EP0341436A2 - Process and apparatus for cooling hot gas containing sticky or melting particles - Google Patents

Process and apparatus for cooling hot gas containing sticky or melting particles Download PDF

Info

Publication number
EP0341436A2
EP0341436A2 EP89106390A EP89106390A EP0341436A2 EP 0341436 A2 EP0341436 A2 EP 0341436A2 EP 89106390 A EP89106390 A EP 89106390A EP 89106390 A EP89106390 A EP 89106390A EP 0341436 A2 EP0341436 A2 EP 0341436A2
Authority
EP
European Patent Office
Prior art keywords
cooling fluid
cooling
nozzle ring
product gas
cooling zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89106390A
Other languages
German (de)
French (fr)
Other versions
EP0341436B1 (en
EP0341436A3 (en
Inventor
Friedrich Dr. Ing. Jokisch
Adolf Dipl.-Ing. Linke
Hans Christoph Dr. Ing. Pohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Publication of EP0341436A2 publication Critical patent/EP0341436A2/en
Publication of EP0341436A3 publication Critical patent/EP0341436A3/en
Application granted granted Critical
Publication of EP0341436B1 publication Critical patent/EP0341436B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/02Slagging producer

Definitions

  • the invention relates to a method and a device for cooling a hot product gas which contains sticky or molten particles which lose their tackiness on cooling, an annular jet of a cooling fluid being injected into the hot product gas in a cooling zone with a circular cross section in the flow direction of the gas becomes.
  • Partial oxidation gas leaving the carburetor at a temperature of 12oo to 17oo o C contains sticky or molten slag particles and / or other tarry constituents which lead to the deposits described above.
  • appropriate measures must therefore be taken to ensure that these accompanying substances do not impair the cooling and the downstream processing process by deposits on the walls of the apparatus used, on the heat exchanger surfaces and / or in the pipes.
  • DE-OS 35 24 8o2 has proposed to use this cooling principle also for cooling hot product gases which contain sticky or molten particles, in particular for cooling partial oxidation gas.
  • the introduction of a cooling fluid through an annular gap is intended to prevent the particles from coming into contact with the wall and thus to eliminate the risk of deposits.
  • this goal cannot be achieved to a satisfactory extent in this way.
  • the recirculation flow which forms at the edges of the frustoconical cooling fluid ring jet does not keep the sticky particles away from the wall, but on the contrary leads them to the wall.
  • the invention is therefore based on the object of improving the method of the type mentioned in such a way that contact with the wall of the sticky or molten particles is avoided during the cooling process and the risk of caking or deposits is thereby eliminated. At the same time, a complete and uniform mixing of product gas flow and cooling fluid is to be ensured.
  • the method of the generic type used to achieve this object is characterized according to the invention in that the annular jet is composed of a large number of separate cooling fluid jets, the mass and penetration depth of which is adapted to the mass of the product gas stream flowing in the individual annular spaces of the cooling zone, the injection speeds being Cooling fluid jets are chosen so that the desired depth of penetration can be achieved.
  • the method according to the invention no longer provides for the introduction of the cooling fluid in the form of a closed annular jet. Instead, the annular jet is broken down into a large number of separate individual jets, some of which have different masses, some are different penetration depths and the same or some different injection angles.
  • the cooling fluid supply can thus be adapted to the mass of the product gas stream flowing in the individual annular spaces of the cooling zone.
  • FIG. 1 shows a schematic representation of the section from the cooling zone 2 in which the nozzle ring 4 for the injection of the separate cooling fluid jets is located.
  • the diameter D of the cooling zone 2 is divided into four parts, for example.
  • the diameter 1 ⁇ 4 D, 2nd 4th D, 3 ⁇ 4 D and D therefore delimit annular spaces with different base areas in the cooling zone, which is shown in the illustration by different hatching.
  • the percentage of the base areas of these annular spaces in the total area of the cooling zone is 6.25%, 18.75%, 31.25% and 43.75% from inside to outside.
  • cooling fluid masses ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 with different penetration depths e1, e2, e3, e4 are therefore injected into the individual annular spaces of the cooling zone.
  • the injection angle ⁇ i can be the same or different for operational reasons.
  • the injection speeds of the cooling fluid are chosen so that the desired penetration depths are achieved.
  • the injection speeds are preferably selected at the same time so that when the desired penetration depth is reached, the vertical component of the jet center speed in the flow direction is equal to the speed of the overall flow.
  • the cooling of 12oo to 17oo o C partial oxidation gas is a preferred field of application of the method according to the invention or molten particles, for example, metals, salts or ashes.
  • a partial stream of the cold, purified product gas can preferably be used as the cooling fluid.
  • other media such as steam or possibly preheated water, can also be used for this.
  • FIG. 2 shows the upper part of the reactor 1, which is used to generate the product gas to be cooled, and the cooling zone 2 directly adjoining it.
  • the reactor 1 is concerned a gasification reactor with the features known per se. Since the generation of the respective product gas is not the subject of the present invention, there is no need to go into the structural details of the reactor 1 here.
  • the cooling zone 2 has a circular cross section. The product gas generated flows in the direction of arrow 3 from the bottom upwards from the reactor 1 into the cooling zone 2.
  • the cooling fluid is in three stages with different objectives and below given up different effects.
  • the actual cooling of the product gas stream is carried out by the cooling fluid jets which are injected into the gas via the nozzle ring 4.
  • the specific conditions of this cooling fluid addition have already been discussed above.
  • the different penetration depths of the individual cooling fluid jets, which are marked by the arrows 5, are achieved by different injection speeds. These are in turn achieved by different initial pressures in the chambers 6a, 6b and 6c, into which the nozzle ring 4 is divided in this case, and by different nozzle diameters.
  • the nozzle ring 4 has a number of nozzles corresponding to the number of cooling fluid jets required, which is not shown in the figure.
  • the nozzles are evenly distributed over the entire circumference of the nozzle ring 4.
  • the different cooling fluid masses are obtained from the different number of nozzles with the same diameter.
  • the individual cooling fluid jets can have a different injection angle.
  • This injection angle ⁇ i can be in the range between 0 o and 90 o .
  • the corresponding injection angles are achieved by a corresponding inclination of the nozzles on the nozzle ring 4.
  • the injection speeds of the cooling fluid at the nozzle ring 4 are between 1 m / s and 100 m / s.
  • the individual nozzles are each connected via the chambers 6a, 6b and 6c to the lines 7 through which the required cooling fluid is supplied, the required pressure being able to be set via the valves 8.
  • the pressure of the cooling fluid in the chambers 6a, 6b and 6c is controlled as a function of the gas temperature in the cooling zone 2.
  • the gas temperature determined by the temperature measuring device 22 is used via the pulse line 21 as a control variable for the actuator 23 of the valve 8, so that this valve can be opened or closed depending on the measured temperature.
  • This type of control is particularly appropriate when the product gas is only produced in a smaller amount than normal in part-load operation and therefore the cooling process is only operated with a reduced amount of cooling fluid. This can go so far that the cooling fluid supply to individual nozzle groups is completely interrupted.
  • the control described above has only been drawn for the chamber 6a of the nozzle ring 4. Of course, this regulation can also be used for the other chambers.
  • a further cooling fluid flow is introduced into the device in the direction of the arrows 11 via the annular gap 10.
  • This cooling fluid flow is intended to keep the particles away from the reactor wall by displacement.
  • the Transition area 9 is designed such that its change in inclination continuously changes into the cylindrical part of cooling zone 2 after an exponential function.
  • the speed of the cooling fluid jet, which is injected via the annular gap 10 is in the range between 0.1 m / s and 50 m / s.
  • the annular gap 10 is preferably formed in that the wall 12 in the upper part of the reactor 1 is offset, as can be seen from the figure.
  • the annular gap 10 is connected via the line 13 to the ring line 14, which is supplied with the required cooling fluid via the line 15.
  • a further cooling fluid stream is also injected into the cooling zone 2 above the nozzle ring 4 via the annular gap 16.
  • This cooling fluid flow which is marked by the arrows 17, is intended to avoid or suppress eddies and backflows which may be generated by the injection of the cooling fluid via the nozzle ring 4 on the wall of the cooling zone 2.
  • the angle ⁇ is selected to be correspondingly small, namely in the range between 0 o and 45 o , so that this cooling fluid flow itself does not cause any backflow on the wall of the cooling zone 2.
  • the speed of the cooling fluid flow is in the range between 1 m / s and 50 m / s.
  • the annular gap 16 is in turn connected via line 18 to the ring line 19, which is supplied with the required cooling fluid via line 20.
  • FIG. 2 is only a schematic illustration of the device according to the invention, from which special structural configurations cannot be deduced.
  • the walls of the reactor 1 and / or the cooling zone 2 can be designed as tube walls through which a cooling medium flows and which are provided on their inside with a refractory lining.
  • the gap 16 can be given a different design for manufacturing reasons, which will be discussed further below in connection with FIG. 4.
  • FIG. 3 shows a cross section through another embodiment of the nozzle ring 4.
  • the nozzle ring in this case has two chambers 6a and 6b located one behind the other. While in the embodiment according to FIG. 2 the rows of nozzles of the individual chambers 6a, 6b and 6c lie one above the other, in the embodiment shown in FIG. 3 all the nozzles are in one plane.
  • the nozzles 24 assigned to the rear chamber 6a are each connected to this chamber via the line pieces 25, while the nozzles 26 assigned to the front chamber 6b are embedded directly in the chamber wall.
  • the nozzles 24 and 26 can have different diameters and / or angles of inclination. As a rule, the nozzles assigned to a nozzle chamber will each be the same.
  • FIG. 4 finally shows a longitudinal section through a special embodiment for the addition of cooling fluid above the nozzle ring 4. While the cooling fluid is injected into the cooling zone 2 via the annular gap 16 in the device shown in FIG. 2, it can be attached for manufacturing reasons. a nozzle ring 27 is also to be used for this. In this case, the guide ring 29, which is open at the top, is placed on the nozzle ring 27, through which the cooling fluid jets emerging from the nozzles 28 are made more fluid.

Abstract

In this process, an annular jet of a cooling fluid is injected into the gas to be cooled in the direction of flow of the gas in a cooling zone, the jet being composed of a multiplicity of separate cooling fluid jets, whose mass and depth of penetration are adjusted to the product gas stream flowing in the individual annular spaces of the cooling zone, the injection speeds of the cooling fluid jets being selected such that the desired depths of penetration are reached. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kühlen eines heißen Produktgases, das klebrige bzw. schmelzflüssige Partikel enthält, die beim Abkühlen ihre Klebrigkeit verlieren, wobei in das heiße Produktgas in einer Kühlzone mit kreisförmigem Querschnitt in Strö­mungsrichtung des Gases ein ringförmiger Strahl eines Kühlfluids eingedüst wird.The invention relates to a method and a device for cooling a hot product gas which contains sticky or molten particles which lose their tackiness on cooling, an annular jet of a cooling fluid being injected into the hot product gas in a cooling zone with a circular cross section in the flow direction of the gas becomes.

Bei der Kühlung von heißen Produktgasen, die klebrige bzw. schmelzflüssige Partikel enthalten, die ihre Kle­brigkeit verlieren, wenn sie eine bestimmte Erstarrungs­temperatur unterschritten haben, besteht stets die Ge­fahr, daß diese Partikel infolge Anbackung zu Ablagerun­gen an den Wänden der verwendeten Apparaturen oder sonsti­gen Anlageteilen führen. Das zwangsläufige Wachsen die­ser Ablagerungen führt dabei im Laufe der Zeit dazu, daß der Gasweg in den verwendeten Apparaturen allmählich verlegt und damit die gesamte Anlage funktionsunfähig wird. Ein ausgeprägtes Beispiel für ein derartiges, kle­brige bzw. schmelzflüssige Bestandteile enthaltendes Produktgas ist das Partialoxidationsgas, das bei der Partialoxidation von Kohle und/oder sonstigen Kohlen­stoffträgern bei Temperaturen oberhalb des Schlacken­schmelzpunktes gewonnen wird. Hierbei führt das den Vergaser mit einer Temperatur von 12oo bis 17oooC ver­lassende Partialoxidationsgas klebrige bzw. schmelz­flüssige Schlacketeilchen und/oder sonstige teerige Bestandteile mit sich, die zu den vorstehend beschrie­benen Ablagerungen führen. Bei der Kühlung und Weiter­behandlung derartiger Gase muß deshalb durch geeignete Maßnahmen dafür gesorgt werden, daß diese Begleitstoffe den Kühl- sowie den nachgeschalteten Verarbeitungspro­zeß nicht durch Ablagerungen an den Wänden der verwen­deten Apparaturen, an den Wärmeaustauscherflächen und/­oder in den Rohren beeinträchtigen.When cooling hot product gases that contain sticky or molten particles that lose their stickiness when they have fallen below a certain solidification temperature, there is always the risk that these particles will lead to deposits on the walls of the equipment or other system components due to caking . The inevitable growth of these deposits leads over time to the fact that the gas path in the equipment used is gradually shifted and the entire system thus becomes inoperable. A distinctive example of such a product gas containing sticky or molten constituents is the partial oxidation gas which is obtained in the partial oxidation of coal and / or other carbon carriers at temperatures above the slag melting point. This leads to the Partial oxidation gas leaving the carburetor at a temperature of 12oo to 17oo o C contains sticky or molten slag particles and / or other tarry constituents which lead to the deposits described above. In the cooling and further treatment of such gases, appropriate measures must therefore be taken to ensure that these accompanying substances do not impair the cooling and the downstream processing process by deposits on the walls of the apparatus used, on the heat exchanger surfaces and / or in the pipes.

Zur KÜhlung heißer Produktgase ist es prinzipiell be­kannt, in den heißen Produktgasstrom einen ringförmigen Strahl eines Kühlfluids in Strömungsrichtung des Gases einzuspritzen oder einzudüsen. Eine solche Einführung führt zwangsläufig zu einer kegelstumpfförmigen Aus­bildung des ringförmigen Strahls, der dann einen kon­vergenten Primärteil und einen divergenten Sekundär­teil aufweist, wenn er sich der Produktgasströmung überlagert. Beispiele für die praktische Anwendung dieses Kühlprinzips, bei dem das Kühlfluid über einen ringförmigen Spalt in den heißen Produktgasstrom ein­geleitet wird, sind bereits seit langem bekannt. So wird dieses Verfahren beispielsweise beim sogenannten Wälzgasverfahren angewandt, bei dem dem heißen Ver­brennungsgas zwecks Temperatureinstellung sogenanntes Rückgas zugemischt wird. (Ullmann, Bd. 1, 1951, Seite 182, Abbildung 332). Nach dem gleichen Prinzip arbeiten auch Toroidlufterhitzer, bei denen dem heis­sen Verbrennungsgas in einer Mischkammer Kalfluft bei­gemischt wird. In neuerer Zeit ist schließlich in derFor cooling hot product gases, it is known in principle to inject or inject an annular jet of a cooling fluid in the flow direction of the gas into the hot product gas stream. Such an introduction inevitably leads to a frusto-conical formation of the annular jet, which then has a convergent primary part and a divergent secondary part when it overlaps the product gas flow. Examples of the practical application of this cooling principle, in which the cooling fluid is introduced into the hot product gas stream via an annular gap, have long been known. For example, this process is used in the so-called rolling gas process, in which so-called return gas is mixed with the hot combustion gas for the purpose of temperature adjustment. (Ullmann, Vol. 1, 1951, page 182, Figure 332). Toroidal air heaters also work according to the same principle, in which cold air is mixed with the hot combustion gas in a mixing chamber. Finally, in more recent times

DE-OS 35 24 8o2 vorgeschlagen worden,dieses Kühlprinzip auch zur Kühlung von heißen Produktgasen, die klebrige bzw. schmelzflüssige Partikel enthalten, insbesondere zur Kühlung von Partialoxidationsgas, anzuwenden. Hier­bei soll durch die Einleitung eines Kühlfluids über einen ringförmigen Spalt die Wandberührung der Partikel vermieden und damit die Gefahr von Ablagerungen ausge­schaltet werden. Es hat sich jedoch gezeigt, daß sich dieses Ziel auf diese Weise nicht im befriedigenden Umfange erreichen läßt. Die sich an den Rändern des kegelstumpfförmigen Kühlfluidringstrahles ausbildende Rezirkulationsströmung hält die klebrigen Partikel nicht von der Wand fern, sondern führt sie im Gegen­teil an die Wand heran.DE-OS 35 24 8o2 has proposed to use this cooling principle also for cooling hot product gases which contain sticky or molten particles, in particular for cooling partial oxidation gas. The introduction of a cooling fluid through an annular gap is intended to prevent the particles from coming into contact with the wall and thus to eliminate the risk of deposits. However, it has been shown that this goal cannot be achieved to a satisfactory extent in this way. The recirculation flow which forms at the edges of the frustoconical cooling fluid ring jet does not keep the sticky particles away from the wall, but on the contrary leads them to the wall.

Der Erfindung liegt deshalb die Aufgabe zugrunde, das Verfahren der eingangs genannten Art dahingehend zu verbessern, daß eine Wandberührung der klebrigen bzw. schmelzflüssigen Partikel während des Kühlvorganges vermieden und die Gefahr von Anbackungen bzw. Ablage­rungen dadurch ausgeschaltet wird. Gleichzeitig soll eine vollständige und gleichmäßige Durchmischung von Produktgasstrom und Kühlfluid gewährleistet werden.The invention is therefore based on the object of improving the method of the type mentioned in such a way that contact with the wall of the sticky or molten particles is avoided during the cooling process and the risk of caking or deposits is thereby eliminated. At the same time, a complete and uniform mixing of product gas flow and cooling fluid is to be ensured.

Das der Lösung dieser Aufgabe dienende Verfahren der gattungsgemäßen Art, ist erfindungsgemäß dadurch ge­kennzeichnet, daß der ringförmige Strahl aus einer Vielzahl separater Kühlfluidstrahlen zusammengesetzt ist, deren Masse und Eindringtiefe der Masse des in den einzelnen Ringräumen der Kühlzone strömenden Pro­duktgasstromes angepaßt ist, wobei die Eindüsgeschwin­digkeiten der Kühlfluidstrahlen so gewählt werden, daß die gewünschten Eindringtiefen erreicht werden.The method of the generic type used to achieve this object is characterized according to the invention in that the annular jet is composed of a large number of separate cooling fluid jets, the mass and penetration depth of which is adapted to the mass of the product gas stream flowing in the individual annular spaces of the cooling zone, the injection speeds being Cooling fluid jets are chosen so that the desired depth of penetration can be achieved.

In Abkehr von der bisher bekannten Arbeitsweise sieht also das erfindungsgemäße Verfahren nicht mehr die Ein­führung des Kühlfluids in Form eines geschlossenen ring­förmigen Strahles vor. Stattdessen wird der ringförmige Strahl in eine Vielzahl separater Einzelstrahlen zer­legt, die teilweise unterschiedliche Massen, teilweise unterschiedliche Eindringtiefen und gleiche oder teil­weise unterschiedliche Eindüswinkel haben. Damit kann die Kühlfluidzufuhr der Masse des in den einzelnen Ringräumen der Kühlzone strömenden Produktgasstromes angepaßt werden.In a departure from the previously known mode of operation, the method according to the invention no longer provides for the introduction of the cooling fluid in the form of a closed annular jet. Instead, the annular jet is broken down into a large number of separate individual jets, some of which have different masses, some are different penetration depths and the same or some different injection angles. The cooling fluid supply can thus be adapted to the mass of the product gas stream flowing in the individual annular spaces of the cooling zone.

Zur Erläuterung wird hierzu auf Fig. 1 verwiesen, die in schematischer Darstellung den Ausschnitt aus der Kühlzone 2 darstellt, in dem sich der Düsenring 4 für die Einspritzung der separaten Kühlfluidstrahlen be­findet. Der Durchmesser D der Kühlzone 2 ist hierbei beispielsweise in vier Teile geteilt. Die Durchmesser¼ D, 2 4

Figure imgb0001
D,¾ D und D begrenzen deshalb in der Kühlzone Ringräume mit unterschiedlichen Grundflächen, was in der Abbildung durch eine unterschiedliche Schraffierung zum Ausdruck gebracht wird. Der prozentu­ale Anteil der Grundflächen dieser Ringräume an der Ge­samtfläche der Kühlzone beträgt hierbei von innen nach außen 6,25 %, 18,75 %, 31,25 % und 43,75 %. Bei einer konstanten Strömungsgeschwindigkeit des Produktgases über den Querschnitt der Kühlzone gelten diese prozen­tualen Anteile auch für die Aufteilung der Gesamtmasse des Produktgases auf die verschiedenen Ringräume der Kühlzone. Entsprechend diesen unterschiedlichen Pro­duktgasmassen werden deshalb in die einzelnen Ring­räume der Kühlzone unterschiedliche Kühlfluidmassen ṁ₁, ṁ₂, ṁ₃, ṁ₄, mit unterschiedlichen Eindringtiefen e₁ , e₂, e₃, e₄ eingedüst. Die Eindüswinkel αi können aus betrieblichen Gründen gleich oder unterein­ander verschieden sein. Die Eindüsgeschwindigkeiten des Kühlfluids werden so gewählt, daß die gewünschten Ein­dringtiefen erreicht werden. Vorzugsweise werden die Eindüsgeschwindigkeiten dabei gleichzeitig so gewählt, daß bei Erreichen der gewünschten Eindringtiefe die Vertikalkomponente der Strahlenmittengeschwindigkeit in Strömungsrichtung gleich der Geschwindigkeit der Gesamtströmung ist.For an explanation, reference is made to FIG. 1, which shows a schematic representation of the section from the cooling zone 2 in which the nozzle ring 4 for the injection of the separate cooling fluid jets is located. The diameter D of the cooling zone 2 is divided into four parts, for example. The diameter ¼ D, 2nd 4th
Figure imgb0001
D, ¾ D and D therefore delimit annular spaces with different base areas in the cooling zone, which is shown in the illustration by different hatching. The percentage of the base areas of these annular spaces in the total area of the cooling zone is 6.25%, 18.75%, 31.25% and 43.75% from inside to outside. With a constant flow rate of the product gas over the cross section of the cooling zone, these percentages also apply to the distribution of the total mass of the product gas over the different annular spaces of the Cooling zone. Corresponding to these different product gas masses, different cooling fluid masses ṁ₁, ṁ₂, ṁ₃, ṁ₄, with different penetration depths e₁, e₂, e₃, e₄ are therefore injected into the individual annular spaces of the cooling zone. The injection angle α i can be the same or different for operational reasons. The injection speeds of the cooling fluid are chosen so that the desired penetration depths are achieved. The injection speeds are preferably selected at the same time so that when the desired penetration depth is reached, the vertical component of the jet center speed in the flow direction is equal to the speed of the overall flow.

Wie bereits aus den weiter oben getroffenen Feststellun­gen hervorgeht, stellt die Kühlung von 12oo bis 17oooC heißem Partialoxidationsgas ein bevorzugtes Anwendungs­gebiet des erfindungsgemäßen Verfahrens dar. Andere Produktgase, für die sich der Einsatz des erfindungs­gemäßen Verfahrens besonders anbietet, sind solche Gase, die als klebrige bzw. schmelzflüssige Partikel bei­spielsweise Metalle, Salze oder Aschen enthalten. Als Kühlfluid kann vorzugsweise ein Teilstrom des kalten, gereinigten Produktgases verwendet werden. Es können hierfür aber auch andere Medien, wie Z.B. Dampf oder gegebenenfalls vorerhitztes Wasser, zur Anwendung ge­langen.As can already be seen from the findings made above, the cooling of 12oo to 17oo o C partial oxidation gas is a preferred field of application of the method according to the invention or molten particles, for example, metals, salts or ashes. A partial stream of the cold, purified product gas can preferably be used as the cooling fluid. However, other media, such as steam or possibly preheated water, can also be used for this.

Weitere Einzelheiten des erfindungsgemäßen Verfahrens sowie einer zur Durchführung dieses Verfahrens beson­ders geeigneten Vorrichtung ergeben sich aus den vor­ liegenden Unteransprüchen und sollen nachfolgend an Hand der in den Figuren 2 bis 4 dargestellten Abbildun­gen erläutert werden. Diese Abbildungen zeigen:

  • Fig. 2 einen Längsschnitt durch eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens in schematischer Darstellung,
  • Fig. 3 einen Querschnitt durch einen Düsenring mit zwei hintereinanderliegenden Kammern, und
  • Fig. 4 einen Längsschnitt durch eine Ausführungsform der Kühlfluidzugabe oberhalb des Düsenringes.
Further details of the method according to the invention and a device which is particularly suitable for carrying out this method can be found in the foregoing lying subclaims and are to be explained below with reference to the figures shown in Figures 2 to 4. These pictures show:
  • 2 shows a longitudinal section through a device for carrying out the method according to the invention in a schematic representation,
  • Fig. 3 shows a cross section through a nozzle ring with two successive chambers, and
  • Fig. 4 shows a longitudinal section through an embodiment of the cooling fluid addition above the nozzle ring.

Die Abbildung in Fig. 2 zeigt den Oberteil des Reak­tors 1, der der Erzeugung des zu kühlenden Produktga­ses dient, sowie die sich unmittelbar daran anschlies­sende Kühlzone 2. Sofern das erfindungsgemäße Verfah­ren zur Kühlung von Partialoxidationsgas verwendet werden soll, handelt es sich bei dem Reaktor 1 um einen Vergasungsreaktor mit den an sich bekannten Merkmalen. Da die Erzeugung des jeweiligen Produkt­gases nicht Gegenstand der vorliegenden Erfindung ist, braucht hier auf die konstruktiven Einzelheiten des Reaktors 1 nicht näher eingegangen zu werden. Die Kühl­zone 2 weist, wie bereits gesagt wurde, einen kreis­förmigen Querschnitt auf. Das erzeugte Produktgas strömt in Richtung des Pfeiles 3 von unten nach oben aus dem Reaktor 1 in die Kühlzone 2. Bei der in Fig. 2 dargestellten Vorrichtung wird das Kühlfluid in drei Stufen mit unterschiedlicher Zielsetzung und unter­ schiedlicher Wirkung aufgegeben. Die eigentliche Küh­lung des Produktgasstromes erfolgt durch die Kühl­fluidstrahlen, die über den Düsenring 4 in das Gas eingedüst werden. Auf die spezifischen Bedingungen dieser Kühlfluidzugabe ist bereits weiter oben einge­gangen worden. Die unterschiedlichen Eindringtiefen der einzelnen Kühlfluidstrahlen, die durch die Pfeile 5 markiert werden, erreicht man durch unterschiedliche Eindüsgeschwindigkeiten. Diese werden wiederum durch unterschiedliche Vordrücke in den Kammern 6a, 6b und 6c, in die der Düsenring 4 in diesem Falle unterteilt ist, sowie durch unterschiedliche Düsendurchmesser er­zielt. Selbstverständlich weist der Düsenring 4 eine der Zahl der benötigten Kühlfluidstrahlen entsprechen­de Anzahl von Düsen auf, was in der Abbildung nicht näher dargestellt ist. Die Düsen sind hierbei über den gesamten Umfang des Düsenringes 4 gleichmäßig verteilt. Die unterschiedlichen Kühlfluidmassen erhält man dabei durch die unterschiedliche Anzahl von Düsen mit glei­chem Durchmesser. Wie durch die Lage der Pfeile 5 an­gedeutet wird, können die einzelnen Kühlfluidstrahlen dabei einen unterschiedlichen Eindüswinkel aufweisen. Dieser Eindüswinkel αi kann im Bereich zwischen 0o und 90o liegen. Die entsprechenden Eindüswinkel werden durch entsprechende Neigung der Düsen am Dü­senring 4 erzielt. Die Eindüsgeschwindigkeiten des Kühlfluids am Düsenring 4 liegen dabei zwischen 1 m/s und 1oo m/s. Die einzelnen Düsen sind jeweils über die Kammern 6a, 6b und 6c mit den Leitungen 7 verbunden, durch die die Zufuhr des erforderlichen Kühlfluids er­folgt, wobei der erforderliche Druck über die Ven­tile 8 eingestellt werden kann.The illustration in FIG. 2 shows the upper part of the reactor 1, which is used to generate the product gas to be cooled, and the cooling zone 2 directly adjoining it. If the method according to the invention is to be used for cooling partial oxidation gas, the reactor 1 is concerned a gasification reactor with the features known per se. Since the generation of the respective product gas is not the subject of the present invention, there is no need to go into the structural details of the reactor 1 here. As has already been said, the cooling zone 2 has a circular cross section. The product gas generated flows in the direction of arrow 3 from the bottom upwards from the reactor 1 into the cooling zone 2. In the device shown in FIG. 2, the cooling fluid is in three stages with different objectives and below given up different effects. The actual cooling of the product gas stream is carried out by the cooling fluid jets which are injected into the gas via the nozzle ring 4. The specific conditions of this cooling fluid addition have already been discussed above. The different penetration depths of the individual cooling fluid jets, which are marked by the arrows 5, are achieved by different injection speeds. These are in turn achieved by different initial pressures in the chambers 6a, 6b and 6c, into which the nozzle ring 4 is divided in this case, and by different nozzle diameters. Of course, the nozzle ring 4 has a number of nozzles corresponding to the number of cooling fluid jets required, which is not shown in the figure. The nozzles are evenly distributed over the entire circumference of the nozzle ring 4. The different cooling fluid masses are obtained from the different number of nozzles with the same diameter. As is indicated by the position of the arrows 5, the individual cooling fluid jets can have a different injection angle. This injection angle α i can be in the range between 0 o and 90 o . The corresponding injection angles are achieved by a corresponding inclination of the nozzles on the nozzle ring 4. The injection speeds of the cooling fluid at the nozzle ring 4 are between 1 m / s and 100 m / s. The individual nozzles are each connected via the chambers 6a, 6b and 6c to the lines 7 through which the required cooling fluid is supplied, the required pressure being able to be set via the valves 8.

Aus Gründen der Betriebsflexibilität kann es vorteil­haft sein, wenn der Druck des Kühlfluids in den Kam­mers 6a, 6b und 6c in Abhängigkeit von der Gastempera­tur in der Kühlzone 2 gesteuert wird. Hierbei wird die durch das Temperaturmeßgerät 22 ermittelte Gas­temperatur über die Impulsleitung 21 als Steuergröße für den Stellantrieb 23 des Ventiles 8 benutzt, so daß dieses Ventil in Abhängigkeit von der gemessenen Temperatur geöffnet oder geschlossen werden kann. Diese Art der Regelung ist insbesondere dann angebracht, wenn das Produktgas im Teillastbetrieb nur in geringe­rer Menge als normal anfällt und deshalb der Kühlvor­gang nur mit einer reduzierten Kühlfluidmenge betrieben wird. Dies kann dabei soweit gehen, daß die Kühlfluid­zufuhr zu einzelnen Düsengruppen ganz unterbrochen wird. Aus zeichentechnischen Gründen ist die vor­stehend beschriebene Regelung nur für die Kammer 6a des Düsenringes 4 eingezeichnet worden. Selbstver­ständlich kann diese Regelung aber auch für die an­deren Kammern angewandt werden.For reasons of operational flexibility, it can be advantageous if the pressure of the cooling fluid in the chambers 6a, 6b and 6c is controlled as a function of the gas temperature in the cooling zone 2. Here, the gas temperature determined by the temperature measuring device 22 is used via the pulse line 21 as a control variable for the actuator 23 of the valve 8, so that this valve can be opened or closed depending on the measured temperature. This type of control is particularly appropriate when the product gas is only produced in a smaller amount than normal in part-load operation and therefore the cooling process is only operated with a reduced amount of cooling fluid. This can go so far that the cooling fluid supply to individual nozzle groups is completely interrupted. For technical reasons, the control described above has only been drawn for the chamber 6a of the nozzle ring 4. Of course, this regulation can also be used for the other chambers.

Um den Übergangsbereich 9 vom Oberteil des Reaktors 1 zur Kühlzone 2 unterhalb des Düsenrings 4 frei von Anbackungen zu halten, wird über den ringförmigen Spalt 1o ein weiterer Kühlfluidstrom in Richtung der Pfeile 11 wandparallel in die Vorrichtung eingeführt. Dieser Kühlfluidstrom soll durch Verdrängung die Par­tikel von der Reaktorwand fernhalten. Um eine unge­störte Grenzschicht dieses Kühlfluidstromes zu er­reichen und um Partikelbahnen zu erhalten, die kontur­parallel zur Wand des Reaktors 1 verlaufen, wird der Übergangsbereich 9 so ausgebildet, daß seine Nei­gungsänderung stetig nach einer Exponentialfunktion in den zylindrischen Teil der Kühlzone 2 übergeht. Die Geschwindigkeit des Kühlfluidstrahles, der über den ringförmigen Spalt 1o eingedüst wird, liegt hier­bei im Bereich zwischen o,1 m/s und 5o m/s. Der ring­förmige Spalt 1o wird vorzugsweise dadurch ausgebil­det, daß die Wand 12 im Oberteil des Reaktors 1 ver­setzt ausgebildet ist, wie das aus der Abbildung zu ersehen ist. Über die Leitung 13 ist der ringförmige Spalt 1o mit der Ringleitung 14 verbunden, die über die Leitung 15 mit dem erforderlichen Kühlfluid be­aufschlagt wird.In order to keep the transition area 9 from the upper part of the reactor 1 to the cooling zone 2 below the nozzle ring 4 free of caking, a further cooling fluid flow is introduced into the device in the direction of the arrows 11 via the annular gap 10. This cooling fluid flow is intended to keep the particles away from the reactor wall by displacement. In order to achieve an undisturbed boundary layer of this cooling fluid flow and to obtain particle tracks which run parallel to the contour of the wall of the reactor 1, the Transition area 9 is designed such that its change in inclination continuously changes into the cylindrical part of cooling zone 2 after an exponential function. The speed of the cooling fluid jet, which is injected via the annular gap 10, is in the range between 0.1 m / s and 50 m / s. The annular gap 10 is preferably formed in that the wall 12 in the upper part of the reactor 1 is offset, as can be seen from the figure. The annular gap 10 is connected via the line 13 to the ring line 14, which is supplied with the required cooling fluid via the line 15.

Ein weiterer Kühlfluidstrom wird außerdem oberhalb des Düsenringes 4 über den ringförmigen Spalt 16 in die Kühlzone 2 eingespritzt. Dieser Kühlfluidstrom, der durch die Pfeile 17 markiert wird, soll Wirbel und Rückströmungen, die möglicherweise durch die Eindü­sung des Kühlfluids über den Düsenring 4 an der Wan­dung der Kühlzone 2 erzeugt werden, vermeiden bzw. unterdrücken. Dazu wird der Winkel β entsprechend klein, nämlich im Bereich zwischen 0o und 45o gewählt, damit dieser Kühlfluidstrom selbst keine Rückströmung an der Wandung der Kühlzone 2 bewirkt. Die Geschwin­digkeit des Kühlfluidstromes liegt hierbei im Bereich zwischen 1 m/s und 5o m/s. Der ringförmige Spalt 16 ist wiederum über die Leitung 18 mit der Ringleitung 19 verbunden, die über die Leitung 2o mit dem erforder­lichen Kühlfluid versorgt wird.A further cooling fluid stream is also injected into the cooling zone 2 above the nozzle ring 4 via the annular gap 16. This cooling fluid flow, which is marked by the arrows 17, is intended to avoid or suppress eddies and backflows which may be generated by the injection of the cooling fluid via the nozzle ring 4 on the wall of the cooling zone 2. For this purpose, the angle β is selected to be correspondingly small, namely in the range between 0 o and 45 o , so that this cooling fluid flow itself does not cause any backflow on the wall of the cooling zone 2. The speed of the cooling fluid flow is in the range between 1 m / s and 50 m / s. The annular gap 16 is in turn connected via line 18 to the ring line 19, which is supplied with the required cooling fluid via line 20.

Wie bereits weiter oben festgestellt wurde, handelt es sich bei Fig. 2 nur um eine schematische Darstel­lung der erfindungsgemäßen Vorrichtung, der spezielle konstruktive Ausgestaltungen nicht zu entnehmen sind. So können beispielsweise die Wandungen des Reaktors 1 und/oder der Kühlzone 2 als von einem Kühlmedium durchflossene Rohrwandungen ausgebildet sein, die auf ihrer Innenseite mit einer feuerfesten Auskleidung versehen sind. Ebenso kann der Spalt 16 aus fertigungs­technischen Gründen eine andere Ausgestaltung erfahren, worauf noch weiter unten im Zusammenhang mit Fig. 4 eingegangen werden wird.As has already been stated above, FIG. 2 is only a schematic illustration of the device according to the invention, from which special structural configurations cannot be deduced. For example, the walls of the reactor 1 and / or the cooling zone 2 can be designed as tube walls through which a cooling medium flows and which are provided on their inside with a refractory lining. Likewise, the gap 16 can be given a different design for manufacturing reasons, which will be discussed further below in connection with FIG. 4.

Fig. 3 zeigt einen Querschnitt durch eine andere Aus­führungsform des Düsenringes 4. Im Gegensatz zur Aus­führungsform in Fig. 2 weist der Düsenring in diesem Falle zwei hintereinanderliegende Kammern 6a und 6b auf. Während bei der Ausführungsform gemäß Fig. 2 die Düsenreihen der einzelnen Kammern 6a, 6b und 6c über­einander liegen, befinden sich bei der in Fig. 3 dar­gestellten Ausführungsform alle Düsen in einer Ebene. Die der hinteren Kammer 6a zugeordneten Düsen 24 sind dabei jeweils über die Leitungsstücke 25 mit dieser Kammer verbunden, während die der vorderen Kammer 6b zugeordneten Düsen 26 unmittelbar in die Kammerwand eingelassen sind. Selbstverständlich können die Dü­sen 24 und 26 dabei unterschiedliche Durchmesser und/­oder Neigungswinkel aufweisen. In der Regel werden hierbei die einer Düsenkammer zugeordneten Düsen je­weils gleich sein.3 shows a cross section through another embodiment of the nozzle ring 4. In contrast to the embodiment in FIG. 2, the nozzle ring in this case has two chambers 6a and 6b located one behind the other. While in the embodiment according to FIG. 2 the rows of nozzles of the individual chambers 6a, 6b and 6c lie one above the other, in the embodiment shown in FIG. 3 all the nozzles are in one plane. The nozzles 24 assigned to the rear chamber 6a are each connected to this chamber via the line pieces 25, while the nozzles 26 assigned to the front chamber 6b are embedded directly in the chamber wall. Of course, the nozzles 24 and 26 can have different diameters and / or angles of inclination. As a rule, the nozzles assigned to a nozzle chamber will each be the same.

Fig. 4 zeigt schließlich einen Längsschnitt durch eine spezielle Ausführungsform für die Kühlfluidzugabe ober­halb des Düsenringes 4. Während bei der in Fig. 2 dar­gestellten Vorrichtung das Kühlfluid über den ringför­migen Spalt 16 in die Kühlzone 2 eingespritzt wird, kann es aus fertigungstechnischen Gründen angebracht sein, hierfür ebenfalls einen Düsenring 27 zu verwern­den. Auf den Düsenring 27 ist dabei der oben offene Leitring 29 aufgesetzt, durch den die aus den Düsen 28 austretenden Kühlfluidstrahlen strömungstechnisch vergleichmäßigt werden.4 finally shows a longitudinal section through a special embodiment for the addition of cooling fluid above the nozzle ring 4. While the cooling fluid is injected into the cooling zone 2 via the annular gap 16 in the device shown in FIG. 2, it can be attached for manufacturing reasons. a nozzle ring 27 is also to be used for this. In this case, the guide ring 29, which is open at the top, is placed on the nozzle ring 27, through which the cooling fluid jets emerging from the nozzles 28 are made more fluid.

Claims (13)

1. Verfahren zum Kühlen eines heißen Produktgases, das klebrige bzw. schmelzflüssige Partikel ent­hält, die beim Abkühlen ihre Klebrigkeit ver­lieren, wobei in das heiße Produktgas in einer Kühlzone mit kreisförmigem Querschnitt in Strö­mungsrichtung des Gases ein ringförmiger Strahl eines Kühlfluids eingedüst wird, dadurch ge­kennzeichnet, daß der ringförmige Strahl aus einer Vielzahl separater Kühlfluidstrahlen zu­sammengesetzt ist, deren Masse und Eindringtiefe der Masse des in den einzelnen Ringräumen der Kühlzone strömenden Produktgasstromes angepaßt ist, wobei die Eindüsgeschwindigkeiten der Kühl­fluidstrahlen so gewählt werden, daß die ge­wünschten Eindringtiefen erreicht werden.1. A method for cooling a hot product gas which contains sticky or molten particles which lose their tackiness on cooling, an annular jet of a cooling fluid being injected into the hot product gas in a cooling zone with a circular cross section in the flow direction of the gas, characterized in that that the annular jet is composed of a plurality of separate cooling fluid jets, the mass and penetration depth of which is adapted to the mass of the product gas stream flowing in the individual annular spaces of the cooling zone, the injection speeds of the cooling fluid jets being selected such that the desired penetration depths are achieved. 2. Verfahren nach Anspruch 1, dadurch gekennzeich­net, daß die Eindüsgeschwindigkeiten der Kühl­fluidstrahlen gleichzeitig so gewählt werden, daß bei Erreichen der gewünschten Eindringtiefe die Vertikalkomponente der Strahlenmittenge­schwindigkeit in Strömungsrichtung gleich der Geschwindigkeit der Gesamtströmung ist.2. The method according to claim 1, characterized in that the injection speeds of the cooling fluid jets are selected so that the vertical component of the jet center velocity in the flow direction is equal to the speed of the overall flow when the desired penetration depth is reached. 3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Kühlfluidstrahlen über einen Düsenring mit einer Geschwindigkeit von 1 m/s bis 1oo m/s und unter einem Eindüswinkel αi von 0° bis 90° in das Produktgas einge­düst werden.3. Process according to claims 1 and 2, characterized in that the cooling fluid jets are injected into the product gas via a nozzle ring at a speed of 1 m / s to 1oo m / s and at an injection angle α i of 0 ° to 90 °. 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß der Druck des Kühlfluids im Düsenring in Abhängigkeit von der Gastemperatur in der Kühlzone gesteuert wird.4. The method according to claims 1 to 3, characterized in that the pressure of the cooling fluid in the nozzle ring is controlled as a function of the gas temperature in the cooling zone. 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß zusätzlich unterhalb und oberhalb des Düsenringes je ein weiterer Kühl­fluidstrom in das Produktgas eingedüst wird.5. The method according to claims 1 to 4, characterized in that in addition below and above the nozzle ring a further cooling fluid stream is injected into the product gas. 6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der Kühlfluidstrom unter­halb des Düsenringes mit einer Geschwindigkeit von o,1 m/s bis 5o m/s so in den Produktgas­strom eingedüst wird, daß seine Strömung kon­turparallel zur Reaktorwandung in diesem Be­reich verläuft.6. The method according to claims 1 to 5, characterized in that the cooling fluid stream is injected below the nozzle ring at a speed of o, 1 m / s to 5o m / s in the product gas stream that its flow parallel to the reactor wall in this area runs. 7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß der Kühlfluidstrom oberhalb des Düsenringes mit einer Geschwindigkeit von 1 m/s bis 5o m/s und unter einem Winkel β von 0° bis 45° in den Produktgasstrom eingedüst wird.7. The method according to claims 1 to 6, characterized in that the cooling fluid stream is injected above the nozzle ring at a speed of 1 m / s to 50 m / s and at an angle β of 0 ° to 45 ° in the product gas stream. 8. Anwendung des Verfahrens nach den Ansprüchen 1 bis 7 zur Kühlung von Partialoxidationsgas, das durch Partialoxidation von Kohle und/oder sonstigen Kohlenstoffträgern bei Temperaturen oberhalb des Schlackenschmelzpunktes gewonnen wird.8. Application of the method according to claims 1 to 7 for cooling partial oxidation gas, which is obtained by partial oxidation of coal and / or other carbon carriers at temperatures above the slag melting point. 9. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß der Reaktor (1) und die sich unmittelbar daran anschließende Kühlzone (2) ringförmige Spalten (1o, 16) für den Eintritt des Kühlfluids aufweisen und daß ferner im Übergangsbereich (9) zwischen dem Reaktor (1) und der Kühlzone (2) ein Düsenring (4) für die Kühlfluidzufuhr ange­ordnet ist.9. A device for performing the method according to claims 1 to 8, characterized in that the reactor (1) and the immediately adjacent cooling zone (2) have annular columns (1o, 16) for the entry of the cooling fluid and that also in Transition area (9) between the reactor (1) and the cooling zone (2) a nozzle ring (4) for the cooling fluid supply is arranged. 1o. Vorrichtung nach Anspruch 9, dadurch gekennezeich­net, daß der ringförmige Spalt (1o) dadurch gebil­det wird, daß die Wand (12) in diesem Bereich des Reaktors (1) versetzt ausgebildet ist.1o. Apparatus according to claim 9, characterized in that the annular gap (10) is formed in that the wall (12) is offset in this area of the reactor (1). 11. Vorrichtung nach den Ansprüchen 9 und 1o, dadurch gekennzeichnet, daß der Übergangsbereich (9) zwischen dem Reaktor (1) und der Kühlzone (2) so ausgebildet ist, daß seine Neigungsänderung stetig nach einer Exponentialfunktion in den zylindrischen Teil der Kühlzone (2) übergeht.11. The device according to claims 9 and 1o, characterized in that the transition region (9) between the reactor (1) and the cooling zone (2) is designed so that its change in inclination continuously after an exponential function in the cylindrical part of the cooling zone (2nd ) transforms. 12. Vorrichtung nach den Ansprüchen 9 bis 11, dadurch gekennzeichnet, daß der Düsenring (4) in mehrere Kammern (6a, 6b, 6c) unterteilt ist, die über­einander oder hintereinander angeordnet sein können.12. Device according to claims 9 to 11, characterized in that the nozzle ring (4) is divided into several chambers (6a, 6b, 6c) which can be arranged one above the other or one behind the other. 13. Vorrichtung nach den Ansprüchen 9 bis 12, dadurch gekennzeichnet, daß an Stelle des ringförmigen Spaltes (16) ein Düsenring (27) vorgesehen ist, auf den ein oben offener Leitring (29) aufge­setzt ist.13. Device according to claims 9 to 12, characterized in that in place of the annular gap (16) a nozzle ring (27) is provided, on which an open guide ring (29) is placed.
EP89106390A 1988-05-13 1989-04-11 Process and apparatus for cooling hot gas containing sticky or melting particles Expired - Lifetime EP0341436B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3816340A DE3816340A1 (en) 1988-05-13 1988-05-13 METHOD AND DEVICE FOR COOLING A HOT PRODUCT GAS THAT STICKY OR. MELT-LIQUID PARTICLES INCLUDED
DE3816340 1989-05-13

Publications (3)

Publication Number Publication Date
EP0341436A2 true EP0341436A2 (en) 1989-11-15
EP0341436A3 EP0341436A3 (en) 1990-03-21
EP0341436B1 EP0341436B1 (en) 1992-07-01

Family

ID=6354298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89106390A Expired - Lifetime EP0341436B1 (en) 1988-05-13 1989-04-11 Process and apparatus for cooling hot gas containing sticky or melting particles

Country Status (11)

Country Link
US (2) US4954136A (en)
EP (1) EP0341436B1 (en)
CN (1) CN1020630C (en)
CS (1) CS276636B6 (en)
DD (1) DD283860A5 (en)
DE (2) DE3816340A1 (en)
ES (1) ES2042849T3 (en)
IN (1) IN171396B (en)
PL (1) PL162947B1 (en)
TR (1) TR24006A (en)
ZA (1) ZA891401B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR26119A (en) * 1989-08-02 1995-02-15 Krupp Koppers Gmbh HYDROGEN-ENRICHED GAS MANUFACTURING METHOD.
WO1996006901A1 (en) * 1994-08-26 1996-03-07 Stork Comprimo B.V. Process for cooling a hot gas stream
WO2008095980A1 (en) * 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Method and device for converting crude gas from coal gasification
WO2015044273A1 (en) * 2013-09-25 2015-04-02 Technische Universität Bergakademie Freiberg Method for partly converting crude gases from an entrained flow gasification process
CN114350417A (en) * 2022-01-12 2022-04-15 新疆八一钢铁股份有限公司 Coke oven gas purification device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3901601A1 (en) * 1989-01-20 1990-07-26 Krupp Koppers Gmbh METHOD AND DEVICE FOR COOLING PARTIAL OXIDATION GAS
US5041246A (en) * 1990-03-26 1991-08-20 The Babcock & Wilcox Company Two stage variable annulus spray attemperator method and apparatus
ES2078078T3 (en) * 1993-03-16 1995-12-01 Krupp Koppers Gmbh PROCEDURE FOR GASIFICATION UNDER THE PRESSURE OF FINALLY DIVIDED FUELS.
US5433760A (en) * 1993-05-13 1995-07-18 Shell Oil Company Method of quenching synthesis gas
DE4340156A1 (en) * 1993-11-25 1995-06-01 Krupp Koppers Gmbh Method and device for cooling partial oxidation raw gas
JP2544584B2 (en) * 1994-04-11 1996-10-16 株式会社日立製作所 Coal gasifier and method of using coal gasifier
DE19526403A1 (en) * 1994-07-20 1996-03-07 Steag Ag Appts. for producing gas under high pressure and temp. conditions by pulverised fuel firing
DE19601323A1 (en) * 1996-01-16 1997-07-17 Atzger Juergen Waste gas evaporative cooling apparatus for off-gas cooling or treatment in steel industry
TW526086B (en) * 2001-02-09 2003-04-01 Nanya Technology Corp Device and method for cooling and washing exhaust treatment machine
US6887456B2 (en) * 2001-10-05 2005-05-03 Conocophillips Company Catalyst system for enhanced flow syngas production
US20040006917A1 (en) * 2002-07-09 2004-01-15 Wakefield David W. Clean fuel gas made by the gasification of coal
US20080000155A1 (en) * 2006-05-01 2008-01-03 Van Den Berg Robert E Gasification system and its use
CN101432400B (en) * 2006-05-01 2012-11-14 国际壳牌研究有限公司 Gasification reactor and its use
US7451591B2 (en) * 2006-05-08 2008-11-18 Econo-Power International Corporation Production enhancements on integrated gasification combined cycle power plants
US9051522B2 (en) * 2006-12-01 2015-06-09 Shell Oil Company Gasification reactor
ATE554848T1 (en) * 2007-09-04 2012-05-15 Shell Int Research SPRAY NOZZLE MANIFOLD AND METHOD FOR QUENCHING A HOT GAS USING SUCH ARRANGEMENT
JP5535912B2 (en) 2007-09-04 2014-07-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Quenching vessel
US7721809B2 (en) * 2008-06-12 2010-05-25 Schlumberger Technology Corporation Wellbore instrument module having magnetic clamp for use in cased wellbores
AU2009286686B2 (en) * 2008-09-01 2013-08-01 Air Products And Chemicals, Inc. Self cleaning arrangement
US8960651B2 (en) * 2008-12-04 2015-02-24 Shell Oil Company Vessel for cooling syngas
EP2528998B8 (en) * 2010-01-25 2018-11-14 Air Products and Chemicals, Inc. Gasification reactor and process
US9028571B2 (en) * 2011-04-06 2015-05-12 Ineos Bio Sa Syngas cooler system and method of operation
CN104650988A (en) * 2013-11-25 2015-05-27 航天长征化学工程股份有限公司 Carbon-containing substance reaction system and method
CN105219446B (en) * 2015-10-23 2018-07-03 中国五环工程有限公司 Comprehensive water/gas mixed Quench injection apparatus
CN106731918B (en) * 2016-12-29 2023-08-29 中国航天空气动力技术研究院 Sectional combined mixing chamber
CN116021415B (en) * 2023-02-11 2023-06-20 定州市四新工业有限公司 Honing machine with heat abstractor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2526922A1 (en) * 1974-06-17 1976-01-02 Shell Int Research PROCEDURE FOR COOLING A HOT PRODUCT GAS AND DEVICE FOR ITS PERFORMANCE
DE3524802A1 (en) * 1984-07-13 1986-01-16 Shell Internationale Research Maatschappij B.V., Den Haag METHOD AND DEVICE FOR COOLING A HOT PRODUCT GAS

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB872088A (en) * 1957-05-17 1961-07-05 Jean Daubersy Steel manufacture
US2971830A (en) * 1958-06-18 1961-02-14 Sumitomo Chemical Co Method of gasifying pulverized coal in vortex flow
US3456928A (en) * 1967-05-24 1969-07-22 Chemical Construction Corp Combined blast furnace scrubber and dust catcher
BE789914A (en) * 1971-10-12 1973-02-01 Steag Ag SMOKE GAS PURIFICATION DEVICE
US3841061A (en) * 1972-11-24 1974-10-15 Pollution Ind Inc Gas cleaning apparatus
NL7604513A (en) * 1976-04-28 1977-11-01 Shell Int Research METHOD OF GASIFICATION OF FINE DISTRIBUTED ASH CONTAINING FUELS.
DE2710154C2 (en) * 1977-03-09 1982-09-23 Dr. C. Otto & Comp. Gmbh, 4630 Bochum Gas generator working under pressure and high temperature
NL7704399A (en) * 1977-04-22 1978-10-24 Shell Int Research METHOD AND REACTOR FOR THE PARTIAL BURNING OF COAL POWDER.
DE3100004C2 (en) * 1981-01-02 1986-11-20 Achenbach Buschhütten GmbH, 5910 Kreuztal Washing column
US4581899A (en) * 1984-07-09 1986-04-15 Texaco Inc. Synthesis gas generation with prevention of deposit formation in exit lines
DE3601786C2 (en) * 1986-01-22 1996-03-07 Krupp Koppers Gmbh Device for cooling the hot production gas emerging from a gasification reactor operated under increased pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2526922A1 (en) * 1974-06-17 1976-01-02 Shell Int Research PROCEDURE FOR COOLING A HOT PRODUCT GAS AND DEVICE FOR ITS PERFORMANCE
DE3524802A1 (en) * 1984-07-13 1986-01-16 Shell Internationale Research Maatschappij B.V., Den Haag METHOD AND DEVICE FOR COOLING A HOT PRODUCT GAS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR26119A (en) * 1989-08-02 1995-02-15 Krupp Koppers Gmbh HYDROGEN-ENRICHED GAS MANUFACTURING METHOD.
WO1996006901A1 (en) * 1994-08-26 1996-03-07 Stork Comprimo B.V. Process for cooling a hot gas stream
NL9401387A (en) * 1994-08-26 1996-04-01 Comprimo Bv A method of cooling a hot gas stream, for increasing the efficiency of electricity production, and for regulating the cooling process of a synthesis gas stream, such that peaks in electricity demand can be accommodated.
WO2008095980A1 (en) * 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Method and device for converting crude gas from coal gasification
WO2015044273A1 (en) * 2013-09-25 2015-04-02 Technische Universität Bergakademie Freiberg Method for partly converting crude gases from an entrained flow gasification process
CN114350417A (en) * 2022-01-12 2022-04-15 新疆八一钢铁股份有限公司 Coke oven gas purification device

Also Published As

Publication number Publication date
DD283860A5 (en) 1990-10-24
DE58901759D1 (en) 1992-08-06
IN171396B (en) 1992-10-03
CS272789A3 (en) 1992-03-18
CS276636B6 (en) 1992-07-15
PL162947B1 (en) 1994-01-31
CN1037730A (en) 1989-12-06
ZA891401B (en) 1989-11-29
ES2042849T3 (en) 1993-12-16
EP0341436B1 (en) 1992-07-01
EP0341436A3 (en) 1990-03-21
DE3816340A1 (en) 1989-11-23
US4954136A (en) 1990-09-04
CN1020630C (en) 1993-05-12
TR24006A (en) 1991-01-28
PL278412A1 (en) 1989-12-11
US4973337A (en) 1990-11-27

Similar Documents

Publication Publication Date Title
EP0341436B1 (en) Process and apparatus for cooling hot gas containing sticky or melting particles
DE2817356C2 (en) Product gas cooling device on a generator for gasifying coal dust and producing synthesis gas
DE3809313A1 (en) METHOD AND DEVICE FOR COOLING PARTIAL OXIDATION GAS
DE2040610A1 (en) Method and device for cooling steel objects
DE2610279A1 (en) METHOD FOR PREVENTING COCK DEPOSIT FORMATION IN A FLUID BED REACTOR
DE2952065A1 (en) METHOD FOR DRY COOLING COCKS AND COOKING COOLING DEVICE FOR CARRYING OUT THE METHOD
DE1906895C3 (en) Device for direct heating of a fluidized bed reactor
DE2520132C3 (en) Method of calcining coke
DE2611844B2 (en) DUESE FOR THE SUPPLY OF GASES
EP1390316A1 (en) Plant and method for the production of cement clinker
DE2236981B2 (en) METHOD FOR DELETING COCKS
DE2031816C3 (en) Process for cooling a coating deposited on a wire, strip or other profile of uninterrupted length by hot-dip metallization and apparatus for carrying out the process
DE2104478A1 (en) Method and device for cooling hot media
DE1930496A1 (en) Methods of disposal of waste materials
DE1442613A1 (en) Method and device for the fluidization of e.g. coal
DE2726078B2 (en) Method and device for removing slag or the like. of molten metal
DE2018044B2 (en) METHOD AND DEVICE FOR THERMOCHEMICAL FLASHING
DE838595C (en) Device and method for transporting finely divided solids
DE2342003C2 (en) Method and device for the discontinuous injection of oxygen into LD converters
DE3409371A1 (en) METHOD AND DEVICE FOR COMPLETELY OR PARTLY COMBUSTION OF CARBONATED FUEL
DE2057862A1 (en) Method and apparatus for producing a powder by spraying a molten material
DE2648218C3 (en) Process for regulating the washing performance of a venturi tube and devices for carrying out this process
DE2321853A1 (en) METHOD AND DEVICE FOR BLOWING WITH FLUID JETS CONTROLLABLE IMPULSES FOR TREATMENT OF METAL MELT
DE2340401A1 (en) Blowing air or water into metal melt stream and making metal powder - elongate nozzles and melt stream employed
DE3111913A1 (en) Process and plant for the production of carbon black

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES GB NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES GB NL SE

17P Request for examination filed

Effective date: 19900212

17Q First examination report despatched

Effective date: 19910312

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB NL SE

REF Corresponds to:

Ref document number: 58901759

Country of ref document: DE

Date of ref document: 19920806

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042849

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 89106390.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980312

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980318

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980320

Year of fee payment: 10

Ref country code: NL

Payment date: 19980320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980417

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990412

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990411

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991101

EUG Se: european patent has lapsed

Ref document number: 89106390.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204