EP0324953B1 - High power radiation source - Google Patents

High power radiation source Download PDF

Info

Publication number
EP0324953B1
EP0324953B1 EP88121055A EP88121055A EP0324953B1 EP 0324953 B1 EP0324953 B1 EP 0324953B1 EP 88121055 A EP88121055 A EP 88121055A EP 88121055 A EP88121055 A EP 88121055A EP 0324953 B1 EP0324953 B1 EP 0324953B1
Authority
EP
European Patent Office
Prior art keywords
dielectric
discharge chamber
electrode
high power
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88121055A
Other languages
German (de)
French (fr)
Other versions
EP0324953A1 (en
Inventor
Baldur Dr. Eliasson
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP0324953A1 publication Critical patent/EP0324953A1/en
Application granted granted Critical
Publication of EP0324953B1 publication Critical patent/EP0324953B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention is based on a high-power radiator with a discharge space filled under filling conditions forming excimers, defined by a first and a second wall, the first wall being formed by a dielectric which directly delimits the discharge space, the dielectric on its side facing away from the discharge space Surface is provided with a first electrode, and the second wall is formed either by a second electrode or by a further dielectric, which is provided with a second electrode on its surface facing away from the discharge space, with a to the said electrodes (6.2 ) connected AC power source.
  • the starting point for the present invention is a UV high-power radiator, as described, for example, in the lecture by U.Kogelschatz "New UV and VUV excimer radiators" at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, from November 18-20 Was introduced in Würzburg in 1987.
  • This high-performance radiator can be operated with high electrical power densities and high efficiency. Its geometry is widely adaptable to the process in which it is used. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible.
  • the discharges can be operated at high pressure (0.1 - 10 bar). With this design, electrical power densities of 1-50 KW / m can be realized. Since the electron energy in the discharge can be largely optimized, the efficiency of such emitters is very high, even if one excites resonance lines of suitable atoms.
  • the wavelength of the radiation can be set by the type of fill gas, e.g.
  • Mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204.206 nm), arsenic (189, 193 nm), iodine (183 nm), xenon (119, 130, 147 nm), krypton (142 nm). As with other gas discharges, it is also advisable to mix different types of gas.
  • the advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes.
  • This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire mesh or applied conductor tracks as an electrode. which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation.
  • a transparent electrolyte, e.g. H2O are used as a further electrode, which is particularly advantageous for the irradiation of water wastewater, since in this way the radiation generated passes directly into the liquid to be irradiated and this liquid also serves as a coolant.
  • the object of the present invention is to modify the generic high-power radiator in such a way that it preferably emits light in the wavelength range from 400 nm to 800 nm, i.e. in the range of visible light. emits.
  • the invention is based on the same discharge geometry as that of the UV high-power lamp described in the patent applications mentioned.
  • the UV photons generated by excimer radiation in the discharge space cause the layer to fluoresce or phosphoresce upon impact and thus generate visible radiation. With modern phosphors this conversion process into visible light can be very efficient (quantum yield up to 95%).
  • the layer is advantageously applied to the inside of the dielectric, because this means that the dielectric itself can only consist of ordinary glass. All difficulties that arise in connection with a UV source with UV-transparent materials do not arise.
  • the luminescent layer is protected against the attack of the discharge by a thin UV-transparent layer.
  • the desired UV wavelength can be selected with the gas filling.
  • excimers can be used as radiating molecules (noble gases, mixtures of noble gases and halogens, mercury, cadmium or zinc) or mixtures of metals with strong resonance lines (mercury, selenium etc.) in very small quantities and noble gases, the mercury-free filling gases being the Preference should be given since this does not create any disposal problems.
  • a mercury lamp can be built with properties similar to those on which the conventional fluorescent tube and the new gas discharge lamps are based.
  • a quartz or sapphire plate 1 consists essentially of a quartz or sapphire plate 1 and a metal plate 2, which are separated from one another by spacers 3 made of insulating material, and delimit a discharge space 4 with a typical gap width between 1 and 10 mm.
  • the outer surface of the quartz plate 1 is covered with a luminescent layer 5, which is followed by a relatively wide-mesh wire network 6, of which only the warp or weft threads are visible.
  • This wire mesh 6 and the metal plate 2 form the two electrodes of the radiator.
  • the electrical feed is provided by an alternating current source 7 connected to these electrodes.
  • a current source use can generally be made of those that have long been used in connection with ozone generators.
  • the discharge space 5 is closed on the side in the usual way, was evacuated before closing and filled with an inert gas or a substance which forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • an inert gas or a substance which forms excimers under discharge conditions e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • a substance according to the following table can be used: FILLING GAS RADIATION helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124 nm, 140-160 nm Krypton + fluorine 240 - 255 nm Mercury + argon 235 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm Xenon + iodine 240-260 nm
  • noble gas-metal mixtures are also possible, with metals with strong resonance lines being preferred: zinc 213 nm cadmium 228.8 nm mercury 185 nm, 254 nm
  • the amount of metal in the gas mixture is very small in relation to the amount of noble gas, so that as little self-absorption as possible occurs.
  • the following relationship can serve as a guideline for the upper limit dx P M ⁇ 1333 Pa ⁇ mm (10 Torr ⁇ mm) where d is the gap width of the discharge space in millimeters (typically 1 - 10 mm), P M is the metal vapor pressure.
  • the upper limit for the metal vapor is the excimer formation such as HgXe, HgAr, HgKr, for which already 133-2 666 Pa (1 - 20 Torr) Hg in e.g. 40 kPa (300 Torr) noble gas are sufficient. These excimers radiate at 140 - 220 nm and are also very efficient UV lamps. At higher mercury pressure, the Hg2 excimer forms, which radiates at 235 nm.
  • the lower limit for the above relationship is about 1.33 Pa ⁇ mm (10 ⁇ Torr ⁇ mm).
  • the electron energy distribution can be optimally adjusted by varying the gap width of the discharge space, pressure and / or temperature.
  • plate materials such as magnesium fluoride and calcium fluoride can also be used.
  • a wire mesh there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light and a 5-10 nm (50-100 angstroms) thick gold layer for visible and UV light.
  • the luminescent layer 5 preferably consists of modern phosphors, i.e. phosphor doped with rare earths, which enable a quantum yield of up to 95% (cf. E. Kauer and E. Schnedler “Possibilities and Limits of Light Generation” in "Phys. Bl. 42 (1986), No. 5, p. 128 - 133, especially p. 132).
  • the metal electrode 2 itself can be made of UV-reflecting material, e.g. Aluminum or be provided with a UV-reflective layer 8.
  • the embodiment according to FIG. 2 differs from that according to FIG. 1 only in the sequence of the layers.
  • the luminescent layer 5 is on the surface of the plate 1 facing the discharge space 4 and is preferably protected against the discharge attack by a protective layer 9. It must be UV-transparent and e.g. made of magnesium fluoride (MgF2) or Al2O3. Such layers are applied in a known manner by "sputtering" (ion sputtering).
  • the UV-visible light is converted before it passes through the dielectric (plate 1), it can be made of a "normal" translucent material, e.g. GlaS, exist.
  • the discharge space 4 is delimited on both sides by plates 4, 10 made of UV-transparent material, for example quartz or sapphire glass. Both outer surfaces are covered with a luminescent layer 5 or 11.
  • the electrodes are formed by wire networks 6 and 12, each of which is connected to the alternating current source 7. Analogous to the embodiments according to FIGS. 1 and 2, the wire networks 6, 12 can also be formed by transparent electrically conductive layers, for example made of indium or tin oxide, for visible light and UV a 5-10 nm (50 - 100 angstroms) thick gold layer can be replaced.
  • the dielectric i.e. the plates 1, 10 are made of glass.
  • FIG. 5 cylindrical high power radiator is shown schematically in cross section.
  • a metal tube 14 (inner electrode) is surrounded at a distance (1-10 mm) concentrically by a dielectric tube 15; the outer surface of the tube 15 is provided with a luminescent layer 16. This is followed by an outer electrode in the form of a wire mesh 17.
  • the AC power source 7 is connected to both electrodes 14, 17.
  • the metal tube 14 is made of aluminum or is provided with an aluminum layer 18 which reflects UV light.
  • the luminescent layer 16 is provided on the inner wall of the tube 15 and covered against the discharge space 4 with a protective layer 19 made of MgF2 or Al2O3.
  • a cooling medium can be passed through the interior of the tube 14.
  • the type and composition of filling gas and luminescent layer correspond to those of the previous exemplary embodiments.
  • the invention is particularly suitable for generating visible light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Discharge Lamp (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung geht aus von einem Hochleistungsstrahler mit einem unter Entladungsbedingungen Excimere bildenden Füllgas gefüllten Entladungsraum, definiert durch eine erste und eine zweite Wand, wobei die erste Wand durch ein Dielektrikum, das den Entladungsraum unmittelbar begrenzt, gebildet wird, welches Dielektrikum auf seiner dem Entladungsraum abgewandten Oberfläche mit einer ersten Elektrode versehen ist, und die zweite Wand entweder durch eine zweite Elektrode oder durch ein weiteres Dielektrikum, das auf seiner dem Entladungsraum abgewandten Oberfläche mit einer zweiten Elektrode versehen ist, gebildet wird, mit einer an die genannten Elektroden (6,2) angeschlossenen Wechselstromquelle.The invention is based on a high-power radiator with a discharge space filled under filling conditions forming excimers, defined by a first and a second wall, the first wall being formed by a dielectric which directly delimits the discharge space, the dielectric on its side facing away from the discharge space Surface is provided with a first electrode, and the second wall is formed either by a second electrode or by a further dielectric, which is provided with a second electrode on its surface facing away from the discharge space, with a to the said electrodes (6.2 ) connected AC power source.

TECHNOLOGISCHER HINTERGRUND UND STAND DER TECHNIKTECHNOLOGICAL BACKGROUND AND PRIOR ART

Ausgangspunkt für die vorliegende Erfindung ist ein UV-Hochleistungsstrahler, wie er bespielsweise in dem Vortrag von U.Kogelschatz "Neue UV- und VUV-Excimerstrahler" an der 10.Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photchemie, vom 18. - 20.November 1987 in Würzburg vorgestellt wurde. In der Europäischen Anmeldung 87109674.9 vom 6.7.1987 mit der Veröffentlichungsnummer 0 245 111, einem Dokument gemäss Art 54(3) EPÜ, ist der an der genannten Vortragstagung vorgestellte UV-Hochleistungsstrahler detailliert beschrieben.The starting point for the present invention is a UV high-power radiator, as described, for example, in the lecture by U.Kogelschatz "New UV and VUV excimer radiators" at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, from November 18-20 Was introduced in Würzburg in 1987. European UV application 87109674.9 dated July 6, 1987 with publication number 0 245 111, a document in accordance with Art 54 (3) EPC, describes the UV high-power lamp presented at the aforementioned conference in detail.

Dieser Hochleistungsstrahler kann mit grossen elektrischen Leistungsdichten und hohem Wirkungsgrad betrieben werden. Seine Geometrie ist in weiten Grenzen dem Prozess anpassbar, in welchem er eingesetzt wird. So sind neben grossflächigen ebenen Strahlern auch zylindrische, die nach innen oder nach aussen strahlen, möglich. Die Entladungen können bei hohem Druck (0.1 - 10 bar) betrieben werden. Mit dieser Bauweise lassen sich elektrische Leistungsdichten von 1-50 KW/m realisieren. Da die Elektronenenergie in der Entladung weitgehend optimiert werden kann, liegt der Wirkungsgrad solcher Strahler sehr hoch, auch dann, wenn man Resonanzlinien geeigneter Atome anregt. Die Wellenlänge der Strahlung lässt sich durch die Art des Füllgases einstellen z.B. Ouecksilber (185 nm, 254 nm), StickstoFF (337-415 nm), Selen (196, 204.206 nm), Arsen (189, 193 nm), Jod (183 nm), Xenon (119, 130, 147 nm), Krypton (142 nm). Wie bei anderen Gasentladungen empfiehlt sich auch die Mischung verschiedener Gasarten.This high-performance radiator can be operated with high electrical power densities and high efficiency. Its geometry is widely adaptable to the process in which it is used. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible. The discharges can be operated at high pressure (0.1 - 10 bar). With this design, electrical power densities of 1-50 KW / m can be realized. Since the electron energy in the discharge can be largely optimized, the efficiency of such emitters is very high, even if one excites resonance lines of suitable atoms. The wavelength of the radiation can be set by the type of fill gas, e.g. Mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204.206 nm), arsenic (189, 193 nm), iodine (183 nm), xenon (119, 130, 147 nm), krypton (142 nm). As with other gas discharges, it is also advisable to mix different types of gas.

Der Vorteil dieser Strahler liegt in der flächenhaften Abstrahlung grosser Strahlungsleistungen mit hohem Wirkungsgrad. Fast die gesamte Strahlung ist auf einen oder wenige Wellenlängenbereiche konzentriert. Wichtig ist in allen Fällen, dass die Strahlung durch eine der Elektroden austreten kann. Dieses Problem ist lösbar mit transparenten, elektrisch leitenden Schichten oder aber auch, indem man ein feinmaschiges Drahtnetz oder aufgebrachte Leiterbahnen als Elektrode benützt. die einerseits die Stromzufuhr zum Dielektrikum gewährleisten, andererseits für die Strahlung aber weitgehend transparent sind. Auch kann ein transparenter Elektrolyt, z.B. H₂O, als weitere Elektrode verwendet werden, was insbesondere für die Bestrahlung von Wasser Abwasser vorteilhaft ist, da auf diese Weise die erzeugte Strahlung unmittelbar in die zu bestrahlende Flüssigkeit gelangt und diese Flüssigkeit gleichzeitig als Kühlmittel dient.The advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes. This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire mesh or applied conductor tracks as an electrode. which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation. A transparent electrolyte, e.g. H₂O, are used as a further electrode, which is particularly advantageous for the irradiation of water wastewater, since in this way the radiation generated passes directly into the liquid to be irradiated and this liquid also serves as a coolant.

KURZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Aufgabe der vorliegenden Erfindung ist es, den gattungsgemässen Hochleistungsstrahler derart zu modifizieren, dass er vorzugsweise Licht im Wellenlängengebiet von 400 nm - 800 nm, d.h. im Bereich des sichtbaren Lichts. abstrahlt.The object of the present invention is to modify the generic high-power radiator in such a way that it preferably emits light in the wavelength range from 400 nm to 800 nm, i.e. in the range of visible light. emits.

Die Lösung dieser Aufgabe erfolgt durch die in den unabhängigen Patentansprüche 1 und 2 gekennzeichneten Merkmale.This object is achieved by the features characterized in the independent claims 1 and 2.

Die Erfindung basiert auf der gleichen Entladungsgeometrie wie diejenige des in den genannten Patentanmeldungen beschriebenen UV-Hochleistungsstrahler.The invention is based on the same discharge geometry as that of the UV high-power lamp described in the patent applications mentioned.

Die durch Excimerstrahlung im Entladungsraum erzeugten UV Photonen bringen beim Aufprallen auf die Schicht diese zum Fluoreszieren oder Phosphoreszieren und erzeugen damit sichtbare Strahlung. Mit modernen Phosphoren kann dieser Umwandlungsprozess in sichtbares Licht sehr effizient sein (Quantenausbeute bis zu 95 %). Mit Vorteil ist die Schicht auf die Innenseite des Dielektrikums aufgebracht, weil dadurch das Dielektrikum selber nur aus gewöhnlichem Glas bestehen kann. Alle Schwierigkeiten, die man im Zusammenhang mit einer UV-Quelle mit UV-durchlässigen Materialien hat, treten dabei nicht auf. Die lumineszierende Schicht ist mit einer dünnen UV-transparenten Schicht gegen den Angriff der Entladung geschützt.The UV photons generated by excimer radiation in the discharge space cause the layer to fluoresce or phosphoresce upon impact and thus generate visible radiation. With modern phosphors this conversion process into visible light can be very efficient (quantum yield up to 95%). The layer is advantageously applied to the inside of the dielectric, because this means that the dielectric itself can only consist of ordinary glass. All difficulties that arise in connection with a UV source with UV-transparent materials do not arise. The luminescent layer is protected against the attack of the discharge by a thin UV-transparent layer.

Die gewünschte UV-Wellenlänge kann mit der Gasfüllung ausgewählt werden. Es kommen z.B. Excimere als strahlende Moleküle in Frage (Edelgase, Mischungen von Edelgasen und Halogenen, Quecksilber, Cadmium oder Zink) oder Mischungen von Metallen mit starken Resonanzlinien (Quecksilber, Selen etc.) in ganz kleinen Mengen und Edelgasen, wobei den quecksilberfreien Füllgasen der Vorzug zu geben ist, da hiermit keine Entsorgungsprobleme entstehen. Auf die Weise kann man z.B. einen Quecksilberstrahler bauen mit ähnlichen Eigenschaften, wie derjenige, der der herkömmlichen Fluoreszenz-Röhre und den neuen Gasentladungslampen zugrunde liegt.The desired UV wavelength can be selected with the gas filling. For example, excimers can be used as radiating molecules (noble gases, mixtures of noble gases and halogens, mercury, cadmium or zinc) or mixtures of metals with strong resonance lines (mercury, selenium etc.) in very small quantities and noble gases, the mercury-free filling gases being the Preference should be given since this does not create any disposal problems. In this way, for example, a mercury lamp can be built with properties similar to those on which the conventional fluorescent tube and the new gas discharge lamps are based.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt:

Fig. 1
ein Ausführungsbeispiel der Erfindung in Gestalt eines ebenen einseitig abstrahlenden Flächenstrahlers im Schnitt;
Fig. 2
ein Ausführungsbeispiel nach Fig. 1 mit innenliegender Lumineszenzschicht im Schnitt;
Fig. 3
ein Ausführungsbeispiel der Erfindung in Gestalt eines ebenen nach zwei Seiten abstrahlenden Flächenstrahlers im Schnitt;
Fig. 4
eine Abwandlung des Ausführungsbeispiels nach Fig. 3 mit innenliegenden Lumineszenzschichten im Schnitt;
Fig. 5
ein Ausführungsbeispiel eines zylindrischen nach aussen abstrahlenden Strahlers;
Fig. 6
eine Abwandlung des Ausführungsbeispiels nach Fig. 5 mit innenliegender Lumineszenzschicht.
Exemplary embodiments of the invention are shown schematically in the drawing, namely:
Fig. 1
an embodiment of the invention in the form of a flat single-sided radiating surface radiator in section;
Fig. 2
an embodiment of Figure 1 with internal luminescent layer in section.
Fig. 3
an embodiment of the invention in the form of a planar radiating surface emitter on two sides in section;
Fig. 4
a modification of the embodiment of Figure 3 with internal luminescent layers in section.
Fig. 5
an embodiment of a cylindrical radiating emitter;
Fig. 6
a modification of the embodiment of FIG. 5 with an internal luminescent layer.

AUSFÜHRLICHE BESCHREIBUNG VON AUSFÜHRUNGSBEISPIELEN DER ERFINDUNGDETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Der plattenförmige Hochleistungsstrahler nach Fig. 1 besteht im wesentlichen aus einer Quarz- oder Saphirplatte 1 und einer Metallplatte 2, die durch Distanzstücke 3 aus Isoliermaterial voneinander getrennt sind, und einen Entladungsraum 4 mit einer typischen Spaltweite zwischen 1 und 10 mm begrenzen. Die äussere Oberfläche der Quarzplatte 1 ist mit einer lumineszierenden Schicht 5 bedeckt, an die sich ein relativ weitmaschiges Drahtnetz 6 anschliesst, von dem nur die Kett- oder Schussfäden sichtbar sind. Dieses Drahtnetz 6 und die Metallplatte 2 bilden die beiden Elektroden des Strahlers. Die elektrische Anspeisung erfolgt durch eine an diese Elektroden angeschlossene Wechselstromquelle 7. Als Stromquelle können generell solche verwendet werden, wie sie im Zusammenhang mit Ozonerzeugern seit langem eingesetzt werden.1 consists essentially of a quartz or sapphire plate 1 and a metal plate 2, which are separated from one another by spacers 3 made of insulating material, and delimit a discharge space 4 with a typical gap width between 1 and 10 mm. The outer surface of the quartz plate 1 is covered with a luminescent layer 5, which is followed by a relatively wide-mesh wire network 6, of which only the warp or weft threads are visible. This wire mesh 6 and the metal plate 2 form the two electrodes of the radiator. The electrical feed is provided by an alternating current source 7 connected to these electrodes. As a current source, use can generally be made of those that have long been used in connection with ozone generators.

Der Entladungsraum 5 ist seitlich in üblicher Weise geschlossen, wurde vor dem Verschliessen evakuiert und mit einem inerten Gas, oder einer bei Entladungsbedingungen Excimere bildenden Substanz, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gefüllt, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases (Ar, He, Ne) als Puffergas.The discharge space 5 is closed on the side in the usual way, was evacuated before closing and filled with an inert gas or a substance which forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.

Je nach gewünschter spektraler Zusammensetzung der Strahlung und Lumineszenzschicht kann dabei z.B. eine Substanz gemäss nachfolgender Tabelle Verwendung finden: FÜLLGAS STRAHLUNG Helium 60 - 100 nm Neon 80 - 90 nm Argon 107 - 165 nm Xenon 160 - 190 nm Stickstoff 337 - 415 nm Krypton 124 nm, 140 - 160 nm Krypton + Fluor 240 - 255 nm Quecksilber + Argon 235 nm Deuterium 150 - 250 nm Xenon + Fluor 400 - 550 nm Xenon + Chlor 300 - 320 nm Xenon + Jod 240 - 260 nm Neben den obigen Gasen bzw. Gasgemischen kommen auch Edelgas-Metallgemische in Betracht, wobei Metalle mit starken Resonanzlinien bevorzugt werden: Zink 213 nm Cadmium 228.8 nm Quecksilber 185 nm, 254 nm Depending on the desired spectral composition of the radiation and luminescent layer, a substance according to the following table can be used: FILLING GAS RADIATION helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124 nm, 140-160 nm Krypton + fluorine 240 - 255 nm Mercury + argon 235 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm Xenon + iodine 240-260 nm In addition to the above gases or gas mixtures, noble gas-metal mixtures are also possible, with metals with strong resonance lines being preferred: zinc 213 nm cadmium 228.8 nm mercury 185 nm, 254 nm

Für die Resonanzlinien-Strahler ist die Menge Metalls im Gasgemisch dabei bezogen auf die Edelgasmenge sehr klein, damit möglichst wenig Selbstabsorption auftritt. Als Richtwert für die obere Grenze kann dabei folgende Beziehung d x P M ≤ 1333 Pa·mm (10 Torr·mm)

Figure imgb0001
worin d die Spaltweite des Entladungsraums in Millimetern (typisch 1 - 10 mm), PM den Metalldampfdruck bedeutet.For the resonance line emitters, the amount of metal in the gas mixture is very small in relation to the amount of noble gas, so that as little self-absorption as possible occurs. The following relationship can serve as a guideline for the upper limit dx P M ≤ 1333 Pa · mm (10 Torr · mm)
Figure imgb0001
where d is the gap width of the discharge space in millimeters (typically 1 - 10 mm), P M is the metal vapor pressure.

Die obere Grenze für den Metalldampf bildet die Excimerbildung wie HgXe, HgAr, HgKr, wofür schon 133-2 666 Pa (1 - 20 Torr) Hg in z.B. 40 kPa (300 Torr) Edelgas ausreichen. Diese Excimere strahlen bei 140 - 220 nm und sind auch sehr effiziente UV-Strahler. Bei höherem Quecksilberdruck bildet sich das Hg₂-Excimere, das bei 235 nm strahlt.The upper limit for the metal vapor is the excimer formation such as HgXe, HgAr, HgKr, for which already 133-2 666 Pa (1 - 20 Torr) Hg in e.g. 40 kPa (300 Torr) noble gas are sufficient. These excimers radiate at 140 - 220 nm and are also very efficient UV lamps. At higher mercury pressure, the Hg₂ excimer forms, which radiates at 235 nm.

Die untere Grenze für die obengenannte Beziehung liegt etwa bei 1.33 Pa·mm (10⁻ Torr·mm).The lower limit for the above relationship is about 1.33 Pa · mm (10⁻ Torr · mm).

In der sich bildenden stillen Entladung (dielectric barrier discharge) kann die Elektronenenergieverteilung durch Variation der Spaltweite des Entladungsraumes, Druck und/oder Temperatur optimal eingestellt werden.In the silent discharge (dielectric barrier discharge) that forms, the electron energy distribution can be optimally adjusted by varying the gap width of the discharge space, pressure and / or temperature.

Für sehr kurzwellige Strahlungen kommen auch Platten-Materialien, wie z.B. Magnesiumfluorid und Calziumfluorid in Frage. Anstelle eines Drahtnetzes kann auch eine transparente elektrisch leitende Schicht vorhanden sein, wobei für sichtbares Licht die Schicht aus Indium- oder Zinnoxid, für sichtbares und UV-Licht eine 5-10 nm (50 - 100 Angström) dicke Goldschicht verwendet werden kann.For very short-wave radiation, plate materials such as magnesium fluoride and calcium fluoride can also be used. Instead of a wire mesh, there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light and a 5-10 nm (50-100 angstroms) thick gold layer for visible and UV light.

Die Lumineszenzschicht 5 besteht vorzugsweise aus modernen Phosphoren, d.h. mit seltenen Erden dotiertem Leuchtstoff, die eine Quantenausbeute bis zu 95 % ermöglichen (vgl. E.Kauer und E.Schnedler "Möglichkeiten und Grenzen der Lichterzeugung¨ in "Phys. Bl. 42 (1986), Nr. 5, S. 128 - 133, insbesondere S. 132).The luminescent layer 5 preferably consists of modern phosphors, i.e. phosphor doped with rare earths, which enable a quantum yield of up to 95% (cf. E. Kauer and E. Schnedler "Possibilities and Limits of Light Generation" in "Phys. Bl. 42 (1986), No. 5, p. 128 - 133, especially p. 132).

Um die nutzbare Strahlung praktisch zu verdoppeln, kann die Metallelektrode 2 selbst aus UV-reflektierendem Material, z.B. Aluminium bestehen oder mit einer UV-reflektierenden Schicht 8 versehen sein.In order to practically double the usable radiation, the metal electrode 2 itself can be made of UV-reflecting material, e.g. Aluminum or be provided with a UV-reflective layer 8.

Die Ausführungsform gemäss Fig. 2 unterscheidet sich von derjenigen nach Fig. 1 lediglich in der Aufeinanderfolge der Schichten. Die Lumineszenzschicht 5 ist auf der dem Entladungsraum 4 zugewandten Oberfläche der Platte 1 und ist vorzugsweise durch eine Schutzschicht 9 gegen den Entladungsangriff geschützt. Sie muss UV-transparent sein und besteht z.B. aus Magnesiumfluorid (MgF₂) oder Al₂O₃. Derartige Schichten werden in bekannter Weise durch "Sputtern" (Ionenzerstäubung) aufgebracht.The embodiment according to FIG. 2 differs from that according to FIG. 1 only in the sequence of the layers. The luminescent layer 5 is on the surface of the plate 1 facing the discharge space 4 and is preferably protected against the discharge attack by a protective layer 9. It must be UV-transparent and e.g. made of magnesium fluoride (MgF₂) or Al₂O₃. Such layers are applied in a known manner by "sputtering" (ion sputtering).

Weil in dieser Ausführungsform die Umsetzung UV-sichtbares Licht vor dem Durchtritt durch das Dielektrikum (Platte 1) erfolgt, kann diese aus einem "normalen" lichtdurchlässigen Material, z.B. GlaS, bestehen.Because in this embodiment the UV-visible light is converted before it passes through the dielectric (plate 1), it can be made of a "normal" translucent material, e.g. GlaS, exist.

Der Hochleistungsstrahler nach Fig. 3 strahlt sichtbares Licht nach beiden Seiten ab. Der Entladungsraum 4 wird beidseits von Platten 4, 10 aus UV-durchlässigem Material, z.B. Quarz oder Saphirglas begrenzt. Beide äusseren Oberflächen sind mit einer Lumineszenzschicht 5 bzw. 11 bedeckt. Die Elektroden sind durch Drahtnetze 6 bzw. 12 gebildet, die je mit der Wechselstromquelle 7 verbunden sind. Analog zu den Ausführungsformen nach Fig. 1 und 2 können die Drahtnetze 6, 12 auch durch transparente elektrisch leitende Schichten z.B. aus Indium- oder Zinnoxid, für sichtbares Licht und UV eine 5-10 nm (50 - 100 Angström) dicke Goldschicht, ersetzt werden.3 emits visible light on both sides. The discharge space 4 is delimited on both sides by plates 4, 10 made of UV-transparent material, for example quartz or sapphire glass. Both outer surfaces are covered with a luminescent layer 5 or 11. The electrodes are formed by wire networks 6 and 12, each of which is connected to the alternating current source 7. Analogous to the embodiments according to FIGS. 1 and 2, the wire networks 6, 12 can also be formed by transparent electrically conductive layers, for example made of indium or tin oxide, for visible light and UV a 5-10 nm (50 - 100 angstroms) thick gold layer can be replaced.

Analog zu Fig. 2 besteht auch hier die Möglichkeit, die Lumineszenzschichten 5 und 11 auf den dem Entladungsraum 4 zugewandten Oberflächen der dielektrischen Platten 1, 10 anzubringen und sie mit einer Schutzschicht 9 bzw. 13 aus MgF₂ oder Al₂0₃ gegen den Entladungsangriff zu schützen. Wie bei Fig. 2 kann auch hier das Dielektrikum, d.h. die Platten 1, 10, aus Glas bestehen.Analogously to Fig. 2, there is also the possibility to attach the luminescent layers 5 and 11 on the discharge space 4 facing surfaces of the dielectric plates 1, 10 and to protect them with a protective layer 9 or 13 made of MgF₂ or Al₂0₃ against the discharge attack. As with Fig. 2, the dielectric, i.e. the plates 1, 10 are made of glass.

In Fig. 5 ist zylindrischer Hochleistungsstrahler im Querschnitt schematisch dargestellt. Ein Metallrohr 14 (innere Elektrode) ist mit Abstand (1 - 10 mm) konzentrisch von einem Dielektrikumsrohr 15 umgeben; die äussere Oberfläche des Rohres 15 ist mit einer Lumineszenzschicht 16 versehen. Daran schliesst sich eine äussere Elektrode in Form eines Drahtnetzes 17 an. Die Wechselstromquelle 7 ist mit beiden Elektroden 14, 17 verbunden. Das Metallrohr 14 besteht aus Aluminium oder ist mit einer Aluminiumschicht 18 versehen, die UV-Licht reflektiert.In Fig. 5 cylindrical high power radiator is shown schematically in cross section. A metal tube 14 (inner electrode) is surrounded at a distance (1-10 mm) concentrically by a dielectric tube 15; the outer surface of the tube 15 is provided with a luminescent layer 16. This is followed by an outer electrode in the form of a wire mesh 17. The AC power source 7 is connected to both electrodes 14, 17. The metal tube 14 is made of aluminum or is provided with an aluminum layer 18 which reflects UV light.

Beim Ausführungsbeispiel nach Fig. 6 ist die Lumineszenzschicht 16 an der Innenwandung des Rohres 15 vorgesehen und gegen den Entladungsraum 4 hin mit einer Schutzschicht 19 aus MgF₂ oder Al₂O₃ bedeckt.6, the luminescent layer 16 is provided on the inner wall of the tube 15 and covered against the discharge space 4 with a protective layer 19 made of MgF₂ or Al₂O₃.

Im Bedarfsfall kann durch das Innere des Rohres 14 ein Kühlmedium geleitet werden. Art und Zusammensetzung von Füllgas und Lumineszenzschicht entsprechen denen der vorangegangenen Ausführungsbeispiele.If necessary, a cooling medium can be passed through the interior of the tube 14. The type and composition of filling gas and luminescent layer correspond to those of the previous exemplary embodiments.

Die Erfindung eignet sich insbesondere zur Erzeugung von sichtbarem Licht. Abhängig von der Zusammensetzung des Füllgases und/oder der lumineszierenden Schicht ist es jedoch auch möglich, UV-Strahlung einer Wellenlänge in UV-Strahlung einer anderen Wellenlänge umzuwandeln.The invention is particularly suitable for generating visible light. Depending on the composition of the filling gas and / or the luminescent layer, however, it is also possible to convert UV radiation of one wavelength into UV radiation of another wavelength.

Claims (7)

  1. A high power radiator with a discharge chamber (4) filled with filling gas forming excimers under discharge conditions, defined by a first and a second wall, in which at least the first wall is formed by a first dielectric (1) which directly delimits the discharge chamber (4), which first dielectric (1) is provided on its surface, facing away from the discharge chamber(4), with a first electrode (6), and the second wall, delimiting the discharge chamber (4), is formed by a second electrode (2) or a second dielectric (10), which is provided with a further electrode (12) on its surface facing away from the discharge chamber (4), in which at least the first wall and the first electrode (5) belonging thereto are penetrable by radiation, and in which to operate the high power radiator an alternating current source is able to be connected to the said electrodes (6,2), characterised in that at least the first dielectric (1) is provided on its surface facing the discharge chamber (4) with a luminescent layer (5), which layer (5) is protected from the discharge attack by a UV-transparent protective layer (9,13).
  2. A high power radiator with a discharge chamber (4), filled with filling gas forming excimers under discharge conditions, defined by a first and a second wall, in which at least the first wall is formed by a first dielectric (1) which directly delimits the discharge chamber (4), which first dielectric (1) is provided on its surface facing away from the discharge chamber (4) with a first electrode (6), and the second wall, delimiting the discharge chamber (4), is formed by a second electrode (2) or a second dielectric (10), which is provided with a further electrode (12) on its surface facing away form the discharge chamber (4), in which at least the first wall and the first electrode (5) belonging thereto are penetrable by radiation, and in which to operate the high power radiator, an alternating current source is able to be connected to the said electrodes (6,2), characterised in that at least the first dielectric (1) is provided with a luminescent layer (5) on its surface facing away from the discharge chamber (4).
  3. A high power radiator according to one of Claims 1 or 2, characterised in that the electrode(s) are of wire networks (6) or are electrically conducting layers penetrable by radiation.
  4. A high power radiator according to one of Claims 1 to 3, characterised in that the filling medium is mercury, nitrogen, selenium, deuterium or a mixture of these substances alone or with a noble gas.
  5. A high power radiator according to Claim 4, characterised in that the filling gas contains mixtures of sulphur, zinc, arsenic, selenium, cadmium, iodine or mercury.
  6. A high power radiator according to Claim 1 or 2, characterised in that the metal electrode (2) and the dielectric (1) are constructed in a plate shape and the metallic electrode (2) is arranged at a distance from the dielectric plate (1) by means of spacer pieces (3).
  7. A high power radiator according to Claim 1 or 2, characterised in that the metal electrode (14) and the dielectric (15) are constructed in a tubular shape and form Detween them the discharge chamber (4).
EP88121055A 1988-01-15 1988-12-16 High power radiation source Expired - Lifetime EP0324953B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH152/88 1988-01-15
CH152/88A CH675504A5 (en) 1988-01-15 1988-01-15

Publications (2)

Publication Number Publication Date
EP0324953A1 EP0324953A1 (en) 1989-07-26
EP0324953B1 true EP0324953B1 (en) 1996-03-06

Family

ID=4180433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88121055A Expired - Lifetime EP0324953B1 (en) 1988-01-15 1988-12-16 High power radiation source

Country Status (6)

Country Link
US (1) US4983881A (en)
EP (1) EP0324953B1 (en)
JP (1) JPH0787093B2 (en)
CA (1) CA1310686C (en)
CH (1) CH675504A5 (en)
DE (1) DE3855074D1 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4010190A1 (en) * 1990-03-30 1991-10-02 Asea Brown Boveri RADIATION DEVICE
DE4010191C2 (en) * 1990-03-30 1994-10-13 Heidelberger Druckmasch Ag Emitter device for drying and / or curing ink and / or lacquer layers on print media
US5062116A (en) * 1990-05-17 1991-10-29 Potomac Photonics, Inc. Halogen-compatible high-frequency discharge apparatus
CH680099A5 (en) * 1990-05-22 1992-06-15 Asea Brown Boveri
DE59009300D1 (en) * 1990-10-22 1995-07-27 Heraeus Noblelight Gmbh High power radiator.
DE59010169D1 (en) * 1990-12-03 1996-04-04 Heraeus Noblelight Gmbh High power radiator
US5220236A (en) * 1991-02-01 1993-06-15 Hughes Aircraft Company Geometry enhanced optical output for rf excited fluorescent lights
DE69210113T2 (en) * 1991-07-01 1996-11-21 Philips Patentverwaltung High pressure glow discharge lamp
US5319282A (en) * 1991-12-30 1994-06-07 Winsor Mark D Planar fluorescent and electroluminescent lamp having one or more chambers
DE4208376A1 (en) * 1992-03-16 1993-09-23 Asea Brown Boveri High performance irradiator esp. for ultraviolet light - comprising discharge chamber, filled with filling gas, with dielectrics on its walls to protect against corrosion and erosion
DE4235743A1 (en) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
DE69409677T3 (en) * 1993-01-20 2001-09-20 Ushiodenki K.K., Tokio/Tokyo Discharge lamp with a dielectric barrier
DE4311197A1 (en) * 1993-04-05 1994-10-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating an incoherently radiating light source
JP2775697B2 (en) * 1993-06-25 1998-07-16 ウシオ電機株式会社 Dielectric barrier discharge lamp
TW348262B (en) * 1993-09-08 1998-12-21 Ushio Electric Inc Dielectric barrier discharge lamp
JP3546610B2 (en) * 1996-09-20 2004-07-28 ウシオ電機株式会社 Dielectric barrier discharge device
JPH1125921A (en) * 1997-07-04 1999-01-29 Stanley Electric Co Ltd Fluorescent lamp
US5914560A (en) * 1997-09-30 1999-06-22 Winsor Corporation Wide illumination range photoluminescent lamp
US5903096A (en) * 1997-09-30 1999-05-11 Winsor Corporation Photoluminescent lamp with angled pins on internal channel walls
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
JP3353684B2 (en) 1998-01-09 2002-12-03 ウシオ電機株式会社 Dielectric barrier discharge lamp light source device
US6114809A (en) * 1998-02-02 2000-09-05 Winsor Corporation Planar fluorescent lamp with starter and heater circuit
US6091192A (en) * 1998-02-02 2000-07-18 Winsor Corporation Stress-relieved electroluminescent panel
US6075320A (en) * 1998-02-02 2000-06-13 Winsor Corporation Wide illumination range fluorescent lamp
US6100635A (en) * 1998-02-02 2000-08-08 Winsor Corporation Small, high efficiency planar fluorescent lamp
US6127780A (en) * 1998-02-02 2000-10-03 Winsor Corporation Wide illumination range photoluminescent lamp
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP3521731B2 (en) 1998-02-13 2004-04-19 ウシオ電機株式会社 Dielectric barrier discharge lamp light source device
US6416319B1 (en) 1998-02-13 2002-07-09 Britesmile, Inc. Tooth whitening device and method of using same
JP3296284B2 (en) 1998-03-12 2002-06-24 ウシオ電機株式会社 Dielectric barrier discharge lamp light source device and its power supply device
DE19817480B4 (en) * 1998-03-20 2004-03-25 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat lamp for dielectrically disabled discharges with spacers
DE19817478B4 (en) * 1998-04-20 2004-03-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Flat discharge lamp and process for its manufacture
DE19826809A1 (en) * 1998-06-16 1999-12-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielectric layer for discharge lamps and associated manufacturing process
JP3346291B2 (en) * 1998-07-31 2002-11-18 ウシオ電機株式会社 Dielectric barrier discharge lamp and irradiation device
DE19919169A1 (en) * 1999-04-28 2000-11-02 Philips Corp Intellectual Pty Device for disinfecting water with a UV-C gas discharge lamp
DE19919363A1 (en) 1999-04-28 2000-11-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp with spacer
JP2001015287A (en) 1999-04-30 2001-01-19 Ushio Inc Light source device of dielectric barrier discharge lamp
NZ554362A (en) * 1999-10-08 2008-12-24 Britesmile Professional Inc Apparatus for simultaneous illumination of teeth
KR100562879B1 (en) 1999-10-18 2006-03-24 우시오덴키 가부시키가이샤 Light source device having dielectric barrier discharge lamp
WO2001082331A1 (en) 2000-04-19 2001-11-01 Koninklijke Philips Electronics N.V. High-pressure discharge lamp
IES20000339A2 (en) * 2000-05-05 2001-11-14 G A Apollo Ltd Apparatus for irradiating material
DE10026913A1 (en) * 2000-05-31 2001-12-06 Philips Corp Intellectual Pty Gas discharge lamp with fluorescent layer
DE10048187A1 (en) * 2000-09-28 2002-04-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp for dielectrically impeded discharges with base plate and top plate for light outlet also discharge chamber between plates and electrode set and dielectric layer
US20020067130A1 (en) * 2000-12-05 2002-06-06 Zoran Falkenstein Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source
JP2002239484A (en) * 2001-02-16 2002-08-27 Ushio Inc Apparatus for treating substrate by using dielectric barrier discharge lamp
JP4293409B2 (en) * 2001-05-25 2009-07-08 ウシオ電機株式会社 Dielectric barrier discharge lamp lighting device
JP3929265B2 (en) * 2001-07-31 2007-06-13 富士通株式会社 Method for forming electron emission film in gas discharge tube
JP2003144913A (en) 2001-11-13 2003-05-20 Ushio Inc Treatment apparatus using dielectric barrier discharge lamp and treatment method
US6670619B2 (en) * 2001-12-12 2003-12-30 Alex Waluszko Transilluminator
DE10209191A1 (en) * 2002-03-04 2003-09-18 Philips Intellectual Property Device for generating UV radiation
EP1490890A1 (en) * 2002-04-03 2004-12-29 Kye-Seung Lee Flat type fluorescent lamp
US20060055326A1 (en) * 2002-06-17 2006-03-16 Yuji Takeda Low- Voltage discharge lamp and its manufacturing method
DE10235036A1 (en) * 2002-07-31 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraviolet light source, for carrying out photophysical or photochemical processes, has antenna(s) for emitting microwaves at distance from and directed towards vacuum container
FR2843483B1 (en) * 2002-08-06 2005-07-08 Saint Gobain FLASHLIGHT, METHOD OF MANUFACTURE AND APPLICATION
US20070040508A1 (en) * 2002-12-24 2007-02-22 Delta Optoelectronics, Inc. Flat fluorescent lamp
TW574721B (en) * 2002-12-24 2004-02-01 Delta Optoelectronics Inc Flat lamp structure
JP2005005258A (en) * 2003-05-19 2005-01-06 Ushio Inc Excimer lamp light emitting device
US20050035711A1 (en) * 2003-05-27 2005-02-17 Abq Ultraviolet Pollution Solutions, Inc. Method and apparatus for a high efficiency ultraviolet radiation source
EP1519406A1 (en) * 2003-07-31 2005-03-30 Delta Optoelectronics, Inc. Flat lamp structure
US7196473B2 (en) * 2004-05-12 2007-03-27 General Electric Company Dielectric barrier discharge lamp
US20060006804A1 (en) * 2004-07-06 2006-01-12 Lajos Reich Dielectric barrier discharge lamp
US7687997B2 (en) * 2004-07-09 2010-03-30 Koninklijke Philips Electronics N.V. UVC/VUV dielectric barrier discharge lamp with reflector
EP1859472A2 (en) * 2005-01-07 2007-11-28 Philips Intellectual Property & Standards GmbH Segmented dielectric barrier discharge lamp
EP1839326A1 (en) * 2005-01-07 2007-10-03 Philips Intellectual Property & Standards GmbH Dielectric barrier discharge lamp with protective coating
JP2006236623A (en) * 2005-02-22 2006-09-07 Lecip Corp Display device using dielectric barrier discharge tube
JP5103728B2 (en) * 2005-11-24 2012-12-19 ウシオ電機株式会社 Discharge lamp lighting device
FR2915314B1 (en) * 2007-04-17 2011-04-22 Saint Gobain UV FLOOR LAMP WITH DISCHARGES AND USES.
EP2316124A1 (en) * 2008-08-21 2011-05-04 Philips Intellectual Property & Standards GmbH Dielectric barrier discharge lamp
JP2010177014A (en) * 2009-01-29 2010-08-12 Ushio Inc Extra-high pressure mercury lamp
US8164263B2 (en) * 2009-04-10 2012-04-24 Ushio Denki Kabushiki Kaisha Excimer discharge lamp
DE102009025667A1 (en) * 2009-06-17 2010-12-23 Heraeus Noblelight Gmbh lamp unit
CN105070640A (en) * 2015-07-30 2015-11-18 安徽中杰信息科技有限公司 Excitation mode of vacuum electrodeless ultraviolet lamp

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6913956A (en) * 1968-09-19 1970-03-23
US4266167A (en) * 1979-11-09 1981-05-05 Gte Laboratories Incorporated Compact fluorescent light source and method of excitation thereof
US4778581A (en) * 1981-12-24 1988-10-18 Gte Laboratories Incorporated Method of making fluorescent lamp with improved lumen output
CH670171A5 (en) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
EP0269016A3 (en) * 1986-11-26 1990-05-09 Hamai Electric Lamp Co., Ltd. Flat fluorescent lamp having transparent electrodes

Also Published As

Publication number Publication date
JPH027353A (en) 1990-01-11
CA1310686C (en) 1992-11-24
JPH0787093B2 (en) 1995-09-20
CH675504A5 (en) 1990-09-28
US4983881A (en) 1991-01-08
EP0324953A1 (en) 1989-07-26
DE3855074D1 (en) 1996-04-11

Similar Documents

Publication Publication Date Title
EP0324953B1 (en) High power radiation source
EP0371304B1 (en) High-power radiation device
EP0839436B1 (en) Method for operating a lighting system and suitable lighting system therefor
DE69210113T2 (en) High pressure glow discharge lamp
EP0254111B1 (en) Ultraviolett radiation device
CH675178A5 (en)
EP0389980B1 (en) High power radiation device
DE19636965B4 (en) Electrical radiation source and radiation system with this radiation source
DE69228357T2 (en) Arc chamber for a lamp that contains a mercury-free filling
EP0363832A1 (en) Radiating device having a high output
EP0482230B1 (en) High power radiation device
DE2617915A1 (en) ARC DISCHARGE DEVICE
DE4433040A1 (en) Electrodeless discharge lamp of high intensity
DE2422411A1 (en) HIGH PRESSURE MERCURY VAPOR DISCHARGE LAMP
DE69012460T2 (en) Discharge tube system.
DE4036122A1 (en) CORON DISCHARGE LIGHT SOURCE CELL
DE69019597T2 (en) Low pressure noble gas discharge lamp.
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
DE19915617A1 (en) Gas discharge lamp
EP1187173A2 (en) Low pressure gas discharge lamp with a copper-containing gas fill
DE1489406C3 (en) High pressure mercury vapor discharge lamp
DE4208376A1 (en) High performance irradiator esp. for ultraviolet light - comprising discharge chamber, filled with filling gas, with dielectrics on its walls to protect against corrosion and erosion
DE3240757A1 (en) OPTICAL DISPLAY DEVICE
DE10242049A1 (en) Low pressure discharge lamp comprises a gas discharge vessel containing a noble gas filling as buffer gas, electrodes and devices for producing and maintaining a low pressure gas discharge, and a zinc halide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19900125

17Q First examination report despatched

Effective date: 19920115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960308

REF Corresponds to:

Ref document number: 3855074

Country of ref document: DE

Date of ref document: 19960411

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961108

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961213

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961230

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051216