EP0374505B1 - Metallizing process - Google Patents

Metallizing process Download PDF

Info

Publication number
EP0374505B1
EP0374505B1 EP89121600A EP89121600A EP0374505B1 EP 0374505 B1 EP0374505 B1 EP 0374505B1 EP 89121600 A EP89121600 A EP 89121600A EP 89121600 A EP89121600 A EP 89121600A EP 0374505 B1 EP0374505 B1 EP 0374505B1
Authority
EP
European Patent Office
Prior art keywords
layer
metal
catalyst layer
radiation
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89121600A
Other languages
German (de)
French (fr)
Other versions
EP0374505A3 (en
EP0374505A2 (en
Inventor
Hilmar Dr. Esrom
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP0374505A2 publication Critical patent/EP0374505A2/en
Publication of EP0374505A3 publication Critical patent/EP0374505A3/en
Application granted granted Critical
Publication of EP0374505B1 publication Critical patent/EP0374505B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas

Definitions

  • the invention relates to a method for metallizing substrates by means of UV radiation according to the preamble of patent claim 1.
  • Such a method is preferably used to form circuits on a substrate, for which the generation of structured metallic layers on the substrate is required.
  • circuits have been made by physical vapor deposition using masks.
  • Such methods are complex since they have to be carried out in a vacuum and only allow structures with a thickness of less than 5 ⁇ m.
  • structured metal layers for circuits can also be produced by means of chemical processes. For this, closed metallic layers are applied to the substrate. The parts of the layer that are not required for switching are then removed by chemical etching. However, this is associated with environmentally harmful process steps.
  • EP 0 349 946 discloses a method for metallizing substrate surfaces made of organic or inorganic materials.
  • the substrate surface is coated with a solution of palladium chloride, cyclopentadienylpalladium allyl or cyclopentadienylpalladium chloride and then irradiated with UV radiation which has a wavelength between 60 and 320 nm (inventor: Dr.Esrom, published on January 10, 1990).
  • EP-A 349 882 describes a process for the metallization of substrates made of organic or inorganic materials. For this purpose, a powder of a metal acetate, a metal acetyl acetonate or metal formate is applied to the substrate surface. This layer is then irradiated with UV radiation with a wavelength between 100 and 360 nm. The powder is converted into a metallic layer (inventor: Dr.Esrom et al, published on January 10, 1990).
  • the object of the invention is to demonstrate a method with which metal oxide layers on substrates can be partially or completely converted into metal layers, and which is also suitable for converting metal layers completely or partially into metal oxide layers.
  • the layer applied to the substrate can be formed from a metal or a metal oxide.
  • a metal or a metal oxide For the formation of structured metal layers, depending on whether the layer consists of a metal or a metal oxide, the same is passivated or activated in some areas. If the layer is made of a metal, it is passivated at the points where no further metal layers are to be applied. This is done by means of UV radiation in a gas atmosphere, the irradiated areas being oxidized, nitrided or carbonated. If the layer on the substrate is a metal oxide layer, it is activated at the points at which a metal layer is to be applied.
  • FIG. 1 shows a flat substrate 1 with a rectangular cross section, on the surface of which a metallic catalyst layer 2 is to be deposited.
  • the substrate 1 is made of aluminum oxide (Al2O3) in the embodiment shown here.
  • the metallic catalyst layer 2 can also be applied to other substrates (not shown here) made of an organic or inorganic material.
  • the substrates used can have any geometric shape, but preferably thin plates are used which are made of aluminum nitride, borosilicate glass, Polyamide, rubber, paper or cardboard as well as made of ceramic-filled or glass-fiber reinforced fluoroplastics.
  • a powdered organometallic compound or salt-like metal compound or a solution which contains one of these compounds is applied to the cleaned surface of the substrate 1 . Then the applied layer 2 is irradiated with a UV high-power lamp.
  • the catalyst layer 2 can also be applied by vapor deposition, sputtering, by using the CVD method or by means of laser CVD. Instead of a catalyst layer 2 made of metal, a catalyst layer 2 made of a metal oxide can also be applied. Platinum, palladium, copper, gold, cobalt, silver, nickel and erbium are preferably used as metals. If the catalyst layer 2 is formed by a metal oxide, oxides of the above are preferred.
  • the catalyst layer 2 is passivated or activated. If the catalyst layer 2 is formed by a metal, the areas on which no further layer is to be applied are passivated.
  • This passivation is carried out by irradiating the catalyst layer 2 with UV photons.
  • the passivation can be carried out by oxidation, nitration or carbonation of the catalyst layer 2 in the desired areas.
  • the radiation is carried out in an oxygen atmosphere or a carbon or nitrogen atmosphere.
  • a mask 5 is arranged between the latter and a UV source 4 arranged at a defined distance above the catalyst surface 2S. If necessary, the mask 5 can also be placed directly on the catalyst surface 2S.
  • the mask 5 is arranged approximately in the middle between the UV source 4 and the catalyst layer 2.
  • the mask 5 is provided with passages 5D. These are arranged exactly where the catalyst layer 2 is to be passivated.
  • the targeted irradiation of the catalyst layer 2 means that the catalyst layer 2 is completely passivated in the regions 2P after a defined time.
  • the region 2A of the catalyst layer 2 to which at least one further layer is to be applied must be activated.
  • a UV source 4 is also arranged above the catalyst layer 2 for activation.
  • the catalyst layer 2 is irradiated exactly where the active regions 2A are to be formed. The radiation takes place in the vicinity of a hydrogen-containing gas. Ammonia (NH3), hydrogen chloride (HCl), hydrogen fluoride (HF) or other hydrogen-containing gas mixtures are suitable for this.
  • a high-power radiator as described in EP-OS 0 254 111 can be used as the UV source 4.
  • the UV high-performance lamp is provided with an inert gas filling made of argon, it is able to generate UV radiation in the wavelength range between 107 and 165 nm. With the help of suitable gas mixtures of noble gases and halogens, UV radiation with a wavelength between 170 and 360 nm be generated.
  • a high-power UV lamp with a xenon filling is preferably used, which generates a wavelength of 172 nm. It is also possible to use a frequency-multiplied laser, for example an argoion laser, a dye laser or conventional UV lamps.
  • UV high-power lamp described in EP-OS 0 254 111
  • a suitable choice of the wavelength of the UV emitter which is achieved by a suitable gas filling, it is possible to photolytically cleave molecules such as oxygen, ammonia, chlorine, fluorine, hydrogen chloride, hydrogen fluoride and the extremely reactive radicals O, NH2, H, To produce Cl, F, which bring about the activation or passivation of the catalyst layer 2.
  • this UV high-power radiator can also be cylindrical, so that a catalyst layer (not shown here), which is applied to the inner surface of a cylinder (not shown here), can be irradiated through a likewise cylindrical mask (not shown here) .
  • a catalyst layer (not shown here)
  • the catalyst layer is applied to the outer surface of a cylinder, irradiation by a cylindrical UV high-power lamp is also possible.
  • the cylindrical substrate with the catalyst layer on its surface is arranged concentrically in the cylindrical high-power radiator.
  • the high-power radiator can be moved along the catalyst layer in both cases. The same applies to a flat substrate. This enables the assembly line production of substrates with metallized surfaces without any problems.
  • the coating of the activated regions 2A of the catalyst layer 2 can be carried out. This is possible, for example, by electroless metallization in wet chemical baths. By immersing the catalyst layer 2 in such baths, it is possible to apply a further metal layer to the active areas of the catalyst layer 2. Metallic layers made of platinum, copper, palladium, nickel, iron or silver can be applied with the help of wet chemical baths. Furthermore, there is the possibility of applying resistance layers made of nickel or nickel phosphide to the active regions 2A of the catalyst layer 2.
  • Magnetic layers in the form of cobalt, cobalt-nickel-iron and phosphorus compounds (CoNiFeP), copper-nickel-phosphorus compounds (CuNiP), and cobalt-phosphorus-silver compounds (CoPAg ) are applied to the catalyst layer.
  • the above layers can be applied as thin films with a thickness between 10 Dicke2 and 1 ⁇ m. It is also possible to apply much thicker layers between 1 and 30 ⁇ m.
  • galvanic coating of the catalyst layer 2 is also possible.
  • the metallic catalyst layer 2 is applied as shown in FIG. 1 and explained in the associated description. Then, by irradiating areas 2P of the catalyst layer 2 passivated them. The passivation takes place in the same way as the passivation of the catalyst layer 2 shown in FIG. 1, but not over the entire thickness, but only in the surface area.
  • the catalyst layer is preferably applied to a thickness of 10-2 to 1.0 ⁇ m, but only 0.1 ⁇ m of this layer is passivated.
  • the catalyst layer 2 is then used as an electrode and connected to the negative pole of a voltage source (not shown here).
  • the metallic layers 3 applied to the catalyst layer 2 can be passivated in regions and further coated in the same way as described above.

Description

Erfindung bezieht sich auf ein Verfahren zur Metallisierung von Substraten mittels UV-Strahlung gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method for metallizing substrates by means of UV radiation according to the preamble of patent claim 1.

Ein solches Verfahren kommt vorzugsweise zur Ausbildung von Schaltungen auf einem Substrat zur Anwendung, wofür die Erzeugung von strukturierten metallischen Schichten auf dem Substrat erforderlich ist. Bis jetzt werden solche Schaltungen durch physikalisches Aufdampfen mit Hilfe von Masken hergestellt. Solche Verfahren sind aufwendig, da sie im Vakuum durchgeführt werden müssen und nur Strukturen von einer Dicke unterhalb von 5 µm erlauben. Ferner können solche strukturierten Metallschichten für Schaltungen mittels chemischer verfahren erzeugt werden. Hierfür werden geschlossene metallische Schichten auf das Substrat aufgetragen. Anschließend werden die für Schaltung nicht erforderlichen Schichtenteile durch chemisches Ätzen abgetragen. Dies ist jedoch mit umweltbelastenden Verfahrensschritten verbunden.Such a method is preferably used to form circuits on a substrate, for which the generation of structured metallic layers on the substrate is required. Until now, such circuits have been made by physical vapor deposition using masks. Such methods are complex since they have to be carried out in a vacuum and only allow structures with a thickness of less than 5 μm. Such structured metal layers for circuits can also be produced by means of chemical processes. For this, closed metallic layers are applied to the substrate. The parts of the layer that are not required for switching are then removed by chemical etching. However, this is associated with environmentally harmful process steps.

Aus der EP 0 349 946 ist ein Verfahren zum Metallisieren von Substratoberflächen aus organischen oder anorganischen Werkstoffen bekannt. Hierfür wird die Substratoberfläche mit einer Lösung aus Palladiumchlorid, Cyclopentadienylpalladiumallyl oder Cyclopentadienylpalladiumchlorid beschichtet und anschließend mit UV-Strahlung bestrahlt, die eine Wellenlänge zwischen 60 und 320 nm aufweist (Erfinder:Dr.Esrom, Veröffentlicht am 10.01.90).EP 0 349 946 discloses a method for metallizing substrate surfaces made of organic or inorganic materials. For this purpose, the substrate surface is coated with a solution of palladium chloride, cyclopentadienylpalladium allyl or cyclopentadienylpalladium chloride and then irradiated with UV radiation which has a wavelength between 60 and 320 nm (inventor: Dr.Esrom, published on January 10, 1990).

In der EP-A 349 882 ist ein Verfahren zur Metallisierung von Substraten aus organischen oder anorganischen Werkstoffen beschrieben. Hierfür wird ein Pulver eines Metallacetats, eines Metallacethylacetonats oder Metallformiat auf die Substratoberfläche aufgetragen. Anschließend wird diese Schicht mit UV-Strahlung einer Wellenlänge zwischen 100 und 360 nm bestrahlt. Dabei wird das Pulver in eine metallische Schicht umgesetzt (Erfinder: Dr.Esrom et al, Veröffentlicht am 10.01.90).EP-A 349 882 describes a process for the metallization of substrates made of organic or inorganic materials. For this purpose, a powder of a metal acetate, a metal acetyl acetonate or metal formate is applied to the substrate surface. This layer is then irradiated with UV radiation with a wavelength between 100 and 360 nm. The powder is converted into a metallic layer (inventor: Dr.Esrom et al, published on January 10, 1990).

In dem J. Electrochemic, Soc. 123(3), 1976, Seiten 348 bis 351 ist ein Verfahren beschrieben, bei dem auf einem Substrat mit Hilfe eines Sensibilisators Nickelphosphid abgeschieden wird. Die Abscheidung kann mit Hilfe von UV-Strahlung durch Passivierung des Sensibilisators beendet werden.In J. Electrochemic, Soc. 123 (3), 1976, pages 348 to 351 describes a method in which nickel phosphide is deposited on a substrate with the aid of a sensitizer. The deposition can be carried out with the help of UV radiation Passivation of the sensitizer should be stopped.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren aufzuzeigen, mit dem Metalloxidschichten auf Substraten teilweise oder vollständig in Metallschichten umgesetzt werden können, und das ebenso geeignet ist, Metallschichten vollständig oder teilweise in Metalloxidschichten umzuwandeln.The object of the invention is to demonstrate a method with which metal oxide layers on substrates can be partially or completely converted into metal layers, and which is also suitable for converting metal layers completely or partially into metal oxide layers.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Weitere vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen 2-5 beansprucht. Die auf das Substrat aufgetragene Schicht kann aus einem Metall oder einem Metalloxid gebildet werden. Für das Ausbilden strukturierter Metallschichten wird je nach dem, ob die Schicht aus einem Metall oder einem Metalloxid besteht, dieselbe bereichsweise passiviert oder aktiviert. Ist die Schicht aus einem Metall gefertigt, so wird sie an den Stellen, an denen keine weiteren Metallschichten aufgetragen werden sollen, passiviert. Dies erfolgt mittels UV-Strahlung in einer Gasatmosphäre, wobei die bestrahlten Bereiche oxidiert, nitriert oder carboniert werden. Ist die Schicht auf dem Substrat eine Metalloxidschicht, so wird sie an den Stellen, an denen eine Metallschicht aufgetragen werden soll, aktiviert.This object is achieved by the features of patent claim 1. Further advantageous embodiments of the invention are claimed in dependent claims 2-5. The layer applied to the substrate can be formed from a metal or a metal oxide. For the formation of structured metal layers, depending on whether the layer consists of a metal or a metal oxide, the same is passivated or activated in some areas. If the layer is made of a metal, it is passivated at the points where no further metal layers are to be applied. This is done by means of UV radiation in a gas atmosphere, the irradiated areas being oxidized, nitrided or carbonated. If the layer on the substrate is a metal oxide layer, it is activated at the points at which a metal layer is to be applied.

Dies geschieht mit Hilfe von UV-Strahlung in der Umgebung eines wasserstoffhaltigen Gases. Nach dem die auf dem Substrat befindliche Schicht behandelt ist, können weitere Schichten aufgetragen werden. Dies kann beispielsweise durch eine stromlose Beschichtung erfolgen. Unter Anwendung von naßchemischen Bädern können auf die aktivierten Bereiche dieser Schicht metallische Schichten, elektrische Widerstandsschichten sowie magnetische Schichten aufgetragen werden. Erfindungsgemäß besteht auch die Möglichkeit einer elektrolytischen Beschichtung der metallischen Oberflächenbereiche der Substratbeschichtung. Die nicht metallischen Bereiche dieser Schicht können bei Bedarf bis zur Substratoberfläche hin abgeätzt werden. Hierfür werden vorzugsweise ebenfalls trockene Verfahren mit Lasern in geeigneter Atmosphäre angewendet.This is done with the help of UV radiation in the vicinity of a hydrogen-containing gas. After the layer on the substrate has been treated, further layers can be applied. This can be done, for example, by an electroless coating. Using wet chemical baths, metallic layers, electrical resistance layers and magnetic layers can be applied to the activated areas of this layer. According to the invention there is also the possibility of an electrolytic coating of the metallic surface areas of the substrate coating. The non-metallic areas of this layer can be etched down to the substrate surface if necessary. Dry methods with lasers in a suitable atmosphere are also preferably used for this.

Weitere erfindungswesentliche Merkmale sind in den Unteransprüchen gekennzeichnet.Further features essential to the invention are characterized in the subclaims.

Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert.The invention is explained in more detail below with reference to drawings.

Es zeigen:

Fig. 1
Ein Substrat, das mit einer Katalysatorschicht überzogen ist,
Fig. 2
eine Variante der in Figur 1 dargestellten Anordnung,
Fig. 3
das in Fig. 1 gezeigte Substrat mit einer zusätzlich auf die Katalysatorschicht aufgetragenen zweiten Schicht,
Fig. 4
das in Fig. 2 dargestellte Substrat mit einer weiteren Schicht auf der Katalysatorschicht,
Fig. 5
ein weiteres beschichtetes Substrat,
Fig. 6
das in Fig. 5 gezeigte fertiggestellte Substrat mit Beschichtung.
Show it:
Fig. 1
A substrate covered with a layer of catalyst
Fig. 2
a variant of the arrangement shown in Figure 1,
Fig. 3
1 with a second layer additionally applied to the catalyst layer,
Fig. 4
2 with a further layer on the catalyst layer,
Fig. 5
another coated substrate,
Fig. 6
the finished substrate with coating shown in FIG. 5.

Figur 1 zeigt ein flächiges Substrat 1, mit rechteckigem Querschnitt, auf dessen Oberfläche eine metallische Katalysatorschicht 2 abgeschieden werden soll. Das Substrat 1 ist bei dem hier dargestellten Ausführungsbeispiel aus Aluminiumoxid (Al₂O₃) gefertigt. Die metallische Katalysatorschicht 2 kann jedoch auch auf anderen Substraten (hier nicht dargestellt) aus einem organischen oder anorganischen Werkstoff aufgetragen werden. Die verwendeten Substrate können jede beliebige geometrische Form aufweisen, vorzugsweise werden jedoch dünne Platten verwendet, die aus Aluminiumnitrid, Borsilikatglas, Polyamid, Gummi, Papier oder Pappe sowie aus keramisch gefüllten oder glasgewebeverstärkten Fluorkunststoffen hergestellt sind. Auf die gereinigte Oberfläche des Substrats 1 wird, wie in den Dokumenten EP-A-0 349 946 und EP-A-0 349 882 beschrieben, eine pulverförmige metallorganische Verbindung oder salzartige Metallverbindung, bzw. eine Lösung, welche eine dieser Verbindungen enthält, aufgetragen. Anschließend wird die aufgetragene Schicht 2 mit einem UV-Hochleistungsstrahler bestrahlt.FIG. 1 shows a flat substrate 1 with a rectangular cross section, on the surface of which a metallic catalyst layer 2 is to be deposited. The substrate 1 is made of aluminum oxide (Al₂O₃) in the embodiment shown here. However, the metallic catalyst layer 2 can also be applied to other substrates (not shown here) made of an organic or inorganic material. The substrates used can have any geometric shape, but preferably thin plates are used which are made of aluminum nitride, borosilicate glass, Polyamide, rubber, paper or cardboard as well as made of ceramic-filled or glass-fiber reinforced fluoroplastics. As described in documents EP-A-0 349 946 and EP-A-0 349 882, a powdered organometallic compound or salt-like metal compound or a solution which contains one of these compounds is applied to the cleaned surface of the substrate 1 . Then the applied layer 2 is irradiated with a UV high-power lamp.

Hierdurch wird die metallorganische Verbindung bzw. salzartige Verbindung unter gleichzeitiger Bildung einer metallischen Schicht zersetzt. Die Katalysatorschicht 2 kann auch durch Aufdampfen, Sputtern, durch Anwendung des CVD-Verfahrens oder mittels Laser-CVD aufgetragen werden. Anstelle einer Katalysatorschicht 2 aus Metall kann auch eine Katalysatorschicht 2 aus einem Metalloxid aufgetragen werden. Als Metalle werden bevorzugt Platin, Palladium, Kupfer, Gold, Kobalt, Silber, Nickel und Erbium verwendet. Wird die Katalysatorschicht 2 durch ein Metalloxid gebildet, so werden bevorzugt Oxide dieser o.g.As a result, the organometallic compound or salt-like compound is decomposed with the simultaneous formation of a metallic layer. The catalyst layer 2 can also be applied by vapor deposition, sputtering, by using the CVD method or by means of laser CVD. Instead of a catalyst layer 2 made of metal, a catalyst layer 2 made of a metal oxide can also be applied. Platinum, palladium, copper, gold, cobalt, silver, nickel and erbium are preferably used as metals. If the catalyst layer 2 is formed by a metal oxide, oxides of the above are preferred.

Metalle für die Ausbildung verwendet. Um zu Erreichen, daß auf bestimmte Bereiche der Katalysatorschicht 2 eine weitere Schicht aufgetragen werden kann, während andere Bereiche der Katalysatorschicht 2 frei bleiben, wird eine Passivierung bzw. Aktivierung der Katalysatorschicht 2 vorgenommen. Wird die Katalysatorschicht 2 durch ein Metall gebildet, so werden die Bereiche, auf denen keine weitere Schicht aufzutragen ist, passiviert.Metals used for training. In order to ensure that a further layer can be applied to certain areas of the catalyst layer 2, while other areas of the catalyst layer 2 remain free, the catalyst layer 2 is passivated or activated. If the catalyst layer 2 is formed by a metal, the areas on which no further layer is to be applied are passivated.

Diese Passivierung erfolgt durch Bestrahlung der Katalysatorschicht 2 mit UV-Photonen. Die Passivierung kann durch Oxidation, Nitration oder Carbonierung der Katalysatorschicht 2 in den gewünschten Bereichen erfolgen.This passivation is carried out by irradiating the catalyst layer 2 with UV photons. The passivation can be carried out by oxidation, nitration or carbonation of the catalyst layer 2 in the desired areas.

Hierzu wird die Bestrahlung in einer Sauerstoffatmosphäre bzw. einer Kohlenstoff- oder Stickstoffatmosphäre durchgeführt. Um eine exakte Abgrenzung der zu spassivierenden Bereiche auf der Katalysatoroberflache 2S zu bewirken, wird zwischen dieser und einer über der Katalysatoroberfläche 2S in definiertem Abstand angeordneten UV-Quelle 4 eine Maske 5 angeordnet. Die Maske 5 kann gegebenenfalls auch unmittelbar auf die Katalysatoroberfläche 2S aufgelegt werden. In Figur 1 ist die Maske 5 etwa mittig zwischen der UV-Quelle 4 uhd der Katalysatorschicht 2 angeordnet. Die Maske 5 ist mit Durchlässen 5D versehen. Diese sind genau da angeordnet, wo die Katalysatorschicht 2 passiviert werden soll. Durch das gezielte Bestrahlen der Katalysatorschicht 2 ist die Katalysatorschicht 2 nach einer definierten Zeit in den Bereichen 2P vollständig passiviert.For this purpose, the radiation is carried out in an oxygen atmosphere or a carbon or nitrogen atmosphere. In order to precisely delimit the areas to be passivated on the catalyst surface 2S effect, a mask 5 is arranged between the latter and a UV source 4 arranged at a defined distance above the catalyst surface 2S. If necessary, the mask 5 can also be placed directly on the catalyst surface 2S. In FIG. 1, the mask 5 is arranged approximately in the middle between the UV source 4 and the catalyst layer 2. The mask 5 is provided with passages 5D. These are arranged exactly where the catalyst layer 2 is to be passivated. The targeted irradiation of the catalyst layer 2 means that the catalyst layer 2 is completely passivated in the regions 2P after a defined time.

Wird die Katalysatorschicht 2 wie in Figur 2 dargestellt, durch ein Metalloxid gebildet, so sind die Bereich 2A der Katalysatorschicht 2 zu aktivieren, auf die mindestens eine weitere Schicht aufgetragen werden soll. Über der Katalysatorschicht 2 wird auch für die Aktivierung eine UV-Quelle 4 angeordnet. Mit Hilfe einer Maske 5, die Durchlässe 5D aufweist, wird die Katalysatorschicht 2 genau dort bestrahlt, wo die aktiven Bereiche 2A ausgebildet werden sollen. Die Bestrahlung erfolgt in der Umgebung eines wasserstoffhaltigen Gases. Hierfür eignen sich Ammoniak (NH₃), Chlorwasserstoff (HCl), Fluorwasserstoff (HF) bzw. andere wasserstoffhaltige Gasgemische.If the catalyst layer 2 is formed by a metal oxide as shown in FIG. 2, then the region 2A of the catalyst layer 2 to which at least one further layer is to be applied must be activated. A UV source 4 is also arranged above the catalyst layer 2 for activation. With the aid of a mask 5, which has passages 5D, the catalyst layer 2 is irradiated exactly where the active regions 2A are to be formed. The radiation takes place in the vicinity of a hydrogen-containing gas. Ammonia (NH₃), hydrogen chloride (HCl), hydrogen fluoride (HF) or other hydrogen-containing gas mixtures are suitable for this.

Als UV-Quelle 4 kann beispielsweise ein Hochleistungsstrahler verwendet werden, wie er in der EP-OS 0 254 111 beschrieben ist. Wird der UV-Hochleistungsstrahler mit einer Edelgasfüllung aus Argon versehen, so ist er in der Lage, UV-Strahlung im Wellenlängenbereich zwischen 107 und 165 nm zu erzeugen. Mit Hilfe geeigneter Gasmischungen aus Edelgasen und Halogenen können UV-Strahlungen mit einer Wellenlänge zwischen 170 und 360 nm erzeugt werden. Vorzugsweise wird ein UV-Hochleistungsstrahler mit einer Xenonfüllung verwendet, der eine Wellenlänge von 172 nm erzeugt. Ferner besteht die Möglichkeit auch einen frequenzvervielfachten Laser, beispielsweise einen Argoionlaser, einen Farbstoff-Laser oder konventionelle UV-Strahler einzusetzen. Bei Verwendung des in der EP-OS 0 254 111 beschriebenen UV-Hochleistungsstrahlers besteht die Möglichkeit, diesen so auszubilden, daß eine zuverlässig arbeitende Photonenquelle zur Verfügung gestellt werden kann, mit der auch ohne zusätzliche Optiken großflächige Substrate flächig beschichtet werden können. Durch geeignete Wahl der Wellenlänge der UV-Strahler, die durch eine geeignete Gasfüllung erzielt wird, ist es möglich, Moleküle, wie Sauerstoff, Ammoniak, Chlor, Fluor, Chlorwasserstoff, Fluorwasserstoff photolytisch zu spalten und die äußerst reaktiven Radikale O, NH₂,H,Cl,F zu erzeugen, welche die Aktivierung bzw. Passivierung der Katalysatorschicht 2 bewirken. Erfindungsgemäß kann dieser UV-Hochleistungsstrahler auch zylinderförmig ausgebildet werden, so daß eine Katalysatorschicht (hier nicht dargestellt), die auf der Innenfläche eines Zylinders (hier nicht dargestellt) aufgetragen ist, durch eine ebenfalls zylinderförmig ausgebildete Maske hierdurch (hier nicht dargestellt) bestrahlt werden kann. Ist die Katalysatorschicht auf der Außenfläche eines Zylinders aufgetragen, so ist die Bestrahlung durch einen zylinderförmigen UV-Hochleistungsstrahler ebenfalls möglich. In diesem Fall wird das zylinderförmige Substrat mit der Katalysatorschicht auf seiner Oberfläche konzentrisch in dem zylinderförmig ausgebildeten Hochleistungsstrahler angeordnet. Der Hochleistungsstrahler kann in beiden genannten Fällen entlang der Katalysatorschicht verfahren werden. Das gleiche gilt für ein flächig ausgebildetes Substrat. Hierdurch ist die Fließbandherstellung von Substraten mit metallisierten Oberflächen problemlos möglich.For example, a high-power radiator as described in EP-OS 0 254 111 can be used as the UV source 4. If the UV high-performance lamp is provided with an inert gas filling made of argon, it is able to generate UV radiation in the wavelength range between 107 and 165 nm. With the help of suitable gas mixtures of noble gases and halogens, UV radiation with a wavelength between 170 and 360 nm be generated. A high-power UV lamp with a xenon filling is preferably used, which generates a wavelength of 172 nm. It is also possible to use a frequency-multiplied laser, for example an argoion laser, a dye laser or conventional UV lamps. When using the UV high-power lamp described in EP-OS 0 254 111, it is possible to design it in such a way that a reliably working photon source can be provided, with which large-area substrates can be coated even without additional optics. By a suitable choice of the wavelength of the UV emitter, which is achieved by a suitable gas filling, it is possible to photolytically cleave molecules such as oxygen, ammonia, chlorine, fluorine, hydrogen chloride, hydrogen fluoride and the extremely reactive radicals O, NH₂, H, To produce Cl, F, which bring about the activation or passivation of the catalyst layer 2. According to the invention, this UV high-power radiator can also be cylindrical, so that a catalyst layer (not shown here), which is applied to the inner surface of a cylinder (not shown here), can be irradiated through a likewise cylindrical mask (not shown here) . If the catalyst layer is applied to the outer surface of a cylinder, irradiation by a cylindrical UV high-power lamp is also possible. In this case, the cylindrical substrate with the catalyst layer on its surface is arranged concentrically in the cylindrical high-power radiator. The high-power radiator can be moved along the catalyst layer in both cases. The same applies to a flat substrate. This enables the assembly line production of substrates with metallized surfaces without any problems.

Nachdem die Aktivierung bzw. Passivierung der Katalysatorschicht 2 abgeschlossen ist, kann die Beschichtung der aktivierten Bereiche 2A der Katalysatorschicht 2 durchgeführt werden. Dies ist beispielsweise durch eine stromlose Metallisierung in naßchemischen Bädern möglich. Durch Eintauchen der Katalysatorschicht 2 in solche Bäder besteht die Möglichkeit, auf die aktiven Bereiche der Katalysatorschicht 2 eine weitere Metallschicht aufzutragen. So können mit Hilfe von naßchemischen Bädern metallische Schichten aus Platin, Kupfer, Paladium, Nickel, Eisen oder Silber aufgetragen werden. Ferner besteht die Möglichkeit, auf die aktiven Bereiche 2A der Katalysatorschicht 2 Widerstandsschichten aus Nickel oder Nickelphosphid aufzutragen. Durch die Anwendung von naßchemischen Bädern können auch magnetische Schichten in Form von Kobalt, Kobalt-Nickel-Eisen- und Phosphor-Verbindungen (CoNiFeP), Kupfer-Nikkel-Phosphor-Verbindungen (CuNiP), und Kobalt-Phosphor-Silber-Verbindungen (CoPAg) auf die Katalysatorschicht aufgetragen werden. Mit Hilfe von naßchemischen Bädern können die o.g. Schichten als dünne Filme mit einer Dicke zwischen 10⁻² und 1µm aufgetragen werden. Das Aufbringen von wesentlich dickeren Schichten zwischen 1 und 30 µm ist ebenfalls möglich. Anstelle der Beschichtung mittels naßchemischer Bäder ist auch die galvanische Beschichtung der Katalysatorschicht 2 möglich. Diese Möglichkeiten sind in den Figuren 5 und 6 dargestellt. Zunächst wird hierfür ein Substrat 1, aus einem Material wie es eingangs beschrieben ist, mit einer 0,3 bis 1µm dicken Katalysatorschicht 2 aus Metall versehen. Das Auftragen der metallischen Katalysatorschicht 2 geschieht wie in Figur 1 dargestellt, und in der zugehörigen Beschreibung erläutert. Anschließend werden durch Bestrahlen der Bereiche 2P der Katalysatorschicht 2 diese passiviert. Die Passivierung erfolgt in gleicher Weise, wie die Passivierung der in Figur 1 dargestellten Katalysatorschicht 2, jedoch nicht über die gesamte Dicke, sondern nur im Oberflächenbereich. Bei einer galvanischen Metallisierung wird vorzugsweise die Katalysatorschicht 10⁻² bis 1,0 µm dick aufgetragen, jedoch nur 0,1 µm dieser Schicht werden passiviert. Anschließend wird die Katalysatorschicht 2 als Elektrode genutzt und mit dem Negativpol einer Spannungsquelle (hier nicht dargestellt) verbunden. Durch Anlegen einer Spannung kann nun auf die aktivierten Bereiche 2A der Katalysatorschicht 2 eine der oben beschriebenen Schichten aus Metall, aus einem magnetischen Material oder aus einem Widerstandsmaterial aufgetragen werden. Wie Figur 6 zeigt, besteht die Möglichkeit, die durch Passivierung markierten Bereiche 2P der Katalysatorschicht 2 anschließend durch Ätzen bis auf die Oberfläche des Substrates 2 abzutragen.After the activation or passivation of the catalyst layer 2 has been completed, the coating of the activated regions 2A of the catalyst layer 2 can be carried out. This is possible, for example, by electroless metallization in wet chemical baths. By immersing the catalyst layer 2 in such baths, it is possible to apply a further metal layer to the active areas of the catalyst layer 2. Metallic layers made of platinum, copper, palladium, nickel, iron or silver can be applied with the help of wet chemical baths. Furthermore, there is the possibility of applying resistance layers made of nickel or nickel phosphide to the active regions 2A of the catalyst layer 2. Magnetic layers in the form of cobalt, cobalt-nickel-iron and phosphorus compounds (CoNiFeP), copper-nickel-phosphorus compounds (CuNiP), and cobalt-phosphorus-silver compounds (CoPAg ) are applied to the catalyst layer. With the help of wet chemical baths, the above layers can be applied as thin films with a thickness between 10 Dicke² and 1µm. It is also possible to apply much thicker layers between 1 and 30 µm. Instead of coating by means of wet chemical baths, galvanic coating of the catalyst layer 2 is also possible. These options are shown in Figures 5 and 6. First, a substrate 1 made of a material as described at the beginning is provided with a 0.3 to 1 μm thick catalyst layer 2 made of metal. The metallic catalyst layer 2 is applied as shown in FIG. 1 and explained in the associated description. Then, by irradiating areas 2P of the catalyst layer 2 passivated them. The passivation takes place in the same way as the passivation of the catalyst layer 2 shown in FIG. 1, but not over the entire thickness, but only in the surface area. In the case of galvanic metallization, the catalyst layer is preferably applied to a thickness of 10-2 to 1.0 μm, but only 0.1 μm of this layer is passivated. The catalyst layer 2 is then used as an electrode and connected to the negative pole of a voltage source (not shown here). By applying a voltage, one of the above-described layers made of metal, a magnetic material or a resistance material can now be applied to the activated regions 2A of the catalyst layer 2. As FIG. 6 shows, it is possible to subsequently remove the areas 2P of the catalyst layer 2 marked by passivation by etching down to the surface of the substrate 2.

Erfindungsgemäß können die auf die Katalysatorschicht 2 aufgebrachten metallischen Schichten 3 auf die gleiche Weise, wie oben beschrieben, bereichsweise passiviert und weiter beschichtet werden.According to the invention, the metallic layers 3 applied to the catalyst layer 2 can be passivated in regions and further coated in the same way as described above.

Es ist also möglich, mehrere Schichten übereinander aufzubauen. Bei dem in Figur 6 dargestellten Substrat 1 ist dies auch elektrolytisch möglich.It is therefore possible to build up several layers on top of each other. In the substrate 1 shown in FIG. 6, this is also possible electrolytically.

Claims (5)

  1. Process for structuring metallic layers from an organic or inorganic material by means of UV-radiation, characterised by local activation of a layer (2) consisting of a metallic oxide; by local reduction of a layer (2) to the metal by means of UV-radiation in the region of a hydrogen-containing gas in the form of ammonia, hydrogen chloride or hydrogen fluoride, or local passivation of a layer (2) consisting of a metal; by local oxidation, nitration or carbonization of the metal by means of UV-radiation in an atmosphere containing oxygen, nitrogen or carbon; and by subsequent coating of the activated areas (2A) of the layer (2) with a further layer (3) of a metal, a material acting as an electrical resistance, or a magnetic material.
  2. Process for structuring metallic layers from an organic or inorganic material by means of UV-radiation according to claim 1, characterised in that the layer (2) applied to the substrate (1) has a thickness of between 10⁻² and 1 µm and is composed of platinum, palladium, gold cobalt, silver, nickel or erbium, or of oxides of these metals.
  3. Process according to one of claims 1 or 2, characterised in that local activation or passivation of the layer (2) is effected by optical means or by the arrangement of a screen (5) with openings (5D) between the UV-source (4) and the layer (2).
  4. Process according to one of claims 1 to 3, characterised in that a layer (3) of palladium, copper, platinum, nickel, iron, gold, nickel phosphide, CuNiFeP, CuNiP, or CuPAg is applied to the activated regions (2A) of the layer (2).
  5. Process according to one of claims 1 to 4, characterised in that the applied layer (3) is likewise partly changed into a layer of metal or metallic oxide.
EP89121600A 1988-11-29 1989-11-23 Metallizing process Expired - Lifetime EP0374505B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3840199 1988-11-29
DE3840199A DE3840199C2 (en) 1988-11-29 1988-11-29 Process for structuring metal layers that are catalytically active in electroless metallization by means of UV radiation

Publications (3)

Publication Number Publication Date
EP0374505A2 EP0374505A2 (en) 1990-06-27
EP0374505A3 EP0374505A3 (en) 1990-07-04
EP0374505B1 true EP0374505B1 (en) 1994-04-06

Family

ID=6368086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89121600A Expired - Lifetime EP0374505B1 (en) 1988-11-29 1989-11-23 Metallizing process

Country Status (3)

Country Link
EP (1) EP0374505B1 (en)
JP (1) JPH03122287A (en)
DE (2) DE3840199C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507769B1 (en) 2013-10-10 2015-04-07 경기대학교 산학협력단 Reduction Method of Oxide and Apparatus for Reducing Oxide Using the Same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4035080A1 (en) * 1990-11-05 1992-05-07 Abb Patent Gmbh METHOD AND DEVICE FOR PRODUCING PARTIAL METAL LAYERS
JP3259310B2 (en) 1992-02-25 2002-02-25 株式会社デンソー Plating method and tubular coil obtained by this plating method
JP3153682B2 (en) * 1993-08-26 2001-04-09 松下電工株式会社 Circuit board manufacturing method
US6602653B1 (en) 2000-08-25 2003-08-05 Micron Technology, Inc. Conductive material patterning methods
US6451685B1 (en) 2001-02-05 2002-09-17 Micron Technology, Inc. Method for multilevel copper interconnects for ultra large scale integration
CN110091069B (en) * 2019-04-09 2021-09-24 大族激光科技产业集团股份有限公司 Laser deplating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349946A1 (en) * 1988-07-02 1990-01-10 Heraeus Noblelight GmbH Process for manufacturing metallic layers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993491A (en) * 1973-12-07 1976-11-23 Surface Technology, Inc. Electroless plating
US4241105A (en) * 1979-12-17 1980-12-23 Western Electric Company, Inc. Method of plating the surface of a substrate
DE3008434A1 (en) * 1980-03-03 1981-09-17 Schering Ag Berlin Und Bergkamen, 1000 Berlin METHOD FOR SELECTIVE CHEMICAL AND / OR GALVANIC DEPOSITION OF METAL COATINGS, ESPECIALLY FOR THE PRODUCTION OF PRINTED CIRCUITS
US4304849A (en) * 1980-05-16 1981-12-08 Western Electric Co., Inc. Methods of depositing metallic copper on substrates
US4410569A (en) * 1980-06-13 1983-10-18 Minnesota Mining And Manufacturing Company Palladium (II) bis(hexafluoroacetylacetonate), adducts derived therefrom and uses thereof
DE3337856A1 (en) * 1983-10-18 1985-04-25 Bayer Ag, 5090 Leverkusen METHOD FOR ACTIVATING SUBSTRATES FOR CURRENT METALIZATION
EP0167326B1 (en) * 1984-06-29 1989-11-15 Hitachi Chemical Co., Ltd. Sensitizing agent for electroless plating and method for sensitizing substrate with the agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349946A1 (en) * 1988-07-02 1990-01-10 Heraeus Noblelight GmbH Process for manufacturing metallic layers
EP0349882A1 (en) * 1988-07-02 1990-01-10 Heraeus Noblelight GmbH Process for manufacturing metal layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507769B1 (en) 2013-10-10 2015-04-07 경기대학교 산학협력단 Reduction Method of Oxide and Apparatus for Reducing Oxide Using the Same

Also Published As

Publication number Publication date
DE58907402D1 (en) 1994-05-11
DE3840199C2 (en) 1994-12-01
DE3840199A1 (en) 1990-05-31
JPH03122287A (en) 1991-05-24
EP0374505A3 (en) 1990-07-04
EP0374505A2 (en) 1990-06-27

Similar Documents

Publication Publication Date Title
DE3826046C2 (en)
DE4447897B4 (en) Process for the production of printed circuit boards
DE3921600C1 (en)
EP1987543A1 (en) Method for producing a metal contact structure of a solar cell
EP0643153B1 (en) Process for the fabrication of structured metallizations on surfaces
EP0374505B1 (en) Metallizing process
DE4034834C2 (en) Process for the production of metallic layers on substrates and use of the layers
DE3942472A1 (en) COATING PROCESS
DE3943356A1 (en) METHOD FOR FORMING A MASK FOR X-RAY LITHOGRAPHY
DE2643811C2 (en) Lithography mask with a membrane permeable to radiation and process for its manufacture
EP0966186B1 (en) Process for manufacturing a metal-ceramic substrate
EP0349882B1 (en) Process for manufacturing metal layers
EP0446835B1 (en) Galvanizing process
DE3714920C1 (en) Method for producing a thin-layer solar cell arrangement
DE2108327A1 (en) Method for improving the adhesion of a masking pattern to a metallic surface
EP1487759A1 (en) Method for the production of a metal-ceramic substrate, preferably a copper-ceramic substrate
DE2540301C2 (en) Method for manufacturing a semiconductor device having a conductor pattern
DE4042220C2 (en) Process for the production of all-over or partial gold layers
DE2012031A1 (en) Process for the production of chromium or molybdenum contact metal layers in semiconductor components
DE4343843A1 (en) Structured metallisation prodn. on substrate surface
DE19926775C2 (en) Process for microstructuring a plastic
DE102021126402B4 (en) Process for manufacturing electrically conductive structures
DE3938669A1 (en) METHOD FOR BACTERIZING A SURFACE TO BE METALLIZED
DE4113525A1 (en) Metallising organic and inorganic fibrous bodies - using metallo-organic cpd. in soln. which is decomposed by UV to deposit metal
DE3639079A1 (en) METHOD FOR DEPOSITING METAL PATTERNS FOR USE IN INTEGRATED CIRCUITS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR IT LI SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR IT LI SE

17P Request for examination filed

Effective date: 19901210

17Q First examination report despatched

Effective date: 19920224

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

REF Corresponds to:

Ref document number: 58907402

Country of ref document: DE

Date of ref document: 19940511

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 89121600.4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971106

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980223

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

EUG Se: european patent has lapsed

Ref document number: 89121600.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051123