combined with a correction quantity while the tank venting valve is closed, so that the combination corresponds to the setpoint. The analyzer probe signal is combined in the same manner with the previously obtained correction valve while the tank venting value is open. Regeneration gas charge is determined from this combination.

Description

Stand der TechnikState of the art

Die Erfindung betrifft das technische Umfeld der Tankentlüftung bei Verbrennungsmotoren mit Benzindirekteinspritzung.The invention relates to the technical environment of tank ventilation in internal combustion engines with gasoline direct injection.

Motoren mit Benzindirekteinspritzung können sowohl in der Betriebsart Schichtbetrieb als auch in der Betriebsart Homogenbetrieb betrieben werden.Engines with gasoline direct injection can be operated both in the shift mode and in the homogeneous operation mode.

Aus der DE 198 50 586 ist ein Motorsteuerungsprogramm bekannt, das die Umschaltung zwischen beiden Betriebsarten steuert.From DE 198 50 586 a motor control program is known which controls the switching between the two modes.

Im Schichtbetrieb wird der Motor mit einer stark geschichteten Zylinderladung und hohem Luftüberschuß betrieben, um einen möglichst niedrigen Kraftstoffverbrauch zu erreichen. Die geschichtete Ladung wird durch eine späte Kraftstoffeinspritzung erreicht, die im Idealfall zur Aufteilung des Brennraums in zwei Zonen führt: Die erste Zone enthält eine brennfähige Luft-Kraftstoff-Gemischwolke an der Zündkerze. Sie wird von der zweiten Zone umgeben, die aus einer isolierenden Schicht aus Luft und Restgas besteht. Das Potential zur Verbrauchsoptimierung ergibt sich aus der Möglichkeit, den Motor unter Vermeidung von Ladungswechselverlusten weitgehend ungedrosselt zu betreiben. Der Schichtbetrieb wird bei vergleichsweise niedriger Last bevorzugt.In stratified operation, the engine is operated with a highly stratified cylinder charge and high excess air to achieve the lowest possible fuel consumption. The stratified charge is achieved by a late fuel injection, which ideally leads to the division of the combustion chamber into two zones: the first zone contains a combustible air-fuel mixture cloud at the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas. The potential for optimizing consumption arises from the possibility of operating the engine largely unthrottled while avoiding charge cycle losses. The shift operation is preferred at comparatively low load.

Bei höherer Last, wenn die Leistungsoptimierung im Vordergrund steht, wird der Motor mit homogener Zylinderfüllung betrieben. Die homogene Zylinderfüllung ergibt sich aus einer frühen Kraftstoffeinspritzung während des Ansaugvorganges. Als Folge steht bis zur Verbrennung eine größere Zeit zur Gemischbildung zur Verfügung. Das Potential dieser Betriebsart zur Leistungsoptimierung ergibt sich zum Beispiel aus der Ausnutzung des gesamten Brennraumvolumens zur Füllung mit brennfähigem Gemisch.At higher load, when performance optimization is the priority, the engine is operated with homogeneous cylinder filling. The homogeneous cylinder filling results from an early fuel injection during the intake process. As a result, a longer time is available for mixture formation until combustion. The potential of this mode of performance optimization results, for example, from the utilization of the entire combustion chamber volume for filling with a combustible mixture.

Im Kraftstofftank eines Fahrzeugs fällt je nach Kraftstofftemperatur, Kraftstoffsorte und Druckverhältnissen eine unterschiedliche Menge an Kraftstoffdampf pro Zeiteinheit an. Es ist bereits bekannt, diesen Kraftstoffdampf zunächst im einem Aktivkohlefilter zu speichern und dann während des Betriebs des Verbrennungsmotors über ein steuerbares Tankentlüftungsventil mit Luft vermischt der motorischen Verbrennung zuzuführen. Dadurch wird der Aktivkohlefilter wieder aufnahmefähig für weiteren Kraftstoffdampf (regeneriert). Der mit Luft vermischte Kraftstoffdampf wird als Regeneriergas bezeichnet.
Zur Kompensation des über das Tankentlüftungsventil fließenden Kraftstoffstroms wird der über die Einspritzventile fließende Kraftstoffstrom reduziert. In diesem Zusammenhang ist es für einen Motor mit Saugrohreinspritzung aus der DE 38 13 220 bekannt, ein Maß FTEAD für den Kraftstoffgehalt des Regeneriergases aus den im Steuergerät bekannten Größen wie dem Kraftstoffstrom über die Einspritzventile, der Menge des Regeniergases bei göffnetem Tankentlüftungsventil, der Ansaugluftmenge des Motors und dem Signal einer Abgassonde zu lernen. Das gelernte Maß dient zur Abstimmung der Reduktion des Kraftstoffstroms über die Einspritzventile zum Kraftstoffstrom über das Tankentlüftungsventil mit dem Ziel, die Zusammensetzung des gesamten Kraftstoff/Luftgemisches zu kontrollieren. Beim Betrieb eines Motors mit Saugrohreinspritzung tritt wie beim Betrieb eines Motores mit Benzindirekteinspritzung in der Betriebsart Homogenbetrieb eine homogene Füllung des Brennraums mit Gemisch auf. Für diese Betriebsart ist daher die Tankentlüftungssteuerung anwendbar, wie sie aus dem Bereich der Saugrohreinspritzung bekannt ist.
Depending on the fuel temperature, fuel type and pressure conditions, a different amount of fuel vapor per unit of time accumulates in the fuel tank of a vehicle. It is already known to initially store this fuel vapor in an activated carbon filter and then, during operation of the internal combustion engine via a controllable tank venting valve, mixed with air to supply the engine combustion. As a result, the activated carbon filter is again receptive to further fuel vapor (regenerated). The mixed with air fuel vapor is referred to as regeneration gas.
To compensate for the flow of fuel flowing through the tank vent valve, the fuel flow flowing through the injectors is reduced. In this context, it is for an engine with Intake manifold injection from DE 38 13 220 known to learn a measure FTEAD for the fuel content of the regeneration gas from the known variables in the control unit such as the fuel flow through the injectors, the amount of Regeniergases with open tank vent valve, the intake air amount of the engine and the signal of an exhaust gas probe. The learned measure is used to tune the reduction of the fuel flow through the injectors to the fuel flow through the tank vent valve with the aim of controlling the composition of the entire fuel / air mixture. When operating an engine with intake manifold injection occurs as in the operation of an engine with gasoline direct injection in the mode homogeneous operation homogeneous filling of the combustion chamber with mixture. For this mode, therefore, the tank ventilation control is applicable, as it is known from the field of intake manifold injection.

Beim Betrieb eines Motors mit Benzindirekteinspritzung in der Betriebsart Schichtbetrieb hat sich dagegen gezeigt, dass bei der Kontrolle des gesamten Kraftstoff/Luftgemisches bei offenem Tankentlüftungsventil Störungen auftreten.When operating an engine with gasoline direct injection in the operating mode shift mode, however, has shown that in the control of the entire fuel / air mixture with open tank vent valve malfunctions occur.

Die Erfindung zielt auf die Beseitigung der genannten Störungen und damit auf eine Verbesserung Vorhersagbarkeit des Einflusses der Tankentlüftung auf die Gemischzusammensetzung im Schichtbetrieb.The invention aims at eliminating said disturbances and thus at improving the predictability of the influence of the tank ventilation on the mixture composition in stratified operation.

Die angestrebte Wirkung wird mit den Merkmalen des Anspruchs 1 erreicht.The desired effect is achieved with the features of claim 1.

Im einzelnen sieht die erfindungsgemäße Bestimmung des Kraftstoffgehaltes eines Regeneriergases bei der Regeneration eines Kraftstoffdampfzwischenspeichers bei Verbrennungsmotoren mit Benzindirekteinspritzung im Mager-(Schicht)-Betrieb, bei dem der gespeicherte Kraftstoffdampf dem Verbrennungsmotor als Reneriergas über ein steuerbares Tankentlüftungsventil zugeführt wird und bei dem zur Bestimmung des Kraftstoffgehaltes des Regneriergases das Signal einer Abgassonde im Abgas des Verbrennungsmotors berücksichtigt wird, folgende Schritte vor:

  • Durchführen eines Abgleichs zwischen dem Signal der Abgassonde und einem vorgegebenen Sollwert bei geschlossenem Tankentlüftungsventil, bei dem das Signal der Abgassonde bei geschlossenem Tankentlüftungsventil mit einer Korrekturgröße so verknüpft wird, dass das Ergebnis der Verknüpfung dem Sollwert entspricht.
  • Verknüpfen des Signals der Abgassonde bei offenem Tankentlüftungsventil mit dem vorher gewonnenen Korrekturwert auf gleiche Weise und
  • Bestimmung der Beladung des Regeneriergases aus dem Ergebnis der Verknüpfung.
In detail, the inventive determination of the fuel content of a regeneration gas in the regeneration of a fuel vapor buffer at Internal combustion engines with gasoline direct injection in lean (shift) operation, in which the stored fuel vapor is supplied to the internal combustion engine as Reneriergas via a controllable tank venting valve and in which the signal of an exhaust gas probe is taken into account in the exhaust gas of the internal combustion engine for determining the fuel content of the gas Regenergier, following steps :
  • Performing a comparison between the signal of the exhaust probe and a predetermined setpoint with the tank vent valve closed, in which the signal of the exhaust gas probe is closed with a closed tank vent valve with a correction value so that the result of the linkage corresponds to the desired value.
  • Combining the signal of the exhaust gas probe with open tank vent valve with the previously obtained correction value in the same way and
  • Determining the loading of the regeneration gas from the result of the link.

Die Erfindung basiert auf der Erkenntnis, dass im Schichtbetrieb der gemessene Lambdawert vom physikalisch vorhandenen Lambdawert vergleichsweise stark abweichen kann. Als Ursache kommen Sondenexemplarstreuungen, Alterungseffekte und stark schwankende Abgastemperaturen im Schichtbetrieb bei nicht geregelter Sondenheizung in Frage. Unabhängig davon, welche Ursache letztlich vorliegt, tritt jedenfalls das Problem der Abweichung zwischen Sondensignal und tatsächlich vorhandenem Lambdawert auf.The invention is based on the finding that in stratified operation the measured lambda value can deviate comparatively strongly from the physically present lambda value. The cause may be probe specimen scattering, aging effects and strongly fluctuating exhaust gas temperatures in stratified operation with non-regulated probe heating. Regardless of which cause ultimately exists, the problem of the deviation between probe signal and actually existing lambda value occurs in any case.

Die erfindungsgemäße Lösung sieht einen Abgleich des Sondensignals im Schichtbetrieb bei geschlossenem Tankentlüftungsventil vor. Dadurch wird das Sondensignal vom absoluten Lambdawert entkoppelt. Kommt dann bei offenem Tankentlüftungsventil der Einfluss des Regeneriergases hinzu, so kann dieser Einfluss aus der relativen Änderung des Sondensignals bestimmt werden.The solution according to the invention provides an adjustment of the probe signal in the shift mode when closed Tank venting valve before. As a result, the probe signal is decoupled from the absolute lambda value. If the influence of the regeneration gas is then added when the tank-venting valve is open, this influence can be determined from the relative change in the probe signal.

Eine Ausführungsform der Efindung sieht vor, daß aus dem Signal der Abgassonde ein gemessener Lambdawert (Lambdamess) gebildet wird und daß die Differenz des gemessenen Lambdawertes vom Produkt aus Abgleichfaktor und der Differenz des Lambdasollwertes (Lambdasoll) vom Wert 1 ermittelt und integriert wird.An embodiment of the invention provides that a measured lambda value (lambdamess) is formed from the signal of the exhaust gas probe and that the difference of the measured lambda value from the product of the adjustment factor and the difference of the lambda desired value (lambda setpoint) from the value 1 is determined and integrated.

Eine weitere Ausführungsform zeichent sich dadurch aus, daß der Abgleichsfaktor im eingeschwungenen Zustand dem mittleren Quotienten (Lambdamess -1) / (Lambdasoll - 1) entspricht.A further embodiment is characterized in that the balancing factor in the steady state corresponds to the mean quotient (Lambdamess -1) / (Lambda setpoint - 1).

Diese Funktion liefert den Vorteil, dass Schwankungen von Lambdamess durch den Integrationsprozess während des Abgleichvorgangs ausgemittelt werden und damit den Abgleichsfaktor nicht verfälschen.This function has the advantage that fluctuations of lambdamess are averaged out during the alignment process by the integration process and thus do not falsify the balancing factor.

Eine weitere Ausführungsform sieht vor, daß das tatsächliche Lambda im Betrieb mit offenem Tankentlüftungsventil durch folgende Vorschrift bestimmt wird:

  • tatsächliches Lambda = ( 1 / Abgleichsfaktor ) * ( Lambdamess - 1 ) + 1
    Figure imgb0001
A further embodiment provides that the actual lambda is determined during operation with an open tank vent valve by the following rule:
  • actual lambda = ( 1 / adjustment factor ) * ( lambda measurement - 1 ) + 1
    Figure imgb0001

Eine weitere Ausführungsform sieht vor, daß ein neuer Abgleich im Schichtbetrieb bei einem Arbeitspunktwechsel des Verbrennungsmotors oder bei der Änderung bestimmter Umgebungsbedingungen durchgeführt wird.A further embodiment provides that a new adjustment in the shift operation is carried out at a working point change of the internal combustion engine or when changing certain environmental conditions.

Eine weitere Ausführungsform sieht vor, daß die Umgebungstemperatur und die Höhe, in der der Motor betrieben wird, solche Umgebungsbedingungen sind.A further embodiment provides that the ambient temperature and the altitude at which the engine is operated are such environmental conditions.

Eine weitere Ausführungsform zeichnet sich dadurch aus, daß ein Arbeitspunktwechsel durch eine Mindeständerung des Lambdasollwertes definiert ist.Another embodiment is characterized in that an operating point change is defined by a minimum change in the Lambda setpoint.

Gemäß einer weiteren Ausführungsform wird ein Abgleich beendet, wenn der Absolutbetrag des Integratoreingangs einen vorbestimmten Schwellwert unterschreitet.According to another embodiment, an adjustment is terminated when the absolute value of the integrator input falls below a predetermined threshold.

Die Erfindung richtet sich auch auf eine elektronische Steuereinrichtung zur Durchführung wenigstens eines der oben genannten Verfahren und Ausführungsformen.The invention is also directed to an electronic control device for carrying out at least one of the above-mentioned methods and embodiments.

Im folgenden wird ein Ausführungsbeispiel der Erfindung mit Bezug auf die Figuren erläutert.In the following an embodiment of the invention will be explained with reference to the figures.

Fig. 1 zeigt das technische Umfeld der Erfindung und Fig. 2 offenbart ein Ausführungsbeispiel der Erfindung in der Form von Funktionsblöcken.Fig. 1 shows the technical environment of the invention and Fig. 2 discloses an embodiment of the invention in the form of functional blocks.

Die 1 in der Fig. 1 repräsentiert den Brennraum eines Zylinders eines Verbrennungsmotors. Über ein Einlaßventil 2 wird der Zustrom von Luft zum Brennraum gesteuert. Die Luft wird über ein Saugrohr 3 angesaugt. Die Ansaugluftmenge kann über eine Drosselklappe 4 variiert werden, die von einem Steuergerät 5 angesteuert wird. Dem Steuergerät werden Signale über den Drehmomentwunsch des Fahrers, bspw. über die Stellung eines Fahrpedals 6, ein Signal über die Motordrehzahl n von einem Drehzahlgeber 7 und ein Signal über die Menge ml der angesaugten Luft von einem Luftmengenmesser 8 zugeführt und ein Signal Us über die Abgaszusammensetzung und/oder Abgastemperatur von einem Abgassensor 16 zugeführt. Abgassensor 12 kann beispielsweise eine Lambdasonde sein, deren Nernstspannung oder, je nach Sondentyp, deren Pumpstrom den Sauerstoffgehalt im Abgas angibt. Das Abgas wird durch wenigstens einen Katalysator 15 geführt, in dem Schadstoffe aus dem Abgas konvertiert und/oder vorübergehend gespeichert werden.1 in FIG. 1 represents the combustion chamber of a cylinder of an internal combustion engine. An inlet valve 2 controls the flow of air to the combustion chamber. The air is sucked in via a suction pipe 3. The intake air amount can be varied via a throttle valve 4, which is controlled by a control unit 5. About the position of an accelerator pedal 6, a signal about the engine speed n of a tachometer 7 and a signal on the amount ml of the sucked air of a control unit signals about the torque request of the driver Supplied air flow meter 8 and a signal Us via the exhaust gas composition and / or exhaust gas temperature supplied from an exhaust gas sensor 16. Exhaust gas sensor 12 may be, for example, a lambda probe whose Nernst voltage or, depending on the type of probe, the pumping current of which indicates the oxygen content in the exhaust gas. The exhaust gas is passed through at least one catalytic converter 15 in which pollutants are converted from the exhaust gas and / or temporarily stored.

Aus diesen und ggf. weiteren Eingangssignalen über weitere Parameter des Verbrennungsmotors wie Ansaugluft- und Kühlmitteltemperatur und so weiter bildet das Steuergerät 5 Ausgangssignale zur Einstellung des Drosselklappenwinkels alpha durch ein Stellglied 9 und zur Ansteuerung eines Kraftstoffeinspritzventils 10, durch das Kraftstoff in den Brennraum des Motors dosiert wird. Außerdem wird durch das Steuergerät die Auslösung der Zündung über eine Zündeinrichtung 11 gesteuert.From these and possibly other input signals via further parameters of the internal combustion engine such as intake air and coolant temperature and so on, the control unit 5 outputs output signals for adjusting the throttle angle alpha by an actuator 9 and for controlling a fuel injection valve 10, dosed by the fuel into the combustion chamber of the engine becomes. In addition, the triggering of the ignition via an ignition device 11 is controlled by the control unit.

Der Drosselklappenwinkel alpha und die Einspritzimpulsbreite ti sind wesentliche, aufeinander abzustimmende Stellgrößen zur Realisierung des gewünschten Drehmomentes. Eine weitere wesentliche Stellgröße zur Beeinflussung des Drehmomentes ist die Winkellage der Zündung relativ zur Kolbenbewegung. Die Bestimmung der Stellgrößen zur Einstellung des Drehmomentes ist Gegenstand der DE 1 98 51 990, die insoweit in die Offenbarung einbezogen sein soll.The throttle valve angle alpha and the injection pulse width ti are essential control variables to be coordinated with each other for realizing the desired torque. Another key variable for influencing the torque is the angular position of the ignition relative to the piston movement. The determination of the manipulated variables for adjusting the torque is the subject of DE 1 98 51 990, which should be included in the extent to the disclosure.

Weiterhin steuert das Steuergerät eine Tankentlüftung 12 sowie weitere Funktionen zur Erzielung einer effizienten Verbrennung des Kraftstoff/Luftgemisches im Brennraum. Die aus der Verbrennung resultierende Gaskraft wird durch Kolben 13 und Kurbeltrieb 14 in ein Drehmoment gewandelt.Furthermore, the controller controls a tank ventilation 12 and other functions to achieve efficient combustion of the fuel / air mixture in the combustion chamber. The gas power resulting from the combustion is converted by the piston 13 and crank mechanism 14 into a torque.

Die Tankentlüftungsanlage 12 besteht aus einem Aktivkohlefilter 15, der über entsprechende Leitungen beziehungsweise Anschlüsse mit dem Tank, der Umgebungsluft und dem Saugrohr des Verbrennungsmotors kommuniziert, wobei in der Leitung zum Saugrohr ein Tankentlüftungsventil 16 angeordnet ist.The tank ventilation system 12 consists of an activated carbon filter 15, which communicates via corresponding lines or connections to the tank, the ambient air and the intake manifold of the internal combustion engine, wherein a tank vent valve 16 is arranged in the line to the intake manifold.

Der Aktivkohlefilter 15 speichert im Tank 5 verdunstenden Kraftstoff. Bei vom Steuergerät 6 öffnend angesteuertem Tankentlüftungsventil 11 wird Luft aus der Umgebung 17 durch den Aktivkohlefilter gesaugt, der dabei den gespeicherten Kraftstoff an die Luft abgibt. Dieses auch als Tankentlüftungsgemisch oder auch als Regeneriergas bezeichnete Kraftstoff-Luft-Gemisch beeinflußt die Zusammensetzung des dem Verbrennungsmotor insgesamt zugeführten Gemisches. Der Kraftstoffanteil am Gemisch wird im übrigen durch eine Zumessung von Kraftstoff über die Kraftstoffzumeßvorrichtung 10 mitbestimmt, die der angesaugten Luftmenge angepaßt ist. Dabei kann der über das Tankentlüftungssystem angesaugte Kraftstoff in Extremfällen einem Anteil von ca. einem Drittel bis zur Hälfte der Gesamtkraftstoffmenge entsprechen.The activated carbon filter 15 stores in the tank 5 evaporating fuel. When the tank venting valve 11 is opened by the control unit 6, air is sucked from the environment 17 through the activated carbon filter, which discharges the stored fuel into the air. This fuel-air mixture, also referred to as a tank venting mixture or else as a regeneration gas, influences the composition of the mixture as a whole supplied to the internal combustion engine. Incidentally, the proportion of fuel in the mixture is also determined by metering fuel via the fuel metering device 10, which is adapted to the intake air quantity. In this case, the fuel sucked in via the tank ventilation system can correspond in extreme cases to a proportion of about one third to half of the total fuel quantity.

Fig. 2 zeigt eine Funktionsblockdarstellung des erfindungsgemäßen Verfahrens.Fig. 2 shows a functional block diagram of the method according to the invention.

Zunächst wird ein geschlossenes Tankentlüftungsventil und ein stationärer Betriebszustand vorausgesetzt.First, a closed tank vent valve and a stationary operating state is required.

Block 2.1 stellt den gemessenen Lambdawert bereit, der aus dem Signal Us der Abgassonde gewonnen wird. Block 2.2. stellt den Sollwert für die Zusammensetzung Lambda des gesamten, von dem Verbrennungsmotor verbrannten Gemisches bereit. Im Block 2.3 erfolgt die Bildung der Differenz des Sollwertes vom Wert 1. Diese Differenz wird im Block 2.4 mit einem Abgleichfaktor verknüpft. Im Block 2.5 erfolgt die Bildung der Differenz des gemessenen Lambdawertes vom Wert 1. Im Block 2.6 wird die Abweichung der Differenz des gemessenen Lambdawertes vom Produkt aus Abgleichfaktor und der der Differenz des Lambdasollwertes vom Wert 1 ermittelt. Diese Abweichung wird einem Integrator 2.7 zugeführt. Block 2.8 liefert einen Korrekturwert für Betriebspunkte in der Nachbarschaft des Betriebspunktes, in dem der Abgleich erfolgt. Unter der oben angegebenen Voraussetzung eines stationären Betriebszustands liefert Block 2.8 den Wert 1, so das der Ausgangswert des Integrators 2.7 durch das Ergebnis der Verknüpfungen in den Blöcken 2.9 bis 2.11 nicht geändert wird.Block 2.1 provides the measured lambda value obtained from the signal Us of the exhaust gas probe. Block 2.2. provides the setpoint for the composition lambda of the entire mixture burned by the internal combustion engine. In block 2.3, the difference between the Setpoint of value 1. This difference is linked in block 2.4 with a matching factor. In block 2.5, the difference between the measured lambda value and the value 1 is formed. In block 2.6, the deviation of the difference of the measured lambda value from the product of the adjustment factor and the difference of the lambda setpoint value of 1 is determined. This deviation is fed to an integrator 2.7. Block 2.8 provides a correction value for operating points in the neighborhood of the operating point where the adjustment is made. Under the steady state condition given above, block 2.8 returns the value 1, so that the output value of integrator 2.7 is not changed by the result of the links in blocks 2.9 to 2.11.

In diesem Fall wird der Ausgangswert des Integrators direkt als Abgleichsfaktor zurückgeführt und mit dem gewünschten Lambdasollwert verknüpft.In this case, the output value of the integrator is fed back directly as a compensation factor and linked to the desired lambda setpoint.

Diese Struktur bewirkt folgende Funktion:This structure has the following function:

Solange das Produkt aus Abgleichsfaktor und der Abweichung des gewünschten Lambdawerts von 1 kleiner ist als die Abweichung des gemessenen Lambdawerts von 1, ist der Integratoreingang positiv und der Integratorausgang wächst an. Dadurch wird der Abgleichsfaktor vergrößert. Dies vergrößert das o.a. Produkt. Als Folge verkleinert sich der Abstand des Produktes von der Abweichung des gemessenen Lambdawerts von 1. Der Integratoreingang wird kleiner. Der Integratorausgang wächst langsamer.As long as the product of the adjustment factor and the deviation of the desired lambda value of 1 is smaller than the deviation of the measured lambda value from 1, the integrator input is positive and the integrator output increases. This will increase the adjustment factor. This increases the o.a. Product. As a result, the distance of the product decreases from the deviation of the measured lambda value of 1. The integrator input is smaller. The integrator output grows slower.

Wird der Integratorausgang zu groß, ändert sich durch die Rückführung das Vorzeichen des Integratoreingangs und der Integratorausgang wird in der Folge wieder verkleinert.If the integrator output becomes too large, the sign of the integrator input changes as a result of the feedback, and the integrator output is subsequently reduced again.

Dies führt dazu, dass der Adaptionsfaktor im eingeschwungenen Zustand gewissermaßen dem mittleren Quotienten (Lambdamess -1) / (Lambdasoll - 1) entspricht.This means that the adaptation factor in the steady state corresponds to a certain extent to the mean quotient (Lambdamess -1) / (Lambda setpoint - 1).

Diese Funktion liefert den Vorteil, dass Schwankungen von Lambdamess durch den Integrationsprozess während des Abgleichvorgangs ausgemittelt werden und damit den Abgleichsfaktor nicht verfälschen.This function has the advantage that fluctuations of lambdamess are averaged out during the alignment process by the integration process and thus do not falsify the balancing factor.

Im Betrieb mit offenem Tankentlüftungsventil kann das tatsächliche Lambda durch folgende Vorschrift bestimmt werden:

  • tatsächliches Lambda = ( 1 / Abgleichsfaktor ) ( Lambdamess 1 ) + 1
    Figure imgb0002
When operating with an open tank vent valve, the actual lambda can be determined by the following procedure:
  • actual lambda = ( 1 / adjustment factor ) * ( lambda measurement - 1 ) + 1
    Figure imgb0002

Das tatsächliche Lambda ist zum Quotienten aus gesamter Luftmenge und gesamter Kraftstoffmenge proportional.The actual lambda is proportional to the quotient of total air volume and total fuel quantity.

Die gesamte Luftmenge setzt sich aus der Luftmenge, die über die Drosselklappe fließt und dem Luftanteil am Regeneriergas aus der Tankentlüftung zusammen. Der Luftanteil am Regeneriergas entspricht etwa der Regeneriergasmenge. Diese ist aus im Steuergerät bekannten Größen wie Saugrohrdruck und dem Ansteuertastverhältnis ableitbar. Der Luftanteil ist daher bekannt. Gleiches gilt für die über die Drosselklappe strömende Luftmenge, die beispielsweise durch einen Heißfilmluftmassenmesser erfaßt werden kann. Die über die Einspritzventile fließende Kraftstoffmenge ist aus den Ansteuerimpulsbreiten und den Druck im Kraftstoffsystem, also aus bekannten Größen ableitbar.The total amount of air is composed of the amount of air that flows through the throttle valve and the air content of the regeneration gas from the tank ventilation. The proportion of air in the regeneration gas corresponds approximately to the amount of regeneration gas. This can be derived from variables known in the control unit, such as intake manifold pressure and the drive duty cycle. The proportion of air is therefore known. The same applies to the amount of air flowing through the throttle valve, which can be detected for example by a Heißfileinuftmassenmesser. The amount of fuel flowing through the injectors is derivable from the Ansteuerimpulsbreiten and the pressure in the fuel system, ie from known sizes.

Daher kann der Kraftstoffanteil der Tankentlüftung nach dem erfindungsgemäßen Verfahren auch im Schichtbetrieb mit Hilfe des Abgleichfaktors aus dem gemessenen Lambdawert bestimmt werden.Therefore, the fuel fraction of the tank ventilation can be determined by the inventive method also in stratified operation with the aid of the adjustment factor from the measured lambda value.

Die Blöcke 2.12 bis 2.17 stellen eine Struktur zur Auslösung des Abgleichs dar. Ein neuer Abgleich im Schichtbetrieb wird bei einem Arbeitspunktwechsel des Verbrennungsmotors oder bei der Änderung bestimmter Umgebungsbedingungen durchgeführt. Beispiele solcher Umgebungsbedingungen sind die Umgebungstemperatur, die bspw. durch einen Ansauglufttemperaturfühler bereitgestellt werden kann und die Höhe, in der der Motor betrieben wird. Eine Information über diese Höhe ist in modernen Motorsteuerungen vorhanden. Sie wird beispielsweise aus dem Signal eines Umgebungsdruckfühlers ermittelt oder aus der Lasterfassung (Ansaugluftmenge, Zylinderfüllung) berechnet. Ein Arbeitspunktwechsel läßt sich beispielsweise definieren als eine Mindeständerung des Lambdasollwertes, beispielsweise um einen Mindestwert von 0,3. Tritt eine dieser Bedingungen ein, aktiviert Block 2.12 über den Flip-Flop 2.13 ein Schließen des Tanlentlüftungsventils im Block 2.14 und einen Start des Integrators 2.7.The blocks 2.12 to 2.17 represent a structure for triggering the adjustment. A new adjustment in the stratified operation is carried out at a working point change of the internal combustion engine or when changing certain environmental conditions. Examples of such environmental conditions are the ambient temperature, which can be provided, for example, by an intake air temperature sensor and the altitude at which the engine is operated. Information about this altitude is available in modern engine controls. It is determined, for example, from the signal of an ambient pressure sensor or calculated from the load detection (intake air quantity, cylinder filling). An operating point change can be defined, for example, as a minimum change in the lambda setpoint value, for example by a minimum value of 0.3. If one of these conditions occurs, Block 2.12 activates via the flip-flop 2.13 a closing of the Tanlentungsventils in block 2.14 and a start of the Integrator 2.7.

Das Ende des Abgleichs wird durch die Blöcke 2.15 bis 2.17 erkannt. Block 2.15 stellt einen Schwellwert DLAMSCE bereit und Block 2.16 liefert den positiven Absolutbetrag des Integratoreingangs. Unterschreitet der genannte Betrag den genannten Schwellwert, wird dies im Block 2.17 erkannt und der Schließbefehl für das Tankentlüftungsventil durch Rücksetzen des Flip-Flop 2.13 aufgehoben.The end of the adjustment is detected by blocks 2.15 to 2.17. Block 2.15 provides a threshold DLAMSCE and block 2.16 provides the positive absolute value of the integrator input. If the said amount falls below the said threshold value, this is detected in block 2.17 and the closing command for the tank-venting valve is canceled by resetting the flip-flop 2.13.

Die Blöcke 2.8 bis 2.11 ermöglichen eine Berücksichtigung kleiner Lambdasollwertänderungen, die noch nicht als Arbeitspunktwechsel im o.a. Sinne gelten.Blocks 2.8 to 2.11 allow for the consideration of small lambda setpoint changes, which are not yet considered as working point changes in o.a. Meaning.

Die Beziehung zwischen der Sondenspannung und dem Lambdawert ist im allgemeinen nicht linear.The relationship between the probe voltage and the lambda value is generally not linear.

Bei größeren Lambdasolländerungen (Arbeitspunktwechsel) erfolgt daher ein neuer Abgleich. Bei kleineren Lambdasolländerungen liefert Block 2.7 ersatzweise eine Korrekturgröße, bspw. auf der Basis einer rechnerischen Linearisierung der Beziehung-zwischen Us und Lambdasoll in einer Umgebung des abgeglichenen Arbeitspunktes.For larger lambda setpoint changes (working point change), a new adjustment is therefore carried out. In the case of smaller lambda setpoint changes, block 2.7 replaces a correction variable, for example on the basis of a mathematical linearization of the relationship between Us and lambda setpoint in an environment of the adjusted operating point.

Claims (8)

  1. Method for determining the fuel content of a regeneration gas in the regeneration of an intermediate fuel vapour accumulator in internal combustion engines having direct fuel injection in the lean-(stratified-charge) operating mode,
    in which method the stored fuel vapour is fed to the internal combustion engine as regeneration gas via a controllable tank ventilation valve
    and in which method the signal from an exhaust gas probe in the exhaust gas of the internal combustion engine is taken into consideration for determining the fuel content of the regeneration gas,
    characterized
    in that when the tank ventilation valve is closed, adjustment is carried out between the signal from the exhaust gas probe and a predefined nominal value, in the process of which adjustment
    the signal from the exhaust gas probe when the tank ventilation valve is closed is logically combined with a correction value in such a way that the result of the logic combination corresponds to the nominal value, and in the process of which adjustment
    the signal from the exhaust gas probe when the tank ventilation valve is open is logically combined in the same way with the previously obtained correction value, and in the process of which adjustment the loading of the regeneration gas is determined from the result of the logic combination.
  2. Method according to Claim 1, characterized in that a measured lambda value (lambdameas) is formed from the signal from the exhaust gas probe, and in that the difference between the measured lambda value and the product of the adjustment factor and the difference between the nominal lambda value (lambdanom) and the value 1 is determined and integrated.
  3. Method according to Claim 2, characterized in that in the steady state, the adjustment factor corresponds to the average quotient ( lambda meas - 1 ) / ( lambda nom - 1 ) .
    Figure imgb0004
  4. Method according to Claim 2, characterized in that the actual lambda is determined during operation with the tank ventilation valve open by means of the following rule: Actual lambda = ( 1 / adjustment factor ) ( lambda meas 1 ) + 1
    Figure imgb0005
  5. Method according to Claim 1, characterized in that a new adjustment is carried out in the stratified charge operating mode in the event of a change in the operating point of the internal combustion engine or in the event of a change in certain ambient conditions.
  6. Method according to Claim 5, characterized in that the ambient temperature and the altitude at which the engine is being operated are ambient conditions of said type.
  7. Method according to Claim 5, characterized in that a change in operating point is defined as a minimum change in the nominal lambda value.
  8. Method according to Claim 2, characterized in that an adjustment is ended when the absolute value of the integrator input falls below a predefined threshold value.
EP01971683A 2000-09-04 2001-09-03 Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation Expired - Lifetime EP1317610B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10043699A DE10043699A1 (en) 2000-09-04 2000-09-04 Method for determining the fuel content of the regeneration gas in an internal combustion engine with gasoline direct injection in shift operation
DE10043699 2000-09-04
PCT/DE2001/003321 WO2002020961A1 (en) 2000-09-04 2001-09-03 Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation

Publications (2)

Publication Number Publication Date
EP1317610A1 EP1317610A1 (en) 2003-06-11
EP1317610B1 true EP1317610B1 (en) 2006-08-30

Family

ID=7655035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971683A Expired - Lifetime EP1317610B1 (en) 2000-09-04 2001-09-03 Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation

Country Status (7)

Country Link
US (1) US6805091B2 (en)
EP (1) EP1317610B1 (en)
JP (1) JP2004508483A (en)
KR (1) KR100777935B1 (en)
AT (1) ATE338203T1 (en)
DE (2) DE10043699A1 (en)
WO (1) WO2002020961A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228004A1 (en) * 2002-06-22 2004-01-15 Daimlerchrysler Ag Method for determining a loading of an activated carbon container of a tank ventilation system
US7441403B2 (en) * 2004-12-20 2008-10-28 Detroit Diesel Corporation Method and system for determining temperature set points in systems having particulate filters with regeneration capabilities
US7210286B2 (en) * 2004-12-20 2007-05-01 Detroit Diesel Corporation Method and system for controlling fuel included within exhaust gases to facilitate regeneration of a particulate filter
US7461504B2 (en) * 2004-12-21 2008-12-09 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from internal combustion engine to facilitate regeneration of a particulate filter
US7076945B2 (en) 2004-12-22 2006-07-18 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter
US7434388B2 (en) 2004-12-22 2008-10-14 Detroit Diesel Corporation Method and system for regeneration of a particulate filter
US20060130465A1 (en) * 2004-12-22 2006-06-22 Detroit Diesel Corporation Method and system for controlling exhaust gases emitted from an internal combustion engine
DE102007008119B4 (en) * 2007-02-19 2008-11-13 Continental Automotive Gmbh Method for controlling an internal combustion engine and internal combustion engine
US10851725B2 (en) * 2018-12-18 2020-12-01 Caterpillar Inc. Fuel content detection based on a measurement from a sensor and a model estimation of the measurement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813220C2 (en) * 1988-04-20 1997-03-20 Bosch Gmbh Robert Method and device for setting a tank ventilation valve
US5765541A (en) * 1997-04-03 1998-06-16 Ford Global Technologies, Inc. Engine control system for a lean burn engine having fuel vapor recovery
DE19727297C2 (en) * 1997-06-27 2003-11-13 Bosch Gmbh Robert Method for operating an internal combustion engine, in particular a motor vehicle
JP3861446B2 (en) * 1998-03-30 2006-12-20 トヨタ自動車株式会社 Evaporative fuel concentration detection device for lean combustion internal combustion engine and its application device
DE19851990A1 (en) 1998-11-03 2000-06-21 Bosch Gmbh Robert Process for determining manipulated variables in the control of gasoline direct injection engines
DE19850586A1 (en) 1998-11-03 2000-05-04 Bosch Gmbh Robert Method for operating an internal combustion engine
US6622691B2 (en) * 2001-09-10 2003-09-23 Delphi Technologies, Inc. Control method for a direct injection gas engine with fuel vapor purging

Also Published As

Publication number Publication date
ATE338203T1 (en) 2006-09-15
KR20020068337A (en) 2002-08-27
DE50110890D1 (en) 2006-10-12
US6805091B2 (en) 2004-10-19
KR100777935B1 (en) 2007-11-20
JP2004508483A (en) 2004-03-18
WO2002020961A1 (en) 2002-03-14
US20030029427A1 (en) 2003-02-13
EP1317610A1 (en) 2003-06-11
DE10043699A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
DE4324312C2 (en) Method for operating an internal combustion engine in a lean mixture combustion area
DE3714151A1 (en) CONTROL DEVICE FOR THE THROTTLE VALVE OF AN INTERNAL COMBUSTION ENGINE
DE69923532T2 (en) DEVICE FOR CONTROLLING THE EXHAUST GAS RECYCLING IN AN INTERNAL COMBUSTION ENGINE
DE19640403A1 (en) Control of motor vehicle IC engine with direct fuel injection
EP1317617B1 (en) Method and electronic control device for diagnosing the mixture production in an internal combustion engine
EP2029872A1 (en) Method for operating an internal combustion engine
WO2008009499A1 (en) Method and device for the diagnosis of the cylinder-selective uneven distribution of a fuel-air mixture fed to the cylinders of an internal combustion engine
DE10239065A1 (en) Four-stroke internal combustion engine operating method, involves controlling combustion in operating ranges of engine, combustion being independent of engine torque
DE102006020675A1 (en) Method for lambda and torque control of an internal combustion engine and program algorithm
EP1250525B1 (en) Method and device for controlling an internal combustion engine
DE3217287A1 (en) EXHAUST GAS RECIRCULATION CONTROL SYSTEM FOR COMBUSTION ENGINES
DE19938037A1 (en) Diagnostic system for an engine
DE112019002741T9 (en) Control device and control method for an internal combustion engine
DE10046597B4 (en) Control system for direct injection engines
DE19937095B4 (en) A control system for a cylinder injection type internal combustion engine having an exhaust gas recirculation feedback control
EP1315630B1 (en) Method for diagnosing a tank ventilation valve and electronic control device
EP1317610B1 (en) Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation
WO2000028200A1 (en) METHOD FOR DETERMINING THE NOx CRUDE EMISSION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
DE10120653A1 (en) Fast transient speed management for spark-ignited engines with direct fuel injection (DISI)
DE19818836A1 (en) Fuel injection control device for a cylinder injection internal combustion engine
DE19522659C2 (en) Fuel delivery system and method for an internal combustion engine
DE10033946B4 (en) Fuel injection control system for a direct injection internal combustion engine
DE10064000A1 (en) Hybrid control process for internal combustion engines involves establishing required value for operating parameter on basis of actual engine operating state
DE19753450A1 (en) Combustion engine brake vacuum servo low absolute pressure control device
DE3742909A1 (en) ELECTRONIC CONTROL DEVICE FOR COMBUSTION ENGINES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030404

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50110890

Country of ref document: DE

Date of ref document: 20061012

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070212

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060830

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060903

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20060930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060903

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140923

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140917

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161125

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110890

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404