EP0362086A1 - Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature - Google Patents

Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature Download PDF

Info

Publication number
EP0362086A1
EP0362086A1 EP89420361A EP89420361A EP0362086A1 EP 0362086 A1 EP0362086 A1 EP 0362086A1 EP 89420361 A EP89420361 A EP 89420361A EP 89420361 A EP89420361 A EP 89420361A EP 0362086 A1 EP0362086 A1 EP 0362086A1
Authority
EP
European Patent Office
Prior art keywords
alloy
parts
zirconium
manganese
rapid solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89420361A
Other languages
German (de)
French (fr)
Other versions
EP0362086B1 (en
Inventor
Jean-François Faure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pechiney Recherche GIE
Original Assignee
Pechiney Recherche GIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Recherche GIE filed Critical Pechiney Recherche GIE
Priority to AT89420361T priority Critical patent/ATE90397T1/en
Publication of EP0362086A1 publication Critical patent/EP0362086A1/en
Application granted granted Critical
Publication of EP0362086B1 publication Critical patent/EP0362086B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to a process for manufacturing parts made of aluminum alloy retaining good resistance to fatigue after prolonged keeping hot.
  • EP 144898 teaches an aluminum alloy containing by weight 10 to 36% of silicon, 1 to 12% of copper, 0.1 to 3% of magnesium and 2 to 10% of at least one element chosen from the group Fe, Ni, Co, Cr and Mn.
  • This alloy is applicable to the manufacture of parts intended for both the aeronautical and automotive industries, said parts being obtained by the technique of powder metallurgy comprising, in addition to shaping by compacting and spinning, an intermediate processing step thermal between 250 and 550 ° C.
  • the present invention which consists of a process for manufacturing aluminum alloy parts retaining good resistance to fatigue after prolonged hot keeping which contain by weight 11 to 26% of silicon, 2 to 5% of iron , 0.5 to 5% copper, 0.1 to 2% magnesium and optionally minor additions of nickel and / or cobalt and which are characterized in that they also contain 0.1 to 0.4% of zirconium and 0.5 to 1.5% of manganese.
  • manganese has been substituted for part of the zirconium, which on the one hand allows savings on raw materials: manganese being cheaper than zirconium , on the other hand facilitates the conditions of melting of the alloy since a binary alloy containing 1% of zirconium has a liquidus temperature of 875 ° C whereas if it is 1% of manganese this temperature remains close 660 ° C.
  • the invention is also characterized in that the alloy is subjected in the molten state to a rapid solidification means before putting it in the form of parts.
  • the alloy is preferably melted at a temperature above 700 ° C so as to avoid any phenomenon of premature precipitation.
  • the parts after being possibly subjected to machining, are heat treated between 490 and 520 ° for 1 to 10 hours, then quenched in water before undergoing a tempering treatment between 170 and 210 ° C for 2 to 32 hours, which improves their mechanical characteristics.
  • the powder metallurgy (PM) range includes atomization in a nitrogen atmosphere of particles with a particle size less than 200 ⁇ m , then compacting at 300 MPa in an isostatic press, followed by spinning in the form of bars of diameter 40 mm
  • the spray deposition range (SD) uses the technique of GB 1379261 and makes it possible to obtain a deposit in the form of a cylindrical billet which is then transformed into a bar with a diameter of 40 mm by spinning.
  • the zirconium-manganese combination in limited quantities and the rapid solidification of the alloy obtained contribute to improving the resistance to fatigue, whether cold or hot, of parts liable to exhibit irregularities. surface like threads or connection curves and which find their application in the automobile industry, in particular in the confection of rods, axes of pistons and pistons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Forging (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Conductive Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention relates to a process for the production of aluminum alloy components retaining a good fatigue strength when used hot. This process consists of producing an alloy containing by weight 11 to 26% silicon, 2 to 5% iron, 0.5 to 5% copper, 0.1 to 2% magnesium, 0.1 to 0.4% zirconium and 0.5 to 1.5% manganese, subjecting the alloy in the molten state to a fast solidification means, bringing it into the form of parts or components and optionally subjecting the latter to a heat treatment at between 490 DEG and 520 DEG C., followed by water hardening and annealing at between 170 DEG and 210 DEG C. These components are used more particularly as rods, piston rods and pistons.

Description

La présente invention est relative à un procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud.The present invention relates to a process for manufacturing parts made of aluminum alloy retaining good resistance to fatigue after prolonged keeping hot.

On sait que l'aluminium a notamment pour propriétés d'être trois fois plus léger que l'acier et d'avoir une bonne résistance à la corrosion. En l'alliant à des métaux tels que le cuivre et le magnésium, on améliore fortement sa résistance mécanique. Par ailleurs, l'ajout de silicium donne un produit ayant une bonne résistance à l'usure. Ces alliages dopés avec d'autres éléments tels que le fer, le nickel, le cobalt, le chrome et le manganèse, voient leur tenue à chaud améliorée. Un compromis entre ces éléments d'addition fait de l'aluminium un matériau de choix pour la fabrication de pièces pour automobiles telles que bloc-moteur, piston, cylindre, etc ...We know that aluminum has the particular properties of being three times lighter than steel and of having good corrosion resistance. By combining it with metals such as copper and magnesium, its mechanical resistance is greatly improved. Furthermore, the addition of silicon gives a product having good wear resistance. These alloys doped with other elements such as iron, nickel, cobalt, chromium and manganese, see their heat resistance improved. A compromise between these elements of addition makes aluminum a material of choice for the manufacture of parts for automobiles such as engine block, piston, cylinder, etc ...

C'est ainsi que l'EP 144898 enseigne un alliage d'aluminium contenant en poids 10 à 36% de silicium, 1 à 12% de cuivre, 0,1 à 3% de magnésium et 2 à 10% d'au moins un élément choisi dans le groupe Fe, Ni, Co, Cr et Mn.Thus, EP 144898 teaches an aluminum alloy containing by weight 10 to 36% of silicon, 1 to 12% of copper, 0.1 to 3% of magnesium and 2 to 10% of at least one element chosen from the group Fe, Ni, Co, Cr and Mn.

Cet alliage est applicable à la confection de pièces destinées aussi bien à l'industrie aéronautique qu'automobile, lesdites pièces étant obtenues par la technique de la métallurgie des poudres comportant, outre la mise en forme par compactage et filage, une étape intermédiaire de traitement thermique entre 250 et 550°C.This alloy is applicable to the manufacture of parts intended for both the aeronautical and automotive industries, said parts being obtained by the technique of powder metallurgy comprising, in addition to shaping by compacting and spinning, an intermediate processing step thermal between 250 and 550 ° C.

Si ces pièces répondent bien aux différentes propriétés énoncées ci-desssus, il en est une qui n'a pas été prise en compte, à savoir la tenue à la fatigue.If these parts respond well to the various properties set out above, there is one that has not been taken into account, namely fatigue resistance.

L'homme de l'art sait que la fatigue correspond à un changement permanent, localisé et progressif de la structure métallique qui se produit dans les matériaux soumis à une succession de contraintes discontinues et qui peut entraîner des fissures et même des ruptures des pièces après une application desdites contraintes suivant un nombre de cycles plus ou moins grand et ce alors que leur intensité est le plus souvent nettement inférieure à celle qu'il faut appliquer au matériau de façon continue pour obtenir une rupture par traction. C'est pourquoi les valeurs de module d'élasticité, de résistance à la traction, de dureté énoncées dans l'EP 144898 ne peuvent rendre compte de l'aptitude de l'alliage à la résistance à la fatigue.Those skilled in the art know that fatigue corresponds to a permanent, localized and gradual change in the metallic structure which occurs in materials subjected to a succession of discontinuous stresses and which can lead to cracks and even ruptures. parts after an application of said stresses according to a number of cycles more or less and this while their intensity is most often significantly lower than that which must be applied to the material continuously to obtain a rupture by traction. This is why the values of modulus of elasticity, tensile strength, hardness stated in EP 144898 cannot account for the suitability of the alloy for resistance to fatigue.

Or, il est important pour des pièces telles que les bielles ou les axes de piston, par exemple, qui travaillent en dynamique et qui sont soumises à des efforts périodiques, de présenter une bonne tenue à la fatigue.However, it is important for parts such as the connecting rods or the piston pins, for example, which work in dynamics and which are subjected to periodic forces, to have good resistance to fatigue.

C'est pourquoi la demanderesse s'étant penchée sur ce problème a certes constaté que les pièces fabriquées à partir des alliages entrant dans le cadre du document sus-mentionné présentaient une résistance à la fatigue qui pouvait convenir à certaines applications mais, qu'il était possible d'améliorer notablement cette propriété en modifiant leur composition. C'est dans ce but qu'elle a mis au point des pièces en alliages d'aluminium contenant en poids 11 à 22% de silicium, 2 à 5% de fer, 0,5 à 4% de cuivre, 0,2 à 1,5% de magnésium caractérisées en ce qu'elles contiennent également 0,4 à 1,5% de zirconium.This is why the applicant, having looked into this problem, has certainly noted that the parts made from alloys falling within the scope of the above-mentioned document had a resistance to fatigue which could be suitable for certain applications but, that it was possible to significantly improve this property by modifying their composition. It is for this purpose that it has developed parts in aluminum alloys containing by weight 11 to 22% of silicon, 2 to 5% of iron, 0.5 to 4% of copper, 0.2 to 1.5% magnesium, characterized in that it also contains 0.4 to 1.5% zirconium.

Cette invention a d'ailleurs fait l'objet de la demande de brevet français n°87-17674.This invention was also the subject of French patent application No. 87-17674.

Toutefois, la demanderesse s'est aperçue que si le zirconium apportait une amélioration sensible du point de vue de la limite de fatigue à 20°C, puisque celle-ci passait de 150 à 185 MPa, par contre, après un maintien de 1000 heures à 150°C (ce qui représente en gros les conditions de travail d'une bielle à mi-vie d'un moteur), cette limite chutait à 143 MPa, soit une réduction de plus de 22%.However, the Applicant has noticed that if the zirconium brought a significant improvement from the point of view of the fatigue limit at 20 ° C, since it went from 150 to 185 MPa, on the other hand, after a maintenance of 1000 hours at 150 ° C (which roughly represents the working conditions of a connecting rod at mid-life of an engine), this limit dropped to 143 MPa, a reduction of more than 22%.

Poursuivant ses travaux, elle a trouvé qu'on pouvait remédier à cet inconvénient en combinant à l'action du zirconium celle du manganèse.Continuing her work, she found that this drawback could be remedied by combining the action of zirconium with that of manganese.

D'où la présente invention qui consiste en un procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud qui contiennent en poids 11 à 26% de silicium, 2 à 5% de fer, 0,5 à 5% de cuivre, 0,1 à 2% de magnésium et éventuellement des additions mineures de nickel et/ou de cobalt et qui sont caractérisées en ce qu'elles contiennent également 0,1 à 0,4% de zirconium et 0,5 à 1,5% de manganèse.Hence the present invention which consists of a process for manufacturing aluminum alloy parts retaining good resistance to fatigue after prolonged hot keeping which contain by weight 11 to 26% of silicon, 2 to 5% of iron , 0.5 to 5% copper, 0.1 to 2% magnesium and optionally minor additions of nickel and / or cobalt and which are characterized in that they also contain 0.1 to 0.4% of zirconium and 0.5 to 1.5% of manganese.

Ces fourchettes encadrent les valeurs d'ajout de zirconium et de manganèse en dessous desquelles l'effet n'est pas significatif et au-dessus desquelles soit l'ajout du zirconium n'a plus d'influence déterminante, soit l'ajout de manganèse conduit à une fragilisation de la pièce et à une chute de la limite de fatigue d'une pièce entaillée, c'est-à-dire présentant des irrégularités de surface telles que pas de vis, rayons de raccordement, etc ...These ranges frame the values for adding zirconium and manganese below which the effect is not significant and above which either the addition of zirconium no longer has a decisive influence, or the addition of manganese leads to embrittlement of the part and to a drop in the fatigue limit of a notched part, that is to say having surface irregularities such as no screws, connecting radii, etc.

Ainsi, par rapport à la composition décrite dans la demande de brevet sus-mentionnée, on a substitué le manganèse à une partie du zirconium, ce qui d'une part permet une économie sur les matières premières : le manganèse étant meilleur marché que le zirconium, d'autre part facilite les conditions de fusion de l'alliage puisqu'un alliage binaire contenant 1% de zirconium a une température de liquidus de 875°C alors que s'il s'agit de 1% de manganèse cette température reste voisine de 660°C.Thus, compared to the composition described in the above-mentioned patent application, manganese has been substituted for part of the zirconium, which on the one hand allows savings on raw materials: manganese being cheaper than zirconium , on the other hand facilitates the conditions of melting of the alloy since a binary alloy containing 1% of zirconium has a liquidus temperature of 875 ° C whereas if it is 1% of manganese this temperature remains close 660 ° C.

Toutefois, outre la composition particulière de l'alliage mis en oeuvre, l'invention est également caractérisée en ce que l'on soumet l'alliage à l'état fondu à un moyen de solidification rapide avant de le mettre sous forme de pièces. En effet, comme les éléments tels que le fer, le zirconium et le manganèse sont très peu solubles dans l'alliage, il est indispensable pour obtenir des pièces répondant aux caractéristiques souhaitées d'éviter une précipitation grossière et hétérogène de ces éléments ce qu'on réalise en les refroidissant le plus rapidement possible. En outre, l'alliage est de préférence fondu à une température supérieure à 700°C de manière à éviter tout phénomène de précipitation prématurée.However, in addition to the particular composition of the alloy used, the invention is also characterized in that the alloy is subjected in the molten state to a rapid solidification means before putting it in the form of parts. Indeed, as the elements such as iron, zirconium and manganese are very little soluble in the alloy, it is essential to obtain parts meeting the desired characteristics to avoid a rough and heterogeneous precipitation of these elements what this is done by cooling them as quickly as possible. In addition, the alloy is preferably melted at a temperature above 700 ° C so as to avoid any phenomenon of premature precipitation.

Il existe plusieurs façons d'opérer cette solidification rapide :

  • 1) On divise l'alliage fondu sous forme de fines gouttelettes
    - soit par atomisation du métal fondu à l'aide d'un gaz ou par atomisation mécanique suivie d'un refroidissement dans un gaz (air, hélium, argon).
    - soit par pulvérisation centrifuge ou autre procédé apparenté.
    Cela conduit à des poudres de granulométrie inférieure à 400 µm qui sont ensuite, suivant les techniques bien connues de la métallurgie des poudres, mises en forme par compactage à froid ou à chaud dans une presse uniaxiale ou isostatique puis filage et/ou forgeage ;
  • 2) On projette l'alliage fondu contre une surface métallique refroidie, suivant par exemple les techniques désignées par les Anglo-Saxons sous l'expression "melt spinning" ou "planar flow casting" et dont on trouve des descriptions dans les brevets US 4389258 et EP 136508, ou encore "melt overflow" et les techniques apparentées. On génère ainsi des rubans d'épaisseur inférieure à 100 µm qui sont ensuite mis en forme comme ci-dessus ;
  • 3) On projette l'alliage fondu atomisé dans un courant de gaz contre un substrat, suivant par exemple les techniques encore appelées "spray deposition" ou "spray casting" dont une description est donnée dans le brevet GB 1379261 et qui conduit à un dépôt cohérent suffisamment malléable pour être mis en forme par forgeage, filage ou matriçage.
There are several ways to operate this rapid solidification:
  • 1) The molten alloy is divided into fine droplets
    - Either by atomization of the molten metal using a gas or by mechanical atomization followed by cooling in a gas (air, helium, argon).
    - either by centrifugal spraying or other related process.
    This leads to powders with a particle size of less than 400 μm which are then, according to well known techniques in powder metallurgy, shaped by cold or hot compaction in a uniaxial or isostatic press then spinning and / or forging;
  • 2) The molten alloy is projected against a cooled metal surface, according for example to the techniques designated by the Anglo-Saxons under the expression "melt spinning" or "planar flow casting" and of which descriptions are found in US patents 4,389,258 and EP 136508, or also "melt overflow" and related techniques. Ribbons with a thickness of less than 100 μm are thus generated which are then shaped as above;
  • 3) The atomized molten alloy is projected into a stream of gas against a substrate, for example according to the techniques also called "spray deposition" or "spray casting", a description of which is given in patent GB 1379261 and which leads to a deposition coherent enough malleable to be shaped by forging, spinning or stamping.

Cette liste est bien entendu non exhaustive.This list is of course not exhaustive.

Afin d'affiner davantage la structure de précipitation, les pièces après avoir été soumises éventuellement à un usinage sont traitées thermiquement entre 490 et 520° pendant 1 à 10 heures, puis trempées à l'eau avant de subir un traitement de revenu entre 170 à 210°C pendant 2 à 32 heures, ce qui améliore leurs caractéristiques mécaniques.In order to further refine the precipitation structure, the parts, after being possibly subjected to machining, are heat treated between 490 and 520 ° for 1 to 10 hours, then quenched in water before undergoing a tempering treatment between 170 and 210 ° C for 2 to 32 hours, which improves their mechanical characteristics.

L'invention sera mieux comprise à l'aide des exemples d'application suivants : une masse d'alliage de base, contenant en poids 18% de silicium, 3% de fer, 1% de cuivre, 1% de magnésium, solde aluminium a été fondue vers 900°C puis partagée en 8 lots numérotés de 0 à 7.The invention will be better understood using the following application examples: a mass of base alloy, containing by weight 18% of silicon, 3% of iron, 1% of copper, 1% of magnesium, aluminum balance was melted around 900 ° C and then divided into 8 lots numbered 0 to 7.

Aux lots 1 à 7 on a ajouté différentes quantités de zirconium et de manganèse, le lot 0 servant de témoin.
Puis ces lots ont été traités soit par la métallurgie des poudres, soit par spray deposition :
- la gamme métallurgie des poudres (PM) comprend une atomisation dans une atmosphère d'azote de particules de granulométrie inférieure à 200 µm, puis un compactage sous 300 MPa dans une presse isostatique, suivi d'un filage sous forme de barres de diamètre 40 mm
-la gamme spray deposition (SD) utilise la technique du GB 1379261 et permet d'obtenir un dépôt sous forme d'une billette cylindrique qui est ensuite transformée en barre de diamètre 40 mm par filage.
To lots 1 to 7 different quantities of zirconium and manganese were added, lot 0 serving as a control.
Then these batches were treated either by powder metallurgy or by spray deposition:
- the powder metallurgy (PM) range includes atomization in a nitrogen atmosphere of particles with a particle size less than 200 µm , then compacting at 300 MPa in an isostatic press, followed by spinning in the form of bars of diameter 40 mm
-the spray deposition range (SD) uses the technique of GB 1379261 and makes it possible to obtain a deposit in the form of a cylindrical billet which is then transformed into a bar with a diameter of 40 mm by spinning.

Ces pièces sont ensuite traitées pendant 2 heures entre 490 et 520°C puis trempées à l'eau et soumises pendant 8 heures à une température comprise entre 170 et 200°C.
Sur des éprouvettes de chacune de ces pièces, on a mesuré suivant des techniques bien connues de l'homme de l'art les caractéristiques suivantes :
- le module d'Young E en GPa
- la limite élastique conventionnelle à 0,2% : R0,2 en MPa, la charge de rupture Rm en MPa, l'allongement A en %, ces mesures étant faites à 20°C puis à 150°C après 100 heures de maintien
- la limite de fatigue à 20°C au bout de 10⁷ cycles, Lf en MPa, sur des éprouvettes lisses à l'état T6 suivant les normes de l'Aluminium Association et sollicitées par flexion rotative
- la même mesure que précédemment mais après un maintien de l'éprouvette pendant 1000 heures à 150°C
- le rapport d'endurance Lf/Rm à 20°C
- la limite de fatigue à 20°C comme ci-dessus mais sur éprouvette entaillée avec Kt = 2,2
- le coefficient de sensibilité à l'entaille

Figure imgb0001
ou Kf est le rapport de la limite de fatigue mesurée sur éprouvette lisse à la limite de fatigue sur éprouvette entaillée (l'alliage est d'autant plus sensible à l'entaille que q est élevé).These parts are then treated for 2 hours between 490 and 520 ° C then quenched with water and subjected for 8 hours at a temperature between 170 and 200 ° C.
The following characteristics were measured on test tubes of each of these parts according to techniques well known to those skilled in the art:
- the Young E module in GPa
- the conventional elastic limit at 0.2%: R0.2 in MPa, the breaking load Rm in MPa, the elongation A in%, these measurements being made at 20 ° C then at 150 ° C after 100 hours of maintenance
- the fatigue limit at 20 ° C after 10⁷ cycles, Lf in MPa, on smooth test pieces in the T6 state according to the standards of the Aluminum Association and stressed by rotary bending
- the same measurement as above but after holding the test piece for 1000 hours at 150 ° C
- the endurance ratio Lf / Rm at 20 ° C
- the fatigue limit at 20 ° C as above but on a notched test piece with Kt = 2.2
- the coefficient of sensitivity to the notch
Figure imgb0001
where Kf is the ratio of the fatigue limit measured on a smooth specimen to the fatigue limit on a notched specimen (the alloy is all the more sensitive to the notch as q is high).

Tous les résultats de ces mesures figurent dans le tableau suivant.

Figure imgb0002
All the results of these measurements are shown in the following table.
Figure imgb0002

De ces mesures, on déduit que si la limite de fatigue après maintien de 1000 heures à 150°C est de 120 MPa pour un alliage ne contenant ni zirconium, ni manganèse (N°=0), l'ajout de 1% de zirconium (N°=1) fait passer cette caractéristique à 148 MPa et l'ajout simultané de zirconium et de manganèse avec une quantité moindre de zirconium (N°=5) permet d'atteindre une valeur de 177 MPa.From these measurements, we deduce that if the fatigue limit after maintaining 1000 hours at 150 ° C is 120 MPa for an alloy containing neither zirconium nor manganese (N ° = 0), the addition of 1% of zirconium (N ° = 1) increases this characteristic to 148 MPa and the simultaneous addition of zirconium and manganese with a lesser amount of zirconium (N ° = 5) makes it possible to reach a value of 177 MPa.

De plus, la présence simultanée de zirconium et de manganèse permet d'atténuer fortement la dégradation de la limite de fatigue qui se produit après maintien à 150°C. En effet, avec l'alliage N°=1 sans manganèse, Lf passe de 185 à 143 MPa soit une dégradation de 42 MPa, alors qu'avec l'alliage N°=5 contenant 1,2% de manganèse, Lf passe de 193 à 177 MPa soit une dégradation de 16 MPa, valeur beaucoup plus faible que la précédente.In addition, the simultaneous presence of zirconium and manganese makes it possible to greatly attenuate the degradation of the fatigue limit which occurs after maintenance at 150 ° C. Indeed, with the alloy N ° = 1 without manganese, Lf goes from 185 to 143 MPa or a degradation of 42 MPa, while with the alloy N ° = 5 containing 1.2% of manganese, Lf goes from 193 to 177 MPa or a degradation of 16 MPa, a much lower value than the previous one.

Ces mesures montrent également que ces éléments améliorent la limite de fatigue sur pièces entaillées mais que leur présence en trop grandes quantités contribue à dégrader cette caractéristique et à augmenter la fragilité. Ainsi, la valeur de cette limite passe de 100 MPa pour l'éprouvette N°=0 à 125 MPapour l'éprouvette N°=3 (0,1% Zr - 0,6% Mn) mais chute à 105 MPa pour l'éprouvette N°=7 plus chargée en zirconium et en manganèse.These measurements also show that these elements improve the fatigue limit on notched parts but that their presence in too large quantities contributes to degrade this characteristic and to increase the brittleness. Thus, the value of this limit goes from 100 MPa for the test piece N ° = 0 to 125 MPa for the test piece N ° = 3 (0.1% Zr - 0.6% Mn) but drops to 105 MPa for the test tube N ° = 7 more loaded with zirconium and manganese.

On constate ainsi que la présence simultanée de zirconium et de manganèse dans les proportions de l'invention (alliages n°5, 4, 3, 6) conduit à un coefficient de sensibilité à l'entaille plus faible (0,51-0,48-0,43-0,51) que pour les alliages de l'art antérieur où le coefficient avoisine 0,6 mis à part l'alliage n°=0 qui par ailleurs n'est pas utilisable en raison de sa trop faible résistance mécanique.It can thus be seen that the simultaneous presence of zirconium and manganese in the proportions of the invention (alloys 5, 4, 3, 6) leads to a lower coefficient of sensitivity to the notch (0.51-0, 48-0.43-0.51) than for alloys of the prior art where the coefficient is around 0.6 apart from alloy n ° = 0 which, moreover, cannot be used because of its too low mechanical resistance.

Ainsi suivant l'invention, la combinaison zirconium-manganèse en quantités limitées et la solidification rapide de l'alliage obtenu contribuent-t-elles à améliorer la tenue à la fatigue que ce soit à froid ou à chaud de pièces susceptibles de présenter des irrégularités de surface comme des pas de vis ou des courbes de raccordement et qui trouvent leur application dans l'industrie automobile, notamment dans la confection de bielles, d'axes de pistons et de pistons.Thus according to the invention, the zirconium-manganese combination in limited quantities and the rapid solidification of the alloy obtained contribute to improving the resistance to fatigue, whether cold or hot, of parts liable to exhibit irregularities. surface like threads or connection curves and which find their application in the automobile industry, in particular in the confection of rods, axes of pistons and pistons.

Claims (5)

1. Procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud, contenant en poids 11 à 26 % de silicium, 2 à 5% de fer, 0,5 à 5% de cuivre, 0,1 à 2% de magnésium et éventuellement des additions mineures de nickel et/ou de cobalt caractérisé en ce que :
-l'on met en oeuvre un alliage contenant également 0,1 à 0,4% de zirconium et 0,5 à 1,5% de manganèse,
-l'on soumet l'alliage à l'état fondu à un moyen de solidification rapide,
-l'on met le produit obtenu sous forme de pièces.
1. Process for manufacturing aluminum alloy parts retaining good resistance to fatigue after prolonged hot keeping, containing by weight 11 to 26% of silicon, 2 to 5% of iron, 0.5 to 5% of copper, 0.1 to 2% of magnesium and possibly minor additions of nickel and / or cobalt characterized in that:
an alloy is also used containing 0.1 to 0.4% of zirconium and 0.5 to 1.5% of manganese,
the alloy is subjected in the molten state to a rapid solidification means,
-the product obtained is put in the form of parts.
2. Procédé selon la revendication 1 caractérisé en ce que le moyen de solidification rapide consiste à diviser l'alliage fondu sous forme de fines gouttelettes.2. Method according to claim 1 characterized in that the rapid solidification means consists in dividing the molten alloy in the form of fine droplets. 3. Procédé selon la revendication 1 caractérisé en ce que le moyen de solidification rapide consiste en une projection de l'alliage fondu contre une surface métallique refroidie.3. Method according to claim 1 characterized in that the rapid solidification means consists of a projection of the molten alloy against a cooled metal surface. 4. Procédé selon la revendication 1 caractérisé en ce que le moyen de solidification rapide consiste en une projection de l'alliage atomisé dans un courant de gaz contre un substrat.4. Method according to claim 1 characterized in that the rapid solidification means consists of a projection of the atomized alloy in a stream of gas against a substrate. 5. Procédé selon la revendication 1 caractérisé en ce que l'on fait subir aux pièces un traitement thermique à une température comprise entre 490 et 520°C, une trempe à l'eau et un revenu entre 170 et 210°C.5. Method according to claim 1 characterized in that the parts are subjected to a heat treatment at a temperature between 490 and 520 ° C, water quenching and tempering between 170 and 210 ° C.
EP89420361A 1988-09-26 1989-09-21 Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature Expired - Lifetime EP0362086B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89420361T ATE90397T1 (en) 1988-09-26 1989-09-21 PROCESS FOR THE MANUFACTURE OF WORKPIECES FROM AN ALUMINUM ALLOY WHICH MAINTAINS GOOD FATIGUE RESISTANCE WHEN STAYING AT HIGHER TEMPERATURES FOR A LONGER TIME.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8812982A FR2636974B1 (en) 1988-09-26 1988-09-26 ALUMINUM ALLOY PARTS RETAINING GOOD FATIGUE RESISTANCE AFTER EXTENDED HOT HOLDING AND METHOD FOR MANUFACTURING SUCH PARTS
FR8812982 1988-09-26

Publications (2)

Publication Number Publication Date
EP0362086A1 true EP0362086A1 (en) 1990-04-04
EP0362086B1 EP0362086B1 (en) 1993-06-09

Family

ID=9370672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420361A Expired - Lifetime EP0362086B1 (en) 1988-09-26 1989-09-21 Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature

Country Status (16)

Country Link
US (2) US4963322A (en)
EP (1) EP0362086B1 (en)
JP (1) JPH0819496B2 (en)
KR (1) KR930003602B1 (en)
CN (1) CN1041399A (en)
AT (1) ATE90397T1 (en)
BR (1) BR8904844A (en)
DD (1) DD284904A5 (en)
DE (1) DE68906999T2 (en)
DK (1) DK468489A (en)
ES (1) ES2042048T3 (en)
FI (1) FI894499A (en)
FR (1) FR2636974B1 (en)
HU (1) HUT53680A (en)
IL (1) IL91738A0 (en)
YU (1) YU185389A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577062A1 (en) * 1992-06-29 1994-01-05 Sumitomo Electric Industries, Limited Oil pump made of aluminum alloys
EP1728882A2 (en) * 2004-03-23 2006-12-06 Nippon Light Metal, Co., Ltd. Aluminium alloy for casting, having high rigidity and low liner expansion coefficiant
WO2009068494A2 (en) * 2007-11-30 2009-06-04 Andreas Borst Piston and method for the production thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69221690T2 (en) * 1991-04-03 1998-04-02 Sumitomo Electric Industries ROTOR FOR OIL PUMP FROM AN ALUMINUM ALLOY AND ITS PRODUCTION METHOD
US5372775A (en) * 1991-08-22 1994-12-13 Sumitomo Electric Industries, Ltd. Method of preparing particle composite alloy having an aluminum matrix
EP0657553A1 (en) * 1993-11-10 1995-06-14 Sumitomo Electric Industries, Ltd. Nitrogenous aluminum-silicon powder metallurgical alloy
DE19523484C2 (en) * 1995-06-28 2002-11-14 Daimler Chrysler Ag Method for producing a cylinder liner from a hypereutectic aluminum / silicon alloy for casting into a crankcase of a reciprocating piston machine and cylinder liner produced thereafter
US6332906B1 (en) 1998-03-24 2001-12-25 California Consolidated Technology, Inc. Aluminum-silicon alloy formed from a metal powder
US5965829A (en) * 1998-04-14 1999-10-12 Reynolds Metals Company Radiation absorbing refractory composition
DE10053664A1 (en) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanical kinetic vacuum pump
US6902699B2 (en) * 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US7435306B2 (en) * 2003-01-22 2008-10-14 The Boeing Company Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby
US7922841B2 (en) * 2005-03-03 2011-04-12 The Boeing Company Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby
CN1317410C (en) * 2005-03-09 2007-05-23 沈阳工业大学 Abrasion resistant, heat resistant high silicone aluminium alloy and its shaping technology
CN103031473B (en) * 2009-03-03 2015-01-21 中国科学院苏州纳米技术与纳米仿生研究所 Processing method of high-toughness Al-Si system die-casting aluminum alloy
CN107377973A (en) * 2017-08-30 2017-11-24 广东美芝制冷设备有限公司 Alloy components and its preparation method and application
CN108265204A (en) * 2018-01-24 2018-07-10 安徽浩丰实业有限公司 A kind of piston material containing cobalt and preparation method thereof
CN109826900B (en) * 2019-02-13 2021-02-02 江苏汉苏机械股份有限公司 Piston rod assembly capable of running stably

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB563994A (en) * 1941-12-01 1944-09-08 Nat Smelting Co Improvements in or relating to aluminium base alloys
EP0005910A1 (en) * 1978-05-31 1979-12-12 ASSOCIATED ENGINEERING ITALY S.p.A. Piston and cylinder assemblies
US4419143A (en) * 1981-11-16 1983-12-06 Nippon Light Metal Company Limited Method for manufacture of aluminum alloy casting
EP0100287A1 (en) * 1982-07-06 1984-02-08 CNRS, Centre National de la Recherche Scientifique Amorphous or microcrystalline alloys based on aluminium
EP0144898A2 (en) * 1983-12-02 1985-06-19 Sumitomo Electric Industries Limited Aluminum alloy and method for producing same
EP0170963A2 (en) * 1984-08-10 1986-02-12 AlliedSignal Inc. Rapidly solifified aluminum-transition metal-silicon alloys
US4729790A (en) * 1987-03-30 1988-03-08 Allied Corporation Rapidly solidified aluminum based alloys containing silicon for elevated temperature applications

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357450A (en) * 1941-01-18 1944-09-05 Nat Smelting Co Aluminum alloy
GB1431895A (en) * 1972-06-30 1976-04-14 Alcan Res & Dev Production of aluminium alloy products
AU536976B2 (en) * 1980-09-10 1984-05-31 Comalco Limited Aluminium-silicon alloys
US4347076A (en) * 1980-10-03 1982-08-31 Marko Materials, Inc. Aluminum-transition metal alloys made using rapidly solidified powers and method
US4647321A (en) * 1980-11-24 1987-03-03 United Technologies Corporation Dispersion strengthened aluminum alloys
JPS58204147A (en) * 1982-05-14 1983-11-28 Nissan Motor Co Ltd Heat resistant aluminum alloy
US4435213A (en) * 1982-09-13 1984-03-06 Aluminum Company Of America Method for producing aluminum powder alloy products having improved strength properties
US4592781A (en) * 1983-01-24 1986-06-03 Gte Products Corporation Method for making ultrafine metal powder
JPS60131944A (en) * 1983-12-19 1985-07-13 Sumitomo Electric Ind Ltd Superheat-and wear-resistant aluminum alloy and its manufacture
JPS6148551A (en) * 1984-08-13 1986-03-10 Sumitomo Light Metal Ind Ltd Formed material having superior strength at high temperature made of aluminium alloy material solidified by rapid cooling
JPS61238947A (en) * 1985-04-16 1986-10-24 Sumitomo Light Metal Ind Ltd Manufacture of al-si alloy blank
US4732610A (en) * 1986-02-24 1988-03-22 Aluminum Company Of America Al-Zn-Mg-Cu powder metallurgy alloy
JPS6311642A (en) * 1986-06-30 1988-01-19 Showa Alum Corp Aluminum alloy for heat roller
US4847048A (en) * 1986-07-21 1989-07-11 Ryobi Limited Aluminum die-casting alloys
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic
CH673242A5 (en) * 1986-08-12 1990-02-28 Bbc Brown Boveri & Cie
FR2624137B1 (en) * 1987-12-07 1990-06-15 Cegedur ALUMINUM ALLOY PARTS, SUCH AS CONNECTING RODS, WITH IMPROVED FATIGUE RESISTANCE AND METHOD OF MANUFACTURE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB563994A (en) * 1941-12-01 1944-09-08 Nat Smelting Co Improvements in or relating to aluminium base alloys
EP0005910A1 (en) * 1978-05-31 1979-12-12 ASSOCIATED ENGINEERING ITALY S.p.A. Piston and cylinder assemblies
US4419143A (en) * 1981-11-16 1983-12-06 Nippon Light Metal Company Limited Method for manufacture of aluminum alloy casting
EP0100287A1 (en) * 1982-07-06 1984-02-08 CNRS, Centre National de la Recherche Scientifique Amorphous or microcrystalline alloys based on aluminium
EP0144898A2 (en) * 1983-12-02 1985-06-19 Sumitomo Electric Industries Limited Aluminum alloy and method for producing same
EP0170963A2 (en) * 1984-08-10 1986-02-12 AlliedSignal Inc. Rapidly solifified aluminum-transition metal-silicon alloys
US4729790A (en) * 1987-03-30 1988-03-08 Allied Corporation Rapidly solidified aluminum based alloys containing silicon for elevated temperature applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 12, no. 258 (C-513)[3105], 20 juillet 1988; & JP-A-63 42 344 (HONDA MOTOR CO. LTD.) 23-02-1988 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577062A1 (en) * 1992-06-29 1994-01-05 Sumitomo Electric Industries, Limited Oil pump made of aluminum alloys
EP1728882A2 (en) * 2004-03-23 2006-12-06 Nippon Light Metal, Co., Ltd. Aluminium alloy for casting, having high rigidity and low liner expansion coefficiant
EP1728882A4 (en) * 2004-03-23 2007-10-31 Nippon Light Metal Co Aluminium alloy for casting, having high rigidity and low liner expansion coefficiant
WO2009068494A2 (en) * 2007-11-30 2009-06-04 Andreas Borst Piston and method for the production thereof
WO2009068494A3 (en) * 2007-11-30 2009-08-20 Andreas Borst Piston and method for the production thereof

Also Published As

Publication number Publication date
FI894499A0 (en) 1989-09-22
IL91738A0 (en) 1990-06-10
FR2636974A1 (en) 1990-03-30
DD284904A5 (en) 1990-11-28
HUT53680A (en) 1990-11-28
JPH0819496B2 (en) 1996-02-28
FR2636974B1 (en) 1992-07-24
US4992242A (en) 1991-02-12
FI894499A (en) 1990-03-27
DE68906999T2 (en) 1993-09-16
US4963322A (en) 1990-10-16
DK468489D0 (en) 1989-09-22
DK468489A (en) 1990-03-27
ATE90397T1 (en) 1993-06-15
EP0362086B1 (en) 1993-06-09
KR900004951A (en) 1990-04-13
YU185389A (en) 1992-12-21
KR930003602B1 (en) 1993-05-08
BR8904844A (en) 1990-05-08
ES2042048T3 (en) 1993-12-01
DE68906999D1 (en) 1993-07-15
CN1041399A (en) 1990-04-18
JPH02232324A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
EP0362086B1 (en) Process for producing items made from an aluminium alloy retaining a good fatigue resistance after a prolonged stay at a high temperature
FR2573777A1 (en) HEAT-RESISTANT HEAT-RESISTANT ALUMINUM ALLOY AND METHOD FOR MANUFACTURING CARRIER COMPONENT THEREOF
EP1737991A1 (en) Free-cutting, lead-containing cu-ni-sn alloy and production method thereof
FR3077524A1 (en) PROCESS FOR MANUFACTURING ALUMINUM ALLOY AND CHROME ALLOY
EP0265307B1 (en) Process for manufacturing shaped bodies from hypereutectic aluminium-silicon alloys, starting from powders obtained by rapid cooling
JP2007092117A (en) Aluminum alloy with high strength and low specific gravity
EP0320417B1 (en) Mechanical parts, such as piston connecting rods, made from an aluminium alloy with improved fatigue resistance, and process for their manufacture
JP4764094B2 (en) Heat-resistant Al-based alloy
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
CA2013270A1 (en) High-modulus, high-mechanical strength al-based alloy and production process
EP0008996A1 (en) Process for heat-treating aluminium-copper-magnesium-silicon alloys
EP0093218A1 (en) High strength steel screws and bolts, and method of production
CA2444175C (en) Reinforced durable tool steel, method for the production thereof, method for producing parts made of said steel, and parts thus obtained
EP2134882A2 (en) Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
CN115233030A (en) Copper alloy with excellent welding performance and preparation method thereof
FR2636076A1 (en) PROCESS FOR MANUFACTURING STEEL ELEMENTS DESIGNED TO RESIST HIGH STRESSES, SUCH AS ROLLER BEARING ELEMENTS
JPH02247348A (en) Heat-resistant aluminum alloy having excellent tensile strength, ductility and fatigue resistance
Reddy et al. Effect of cold rolling on the porosity, hardness properties of the spray deposited Al-18% Pb And Al-22% Pb Alloys
JP2001294975A (en) Composite roll for rolling treatment
JPH02147195A (en) Production of cobalt-chromium-based alloy welding material
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture
JP3245652B2 (en) High temperature aluminum alloy and method for producing the same
JP2746390B2 (en) Manufacturing method of aluminum alloy with excellent tensile and fatigue strength
KR100603882B1 (en) Heat treated, spray formed superalloy articles and method of making the same
JP4704721B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900420

17Q First examination report despatched

Effective date: 19920513

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930609

Ref country code: AT

Effective date: 19930609

REF Corresponds to:

Ref document number: 90397

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930609

REF Corresponds to:

Ref document number: 68906999

Country of ref document: DE

Date of ref document: 19930715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930930

Ref country code: LI

Effective date: 19930930

Ref country code: CH

Effective date: 19930930

Ref country code: BE

Effective date: 19930930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042048

Country of ref document: ES

Kind code of ref document: T3

BERE Be: lapsed

Owner name: PECHINEY RECHERCHE

Effective date: 19930930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89420361.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970718

Year of fee payment: 9

Ref country code: GB

Payment date: 19970718

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970930

Year of fee payment: 9

Ref country code: ES

Payment date: 19970930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980922

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19980922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980921

EUG Se: european patent has lapsed

Ref document number: 89420361.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050921