EP0364765A2 - Substituierte 1,3,5-Triazintrione, Verfahren zu ihrer Herstellung und ihre Verwendung gegen parasitäre Protozoen - Google Patents

Substituierte 1,3,5-Triazintrione, Verfahren zu ihrer Herstellung und ihre Verwendung gegen parasitäre Protozoen Download PDF

Info

Publication number
EP0364765A2
EP0364765A2 EP89117614A EP89117614A EP0364765A2 EP 0364765 A2 EP0364765 A2 EP 0364765A2 EP 89117614 A EP89117614 A EP 89117614A EP 89117614 A EP89117614 A EP 89117614A EP 0364765 A2 EP0364765 A2 EP 0364765A2
Authority
EP
European Patent Office
Prior art keywords
formula
compounds
alkyl
meanings given
optionally substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89117614A
Other languages
English (en)
French (fr)
Other versions
EP0364765A3 (de
Inventor
Werner Dr. Lindner
Axel Prof. Dr. Haberkorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority claimed from HU895241A external-priority patent/HU203328B/hu
Publication of EP0364765A2 publication Critical patent/EP0364765A2/de
Publication of EP0364765A3 publication Critical patent/EP0364765A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/37Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by etherified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/42Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms
    • C07C255/43Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/12Derivatives of isocyanic acid having isocyanate groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/44Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
    • C07C317/48Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
    • C07C317/50Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • C07C323/59Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton with acylated amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/60Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters

Definitions

  • the present invention relates to new substituted 1,3,5-triazinetriones, processes for their preparation, intermediates for carrying out these processes and their use against parasitic protozoa.
  • the compounds of the formula (I) and their salts with acids or bases are outstandingly suitable for combating parasitic protozoa.
  • Preferred compounds of formula (I) are compounds in which R1 for optionally substituted by halogen, alkyl, cyano, nitro, O-alkyl, S-alkyl, haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulfinyl, haloalkylsulfonyl, substituted thiazolyl, oxazolyl, benzthiazolyl, benzoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, benzimidazolyl, phenyl or naphthyl, R2 represents H or alkyl, R3 represents one or more, identical or different radicals from the group halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio or cyano, R4 represents hydrogen, alkyl, alkenyl or
  • R1 represents phenyl, pyridyl, benzthiazolyl, which is substituted by one or more identical or different radicals from the group halogen, C1 ⁇ 4-alkyl, C1 ⁇ 4-haloalkyl, C1 ⁇ 4-alkoxy, C1 ⁇ 4-alkylthio, C1 ⁇ 4- Haloalkoxy, C1 ⁇ 4-haloalkylthio, cyano, C1 ⁇ 4-alkoxycarbonyl, C1 ⁇ 4-alkylsulfinyl, C1 ⁇ 4-alkylsulfonyl, C1 ⁇ 4-haloalkylsulfinyl, C1 ⁇ 4-haloalkylsulfonyl, R2 represents H or C1 ⁇ 4-alkyl, R3 represents one or more identical or different radicals from the group hydrogen, halogen, C1 ⁇ 4-alkyl, C1 ⁇ 4-haloalkyl, R4 represents hydrogen
  • R1 is phenyl, optionally substituted by halogen, in particular chlorine, bromine, fluorine, C1 ⁇ 4-haloalkyl, in particular trifluoromethyl, C1 ⁇ 4-haloalkylthio, in particular trifluoromethylthio, C1 ⁇ 4-haloalkylsulfinyl, in particular trifluoromethylsulfonyl, C1 ⁇ 4-haloalkylsulfonyl, in particular trifluoromethylsulfinyl, C1 ⁇ 4-haloalkoxy, in particular trifluoromethoxy, C1 ⁇ 4-alkyl, in particular methyl, are substituted, R2 is H or C1 ⁇ 4-alkyl, in particular methyl, R3 represents halogen, in particular bromine, chlorine, fluorine, C1 ⁇ 4-alkyl, in particular methyl, haloalkyl, in particular trifluoromethyl, R4 represents C1 ⁇ 4-
  • the substituted carbonyl isocyanates of the formula (III) are known.
  • the reaction is preferably carried out using diluents.
  • inert organic solvents can be used as diluents. These preferably include aliphatic and aromatic, optionally halogenated hydrocarbons, gasoline, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ethers such as diethyl and dibutyl ether, glycol dimethyl ether and diglycol dimethyl ether and tetrahydrofuran, tetrahydrofuran Ketones such as acetone, methyl ethyl, methyl isopropyl and methyl isobutyl ketone, esters such as Methyl acetate and ethyl acetate, nitriles such as. B. acetonitrile and propionitrile, dimethylacetamide and N-methyl-pyrrolidone and dimethyl sulfon
  • the reaction takes place at temperatures between 20 and 150 ° C, preferably between 50 and 120 ° C.
  • the process is carried out by combining equimolar amounts of the compounds of the formulas (II) and (III) in one of the specified diluents and heating them. When the reaction is complete, the mixture is cooled and the precipitated solid is filtered off, washed and dried.
  • process 2a The process is carried out as described under 2a.
  • the diluents used in process 2a are used.
  • process 2 c uses 2,6-dichloro- ⁇ - (4-trifluoromethylthiophenyl) -4-dimethyl-diureido-phenylacetonitrile as the compound of the formula (V) and diethyl carbonate as the compound of the formula (VI), the process can be carried out describe by the following scheme:
  • bases are the alkali metal hydroxides such as sodium hydroxide, alkali metal alcoholates such as sodium ethylate or organic bases such as 1,8-diazabicyclo- [5,4,0] -undec-7-ene (DBU).
  • alkali metal hydroxides such as sodium hydroxide
  • alkali metal alcoholates such as sodium ethylate
  • organic bases such as 1,8-diazabicyclo- [5,4,0] -undec-7-ene (DBU).
  • the process is carried out at temperatures between 10 and 80 ° C, preferably between 20 and 50 ° C, at normal pressure or elevated pressure. It is preferred to work at normal pressure. It can be carried out in bulk or in the presence of a diluent. All inert organic solvents which are also used in carrying out process 2a can be used as diluents.
  • the reaction is carried out by stirring a compound of formula (V) with a compound of formula (VI) in the presence of a base at the indicated reaction temperature.
  • the amount of the compound of the formula In the process of formula 2 d 2,6-dichloro- ⁇ - (4-chlorophenyl) - ⁇ -methyl-4- (3-N-methyl-1,3,5-triazine ) is used as the compound of formula (Ia) -2,4,6- (1H, 3H, 5H) -trione-phenylacetonitrile and methyl iodide as a compound of formula (VII), the process can be described by the following scheme:
  • the compounds of the formula (IV) are known or can be prepared by known methods. Methyl iodide, ethyl bromide should be mentioned in particular.
  • the process is carried out by reacting a compound of formula (Ia) in the presence of a base and a diluent with compounds of formula (IV) puts.
  • All inert organic solvents which also serve to carry out process 2a can be used as diluents.
  • bases The process is carried out in the presence of bases.
  • bases alkali metal hydroxides such as sodium hydroxide, alkali metal alcoholates such as sodium methylate or potassium butanolate, metal hydrides such as sodium hydride or organic bases such as 1,8-diazabicyclo- [5,40] -undec-7-ene (DBU).
  • alkali metal hydroxides such as sodium hydroxide
  • alkali metal alcoholates such as sodium methylate or potassium butanolate
  • metal hydrides such as sodium hydride
  • organic bases such as 1,8-diazabicyclo- [5,40] -undec-7-ene (DBU).
  • the process is carried out at normal pressure and temperatures between 20 and 140 ° C.
  • the reaction is carried out by combining equimolar amounts of the compound of formula (Ia) and base, adding an equimolar amount of the compound of formula (IV) to this mixture and heating to the reaction temperature.
  • the process is carried out by reacting a compound of formula (VIII) with a compound of formula (IX) in an inert solvent. All inert organic solvents which also serve to carry out process 1a can be used as solvents. Pyridine may also be mentioned.
  • the process is carried out at normal or elevated pressure, preferably at normal pressure and at temperatures between 20 and 120 ° C.
  • the reaction is carried out by heating a compound of formula (VIII) with the equimolar amount or optionally an excess of the compound of formula (IX) in a solvent.
  • the process is carried out by heating a compound of formula (X) and a compound of formula (XI), optionally in the presence of a diluent.
  • a compound of formula (X) and a compound of formula (XI)
  • the solvents listed in the preparation of the compounds (I) are used as diluents. Pyridine may also be mentioned.
  • the reaction takes place under normal or elevated pressure at temperatures between 50 and 150 ° C, preferably between 70 and 110 ° C.
  • the compounds are used in equimolar ratios and the product obtained as a solid after the reaction has been filtered off.
  • the process is carried out by reacting a urea of the formula (II), if appropriate in the presence of solvents, first with phosgene and then with ammonia to give the compound of the formula (V).
  • Phosgene can be added in gaseous form or in solution in an equimolar to twice the molar amount to the compound of the formula (II).
  • Ammonia is passed through the reaction mixture in gaseous form until the reaction is complete. It is carried out at temperatures between 10 and 80 ° C, preferably between 20 and 60 ° C. When the reaction has ended, the mixture is cooled and the precipitated product is filtered off.
  • the process is carried out by hydrogenating a compound of formula (XII) in the presence of a noble metal catalyst.
  • the hydrogenation is optionally carried out in the presence of a diluent at normal or elevated pressure.
  • Hydrocarbons, alcohols such as ethanol and ethers such as tetrahydrofuran can preferably be used as solvents.
  • Platinum, palladium, ruthenium, thodium and preferably platinum are used as catalysts. It is carried out at temperatures between 20 and 130 ° C, preferably between 20 and 50 ° C.
  • the catalysts are used in a 0.01% to 5% ratio.
  • reaction of the amines of formula (VIII) with phosgene can take place with or without a diluent.
  • Diluents which may be mentioned are, in particular, aliphatic and aromatic, optionally halogenated hydrocarbons such as pentene, hexane, heptancyclohexane, petroleum ether, gasoline, ligroin, benzene, toluene, methyl chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene, o-dichlorobenzene.
  • halogenated hydrocarbons such as pentene, hexane, heptancyclohexane, petroleum ether, gasoline, ligroin, benzene, toluene, methyl chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene, o-dichlorobenzene.
  • the reaction takes place at -20 - + 80 ° C, preferably at -10 - + 100 ° C. It can be carried out at normal pressure or at elevated pressure.
  • the starting materials are used in equimolar amounts, an excess of phosgene of 2-3 moles per mole of amine of the formula (VIII) is preferred.
  • Acid binders are preferred e.g. B. tertiary amines such as pyridine, dimethylamine.
  • the amines of the formula (VIII) are added to a solution of phosgene and, if appropriate, reacted with further introduction of phosgene.
  • the reaction can also be carried out without a solvent.
  • the process is carried out by reacting a compound of the formula (XIII), if appropriate in the presence of a diluent, with compounds of the formula (XIV).
  • inert organic solvents can be used as diluents.
  • These preferably include aliphatic and aromatic, optionally halogenated hydrocarbons, gasoline, ligroin, benzene, toluene, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, ethers such as diethyl and dibutyl ether, glycol dimethyl ether and diglycoledimethyl ether and tetrahanethane, tetrahane Ketones such as acetone, methyl ethyl, methyl isopropyl and methyl isobutyl ketone, esters such as methyl acetate and ethyl acetate, nitriles such as Acetonitrile and propionitrile, amides such as e.g. Dimethylformamide, dimethylacetamide and N-methyl-pyrroli
  • the reaction is carried out in the presence of inorganic or organic acid acceptors.
  • Alkali metal hydroxides such as sodium and potassium hydroxide
  • alkaline earth hydroxides such as calcium hydroxide
  • alkali carbonates and alcoholates such as sodium and potassium carbonate, sodium and potassium methylate or ethylate
  • metal hydrides such as sodium hydride, furthermore aliphatic, aromatic or heterocyclic amines, for example triethylamine, pyridine, 1 , 5-diazabiccyclo- [4,3,0] non-5-ene (DBN), 1,8-diazabicyclo- [5,4,0] -undec-7-ene (DBU) and 1,4-diazabicyclo - [2,2,2] octane (DABCO).
  • DBN 5-diazabiccyclo- [4,3,0] non-5-ene
  • DBU 1,8-diazabicyclo- [5,4,0] -undec-7-ene
  • DBUCO 1,4-diazabicyclo - [2,2,2]
  • Crown ethers such as 18 crown 6 or quaternary ammonium compounds such as benzyltriethylammonium chloride can be used as catalysts.
  • the reaction takes place at temperatures between 50 and 200 ° C, preferably between 80 and 160 ° C at normal pressure or elevated pressure.
  • the process is carried out by combining equimolar amounts of the compounds of the formulas II and III in one of the specified diluents and heating them.
  • the reaction mixture is acidified with dilute inorganic acid (e.g. hydrochloric acid) and the resulting precipitate is filtered off, washed and dried.
  • dilute inorganic acid e.g. hydrochloric acid
  • the active ingredients are suitable for combating parasitic protozoa which occur in animal husbandry and animal breeding in farm animals, breeding, zoo, laboratory, experimental and hobby animals with favorable warm-blooded toxicity. They are effective against all or individual stages of development of the pests and against resistant and normally sensitive strains. By combating the parasitic protozoa, disease, deaths and reduced performance (for example in the production of meat, milk, wool, hides, eggs, honey, etc.) are to be reduced, so that the use of the active compounds enables more economical and simple animal husbandry.
  • the parasitic protozoa include: Mastigophora (Flagellata) such as Trypanosomatidae such as Trypanosoma b. brucei, Tb gambiense, Tb rhodesiense, T. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica , such as, for example, Trichomonadidae, for example Giardia lamblia, G. canis.
  • Mastigophora Fullata
  • Trypanosomatidae such as Trypanosoma b. brucei, Tb gambiense, Tb rhodesiense, T. congolense, T. cruzi, T. evansi, T. equinum, T. lew
  • Sarcomastigophora such as Entamoebidae e.g. Entamoeba histolytica, Hartmanellidae e.g. Acanthamoeba sp., Hartmanella sp. Apicomplexa (Sporozoa) such as Eimeridae, for example Eimeria acervulina, E. adenoides, E. alabahmensis, E. anatis, E. anseris, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E. canis, E. chinchillae, E. clupearum, E.
  • Entamoebidae e.g. Entamoeba histolytica
  • Hartmanellidae e.g. Acanthamoeba sp.
  • Apicomplexa such as Eimeridae, for example E
  • Toxoplasmadidae for example Toxoplasma gondii, such as Sarcocystidae, for example Sarcocystis bovicanis, S. bovihominis, S. ovicanis, S. ovifelis, S. spec.
  • S. suihominis such as Leucozoidae such as Leucozytozoon simondi, such as Plasmodiidae such as Plasmodium bergheum, P. falcip malariae, P. ovale, P. vivax, P. spec., such as Piroplasmea, for example Babesia argentina, B. bovis, B. canis, B.
  • Theileria spec. such as Adeleina, for example Hepatozoon canis, H. spec .
  • Nosema spec. Pneumocystis carinii and Ciliophora (Ciliata) such as Balantidium coli, Ichthiophthirius spec., Trichodina spec., Epistylis spec.
  • the compounds according to the invention are active against various fish parasites which belong to the helminths (worms).
  • Livestock and breeding animals include mammals such as Cattle, horses, sheep, pigs, goats, camels, water buffalos, donkeys, rabbits, fallow deer, reindeer, fur animals such as Mink, chinchilla, raccoon, birds such as Chickens, geese, turkeys, ducks, pigeons, bird species for home and zoo keeping. It also includes farm and ornamental fish.
  • Laboratory and experimental animals include mice, rats, guinea pigs, golden hamsters, dogs and cats.
  • the pets include dogs and cats.
  • the fish include utility, breeding, aquarium and ornamental fish of all ages that live in fresh and salt water.
  • the useful and farmed fish include z. B. carp, eel, trout, white fish, salmon, bream, roach, rudd, chub, sole, plaice, halibut, Japanese yellowtail (Seriola quinqueradiata), Japanese eel (Anguilla japonica), red seabream (Pagurus major) seabass (Dicentrarchus labrax) , Gray mullet (Mugilus cephalus), Pompano, Gilthread seabream (Sparus auratus), Tilapia spp., Chichlids such as B. Plagioscion, Channel catfish.
  • the agents according to the invention are particularly suitable for the treatment of fish fry, e.g. B. Carp with a body length of 2-4 cm.
  • the remedies are also very suitable for eel fattening.
  • the application can be prophylactic as well as therapeutic.
  • the active ingredients are used directly or in the form of suitable preparations enterally, parenterally, dermally, nasally.
  • the enteral application of the active ingredients takes place, for example, orally in the form of powder, suppositories, tablets, capsules, pastes, drinkers, granules, drenches, boluses, medicated feed or drinking water.
  • the dermal application takes place, for example, in the form of dipping (dipping), spraying (spraying), bathing, washing, pouring on (pour-on and spot-on) and powdering.
  • Parenteral use is, for example, in the form of injection (intramuscular, subcutaneous, intravenous, intraperitoneal) or by implants.
  • Suitable preparations are: Solutions such as solutions for injection, oral solutions, concentrates for oral administration after dilution, solutions for use on the skin or in body cavities, pour-on formulations, gels; Emulsions and suspensions for oral or dermal use and for injection; Semi-solid preparations; Formulations in which the working substance is processed in an ointment base or in an oil in water or water in oil emulsion base; Solid preparations such as powders, premixes or concentrates, granules, pellets, tablets, boluses, capsules; Aerosols and inhalants, molded articles containing active ingredients.
  • Solutions for injection are administered intravenously, intramuscularly and subcutaneously.
  • Injection solutions are prepared by dissolving the active ingredient in a suitable solvent and possibly adding additives such as solubilizers, acids, bases, buffer salts, antioxidants, preservatives.
  • additives such as solubilizers, acids, bases, buffer salts, antioxidants, preservatives.
  • the solutions are sterile filtered and filled.
  • solvents physiologically compatible solvents such as water, alcohols such as ethanol, butanol, benzyl alcohol, glycerol, hydrocarbons, propylene glycol, polyethylene glycols, N-methylpyrrolidone, and mixtures thereof.
  • the active compounds can also be dissolved in physiologically tolerable vegetable or synthetic oils which are suitable for injection.
  • solubilizers solvents which promote the dissolution of the active ingredient in the main solvent or prevent its precipitation.
  • solvents which promote the dissolution of the active ingredient in the main solvent or prevent its precipitation.
  • examples are polyvinyl pyrrolidone, polyoxyethylated castor oil, polyoxyethylated sorbitan esters.
  • Preservatives are: benzyl alcohol, trichlorobutanol, p-hydroxybenzoic acid ester, n-butanol.
  • Oral solutions are applied directly. Concentrates are used orally after previous dilution to the application concentration. Oral solutions and concentrates are prepared as described above for the injection solutions, whereby sterile work can be dispensed with.
  • Solutions for use on the skin are dripped on, spread on, rubbed in, sprayed on, sprayed on or applied by dipping (dipping), bathing or washing. These solutions are prepared as described above for the injection solutions.
  • thickeners it may be advantageous to add thickeners during manufacture.
  • Inorganic thickeners such as bentonites, colloidal silica, aluminum monostearate, organic thickeners such as cellulose derivatives, polyvinyl alcohols and their copolymers, acrylates and methacrylates.
  • Gels are applied or spread on the skin or placed in body cavities. Gels are made by adding enough thickening agent to solutions that have been prepared as described for the injection solutions to form a clear mass with an ointment-like consistency.
  • the thickeners specified above are used as thickeners.
  • Pour-on formulations are poured or sprayed onto limited areas of the skin, the active ingredient either penetrating the skin and acting systemically or being distributed over the surface of the body.
  • pour-on formulations are prepared by dissolving, suspending or emulsifying the active ingredient in suitable skin-compatible solvents or solvent mixtures. If necessary, other auxiliaries such as dyes, absorption-promoting substances, antioxidants, light stabilizers and adhesives are added.
  • solvents water, alkanols, glycols, polyethylene glycols, polypropylene glycols, glycerol, aromatic alcohols such as benzyl alcohol, phenylethanol, phenoxyethanol, esters such as ethyl acetate, butyl acetate, benzyl benzoate, ethers such as alkylene glycol alkyl ethers such as dipropylene glycol monomethyl ether, diethylene glycol, methyl butyl glycol, methyl butyl acetate, methyl butyl glycol, methyl butyl acetate, aromatic and / or aliphatic hydrocarbons, vegetable or synthetic oils, DMF, dimethylacetamide, N-methylpyrrolidone, 2-methyl-4-oxy-methylene-1,3-dioxolane.
  • aromatic alcohols such as benzyl alcohol, phenylethanol, phenoxyethanol
  • esters such as ethyl acetate, butyl acetate
  • Dyes are all dyes approved for use on animals, which can be dissolved or suspended.
  • Absorption-promoting substances are e.g. DMSO, spreading oils such as isopropyl myristate, dipropylene glycol pelargonate, silicone oils, fatty acid esters, triglycerides, fatty alcohols.
  • spreading oils such as isopropyl myristate, dipropylene glycol pelargonate, silicone oils, fatty acid esters, triglycerides, fatty alcohols.
  • Antioxidants are sulfites or metabisulfites such as potassium metabisulfite, ascorbic acid, butylated hydroxytoluene, butylated hydroxyanisole, tocopherol.
  • Light stabilizers are e.g. Substances on the class of benzophenones or novantisolic acid.
  • Heap funds are e.g. Cellulose derivatives, starch derivatives, polyacrylates, natural polymers such as alginates, gelatin.
  • Emulsions can be used orally, dermally or as injections.
  • Emulsions are either water in oil or oil in water.
  • hydrophobic phase may be mentioned: paraffin oils, silicone oils, natural vegetable oils such as sesame oil, almond oil, castor oil, synthetic triglycerides such as caprylic / capric acid bigylceride, triglyceride mixture with vegetable fatty acids of chain length C8 ⁇ 12 or other specially selected natural fatty acids, partial glyceride saturated or unsaturated mixtures possibly also hydroxyl-containing fatty acids, mono- and diglycerides of C8 / C10 fatty acids.
  • Fatty acid esters such as ethyl stearate, di-n-butyryl adipate, lauric acid hexyl ester, dipropylene glycol pelargonate, esters of a branched fatty acid of medium chain length with saturated fatty alcohols of chain length C16-C18, isopropyl myristate, isopropyl palmitate, capryl / caprine alcohol C ester of saturated fatty alkanolate C C , Oleic acid oleyl ester, oleic acid decyl ester, ethyl oleate, lactic acid ethyl ester, waxy Fatty acid esters such as dibutyl phthalate, diisopropyl adipate, the latter related ester mixtures and others fatty alcohols such as isotridecyl alcohol, 2-octyldodecanol, cetylstearyl alcohol, oleyl alcohol.
  • Fatty acids such as Oleic acid and its mixtures.
  • hydrophilic phase Water, alcohols such as propylene glycol, glycerin, sorbitol and their mixtures.
  • nonionic surfactants for example polyoxyethylated castor oil, polyoxyethylated sorbitan monooleate, sorbitan monostearate, glycerol monostearate, polyoxyethyl stearate, alkylphenol polyglycol ether; ampholytic surfactants such as di-Na-N-lauryl- ⁇ -iminodipropionate or lecithin; anionic surfactants such as Na lauryl sulfate, fatty alcohol ether sulfates, mono / dialkyl polyglycol ether orthophosphoric acid ester monoethanolamine salt; cationic surfactants such as cetyltrimethylammonium chloride.
  • nonionic surfactants for example polyoxyethylated castor oil, polyoxyethylated sorbitan monooleate, sorbitan monostearate, glycerol monostearate, polyoxyethyl stearate, alkylphenol polyg
  • auxiliaries substances which increase viscosity and stabilize the emulsion, such as carboxymethyl cellulose, methyl cellulose and other cellulose and starch derivatives, polyacrylates, alginates, Gelatin, gum arabic, polyvinyl pyrrolidone, polyvinyl alcohol, copolymers of methyl vinyl ether and maleic anhydride, polyethylene glycols, waxes, colloidal silica or mixtures of the listed substances.
  • Suspensions can be used orally, dermally or as an injection. They are produced by suspending the active ingredient in a carrier liquid, optionally with the addition of other auxiliaries such as wetting agents, dyes, absorption-promoting substances, preservatives, antioxidants, and light stabilizers.
  • auxiliaries such as wetting agents, dyes, absorption-promoting substances, preservatives, antioxidants, and light stabilizers.
  • the surfactants specified above may be mentioned as wetting agents (dispersants).
  • Semi-solid preparations can be administered orally or dermally. They differ from the suspensions and emulsions described above only in their higher viscosity.
  • the active ingredient is mixed with suitable carriers, if appropriate with the addition of auxiliaries, and brought into the desired shape.
  • Inorganic substances are e.g. Table salt, carbonates such as calcium carbonate, hydrogen carbonates, aluminum oxides, silicas, clays, precipitated or colloidal silicon dioxide, phosphates.
  • Organic substances are e.g. Sugar, cellulose, food and feed such as milk powder, animal meal, cereal flour and meal, starches.
  • Excipients are preservatives, antioxidants, dyes, which have already been listed above.
  • auxiliaries are lubricants and lubricants such as Magnesium stearate, stearic acid, talc, bentonite, decay-promoting substances such as starch or cross-linked polyvinylpyrrolidone, binders such as e.g. Starch, gelatin or linear polyvinyl pyrrolidone as well as dry binders such as microcrystalline cellulose.
  • lubricants and lubricants such as Magnesium stearate, stearic acid, talc, bentonite, decay-promoting substances such as starch or cross-linked polyvinylpyrrolidone, binders such as e.g. Starch, gelatin or linear polyvinyl pyrrolidone as well as dry binders such as microcrystalline cellulose.
  • the active compounds can also be present in the preparations as a mixture with synergists or with other active compounds.
  • Ready-to-use preparations contain the active ingredient in concentrations of 10 ppm to 20 percent by weight, preferably 0.1 to 10 percent by weight.
  • Preparations which are diluted before use contain the active ingredient in concentrations of 0.5-90% by weight, preferably 1 to 50% by weight.
  • the active ingredients can also be administered together with the animal's feed or drinking water.
  • Feed and food contain 0.01 to 100 ppm, preferably 0.5 to 50 ppm of the active ingredient in combination with a suitable edible material.
  • Such feed and food can be used for medicinal purposes as well as for prophylactic purposes.
  • Such feed or food is produced by mixing a concentrate or a premix containing 0.5 to 30%, preferably 1 to 20% by weight of an active ingredient in admixture with an edible organic or inorganic carrier with conventional feed.
  • Edible carriers are, for example, corn flour or corn and soybean flour or mineral salts, which preferably contain a small amount of an edible dust-preventing oil, for example corn oil or soybean oil.
  • the premix obtained in this way can then be added to the complete feed before it is fed to the animals.
  • a suitable edible material e.g. a nutritious feed
  • amounts of active compound for the treatment of individual animals, for example in the case of the treatment of coccidiosis in mammals or toxoplasmosis, amounts of active compound from 0.5 to 100 mg / kg of body weight are preferably administered daily in order to achieve the desired results. Nevertheless, it may be necessary at times to deviate from the amounts mentioned, in particular depending on the body weight of the test animal or the type of administration method, but also because of the animal species and its individual response to the active ingredient or the type of formulation and the time or distance, to which it is administered. In some cases it may be sufficient to make do with less than the minimum quantity mentioned above, while in other cases the above upper limit must be exceeded. When administering larger quantities, it may be advisable to divide them into several individual administrations during the day.
  • the parasites in fish include species from the Ciliata tribe, e.g. Ichthyophthirius multifiliis, Chilodonella cyprini, Trichodina spp., Glossatella spp., Epistylis spp. the strain of Myxosporidia, e.g. Myxosoma cerebralis, Myxidium spp., Myxobolus spp., Heneguya spp., Hoferellus spp., The class of microsporidia e.g.
  • Glugea spp. Thelohania spp., Pleistophora spp., From the strain of the plathelminths: trematodes; Monogenea e.g. Dactylogyrus spp., Gyrodactylus spp., Pseudodactylogyrus spp., Diplozoon spp., Cestodes, e.g. from the groups of the Caryphyllidea (e.g. Caryophyllaeus laticeps), Pseudophyllidea (e.g. Diphyllobothrium spp.), Tetraphyllidea (e.g.
  • Caryphyllidea e.g. Caryophyllaeus laticeps
  • Pseudophyllidea e.g. Diphyllobothrium spp.
  • Tetraphyllidea e.g.
  • Protocephalida e.g. species of the genus Proteocephalus
  • Protocephalida e.g. species of the genus Proteocephalus
  • the strain of the Arthropceclasses in particular the dentra of the Crustaceans, particularly from the Arustape class Branchiura (fish lice) and Copepoda (oar crabs) as well as the orders of the Isopoda (arsenic) and Amphipoda (amphipods).
  • the fish are treated either orally, e.g. B. over the feed or by short-term treatment, "medical bath” in which the fish are used and in which they are for a while (minutes to several hours) z. B. when moving from one breeding tank to another.
  • the active ingredient is administered in preparations which are adapted to the applications.
  • the concentration of the active ingredient in the preparations is 1 ppm to 10% by weight.
  • the active ingredient is dissolved in a polar, water-soluble solvent, which either reacts in an alkaline manner or to which an alkaline, water-soluble substance is added.
  • a polar, water-soluble solvent which either reacts in an alkaline manner or to which an alkaline, water-soluble substance is added.
  • the latter is also advantageously dissolved in the solvent, but can also be suspended in the solvent and only dissolve in water.
  • the water should have a pH of 7-10, but preferably a pH of 8-10.
  • the concentration of the active ingredient can be in the range of 0.5-50%, but preferably in a range of 1-25%.
  • ethyl alcohol isopropyl alcohol, benzyl alcohol, glycerol, propylene glycol, polyethylene glycols, poly (oxoethylene) poly (oxypropylene) polymers, basic alcohols such as mono-, di- and triethanolamine, ketones such as acetone or methyl ethyl ketone, esters such as lactic acid ethyl ester and also N-methylpyrrolid , Dimethylacetamide, Dimethylformamid, further dispersing and emulsifying agents such as polyoxyethylated castor oil, polyethylene glycol sorbitan monooleate, polyethylene glycol stearate, or polyethylene glycol ether, polyethylene glycol alkyl amines.
  • basic alcohols such as mono-, di- and triethanolamine
  • ketones such as acetone or methyl ethyl ketone
  • esters such as lactic acid ethyl ester and also N-methylpyrrolid
  • organic bases such as basic amino acids such as L- or D, L-arginine, L- or D, L-lysine, methylglucosamine, glucosamine, 2-amino-2-hydroxymethylpropanediol- ( 1,3) also like N, N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine or polyether tetrol based on ethylenediamine (MW 480-420), inorganic bases, such as ammonia or sodium carbonate, optionally under Adding water.
  • basic amino acids such as L- or D, L-arginine, L- or D, L-lysine, methylglucosamine, glucosamine, 2-amino-2-hydroxymethylpropanediol- ( 1,3) also like N, N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine or polyether tetrol based on ethylenediamine (MW 480-420)
  • the preparations can also contain 0.1 to 20% by weight, preferably 0.1-10% by weight, of other formulation auxiliaries, such as antioxidants, surfactants, suspension stabilizers and thickeners, such as, for example, methyl cellulose, alginates, polysaccharides, galactomannans and colloidal silica.
  • auxiliaries such as antioxidants, surfactants, suspension stabilizers and thickeners, such as, for example, methyl cellulose, alginates, polysaccharides, galactomannans and colloidal silica.
  • the concentration of the active ingredient depends on the type and duration of treatment, as well as the age and condition of the fish being treated. It is e.g. for short-term treatment, 2-50 mg of active ingredient per liter of water, preferably 5-10 mg per liter, with a treatment duration of 3-4 hours. When treating young carp, e.g. worked with a concentration of 5-10 mg / l and a treatment time of about 1-4 hours.
  • Eels are treated with concentrations of approx. 5 mg / l for approx. 4 hours.
  • the concentration can be chosen correspondingly lower.
  • 0.1-5 mg of active ingredient per liter of water can be used.
  • Preparations for use as feed additives are composed, for example, as follows: a) Active ingredient of formula I. 1 - 10 parts by weight Soybean protein 49 - 90 parts by weight b) Active ingredient of formula I. 0.5 - 10 parts by weight Benzyl alcohol 0.08-1.4 parts by weight Hydroxypropylmethyl cellulose 0 - 3.5 parts by weight water Remainder ad 100
  • Preparations for use in "medical baths" and for pond treatment are composed and produced, for example, as follows. c) 2.5 g of active ingredient of the formula (I) are dissolved in 100 ml of triethanolamine with heating. d) 2.5 g of active ingredient of the formula (I) 12.5 g of lactic acid are dissolved in 100 ml of triethanolamine with heating and stirring. e) 10.0 g of active ingredient of formula (I) is dissolved in 100 ml of monoethanolamine. f) Active ingredient of formula I. 5.0 g Propylene glycol 50.0 g sodium 5.0 g water ad 100 ml G) Active ingredient of formula I. 5.0 g Monoethanolamine 10 g N-methylpyrrolidone ad 100 ml H) Active ingredient of formula I. 2.5 g sodium 5.0 g Polyethylene glycol 200 ad 100 ml
  • the active ingredient is dissolved in the polyethylene glycol with heating and sodium carbonate is suspended therein.
  • active compound was administered in the concentration given in the animal feed.
  • the number of oocysts in the faeces was determined with the help of the McMaster Chamber (see Engelbrecht and co-workers "Parasitological Working Methods in Medicine and Veterinary Medicine", p. 172, Akademie-Verlag, Berlin (1965)).
  • Doses are considered effective which completely or to a large extent prevented the excretion of oocysts and / or clinical symptoms of coccidiosis, including mortality.
  • the effective doses are given in the following table: Table 1 Coccidiosis in chickens Example No. Dose ppm. Death rate dead / deployed Oocyst excretion in% compared to the untreated infected control Weight gain in% compared to the uninfected untreated Kon control Excretion of blood with the feces untreated infected control 2/6 100 35 strong 1 50 0/3 0 100 no

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft neue substituierte 1,3,5-Triazintrione der allgemeinen Formel (I) <IMAGE> in welcher R¹ für aromatische oder heteroaromatische Reste steht, die gegebenenfalls substituiert sind, R² für H, Alkyl, Alkenyl, Alkinyl oder Aralkyl steht, die gegebenenfalls substituiert sind, R³ für einen oder mehrere, gleiche oder verschiedene Reste der Gruppe Wasserstoff, Halogen, Alkyl, Halogenalkyl, Alkoxy, Alkylthio, Halogenalkoxy, Halogenalkylthio, Cyano, Alkoxycarbonyl, Alkylsulfonyl, Halogenalkylsulfonyl, R<4> für Wasserstoff, einen geradkettigen, verzweigten oder cyclischen Alkylrest, Alkenyl, Alkinyl, Aralkyl oder Aryl steht, die gegebenenfalls substituiert sind, R<5> für Wasserstoff, gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl oder Aralkyl steht. Sie betrifft ferner Verfahren zu ihrer Herstellung, Zwischenprodukte in diesen Verfahren sowie ihre Verwendung gegen parasitäre Protozoen.

Description

  • Die vorliegende Erfindung betrifft neue substituierte 1,3,5-Triazintrione, Verfahren zu ihrer Herstellung, Zwischenprodukte zur Durchführung dieser Verfahren sowie ihre Verwendung gegen parasitäre Protozoen.
  • Die Verwendung von substituierten 1,3,5-Triazintrionen zur Bekämpfung von Coccidien ist bekannt. Die Wirkung dieser Verbindungen befriedigt jedoch nicht in jedem Fall.
  • Die vorliegende Erfindung betrifft
    • 1. Neue substituierte 1,3,5-Triazintrione der allge­meinen Formel (I)
      Figure imgb0001
      in welcher
      R¹ für aromatische oder heteroaromatische Reste steht, die gegebenenfalls substituiert sind,
      R² für H, Alkyl, Alkenyl, Alkinyl oder Aralkyl steht, die gegebenenfalls substituiert sind,
      R³ für einen oder mehrere, gleiche oder verschie­dene Reste der Gruppe Wasserstoff, Halogen, Alkyl, Halogenalkyl, Alkoxy, Alkylthio, Halo­genalkoxy, Halogenalkylthio, Cyano, Alkoxy­carbonyl, Alkylsulfonyl, Halogenalkylsulfonyl,
      R⁴ für Wasserstoff, einen geradkettigen, ver­zweigten oder cyclischen Alkylrest, Alkenyl, Alkinyl, Aralkyl oder Aryl steht, die gegebe­nenfalls substituiert sind,
      R⁵ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl oder Aralkyl steht.
    • 2. Verfahren zur Herstellung substituierter 1,3,5-Tri­azintrione der allgemeinen Formel (I)
      Figure imgb0002
      in welcher
      R¹ für aromatische oder heteroaromatische Reste steht, die gegebenenfalls substituiert sind,
      R² für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Aralkyl steht, die gegebenenfalls substituiert sind,
      R³ für einen oder mehrere, gleiche oder verschie­dene Reste der Gruppe Wasserstoff, Halogen, Alkyl, Halogenalkyl, Alkoxy, Alkylthio, Halo­genalkoxy, Halogenalkylthio, Cyano, Alkoxy­carbonyl, Alkylsulfonyl, Halogenalkylsulfonyl,
      R⁴ für Wasserstoff, einen geradkettigen, ver­zweigten oder cyclischen Alkylrest, Alkenyl, Alkinyl, Aralkyl oder Aryl steht, die gegebe­nenfalls substituiert sind,
      R⁵ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl oder Aralkyl steht,
      indem man
      • a) Verbindungen der Formel (II)
        Figure imgb0003
        in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen haben,
        mit einem substituierten Carbonylisocyanat der Formel (III)
        R⁶-
        Figure imgb0004
        -N=C=O

        in der
        R⁶ für ein Halogenatom, eine Alkoxygruppe oder eine Aryloxygruppe steht,
        umsetzt.
      • b) Verbindungen der Formel (II) mit Verbindungen der Formel (IV)
        Figure imgb0005
        in welcher
        R⁷ für Wasserstoff oder Alkyl steht,
        gegebenenfalls in Gegenwart von Säureakzepto­ren umsetzt.
      • c) Verbindungen der Formel (V)
        Figure imgb0006
        in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen haben,
        mit Verbindungen der Formel (VI)
        Figure imgb0007
        in welcher R⁸, R⁹ für eine Alkoxygruppe ste­hen, gegebenenfalls in Gegenwart von Basen, umsetzt.
      • d) Verbindungen der Formel (Ia)
        Figure imgb0008
        in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen haben,
        mit Verbindungen der Formel (VII)
        R⁵ - A
        in welcher
        R⁵ für gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Aralkyl steht und
        A für Halogen, OSO₂, Alkyl, OSO₂-Aryl, OSO₂-Halogenalkyl steht.
    • 3. Neue Verbindungen der Formel (II)
      Figure imgb0009
      in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen haben,
    • 4. Verfahren zur Herstellung der Verbindungen der For­mel (II) gemäß 3, dadurch gekennzeichnet, daß man
      • a) Verbindungen der Formel (VIII)
        Figure imgb0010
        in welcher
        R¹, R², R³ die oben genannten Bedeutungen be­sitzen,
        mit Isocyanaten der Formel (IX)
        O=C=N-R⁴
        in welcher
        R⁴ die bei den Verbindungen der Formel (I) genannten Bedeutungen besitzt,
        umsetzt.
      • b) Verbindungen der Formel (X)
        Figure imgb0011
        in welcher R¹, R², R³ die bei der Verbin­dung der Formel (I) genannten Bedeutungen be­sitzen,
        mit Verbindungen der Formel (XI)
        R⁴-NH₂
        in welcher
        R⁴ die oben genannten Bedeutungen besitzt.
    • 5. Neue Verbindungen der Formel (V)
      Figure imgb0012
      in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen besitzen.
    • 6. Verfahren zur Herstellung der neuen Verbindungen der Formel (V) gemäß 5, dadurch gekennzeichnet, daß man Verbindungen der Formel (II) mit Phosgen und Ammoniak umsetzt.
    • 7. Neue Verbindungen der Formel (VIII)
      Figure imgb0013
      in denen
      R¹ für Hetero-aromatische Reste außer Thiophen oder für durch Halogenalkylthio oder Halogen­alkoxy substituiertes Phenyl steht und
      R², R³ die unter (I) genannten Bedeutungen haben.
    • 8. Verfahren zur Herstellung der neuen Verbindungen der Formel (VIII) gemäß 7., dadurch gekennzeichnet, daß man Verbindungen der Formel (XII)
      Figure imgb0014
      in denen R¹, R², R³ die vorstehend genannten Bedeu­tungen besitzen,
      hydriert.
    • 9. Neue Verbindungen der Formel (X)
      Figure imgb0015
      in welcher R¹, R², R³ die unter 4 b) beschriebenen Bedeutungen besitzen.
    • 10. Verfahren zur Herstellung der neuen Verbindungen der Formel (X) gemäß 9., dadurch gekennzeichnet, daß man Verbindungen der Formel (VIII)
      Figure imgb0016
      in welcher R¹, R², R³ die unter 4 b) beschriebenen Bedeutungen besitzen
      mit Phosgen umsetzt.
    • 11. Neue Verbindungen der Formel (XII)
      Figure imgb0017
      in welcher R¹, R², R³ die unter 7. beschriebenen Be­deutungen besitzen.
    • 12. Verfahren zur Herstellung der neuen Verbindungen der Formel (XII) gemäß 11., dadurch gekennzeich­net, daß man Verbindungen der Formel (XIII)
      Figure imgb0018
      in welcher R¹, R² die unter 7. beschriebenen Be­deutungen besitzen
      mit Verbindungen der Formel (XIV)
      Figure imgb0019
      in der R³ die unter 1. beschriebene Bedeutung hat und A für Halogen steht,
      umsetzt.
  • Die Verbindungen der Formel (I) sowie ihre Salze mit Säuren oder Basen sind hervorragend zur Bekämpfung parasitischer Protozoen geeignet.
  • Bevorzugte Verbindungen der Formel (I) sind Verbin­dungen, in denen
    R¹ für gegebenenfalls durch Halogen, Alkyl, Cyano, Nitro, O-Alkyl, S-Alkyl, Halogenalkyl, Halogenal­koxy, Halogenalkylthio, Halogenalkylsulfinyl, Halogenalkylsulfonyl, substituiertes Thiazolyl, Oxazolyl, Benzthiazolyl, Benzoxazolyl, Pyridinyl, Pyrimidinyl, Pyrazinyl, Indolyl, Benzimidazolyl, Phenyl oder Naphthyl steht,
    R² für H oder Alkyl steht,
    R³ für einen oder mehrere, gleiche oder verschiedene Reste der Gruppe Halogen, Alkyl, Halogenalkyl, Al­koxy, Halogenalkoxy, Alkylthio, Halogenalkylthio oder Cyano steht,
    R⁴ für Wasserstoff, Alkyl, Alkenyl oder Alkinyl steht, die gegebenenfalls durch Halogen, Halogenalkyl, Al­koxy, Alkylthio, Aryloxy, Arylthio oder Aryl sub­stituiert sind,
    R⁵ für Wasserstoff oder Alkyl steht.
  • Besonders bevorzugt sind Verbindungen der Formel (I), in welcher
    R¹ für Phenyl, Pyridyl, Benzthiazolyl steht, die durch einen oder mehrere gleiche oder verschiedene Reste der Gruppe Halogen, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl, C₁₋₄-Alkoxy, C₁₋₄-Alkylthio, C₁₋₄-Halogenalkoxy, C₁₋₄-Halogenalkylthio, Cyano, C₁₋₄-Alkoxycarbonyl, C₁₋₄-Alkylsulfinyl, C₁₋₄-Alkylsulfonyl, C₁₋₄-Halo­genalkylsulfinyl, C₁₋₄-Halogenalkylsulfonyl sub­stituiert ist,
    R² für H oder C₁₋₄-Alkyl steht,
    R³ für einen oder mehrere gleiche oder verschiedene Reste der Gruppe Wasserstoff, Halogen, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl steht,
    R⁴ für Wasserstoff oder C₁₋₄-Alkyl steht,
    R⁵ für Wasserstoff oder C₁₋₄-Alkyl steht.
  • Ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher
    R¹ für Phenyl steht, das gegebenenfalls durch Halogen, insbesondere Chlor, Brom, Fluor, C₁₋₄-Halogenalkyl, insbesondere Trifluormethyl, C₁₋₄-Halogenalkylthio, insbesondere Trifluormethylthio, C₁₋₄-Halogenalkyl­sulfinyl, insbesondere Trifluormethylsulfonyl, C₁₋₄-Halogenalkylsulfonyl, insbesondere Trifluor­methylsulfinyl, C₁₋₄-Halogenalkoxy, insbesondere Trifluormethoxy, C₁₋₄-Alkyl, insbesondere Methyl, substituiert sind,
    R² für H oder C₁₋₄-Alkyl, insbesondere Methyl steht,
    R³ für Halogen, insbesondere Brom, Chlor, Fluor, C₁₋₄-­Alkyl, insbesondere Methyl, Halogenalkyl, insbeson­dere Trifluormethyl steht,
    R⁴ für C₁₋₄-Alkyl, insbesondere Methyl, steht,
    R⁵ für Wasserstoff steht.
    Als Einzelverbindungen seien genannt:
    Figure imgb0020
    Weiterhin seien die folgenden Verbindungen genannt:
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
  • Setzt man bei dem Verfahren 2 a als Verbindung II 2,6-Dichlor-α-(4-trifluormethylthiophenyl)-4-methyl­ureido-phenylacetonitril ein und als Verbindung der Formel (III) Chlorcarbonylisocyanat ein, läßt sich das Verfahren durch folgendes Formelschema beschreiben:
    Figure imgb0025
  • Verbindungen der Formel (II) sind neu. Bevorzugt seien die Verbindungen der Formel (II) genannt, in denen R² und R³ die bei den Verbindungen der Formel (I) genannten bevorzugten Bedeutungen haben.
  • Im einzelnen seien folgende Verbindungen der Formel (II) genannt.
    Figure imgb0026
  • Die substituierten Carbonylisocyanate der Formel (III) sind bekannt.
  • Die Reaktion wird vorzugsweise unter Verwendung von Ver­dünnungsmitteln durchgeführt.
  • Als Verdünnungsmittel kommen dabei praktisch alle iner­ten organischen Lösungsmittel in Frage. Hierzu gehören vorzugsweise aliphatische und aromatische, gegebenen­falls halogenierte Kohlenwasserstoffe, Benzin, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Di­chlorbenzol, Ether wie Diethyl- und Dibutylether, Gly­koldimethylether und Diglykoldimethylether, Tetrahydro­furan und Dioxan, Ketone wie Aceton, Methyl-ethyl-, Me­thyl-isopropyl- und Methyl-isobutyl-keton, Ester wie Essigsäuremethylester und -ethylester, Nitrile wie z. B. Acetonitril und Propionitril, Dimethylacetamid und N-Methyl-pyrrolidon sowie Dimethylsulfoxid, Tetramethy­lensulfon und Hexamethylphosphorsäuretriamid.
  • Die Umsetzung erfolgt bei Temperaturen zwischen 20 und 150° C, vorzugsweise zwischen 50 und 120° C.
  • Das Verfahren wird durchgeführt, indem äquimolare Mengen der Verbindungen der Formel (II) und (III) in einem der angegebenen Verdünnungsmittel zusammengegeben und er­hitzt werden. Nach vollendeter Umsetzung wird abgekühlt und der ausgefallene Feststoff abfiltriert, gewaschen und getrocknet.
  • Setzt man bei dem Verfahren 2 b zur Herstellung der Ver­bindungen der Formel (I) als Verbindung der Formel (II) 2,6-Dichlor-α-(4-Trifluormethylthiophenyl)-4-methylurei­do-phenyl-acetonitril ein und als Verbindung der Formel (IV) Bischlorcarbonylmethylamin ein, läßt sich das Ver­fahren durch folgendes Schema beschreiben.
    Figure imgb0027
  • Die Verbindungen der Formel (IV) sind bekannt.
  • Das Verfahren wird wie unter 2 a beschrieben durchge­führt. Als Verdünnungsmittel finden die beim Verfahren 2 a beschriebenen Verwendung.
  • Setzt man bei dem Verfahren 2 c als Verbindung der For­mel (V) 2,6-Dichlor-α-(4-trifluormethylthiophenyl)-4-­dimethyl-diureido-phenylacetonitril und als Verbindung der Formel (VI) Diethylcarbonat ein, läßt sich das Ver­fahren durch folgendes Schema beschreiben:
    Figure imgb0028
  • Die Verbindungen der Formel (V) sind neu. Im einzelnen seien folgende Verbindungen der Formel (V) genannt:
    Figure imgb0029
  • Das Verfahren wird in Gegenwart von Basem durchgeführt. Als bevorzugte Basen seien genannt die Alkalihydroxide wir Natriumhydroxid, Alkalialkoholate wie Natriumethylat oder organische Basen wir 1,8-Diazabicyclo-[5,4,0]-un­dec-7-en (DBU).
  • Das Verfahren wird durchgeführt bei Temperaturen zwi­schen 10 und 80° C, vorzugsweise zwischen 20 und 50° C, bei Normaldruck oder erhöhtem Druck. Es wird bevorzugt bei Normaldruck gearbeitet. Es kann in Substanz oder in Gegenwart eines Verdünnungsmittels gearbeitet werden. Als Verdünnungsmittel können alle inerten organischen Lösungsmittel eingesetzt werden, die auch bei der Durch­führung des Verfahrens 2 a Verwendung finden.
  • Die Reaktion wird durchgeführt, indem man eine Verbin­dung der Formel (V) mit einer Verbindung der Formel (VI) in Gegenwart einer Base bei der angegebenen Reaktions­temperatur rührt. Die Menge der Verbindung der Formel Setzt man bei dem Verfahren der Formel 2 d als Verbin­dung der Formel (Ia) 2,6-Dichlor-α-(4-chlorphenyl)-α-­methyl-4-(3-N-methyl-1,3,5-triazin-2,4,6-(1H, 3H, 5H)-­trion-phenylacetonitril ein und als Verbindung der For­mel (VII) Methyliodid ein, läßt sich das Verfahren durch folgendes Schema beschreiben:
    Figure imgb0030
  • Die Verbindungen der Formel (Ia) sind neu und werden wie bei Verfahren 2 a-c beschrieben dargestellt.
  • Die Verbindungen der Formel (IV) sind bekannt oder las­sen sich nach bekannten Methoden darstellen. Besonders genannt sei Methyliodid, Ethylbromid.
  • Das Verfahren wird durchgeführt, indem man eine Verbin­dung der Formel (Ia) in Gegenwart einer Base und eines Verdünnungsmittels mit Verbindungen der Formel (IV) um­ setzt. Als Verdünnungsmittel können alle inerten orga­nischen Lösungsmittel eingesetzt werden, die auch zur Durchführung von Verfahren 2 a dienen.
  • Das Verfahren wird in Gegenwart von Basen durchgeführt. Als bevorzugte Basen seien genannt: Alkalihydroxide wie Natriumhydroxid, Alkalialkoholate wie Natriummethylat oder Kaliumbutanolat, Metallhydride wie Natriumhydrid oder organische Basen wie 1,8-Diazabicyclo-[5,40]-undec-­7-en (DBU).
  • Das Verfahren wird durchgeführt bei Normaldruck und Tem­peraturen zwischen 20 und 140° C.
  • Die Reaktion wird durchgeführt, indem man äquimolare Mengen der Verbindung der Formel (Ia) und Base zusammen­gibt, dieses Gemisch mit einer äquimolaren Menge der Verbindung der Formel (IV) versetzt und auf die Reak­tionstemperatur erhitzt.
  • Wird im Verfahren 4 a zur Herstellung der Verbindungen der Formel (II) als Verbindung der Formel (VIII) 4-Ami­no-2,6-dichloro-α-(4-trifluormethylthiophenyl)-phenyl­acetonitril und als Verbindung der Formel (IX) Methyl­isocyanat eingesetzt, läßt sich das Verfahren durch fol­gendes Formelschema beschreiben:
    Figure imgb0031
  • Die Verbindungen der Formel (VIII) sind zum Teil be­kannt. Die Verbindungen der Formel (IX) sind bekannt. Als neue Einzelverbindungen der Formel (VIII) seien ge­nannt:
    Figure imgb0032
  • Das Verfahren wird durchgeführt, indem man eine Verbin­dung der Formel (VIII) mit einer Verbindung der Formel (IX) in einem inerten Lösungsmittel umsetzt. Als Lö­sungsmittel können alle inerten organischen Lösungsmit­tel eingesetzt werden, die auch zur Durchführung von Verfahren 1 a dienen. Zusätzlich genannt sei Pyridin. Das Verfahren wird durchgeführt bei Normal- oder erhöh­tem Druck, vorzugsweise bei Normaldruck und bei Tempera­turen zwischen 20 und 120° C.
  • Die Reaktion wird durchgeführt, indem eine Verbindung der Formel (VIII) mit der äquimolaren Menge oder gegebe­nenfalls einem Überschuß der Verbindung der Formel (IX) in einem Lösungsmittel erhitzt.
  • Sitzt man bei den Verfahren 4 b zur Herstellung der Ver­bindungen der Formel (II) als Verbindung der Formel (X) 4-Isocyanato-2,6-dichloro-α-(4-trifluormethylthiophe­nyl)-phenylacetonitril ein und als Verbindung der Formel (XI) Propylamin ein, läßt sich das Verfahren durch fol­gendes Formelschema beschreiben:
    Figure imgb0033
  • Als Einzelverbindungen der Formel (X) seien genannt:
    Figure imgb0034
  • Das Verfahren wird durchgeführt, indem man eine Verbin­dung der Formel (X) und eine Verbindung der Formel (XI) gegebenenfalls in Gegenwart eines Verdünnungsmittels er­hitzt. Als Verdünnungsmittel finden die bei der Herstel­lung der Verbindungen (I) aufgeführten Lösungsmittel Verwendung. Zusätzlich genannt sei Pyridin.
  • Die Umsetzung erfolgt under Normal- oder erhöhtem Druck bei Temperaturen zwischen 50 und 150° C, vorzugsweise zwischen 70 und 110° C.
  • Die Verbindungen werden in äquimolaren Verhältnissen eingesetzt und das nach abgeschlossener Reaktion als Feststoff anfallende Produkt abfiltriert.
  • Wird im Verfahren 6 zur Herstellung der Verbindungen der Formel (V) als Verbindung der Formel (II) 2,6-Dichloro-­α-(4-chlorophenyl)-4-methylureido-phenylacetonitril ein­gesetzt, läßt sich das Verfahren durch folgendes Schema beschreiben:
    Figure imgb0035
  • Das Verfahren wird durchgeführt, indem man einen Harn­stoff der Formel (II) gegebenenfalls in Gegenwart von Lösungsmitteln zunächst mit Phosgen und dann mit Ammo­niak zur Verbindung der Formel (V) umsetzt.
  • Als Lösungsmittel finden die bei der Herstellung der Verbindungen der Formel (I) angeführten Verwendung.
  • Phosgen kann gasförmig oder in Lösung in äquimolarer bis 2fach molarer Menge zu der Verbindung der Formel (II) gegeben werden. Ammoniak wird gasförmig so lange durch das Reaktionsgemisch geleitet, bis die Reaktion abge­schlossen ist. Es wird bei Temperaturen zwischen 10 und 80° C, vorzugsweise zwischen 20 und 60° C, gearbeitet. Nach beendeter Reaktion wird abgekühlt und das ausge­fallene Produkt abfiltriert.
  • Die Verfahren 4 a und 6 zur Herstellung der Verbindungen der Formel (V) können vorteilhaft auch im "Eintopfver­fahren" durchgeführt werden.
  • Wird im Verfahren 8 zur Herstellung der neuen Verbindun­gen der Formel (VIII) als Verbindung der Formel (XII) 4-Nitro-2,6-dichloro-α-(2-benzthiazolyl)-phenylacetoni­tril eingesetzt, läßt sich das Verfahren durch folgendes Schema beschreiben:
    Figure imgb0036
  • Die Verbindungen der Formel (XII) sind neu unter der Be­dingung, daß R¹ nicht für Thiophen steht.
  • Als neue Einzelverbindungen der Formel (XII) seien ge­nannt:
    Figure imgb0037
    Figure imgb0038
  • Das Verfahren wird durchgeführt, indem man eine Verbin­dung der Formel (XII) in Gegenwart eines Edelmetallkata­lysators hydriert. Die Hydrierung wird gegebenenfalls in Gegenwart eines Verdünnungsmittels bei Normal- oder erhöhtem Druck durchgeführt.
  • Als Lösungsmittel können vorzugsweise Kohlenwasserstof­fe, Alkohole wie Ethanol und Ether wie Tetrahydrofuran verwendet werden. Als Katalysatoren finden Platin, Palladium, Ruthenium, Thodium und bevorzugt Platin Ver­wendung. Es wird bei Temperaturen zwischen 20 und 130° C, vorzugsweise zwischen 20 und 50° C gearbeitet. Die Kata­lysatoren werden in 0,01 %igem bis 5 %igem Verhältnis eingesetzt.
  • Setzt man bei dem Verfahren 10 zur Herstellung der neuen Verbindungen der Formel (X) 2,6-Dichlor-α-(2-benzthiazo­lyl)-4-amino-phenylacetonitril ein, läßt sich das Ver­fahren durch folgendes Schema beschreiben:
    Figure imgb0039
  • Die Umsetzung der Amine der Formel (VIII) mit Phosgen kann mit oder ohne Verdünnungsmittel erfolgen.
  • Als Verdünnungsmittel seien genannt insbesondere alipha­tische und aromatische, gegebenenfalls halogenierte Koh­lenwasserstoffe wie Penten, Hexan, Heptancyclohexan, Petrolether, Benzin, Ligroin, Benzol, Toluol, Methyl­chlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlen­stoff, Chlorbenzol, o-Dichlorbenzol.
  • Die Umsetzung erfolgt bei -20 - +80° C, bevorzugt bei -10 - +100° C. Es kann bei Normaldruck oder bei erhöhtem Druck gearbeitet werden.
  • Die Ausgangsstoffe werden in äquimolaren Mengen einge­setzt, bevorzugt ist ein Überschuß an Phosgen von 2 - 3 Mol pro Mol Amin der Formel (VIII).
  • Die Reaktion wird ohne oder in Gegenwart von Säurebinde­mitteln durchgeführt. Säurebindemittel sind bevorzugt z. B. tertiäre Amine wir Pyridin, Dimethylamin.
  • Die Amine der Formel (VIII) werden zu einer Lösung von Phosgen zugegeben und gegebenenfalls unter weiterem Ein­leiten von Phosgen umgesetzt. Die Umsetzung kann auch ohne Lösungsmittel durchgeführt werden.
  • Wir im Verfahren 12 zur Herstellung der Verbindungen der Formel (XII) als Verbindung der Formel (XIII) 2-Benz­thiazolylacetonitril und als Verbindung der Formel (XIV) 3,4,5-Trichlornitrobenzol eingesetzt, läßt sich das Ver­fahren durch folgendes Schema beschreiben:
    Figure imgb0040
  • Die Verbindungen der Formel (XII) und (XIII) sind be­kannt oder können analog zu bekannten Verfahren herge­stellt werden.
  • Das Verfahren wird durchgeführt, indem man eine Verbin­dung der Formel (XIII) gegebenenfalls in Gegenwart eines Vewrdünnungsmittels mit Verbindungen der Formel (XIV) umsetzt.
  • Als Verdünnungsmittel kommen dabei praktisch alle iner­ten organischen Lösungsmittel in Frage. Hierzu gehören vorzugsweise aliphatische und aromatische, gegebenen­falls halogenierte Kohlenwasserstoffe, Benzin, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Ethylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-­Dichlorbenzol, Ether wie Diethyl- und Dibutylether, Glykoldimethylether und Diglykoldiemthylether, Tetra­hydrofuran und Dioxan, Ketone wie Aceton, Methyl- ethyl-, Methyl-isopropyl- und Methyl-isobutyl-keton, ester wie Essigsäuremethylester und -ethylester, Nitrile wie z.B. Acetonitril und Propionitril, Amide wie z.B. Dimethyl­formamid, Dimethylacetamid und N-Methyl-pyrrolidon sowie Dimethylsulfoxid, Tetramethylensulfon und Hexamethyl­phosphorsäuertriamid.
  • Die Reaktion wird in Gegenwart von anorganischen oder organischen Säureakzeptoren durchgeführt.
  • Als solche seien genannt z.B.:
    Alkalimetallhydroxide wie z.B. Natrium- und Kaliumhy­droxid, Erdalkalihydroxide wie z.B. Calciumhydroxid, Alkalicarbonate und -alkoholate wie Natrium- und Kalium­carbonat, Natrium- und Kaliummethylat bzw. -ethylat, Metallhydride wie Natriumhydrid, ferner aliphatische, aromatische oder heterocyclische Amine, beispielsweise Triethylamin, Pyridin, 1,5-Diazabiccyclo-[4,3,0]-non-5-en (DBN), 1,8-Diazabicyclo-[5,4,0]-undec-7-en (DBU) und 1,4-Diazabicyclo-[2,2,2]-octan (DABCO).
  • Als Katalysatoren können Kronenether wie 18 Krone 6 oder quarternäre Ammoniumverbindungen wir Benzyltriethyl­ammoniumchlorid eingesetzt werden.
  • Die Umsetzung erfolgt bei Temperaturen zwischen 50 und 200° C vorzugsweise zwischen 80 und 160° C bei Normaldruck oder erhöhtem Druck.
  • Das Verfahren wird durchgeführt indem äquimolare Mengen der Verbindungen der Formel II und III in einem der an­gegebenen Verdünnungsmittel zusammengegeben und erhitzt werden. Nach vollendeter Umsetzung wird das Reaktionsge­misch mit verdünnter anorganischer Säure (z.B. Salz­säure) angesäuert und der entstehende Niederschlag ab­filtriert, gewaschen und getrocknet.
  • Die Wirkstoffe eignen sich bei günstiger Warmblüter­toxizität zur Bekämpfung von parasitischen Protozoen die und in der Tierhaltung und Tierzucht bei Nutz-, Zucht-, Zoo-, Labor-, Versuchs- und Hobbytieren vorkommen. Sie sind dabei gegen alle oder einzelne Entwicklungsstadien der Schädlinge sowie gegen resi­stente und normal sensible Stämme wirksam. Durch die Be­kämpfung der parasitischen Protozoen sollen Krankheit, Todesfälle und Leistungsminderungen (z.B. bei der Pro­duktion von Fleisch, Milch, Wolle Häuten, Eiern, Honig usw.) vermindert werden, so daß durch den Einsatz der Wirkstoffe eine wirtschaftlichere und einfachere Tier­haltung möglich ist.
  • Zu den parasitischen Protozoen zählen:
    Mastigophora (Flagellata) wie z.B. Trypanosomatidae z.B. Trypanosoma b. brucei, T.b. gambiense, T.b. rhodesiense, T. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica, wie z.B. Tri­chomonadidae z.B. Giardia lamblia, G. canis.
    Sarcomastigophora (Rhizopoda) wie Entamoebidae z.B. Entamoeba histolytica, Hartmanellidae z.B. Acanthamoeba sp., Hartmanella sp.
    Apicomplexa (Sporozoa) wie Eimeridae z.B. Eimeria acervulina, E. adenoides, E. alabahmensis, E. anatis, E. anseris, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E. canis, E. chinchillae, E. clupearum, E. columbae, E. contorta, E. crandalis, E. dabliecki, E. dispersa, E. ellipsoidales, E. falciformis, E. faurei, E. flavescens, E. gallopavonis, E. hagani, E. intestinalis, E. iroquoina, E. irresidua, E. labbeana, E. leucarti, E. magna, E. maxima, E. media, E. meleagridis, E. meleagrimitis, E. mitis, E. necatrix, E. ninakohlyakimovae, E. ovis, E. parva, E. pavonis, E. perforanas, E. phasani, E. piriformis, E. praecox, E. residua, E. scabra, E. spec., E. stiedai, E. suis, E. tenella, E. truncata, E. truttae, E. zuernii, Globidium spec., Isospora belli, I. canis, I. felis, I. ohioensis, I.rivolta, I. spec., I. suis, Cystisospora spec., Cryptosporidium spec. wie Toxoplasmadidae z.B. Toxoplasma gondii, wie Sarcocystidae z.B. Sarcocystis bovicanis, S. bovihominis, S. ovicanis, S. ovifelis, S. spec., S. suihominis wie Leucozoidae z.B. Leucozytozoon simondi, wie Plasmodiidae z.B. Plasmodium berghei, P. falciparum, P. malariae, P. ovale, P. vivax, P. spec., wie Piroplasmea z.B. Babesia argentina, B. bovis, B. canis, B. spec., Theileria parva, Theileria spec., wie Adeleina z.B. Hepatozoon canis, H. spec.
    Ferner Myxospora und Microspora z.B. Glugea spec. Nosema spec.
    Ferner Pneumocystis carinii, sowie Ciliophora (Ciliata) wie z.B. Balantidium coli, Ichthiophthirius spec., Trichodina spec., Epistylis spec.
  • Darüber hinaus sind die erfindungsgemäßen Verbindungen wirksam gegenüber verschiedenen zu den Helminthen (Würmern) zählenden Fischparasiten.
  • Zu den Nutz- und Zuchttieren gehören Säugetiere wie z.B. Rinder, Pferde, Schafe, Schweine, Ziegen, Kamele, Was­serbüffel, Esel, Kaninchen, Damwild, Rentiere, Pelztiere wie z.B. Nerze, Chinchilla, Waschbär, Vögel wie z.B. Hühner, Gänse, Puten, Enten, Tauben, Vogelarten für Heim- und Zoohaltung. Ferner gehören dazu Nutz- und Zierfische.
  • Zu Labor- und Versuchstieren gehören Mäuse, Ratten, Meerschweinchen, Goldhamster, Hunde und Katzen.
  • Zu den Hobbytieren gehören Hunde und Katzen.
  • Zu den Fischen gehören Nutz-, Zucht-, Aquarien- und Zierfische aller Altersstufen, die in Süß- und Salz­wasser leben. Zu den Nutz- und Zuchtfischen zählen z. B. Karpfen, Aal, Forelle, Weißfisch, Lachs, Brachse, Rotauge, Rotfeder, Döbel, Seezunge, Scholle, Heilbutt, Japanese yellowtail (Seriola quinqueradiata), Japanaal (Anguilla japonica), Red seabream (Pagurus major) Sea­bass (Dicentrarchus labrax), Grey mullet (Mugilus cepha­lus), Pompano, Gilthread seabream (Sparus auratus), Ti­lapia spp., Chichliden-Arten wie z. B. Plagioscion, Channel catfish. Besonders geeignet sind die erfindungs­gemäßen Mittel zur Behandlung von Fischbrut, z. B. Karp­fen von 2 - 4 cm Körperlänge. Sehr gut geeignet sind die Mittel auch in der Aalmast.
  • Die Anwendung kann sowohl prophylaktisch als auch thera­peutisch erfolgen.
  • Die Anwendung der Wirkstoffe erfolgt direkt oder in Form von geeigneten Zubereitungen enteral, parenteral, der­mal, nasal.
  • Die enterale Anwendung der Wirkstoffe geschieht z.B. oral in Form von Pulver, Zäpfchen, Tabletten, Kapseln, Pasten, Tränken, Granulaten, Drenchen, Boli, medikiertem Futter oder Trinkwasser. Die dermale Anwendung geschieht z.B. in Form des Tauchens (Dippen), Sprühens, (Sprayen), Badens, Waschens, Aufgießens (pour-on and spot-on) und des Einpuderns. Die parenterale Anwendung geschieht z.B. in Form der Injektion (intramusculär, subcutan, intravenös, intraperitoneal) oder durch Implantate.
  • Geeignete Zubereitungen sind:
    Lösungen wie Injektionslösungen, orale Lösungen, Kon­zentrate zur oralen Verabreichung nach Verdünnung, Lö­sungen zum Gebrauch auf der Haut oder in Körperhöhlen, Aufgußformulierungen, Gele;
    Emulsionen und Suspension zur oralen oder dermalen An­wendung sowie zur Injektion; Halbfeste Zubereitungen;
    Formulierungen bei denen der Workstoff in einer Salben­grundlage oder in einer Öl in Wasser oder Wasser in Öl Emulsionsgrundlage verarbeitet ist;
    Feste Zubereitungen wie Pulver, Premixe oder Konzen­trate, Granulate, Pellets, Tabletten, Boli, Kapseln; Aerosole und Inhalate, wirkstoffhaltige Formkörper.
  • Injektionslösungen werden intravenös intramuskulär und subcutan verabreicht.
  • Injektionslösungen werden hergestellt, indem der Wirk­stoff in einem geeigneten Lösungsmittel gelöst wird und eventuell Zusätze wie Lösungsvermittler, Säuren, Basen, Puffersalze, Antioxidantien, Konservierungsmittel zuge­fügt werden. Die Lösungen werden steril filtriert und abgefüllt.
  • Als Lösungsmittel seien genannt: Physiologisch ver­trägliche Lösungsmittel wie Wasser, Alkohole wie Etha­nol, Butanol, Benzylakohol, Glycerin, Kohlenwasser­stoffe, Propylenglykol, Polyethylenglykole, N-Methyl­pyrrolidon, sowie Gemische derselben.
  • Die Wirkstoffe lassen sich gegebenenfalls auch in phy­siologisch verträglichen pflanzlichen oder synthetischen Ölen, die zur Injektion geeignet sind, lösen.
  • Als Lösungsvermittler seien genannt: Lösungsmittel, die die Lösung des Wirkstoffs im Hauptlösungsmittel fördern oder sein Ausfallen verhindern. Beispiele sind Polyvi­nylpyrrolidon, polyoxyethyliertes Rhizinusöl, polyoxy­ethylierte Sorbitanester.
  • Konservierungsmittel sind: Benzylalkohol, Trichlorbuta­nol, p-Hydroxybenzoesäureester, n-Butanol.
  • Orale Lösungen werden direkt angewendet. Konzentrate werden nach vorheriger Verdünnung auf die Anwendungskon­zentration oral angewendet. Orale Lösungen und Konzen­trate werden wie oben bei den Injektionslösungen be­schrieben hergestellt, wobei auf steriles Arbeiten ver­zichtet werden kann.
  • Lösungen zum Gebrauch auf der Haut werden aufgeträufelt, aufgestrichen, eingerieben, aufgespritzt, aufgesprüht oder durch Tauchen (Dippen), Baden oder Waschen aufge­bracht. Diese Lösungen werden wie oben bei den Injek­tionslösungen beschrieben hergestellt.
  • Es kann vorteilhaft sein, bei der Herstellung Verdik­kungsmittel zuzufügen. Verdickungsmittel sind; Anor­ganische Verdickungsmittel wie Bentonite, kolloidale Kieselsäure, Aluminiummonostearat, organische Verdik­kungsmittel wie Cellulosederivate, Polyvinylalkohole und deren Copolymere, Acrylate und Metacrylate.
  • Gele werden auf die Haut aufgetragen oder aufgestrichen oder in Körperhöhlen eingebracht. Gele werden herge­stellt indem Lösungen, die wie bei den Injektionslö­sungen beschrieben hergestellt worden sind, mit soviel Verdickungsmittel versetzt werden, daß eine klare Masse mit salbenartiger Konsistenz entsteht. Als Verdickungs­mittel werden die weiter oben angegebenen Verdickungs­mittel eingesetzt.
  • Aufgieß Formulierungen werden auf begrenzte Bereiche der Haut aufgegossen oder aufgespritzt, wobei der Wirkstoff entweder die Haut durchdringt und systemisch wirkt oder sich auf der Körperoberfläche verteilt.
  • Aufgieß Formulierungen werden hergestellt, indem der Wirkstoff in geeigneten hautverträglichen Lösungsmitteln oder Lösungsmittelgemischen gelöst, suspendiert oder emulgiert wird. Gegebenenfalls werden weitere Hilfs­stoffe wie Farbstoffe, resorptionsfördernde Stoffe, Antioxidantien, Lichtschutzmittel, Haftmittel zugefügt.
  • Als Lösungsmittel seien genannt: Wasser, Alkanole, Gly­cole, Polyethylenglycole, Polypropylenglycole, Glycerin, aromatische Alkohole wie Benzylalkohol, Phenylethanol, Phenoxyethanol, Ester wie Essigester, Butylacetat, Ben­zylbenzoat, Ether wie Alkylenglykolalkylether wie Dipro­pylenglykolmonomethylether, Diethylenglykolmono-butyl­ether, Ketone wie Aceton, Methylethylketon, aromatische und/oder aliphatische Kohlenwasserstoffe, pflanzliche oder synthetische Öle, DMF, Dimethylacetamid, N-Methyl­pyrrolidon, 2-Methyl-4-oxy-methylen-1,3-dioxolan.
  • Farbstoffe sind alle zur Anwendung am Tier zugelassenen Farbstoffe, die gelöst oder suspendiert sein können.
  • Resorptionsfördernde Stoffe sind z.B.DMSO, spreitende Öle wie Isopropylmyristat, Dipropylenglykolpelargonat, Silikonöle, Fettsäureester, Triglyceride, Fettalkohole.
  • Antioxidantien sind Sulfite oder Metabisulfite wie Kaliummetabisulfit, Ascorbinsäure, Butylhydroxytoluol, Butylhydroxyanisol, Tocopherol.
  • Lichtschutzmittel sind z.B. Stoffe auf der Klasse der Benzophenone oder Novantisolsäure.
  • Hauftmittel sind z.B. Cellulosederivate, Stärkederivate, Polyacrylate, natürliche Polymere wie Alginate, Gela­tine.
  • Emulsionen können oral, dermal oder als Injektionen an­gewendet werden.
  • Emulsionen sind entweder vom Typ Wasser in Öl oder vom Typ Öl in Wasser.
  • Sie werden hergestellt, indem man den Wirkstoff entweder in der hydrophoben oder in der hydrophilen Phase löst und diese unter Zuhilfenahme geeigneter Emulgatoren und gegebenenfalls weiterer Hilfsstoffe wie Farbstoffe, resorptionsfördernde Stoffe, Konservierungsstoffe, Anti­oxidantien, Lichtschutzmittel, viskositätserhöhende Stoffe, mit dem Lösungsmittel der anderen Phase homo­genisiert.
  • Als hydrophobe Phase (Öle) seien genannt: Paraffinöle, Silikonöle, natürliche Pflanzenöle wie Sesamöl, Mandel­öl, Rizinusöl, synthetische Triglyceride wie Capryl/­Caprinsäure-bigylcerid, Triglyceridgemisch mit Pflanzen­fettsäuren der Kettenlänge C₈₋₁₂ oder anderen speziell ausgewählten natürlichen Fettsäuren, Partialglycerid­gemische gesättigter oder ungesättigter eventuell auch hydroxylgruppenhaltiger Fettsäuren, Mono- und Diglyce­ride der C₈/C₁₀-Fettsäuren.
  • Fettsäureester wie Ethylstearat, Di-n-butyryl-adipat, Laurinsäurehexylester, Dipropylen-glykolpelargonat, Ester einer verzweigten Fettsäure mittlerer Kettenlänge mit gesättigten Fettalkoholen der Kettenlänge C₁₆-C₁₈, Isopropylmyristat, Isopropylpalmitat, Capryl/Caprin­säureester von gesättigten Fettalkoholen der Kettenlänge C₁₂-C₁₈, Isopropylstearat, Ölsäureoleylester, Ölsäurede­cylester, Ethyloleat, Milchsäureethylester, wachsartige Fettsäureester wie Dibutylphthalat, Adipinsäurediiso­propylester, letzterem verwandte Estergemische u.a. Fettalkohole wie Isotridecylalkohol, 2-Octyldodecanol, Cetylstearyl-alkohol, Oleylalkohol.
  • Fettsäuren wie z.B. Ölsäure und ihre Gemische.
  • Als hydrophile Phase seien gennant:
    Wasser, Alkohole wie z.B. Propylenglycol, Glycerin, Sorbitol und ihre Gemische.
  • Als Emulgatoren seien genannt: nichtionogene Tenside, z.B. polyoxyethyliertes Rizinusöl, polyoxyethyliertes Sorbitan-monooleat, Sorbitanmonostearat, Glycerinmono­stearat, Polyoxyethylstearat, Alkylphenolpolyglykol­ether;
    ampholytische Tenside wie Di-Na-N-lauryl-ß-iminodipro­pionat oder Lecithin;
    anionaktive Tenside, wie Na-Laurylsulfat, Fettalkohol­ethersulfate, Mono/Dialkylpolyglykoletherorthophosphor­säureester-monoethanolaminsalz;
    kationaktive Tenside wie Cetyltrimethylammoniumchlorid.
  • Als weitere Hilfstoffe seien genannt: Viskositäts­erhöhende und die Emulsion stabilisierende Stoffe wie Carboxymethylcellulose, Methylcellulose und andere Cellulose- und Stärke-Derivate, Polyacrylate, Alginate, Gelatine, Gummi-arabicum, Polyvinylpyrrolidon, Poly­vinylalkohol, Copolymere aus Methylvinylether und Maleinsäureanhydrid, Polyethylenglykole, Wachse, kolloidale Kieselsäure oder Gemische der aufgeführten Stoffe.
  • Suspensionen können oral, dermal oder als Injektion angewendet werden. Sie werden hergestellt, indem man den Wirkstoff in einer Trägerflüssigkeit gegebenenfalls unter Zusatz weiterer Hilfsstoffe wie Netzmittel, Farb­stoffe, resorptionsfördernde Stoffe, Konservierungs­stoffe, Antioxidantien Lichtschutzmittel suspendiert.
  • Als Trägerflüssigkeiten seien alle homogenen Lösungsmit­tel und Lösungsmittelgemische genannt.
  • Als Netzmittel (Dispergiermittel) seien die weiter oben angegebene Tenside genannt.
  • Als weitere Hilfsstoffe seien die weiter oben angegebe­nen genannt.
  • Halbfeste Zubereitungen können oral oder dermal verab­reicht werden. Sie unterscheiden sich von den oben be­schriebenen Suspensionen und Emulsionen nur durch ihre höhere Viskosität.
  • Zur Herstellung fester Zubereitungen wird der Wirkstoff mit geeigneten Trägerstoffen gegebenenfalls unter Zusatz von Hilfsstoffen vermischt und in die gewünschte Form gebracht.
  • Als Trägerstoffe seien genannt alle physiologisch ver­träglichen festen Inertstoffe. Alle solche dienen anor­ganische und organische Stoffe. Anorganische Stoffe sind z.B. Kochsalz, Carbonate wie Calciumcarbonat, Hydrogen­carbonate, Aluminiumoxide, Kieselsäuren, Tonerden, gefälltes oder kolloidales Siliciumdioxid, Phosphate.
  • Organische Stoffe sind z.B. Zucker, Zellulose, Nahrungs- und Futtermittel wie Milchpulver, Tiermehle, Getreide­mehle und -schrote, Stärken.
  • Hilfsstoffe sind Konservierungsstoffe, Antioxidantien, Farbstoffe, die bereits weiter oben aufgeführt worden sind.
  • Weitere geeignete Hilfsstoffe sind Schmier- und Gleit­mittel wie z.B. Magnesiumstearat, Stearinsäure, Talkum, Bentonite, zerfallsfördernde Substanzen wie Stärke oder quervernetztes Polyvinylpyrrolidon, Bindemittel wie z.B. Stärke, Gelatine oder lineares Polyvinylpyrrolidon sowie Trockenbindemittel wie mikrokristalline Cellulose.
  • Die Wirkstoffe können in den Zubereitungen auch in Mi­schung mit Synergisten oder mit anderen Wirkstoffen vorliegen.
  • Anwendungsfertige Zubereitungen enthalten den Wirkstoff in Konzentrationen von 10 ppm - 20 Gewichtsprozent, bevorzugt von 0,1 - 10 Gewichtsprozent.
  • Zubereitungen die vor Anwendung verdünnt werden, enthal­ten den Wirkstoff in Konzentrationen von 0,5 - 90 Ge­wichtsprozent, bevorzugt von 1 bis 50 Gewichtsprozent.
  • Im allgemeinen hat es sich als vorteilhaft erwiesen, Mengen von etwa 0,5 bis etwa 50 mg, bevorzugt 1 bis 20 mg, Wirkstoff je kg Körpergewicht pro Tag zur Erzie­lung wirksamer Ergebnisse zu verabreichen.
  • Die Wirkstoffe können auch zusammen mit dem Futter oder Trinkwasser der Tiere verabreicht werden.
  • Futter- und Nahrungsmittel enthalten 0,01 bis 100 ppm, vorzugsweise 0,5 bis 50 ppm des Wirkstoffs in Kombina­tion mit einem geeigneten eßbaren Material.
  • Ein solches Futter- und Nahrungsmittel kann sowohl für Heilzwecke als auch für prophylaktische Zwecke verwendet werden.
  • Die Herstellung eines solchen Futter- oder Nahrungs­mittels erfolgt durch Mischen eines Konzentrats oder einer Vormischung, die 0,5 bis 30 %, vorzugsweise 1 bis 20 Gew.-% eines Wirkstoffs in Mischung mit einem eßbaren organischen oder anorganischen Täger enthält mit üb­lichen Futtermitteln. Eßbare Träger sind z.B. Maismehl oder Mais- und Sojabohnenmehl oder Mineralsalze, die vorzugsweise eine geringe Menge eines eßbaren Staub­verhütungsöls, z.B. Maisöl oder Sojaöl, enthalten. Die hierbei erhaltene Vormischung kann dann dem vollstän­digen Futtermittel vor seiner Verfütterung an die Tiere zugesetzt werden.
  • Beispielhaft sei der Einsatz bei der Coccidiose genannt:
  • Für die Heilung und Prophylaxe etwa der Coccidiose bei Geflügel, insbesondere bei Hühnern, Enten, Gänsen und Truthähnen, werden 0,1 bis 100 ppm, vorzugsweise 0,5 bis 100 ppm eines Wirkstoffs mit einem geeigneten eßbaren Material, z.B. einem nahrhaften Futtermittel, gemischt, Falls gewünscht, können diese Mengen erhöht werden, be­sonders wenn der Wirkstoff vom Empfänger gut vertragen wird. Entsprechend kann die Verabreichung über das Trinkwasser erfolgen.
  • Für die Behandlung von Einzeltieren, z.B. im Falle der Behandlung der Coccidiose bei Säugetieren oder der Toxoplasmose, werden vorzugsweise Wirkstoffmengen von 0,5 bis 100 mg/kg Körpergewicht täglich verabreicht, um die gewünschten Ergebnisse zu erzielen. Trotzdem kann es zeitweilig notwendig sein, von den genannten Mengen abzuweichen, insbesondere in Abhängigkeit vom Körperge­wicht des Versuchstieres oder der Art der Verabrei­chungsmethode, aber auch wegen der Tiergattung und seiner individuellen Reaktion auf den Wirkstoff oder der Art der Formulierung und der Zeit oder dem Abstand, zu dem er verabreicht wird. So kann es in gewissen Fällen genügen, mit weniger als der vorstehend genannten Min­destmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Bei der Verabreichung größerer Mengen kann es zweckmäßig sein, diese im Verlauf des Tages in mehrere Einzeldarrei­chungen zu unterteilen.
  • Zu den Parasiten bei Fischen gehören aus dem Unterreich der Protozoen Spezies des Stammes der Ciliata, z.B. Ichthyophthirius multifiliis, Chilodonella cyprini, Trichodina spp., Glossatella spp., Epistylis spp. des Stammes der Myxosporidia, z.B. Myxosoma cerebralis, Myxidium spp., Myxobolus spp., Heneguya spp., Hofe­rellus spp., der Klasse der Mikrosporidia z.B. Glugea spp., Thelohania spp., Pleistophora spp., aus dem Stamm der Plathelminthen: Trematoden; Monogenea z.b. Dacty­logyrus spp., Gyrodactylus spp., Pseudodactylogyrus spp., Diplozoon spp., Cestoden, z.B. aus den Gruppen der Caryphyllidea (z.B. Caryophyllaeus laticeps), Pseudo­phyllidea (z.B. Diphyllobothrium spp.), Tetraphyllidea (z.B. Phyllobothrium spp.) und Protocephalida (z.B. Arten der Gattung Proteocephalus) und aus dem Stamm der Arthropoda verschiedene parasitische Crustaceen, insbe­sondere aus den Unterklassen der Branchiura (Fischläuse) und Copepoda (Ruderfußkrebse) sowie den Ordnungen der Isopoda (Arseln) und Amphipoda (Flohkrebse).
  • Die Behandlung der Fische erfolgt entweder oral, z. B. über das Futter oder durch Kurzzeitbehandlung, "medizi­nisches Bad", in das die Fische eingesetzt und in dem sie eine Zeitlang (Minuten bis mehrere Stunden) z. B. beim Umsetzen von einem Zuchtbecken zum anderen gehalten werden.
  • Es kann aber auch eine vorübergehende oder dauernde Be­handlung des Lebensraums der Fische (z. B. ganzer Teich­anlagen, Aquarien, Tanks oder Becken), in denen die Fische gehalten werden, erfolgen.
  • Der Wirkstoff wird in Zubereitungen verabreicht, die den Anwendungen angepaßt sind.
  • Die Konzentration des Wirkstoffs, liegt in den Zuberei­tungen bei 1 ppm bis 10 Gew.-%.
  • Bevorzugte Zubereitungen zur Kurzzeitbehandlung in der Anwendung als "medizinisches Bad" z.B. bei der Behand­lung beim Umsetzen der Fische oder zur Behandlung des Lebensraums (Techbehandlung) der Fische sind Lösungen des Wirkstoffs in einem oder mehreren polaren Lösungs­mitteln, die bei Verdünnen mit Wasser alkalisch rea­gieren.
  • Zur Herstellung dieser Lösungen wird der Wirkstoff in einem polaren, wasserlöslichen Lösungsmittel gelöst, welches entweder alkalisch reagiert oder dem eine al­kalische wasserlöslich Substanz zugefügt wird. Letztere wird vorteilhaft ebenfalls im Lösungsmittel gelöst, kann aber auch in dem Lösungsmittel suspendiert sein und sich erst im Wasser lösen. Dabei soll das Wasser nach Zusatz der Wirkstofflösung einen pH-Wert von 7-10, vorzugsweise aber einen pH-Wert von 8-10 haben.
  • Die Konzentration des Wirkstoffes kann im Bereich von 0,5-50 % liegen, vorzugsweise aber in einem Bereich von 1-25 %.
  • Als Lösungsmittel kommen alle wasserlöslichen Lösungs­mittel in Betracht, in denen der Wirkstoff in genügender Konzentration löslich ist und die physiologisch unbe­denklich sind.
  • Dies sind Ethylalkohol, Isopropylalkohol, Benzylalkohol, Glycerin, Propylenglykol, Polyethylenglykole, Poly(oxo­ethylen)-poly(oxypropylen)-Polymere, basische Alkohole wie Mono-, Di- und Triethanolamin, Ketone wie Aceton oder Methylethylketon, Ester wie Milchsäureethylester ferner N-Methylpyrrolidon, Dimethylacetamid, Dimethyl­formamid, ferner Dispergier- und Emulgiermittel wie polyoxyethyliertes Rizinusöl, Polyethylenglykol-Sor­bitan-Monooleat, Polyethylenglykolstearat, oder Poly­ethylenglykolether, Polyethylenglykol-Alkylamine.
  • Als Basen zur Einstellung des alkalischen pH-Wertes seien genannt organische Basen wie basisch Aminosäuren wie L- bzw. D,L-Arginin, L- bzw. D, L-Lysin, Methyl­glucosamin, Glucosamin, 2-Amino-2-hydroxymethylpropan­diol-(1,3) ferner wie N,N,N′,N′-tetrakis-(2-hydroxy­propyl)-ethylendiamin oder Polyether-Tetrol auf der Basis Ethylendiamin (M.G. 480-420), anorganische Basen, wie Ammoniak oder Natriumcarbonat-gegebenenfalls unter Zugabe von Wasser.
  • Die Zubereitungen können auch 0,1 bis 20 Gew.-%, vor­zugsweise 0,1-10 Gew.-% anderer Formulierhilfsstoffe, wie Antioxydantien, Tenside, Suspensionsstabilisatoren und Verdickungsmittel wie z.B. Methylcellulose, Algina­te, Polysaccharide, Galaktomannane und kolloidale Kie­selsäure enthalten. Der Zusatz von Farbe, Aroma und Aufbaustoffen zur Tierernährung ist ebenfalls möglich. Auch Säuren, die mit der vorgelegten Base zusammen ein Puffersystem bilden oder den pH der Lösung reduzieren, sind hier zu nennen.
  • Die Konzentration des Wirkstoffs bei der Anwendung hängt ab von Art und Dauer der Behandlung, sowie Alter und Zustand der behandelten Fische. Sie beträgt z.B. bei Kurzzeitbehandlung 2-50 mg Wirkstoff pro Liter Wasser bevorzugt 5-10 mg pro Liter, bei einer Behandlungsdauer von 3-4 Stunden. Bei der Behandlung von jungen Karpfen wird z.B. mit einer Konzentration von 5-10 mg/l und einer Behandlungsdauer von ca. 1-4 Stunden gearbeitet.
  • Aale werden mit Konzentrationen von ca. 5 mg/l ca. 4 Stunden behandelt.
  • Bei längerer Behandlungsdauer oder bei Dauerbehandlung kann die Konzentration entsprechend niedriger gewählt werden.
  • Bei Teichbehandlungen können 0,1-5 mg Wirkstoff pro Liter Wasser verwendet werden.
  • Zubereitungen zur Anwendung als Futterzusatz sind z.B. wie folgt zusammengesetzt:
    a) Wirkstoff der Formel I 1 - 10 Gewichtsteile
    Sojabohnen-Protein 49 - 90 Gewichtsteile
    b) Wirstoff der Formel I 0,5 - 10 Gewichtsteile
    Benzylalkohol 0,08 - 1,4 Gewichtsteile
    Hydroxypropylmethylcellulose 0 - 3,5 Gewichtsteile
    Wasser Rest ad 100
  • Zubereitungen zur Anwendung bei "medizinischen Bädern" und zur Teichbehandlung sind z.B. wie folgt zusammen­gesetzt und hergestellt.
    c) 2,5 g Wirkstoff der Formel (I) werden in 100 ml Triethanolamin unter Erwärmen gelöst.
    d) 2,5 g Wirkstoff der Formel (I)
    12,5 g Milchsäure werden in 100 ml Triethanolamin unter Erwärmen und Rühren gelöst.
    e) 10,0 g Wirkstoff der Formel (I) wird in 100 ml Monoethanolamin gelöst.
    f) Wirkstoff der Formel I 5,0 g
    Propylenglykol 50,0 g
    Natriumcarbonat 5,0 g
    Wasser ad 100 ml
    g) Wirkstoff der Formel I 5,0 g
    Monoethanolamin 10 g
    N-Methylpyrrolidon ad 100 ml
    h) Wirkstoff der Formel I 2,5 g
    Natriumcarbonat 5,0 g
    Polyethylenglykol200 ad 100 ml
  • Der Wirkstoff wird unter Erwärmen im Polyethylenglykol gelöst und Natriumcarbonat darin suspendiert.
  • Beispiel A Coccidiose bei Hühnern
  • 9 bis 11 Tage alte Küken wurden mit 40000 sporulierten Oozysten von stark virulenten Stämmen von Eiveria acervulina, E. maxima und E. tenella, den Krankheiteserregern der intestinalen Coccidiose infiziert.
  • 3 Tage vor der Infektion und 8 Tage nach der Infektion (Ende des Versuchs) wurde Wirkstoff in der angegebenen Konzentration im Futter der Tiere eingemischt verab­reicht.
  • Die Zahl der Oozysten im Kot wurde mit Hilfe der McMaster-Kammer bestimmt (siehe Engelbrecht und Mitar­beiter "Parasitologische Arbeitsmehoden in Medizin und Veterinärmedizin", S. 172, Akademie-Verlag, Berlin (1965)).
  • Als wirksam werden diejenigen Dosen angesehen, die die Ausscheidung von Oozysten und/oder klinische Symptome der Coccidiose einschließlich der Mortalität vollständig oder in hohem Maße verhüteten. In der folgenden Tabelle werden die wirksamen Dosen angegeben: Tabelle 1
    Coccidiose bei Hühnern
    Beispiel Nr. Dosis ppm. Sterberate tot/eingesetzt Oocystenausscheidung in % im Vergleich zur unbehandelten infizierten Kontrolle Gewichtszunahme in % im Vergleich zur nicht infizierten unbehandelten Kon-Kontrolle Blutausscheidung mit dem Kot
    unbehandelte infizierte Kontrolle 2/6 100 35 stark
    1 50 0/3 0 100 keine
  • Herstellungsbeispiele I Beispiele für Verfahren 2a Beispiel 1
  • Figure imgb0041
  • 8 g (0,027 mol) 2,6-Dichloro-α-(4-trifluormethylthiophe­nyl)-4-methylureido-phenylacetonitril werden in 130 ml trockenem Toluol suspendiert und mit 3,6 g (0,035 mol) Chlorcarbonylisocyanat versetzt. Man rührt 3 h bei 60° C, läßt abkühlen, saugt ausgefallenes Produkt ab und wäscht gut mit Cyclohexan nach. Man erhält so 8,5 g (91 % d. Th.) Triazintrion.
  • Analog werden hergestellt:
  • Beispiel 2
  • 2,6-Dichlor-α-(4-chlorphenyl)-4-(3N-methyl-1,3,5-tria­zin-2,4,6-(1H,3H,5H)-trion)-phenylacetonitril
  • Beispiel 3
  • 2,6-Dichlor-α-(3,4-Dichlorphenyl)-4-(3N-methyl-1,3,5-­triazin-2,4,6-(1H,3H,5H)-trion)-phenylacetonitril
  • Beispiel 4
  • 2,6-Dichlor-α-(4-trifluormethoxyphenyl)-4-(3N-methyl-­1,3,5-triazin-2,4,6-(1H,3H,5H)-trion)-phenylacetonitril
  • II Beispiel für Verfahren 2b Beispiel 5
  • Figure imgb0042
  • 7,4 g (0,017 mol) 2,6-Dichlor-α-(4-trifluormethylthio­phenyl)-4-methylureido-phenylacetonitril werden in 100 ml Chlorbenzol suspendiert. Hierzu tropft man 2,8 g (0,018 mol) Bischlorcarbonylamin in 20 ml Chlorbenzol. Man erhitzt auf 110° C und rührt 3 h bei dieser Tempera­tur nach. Man läßt abkühlen, saugt den Feststoff ab und wäscht mit Cyclohexan nach. Man erhält so 5,9 g (67 % d. Th.) Triazintrion.
  • III Beispiel für Verfahren 2c Beispiel 6
  • Figure imgb0043
  • 6,3 g (0,014 mol) 2,6-Dichlor-α-(4-trifluormethylthio­phenyl)-4-methylbisureido-phenylacetonitril werden in 20 ml Diethylcarbonat suspendiert und 4 h bei 20° C ge­rührt. Nach Abschluß der Reaktion setzt man Wasser zu und neutralisiert mit verdünnter HCl. Das Reaktionsge­misch wird eingeengt und ausgefallener Feststoff abge­saugt. Man erhält so 5,8 g (85 % d. Th.) Triazintrion.
  • IV Beispiel für Verfahren 2d Beispiel 7
  • Figure imgb0044
  • 4 g (9,2 mmol) 2,6-Dichlor-α-(4-chlorphenyl)-α-methyl-4-­(3-N-methyl-1,3,5-triazin-2,4,6-(1H,3H,5H)-trion-phenyl­acetonitril werden in 20 ml absolutem DMSO gelöst und mit 0,21 g Natriumhydrid versetzt. Man rührt 30 min bei Raumtemperatur und gibt dann 2 g (14 mmol) Methyliodid in 5 ml DMSO unter Argon zu. Man erwärmt auf 50° C und hält 4 h bei dieser Temperatur. Anschließend wird das Reaktionsgemisch im Vakuum eingeengt und dann mit Wasser versetzt. Man saugt ab und erhält so 3 g (73 %) N,N′-Di­methylverbindung.
  • V Beispiel für Verfahren 4a Beispiel Va
  • Figure imgb0045
  • 10 g (0,027 mol) 4-Amino-2,6-dichloro-α-(4-trifluorme­thylthiophenyl)-phenylacetonitril werden in 120 ml trockenem Pyridin gelöst. Hierzu tropft man 2 g (0,035 mol) Methylisocyanat und rührt 15 h bei 30° C nach. Das Reaktionsgemisch wird langsam mit Wasser ver­setzt und der ausgefallene Feststoff abfiltriert. Man erhält so 10,2 g (88 % d. Th.) Methylharnstoff.
  • Analog werden hergestellt:
  • Beispiel Vb
  • 2,6-Dichloro-α-(4-trifluormethoxyphenyl)-4-methylureido-­phenylacetonitril
  • Beispiel Vc
  • 2,6-Dichloro-α-(4-chlorophenyl)-4-methylureido-phenyl­acetonitril
  • VI Beispiel zu Verfahren 4b Beispiel VIa
  • Figure imgb0046
  • 3,5 g (8,1 mmol) 4-Isocyanato-2,6-dichloro-α-(4-tri­fluormethyl-thiophenyl)-phenylacetonitril werden in 30 ml absolutem Toluol unter Argon gelöst und bei Raum­temperatur mit einer Lösung von 0,6 g (10 mmol) Propyl­amin in 20 ml Toluol versetzt. Man erwärmt 1 h auf 60° C, dann 2 h auf 90° C. Nach Abziehen der flüchtigen Bestand­teile im Vakuum und Umkristallisieren des Rückstandes aus Ethanol erhält man 2,4 g (64 % d. Th.) Propylharn­stoff.
  • VII Beispiel für Verfahren 6 Beispiel VIIa
  • Figure imgb0047
  • 5 g (0,014 mol) 2,6-Dichlor-α-(4-chlorphenyl)-4-methyl­ureido-phenylacetonitril in 70 ml trockenem Toluol wer­den bei Raumtemperatur mit 12 g 20 %iger (0,025 mol) to­luolischer Phosgenlösung versetzt. Man rührt 10 h bei Raumtemperatur nach und erhitzt anschließend 4 h auf 60° C. Nach dem Abkühlen leitet man bei Raumtemperatur bis zur vollständigen Umsetzung des Phosgenaddukts Ammo­niak durch das Reaktionsgemisch. Nach Abschluß der Reak­tion wird der ausgefallene Feststoff abfiltriert. Man erhält so 4,1 g (72 % d. Th.) Biuret.
  • Analog werden hergestellt:
  • Beispiel VIIb
  • 2,6-Dichlor-α-(trifluormethylthiophenyl)-4-N′-methyl­bisureido-phenylacetonitril
  • Beispiel VIIc
  • 2,6-Dichlor-α-(trifluormethoxy)-4-N′-methyl-bis­ureido-phenylacetonitril
  • VIII Beispiel für Verfahren 8 Beispiel VIIIa
  • Figure imgb0048
  • 20 g (0,055 mol) 4-Nitro-2,6-dichloro-α-(2-benzthiazo­lyl)-phenylacetonitril werden in 100 ml Dioxan und 100 ml Ethanol gelöst und bei Normaldruck und Raumtempe­ratur unter Zugabe von 4 g Pd (10 % auf A-Kohle) hy­driert. Nach Abfiltrieren des Katalysators und Abziehen des Lösungsmittels erhält man 16,9 (92 % d. Th.) Amin.
  • Analog werden hergestellt:
  • Beispiel VIIIb
  • 4-Amino-2,6-dichloro-α-(2-pyridinyl)-phenyl-acetonitril
  • Beispiel VIIIc
  • 4-Amino-2,6-dichloro-α-(3-pyridinyl)-phenyl-acetonitril
  • IX Beispiel für Verfahren 10 Beispiel IXa
  • Figure imgb0049
  • Zu 7,8 g (0,016 mol) Phosgen in Toluol tropft man 4 g (0,012 mol) 2,6-Dichlor-α-(2-benzthiazolyl)-4-amino­phenylacetonitril gelöst in 50 ml Toluol. Nach beendetem Zutropfen erwärmt man langsam auf Raumtemperatur, rührt 1 h bei Raumtemperatur und erwärmt dann langsam inner­halb einer weiteren Stunde zum Sieden. Man rührt unter Rückfluß für 2 weitere Stunden, kühlt ab und destilliert die flüchtigen Bestandteile im Vakuum ab und digeriert den Rückstand mit wenig Diethylether. Man erhält so 3,7 g (85 % d. Th.) Isocyanat als Feststoff.
  • X Beispiel für Verfahren 12 Beispiel Xa
  • Figure imgb0050
  • 17,4 g (0,1 mol) 2-Benzthiazolylacetonitril 2,6 g (0,1 mol) 3,4,5-Trichlornitrobenzol und 5,6 g (0,1 mol) KOH werden in 500 ml Acetonitril 12 h unter Rückfluß ge­kocht. Anschließend kühlt man ab, verdünnt mit Wasser und säuert mit HCl an. Der ausgefallene Feststoff wird abfiltriert. Man erhält so 26,9 g (74 % d. Th.) Nitro­verbindung.
  • Analog werden hergestellt:
  • Beispiel Xb
  • 4-Nitro-2,6-dichloro-α-(2-pyridinyl)-phenylacetonitril
  • Beispiel Xc
  • 4-Nitro-2,6-dichloro-α-(3-pyridinyl)-phenylacetonitril

Claims (15)

1. Substituierte 1,3,5-Triazintrione der allgemeinen Formel (I)
Figure imgb0051
in welcher
R¹ für aromatische oder heteroaromatische Reste steht, die gegebenenfalls substituiert sind,
R² für H, Alkyl, Alkenyl, Alkinyl oder Aralkyl steht, die gegebenenfalls substituiert sind,
R³ für einen oder mehrere, gleiche oder verschie­dene Reste der Gruppe Wasserstoff, Halogen, Alkyl, Halogenalkyl, Alkoxy, Alkylthio, Halo­genalkoxy, Halogenalkylthio, Cyano, Alkoxy­carbonyl, Alkylsulfonyl, Halogenalkylsulfonyl,
R⁴ für Wasserstoff, einen geradkettigen, ver­zweigten oder cyclischen Alkylrest, Alkenyl, Alkinyl, Aralkyl oder Aryl steht, die gegebe­nenfalls substituiert sind,
R⁵ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl oder Aralkyl steht.
2. Verfahren zur Herstellung substituierter 1,3,5-Tri­azintrione der allgemeinen Formel (I)
Figure imgb0052
in welcher
R¹ für aromatische oder heteroaromatische Reste steht, die gegebenenfalls substituiert sind,
R² für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Aralkyl steht, die gegebenenfalls substituiert sind,
R³ für einen oder mehrere, gleiche oder verschie­dene Reste der Gruppe Wasserstoff, Halogen, Alkyl, Halogenalkyl, Alkoxy, Alkylthio, Halo­genalkoxy, Halogenalkylthio, Cyano, Alkoxy­carbonyl, Alkylsulfonyl, Halogenalkylsulfonyl,
R⁴ für Wasserstoff, einen geradkettigen, ver­zweigten oder cyclischen Alkylrest, Alkenyl, Alkinyl, Aralkyl oder Aryl steht, die gegebe­nenfalls substituiert sind,
R⁵ für Wasserstoff, gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl oder Aralkyl steht,
indem man
a) Verbindungen der Formel (II)
Figure imgb0053
in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen haben, mit einem substituierten Carbonylisocyanat der Formel (III)
R⁶-
Figure imgb0054
-N=C=O

in der
R⁶ für ein Halogenatom, eine Alkoxygruppe oder eine Aryloxygruppe steht,
umsetzt.
b) Verbindungen der Formel (II) mit Verbindungen der Formel (IV)
Figure imgb0055
in welcher
R⁷ für Wasserstoff oder Alkyl steht,
gegebenenfalls in Gegenwart von Säureakzepto­ren umsetzt.
c) Verbindungen der Formel (V)
Figure imgb0056
in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen haben,
mit Verbindungen der Formel (VI)
Figure imgb0057
in welcher R⁸, R⁹ für eine Alkoxygruppe ste­hen, gegebenenfalls in Gegenwart von Basen, umsetzt.
d) Verbindungen der Formel (Ia)
Figure imgb0058
in welcher R¹, R², R³, R⁴ die oben angegebenen Bedeutungen haben,
mit Verbindungen der Formel (VII)
R⁵ - A
in welcher
R⁵ für gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Aralkyl steht und
A für Halogen, OSO₂, Alkyl, OSO₂-Aryl, OSO₂-Halogenalkyl steht.
3. Verbindungen der Formel (II)
Figure imgb0059
in welcher
R¹, R², R³, R⁴ die in Anspruch 1 genannten Bedeutungen haben.
4. Verfahren zur Herstellung der Verbindungen der For­mel (II) gemäß Anspruch 3, dadurch gekennzeichnet, daß man
a) Verbindungen der Formel (VIII)
Figure imgb0060
in welcher
R¹, R², R³ die oben genannten Bedeutungen be­sitzen,
mit Isocyanaten der Formel (IX)
O=C=N-R⁴
in welcher
R⁴ die bei den Verbindungen der Formel (I) genannten Bedeutungen besitzt,
umsetzt.
b) Verbindungen der Formel (X)
Figure imgb0061
in welcher
R¹, R², R³ die bei den Verbindungen der Formel (I) genannten Bedeutungen besitzen,
mit Verbindungen der Formel (XI)
R⁴-NH₂
in welcher
R⁴ die oben genannten Bedeutungen besitzt,
umsetzt.
5. Verbindungen der Formel (V)
Figure imgb0062
in welcher
R¹, R², R³, R⁴ die in Anspruch 1 angegebenen Bedeutungen besitzen.
6. Verfahren zur Herstellung der Verbindungen der For­mel (V) gemäß Anspruch 5, dadurch gekennzeichnet, daß man Verbindungen der Formel (II) gemäß Anspruch 2 mit Phosgen und Ammoniak umsetzt.
7. Verbindungen der Formel (VIII)
Figure imgb0063
in denen
R¹ für Hetero-aromatische Reste außer Thiophen oder für durch Halogenalkylthio oder Halogen­alkoxy substituiertes Phenyl steht,
R², R³ die in Anspruch 2 genannten Bedeutungen haben.
8. Verfahren zur Herstellung der Verbindungen der For­mel (VIII) gemäß Anspruch 7, dadurch gekennzeich­net, daß man Verbindungen der Formel (XII)
Figure imgb0064
in welcher
R¹, R², R³ die in Anspruch 7 genannten Bedeutungen besitzen,
hydriert.
9. Verbindungen der Formel (X)
Figure imgb0065
in welcher
R¹, R², R³ die in Anspruch 4 b) genannten Bedeu­tungen besitzen.
10. Verfahren zur Herstellung der neuen Verbindungen der Formel (X) gemäß Anspruch 9, dadurch gekenn­zeichnet, daß man Verbindungen der Formel (VIII)
Figure imgb0066
in welcher
R¹, R², R³ die in Anspruch 4 b) genannten Bedeu­tungen besitzen
mit Phosgen umsetzt.
11. Verbindungen der Formel (XII)
Figure imgb0067
in welcher
R¹, R², R³ die in Anspruch 7 beschriebenen Be­deutungen besitzen.
12. Verfahren zur Herstellung der neuen Verbindungen der Formel (XII) gemäß Anspruch 11, dadurch gekenn­zeichnet, daß man Verbindungen der Formel (XIII)
Figure imgb0068
in welcher
R¹, R² die in Anspruch 7 genannten Bedeutungen besitzen
mit Verbindungen der Formel (XIV)
Figure imgb0069
in welcher
R³ die in Anspruch 1 genannten Bedeutungen hat und
A für Halogen steht,
umsetzt.
13. Mittel gegen parasitische Protozoen, gekennzeichnet durch einen Gehalt an mindestens einem 1,3,5-Tria­zintrion der Formel (I) gemäß Anspruch 1.
14. Verwendung von 1,3,5-Triazintrionen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von parasitischen Protozoen.
15. Verwendung von 1,3,5-Triazintrione der Formel (I) gemäß Anspruch 1 zur Herstellung von Mitteln gegen parasitische Protozoen.
EP19890117614 1988-10-08 1989-09-23 Substituierte 1,3,5-Triazintrione, Verfahren zu ihrer Herstellung und ihre Verwendung gegen parasitäre Protozoen Withdrawn EP0364765A3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3834272 1988-10-08
DE3834272 1988-10-08
HU895241A HU203328B (en) 1988-10-08 1989-10-06 Process for producing substituted 1,3,5-triazine-trione derivatives and pharmaceutical compositions containing them as active components

Publications (2)

Publication Number Publication Date
EP0364765A2 true EP0364765A2 (de) 1990-04-25
EP0364765A3 EP0364765A3 (de) 1991-07-17

Family

ID=25873008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890117614 Withdrawn EP0364765A3 (de) 1988-10-08 1989-09-23 Substituierte 1,3,5-Triazintrione, Verfahren zu ihrer Herstellung und ihre Verwendung gegen parasitäre Protozoen

Country Status (2)

Country Link
EP (1) EP0364765A3 (de)
HU (1) HU206081B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110957A1 (de) * 1999-12-24 2001-06-27 Applied Research Systems ARS Holding N.V. Benzazolderivate und ihre Verwendung als JNK Modulatoren
US6861523B2 (en) 2002-02-08 2005-03-01 Torrey Pines Institute For Molecular Studies 1,3,5- trisubstituted-1,3,5-triazine-2,4,6-trione compounds and libraries
US20220002234A1 (en) * 2018-11-15 2022-01-06 National University Corporation Kobe University Production method for isocyanate compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123217A1 (de) * 1983-04-23 1984-10-31 Bayer Ag 1-(4-(4-(Fluoralkylmethylthio- oder -sulfinyl-oder-sulfonyl-)phenoxy)phenyl)-1,3,5-triazin-2,4,6(1H,3H,5H)-trione, Verfahren zu ihrer Herstellung und ihre Verwendung als Coccidiosemittel
EP0170316A2 (de) * 1984-08-01 1986-02-05 Janssen Pharmaceutica N.V. Alpha-Aryl-4-(4,5-dihydro-3,5-dioxo-1,2,4-triazin-2(3H)-yl)benzenacetonitrile
US4578402A (en) * 1985-03-15 1986-03-25 Union Carbide Corporation Pesticidal alpha-cyanobenzyl phenyl benzoyl urea compounds
EP0201030A2 (de) * 1985-05-09 1986-11-12 Bayer Ag Verfahren zur Herstellung von 1,3,5-Triazintrionen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123217A1 (de) * 1983-04-23 1984-10-31 Bayer Ag 1-(4-(4-(Fluoralkylmethylthio- oder -sulfinyl-oder-sulfonyl-)phenoxy)phenyl)-1,3,5-triazin-2,4,6(1H,3H,5H)-trione, Verfahren zu ihrer Herstellung und ihre Verwendung als Coccidiosemittel
EP0170316A2 (de) * 1984-08-01 1986-02-05 Janssen Pharmaceutica N.V. Alpha-Aryl-4-(4,5-dihydro-3,5-dioxo-1,2,4-triazin-2(3H)-yl)benzenacetonitrile
US4578402A (en) * 1985-03-15 1986-03-25 Union Carbide Corporation Pesticidal alpha-cyanobenzyl phenyl benzoyl urea compounds
EP0201030A2 (de) * 1985-05-09 1986-11-12 Bayer Ag Verfahren zur Herstellung von 1,3,5-Triazintrionen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110957A1 (de) * 1999-12-24 2001-06-27 Applied Research Systems ARS Holding N.V. Benzazolderivate und ihre Verwendung als JNK Modulatoren
US7259162B2 (en) 1999-12-24 2007-08-21 Applied Research Systems Ars Holding N.V. Benzazole derivatives and their use as JNK modulators
US7470686B2 (en) 1999-12-24 2008-12-30 Laboratoires Serono Sa Method of inhibiting the expression and/or the activity of JNK
US6861523B2 (en) 2002-02-08 2005-03-01 Torrey Pines Institute For Molecular Studies 1,3,5- trisubstituted-1,3,5-triazine-2,4,6-trione compounds and libraries
US20220002234A1 (en) * 2018-11-15 2022-01-06 National University Corporation Kobe University Production method for isocyanate compound

Also Published As

Publication number Publication date
EP0364765A3 (de) 1991-07-17
HUT59372A (en) 1992-05-28
HU906449D0 (en) 1991-04-29
HU206081B (en) 1992-08-28

Similar Documents

Publication Publication Date Title
EP0597304B1 (de) Verwendung von substituierten Benzimidazolen zur Bekämpfung parasitärer Protozoen
EP0457015B1 (de) Verwendung von substituierten 1,2,4-Triazindionen zur Bekämpfung von parasitären Protozoen
EP0330041B1 (de) Substituierte 1,2,4-Triazindione, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4120138A1 (de) Substituierte hexahydro-1,2,4-triazindione, verfahren zu ihrer herstellung, zwischenprodukte dafuer und ihre verwendung
DD288380A5 (de) Verfahren zur herstellung substituierte 1,3,5-triazintrione
EP0377903A2 (de) Substituierte Hexahydro-1,2,4-triazindione, Verfahren zu ihrer Herstellung, Zwischenprodukte dafür und ihre Verwendung
EP0476439A1 (de) Substituierte 1,2,4-Triazindione, Verfahren zu ihrer Herstellung, Zwischenprodukte dafür und ihre Verwendung
EP1311491A1 (de) Verwendung von triazintrion-sulfonen zur bekämpfung von coccidiosen
EP1177191B1 (de) Substituierte benzimidazole, ihre herstellung und ihre verwendung als mittel gegen parasitäre protozoen
EP1326845B1 (de) N-alkoxyalkyl-substituierte benzimidazole und ihre verwendung als mittel gegen parasitäre protozoen
WO1995027498A1 (de) Verwendung von cyclischen depsipeptiden mit 18 ringatomen
EP0392298A2 (de) Substituierte Uracile, Verfahren zu ihrer Herstellung und ihre Verwendung gegen parasitäre Protozoen
US5196562A (en) Substituted 1,3,5-triazinetriones, for use against parasitic protozoa
EP0364765A2 (de) Substituierte 1,3,5-Triazintrione, Verfahren zu ihrer Herstellung und ihre Verwendung gegen parasitäre Protozoen
EP1097154B1 (de) Substituierte benzimidazole, ihre herstellung und ihre verwendung als mittel gegen parasitäre protozoen
EP1789038A1 (de) Kombination von substituierten benzimidazolen und triazinderivaten mit antiparasitärer wirkung
EP0602465A1 (de) Verwendung von CN-substituierten Benzimidazolen
WO2002013831A1 (de) Verwendung von triazintrion-sulfoxiden zur bekämpfung von coccidiosen
DE4029534A1 (de) Substituierte 1,2,4-triazindione, verfahren zu ihrer herstellung, zwischenprodukte dafuer und ihre verwendung
WO1997036582A1 (de) Verwendung von substituierten aryl-imidazolen
DE102009038950A1 (de) Neue antiparasitäre Kombination von Wirkstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890923

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17Q First examination report despatched

Effective date: 19930729

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19931209