EP0254111B1 - Ultraviolett radiation device - Google Patents

Ultraviolett radiation device Download PDF

Info

Publication number
EP0254111B1
EP0254111B1 EP87109674A EP87109674A EP0254111B1 EP 0254111 B1 EP0254111 B1 EP 0254111B1 EP 87109674 A EP87109674 A EP 87109674A EP 87109674 A EP87109674 A EP 87109674A EP 0254111 B1 EP0254111 B1 EP 0254111B1
Authority
EP
European Patent Office
Prior art keywords
electrode
dielectric
radiator according
tube
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87109674A
Other languages
German (de)
French (fr)
Other versions
EP0254111A1 (en
Inventor
Baldur Dr. Eliasson
Peter Dr. Erni
Michael. Dr Hirth
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0254111A1 publication Critical patent/EP0254111A1/en
Application granted granted Critical
Publication of EP0254111B1 publication Critical patent/EP0254111B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel

Definitions

  • the invention relates to a UV lamp with a discharge space filled with filling gas and delimited by walls, at least one wall being formed by a dielectric, with a first and a second metallic electrode, the first electrode on the surface of the dielectric facing away from the discharge space is arranged, and an alternating current source connected to the two electrodes for supplying the discharge, and means for directing the radiation generated by silent electrical discharges into an outside space.
  • the invention relates to a state of the art, such as that obtained from the publication "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" by GA Volkova. NN Kirillova, EN Pavlovskaya and AV Yakovleva in the SU magazine Zhurnal Prikladnoi Spektoskopii 41 - (1984) No. 4, 691-695. published in an English translation by Plenum Publishing Corporation 1985. Doc. No. 0021-9037 / 84 / 4104-1194 $ 08.50. P. 1194 ff., Results.
  • high-performance lamps especially high-performance UV lamps, e.g. Disinfection, curing of paints and synthetic resins, flue gas cleaning, destruction and synthesis of special chemical compounds.
  • the wavelength of the emitter will have to be matched very precisely to the intended process.
  • the best-known UV lamp is probably the mercury lamp, which emits UV radiation with wavelengths of 254 nm and 185 nm with high efficiency.
  • a low-pressure glow discharge burns in a noble gas-mercury vapor mixture in these lamps.
  • This radiator consists of a tube made of dielectric material with a rectangular cross section. Two opposite tube walls are provided with flat electrodes in the form of metal foils, which are connected to a pulse generator. The tube is closed at both ends and filled with an inert gas (argon, krypton or xenon). Such filling gases form so-called excimers when an electrical discharge is ignited under certain conditions.
  • An excimer is a molecule that is formed from an excited atom and an atom in the ground state. e.g. Ar + Ar - Ar * 2nd
  • the UV light generated in a first embodiment reaches the outside through an end window in the dielectric tube.
  • the broad sides of the tube are provided with metal foils which form the electrodes.
  • the tube is provided with recesses, over which special windows are glued, through which the radiation can escape.
  • the efficiency that can be achieved with the known radiator is of the order of 1%, which is far below the theoretical value of around 50% because the filling gas heats up inadmissibly.
  • Another inadequacy of the known radiator can be seen in the fact that its light exit window has only a comparatively small area for reasons of stability.
  • a low-pressure UV lamp for the near UV spectrum is known from BE-A-739 064.
  • the walls of this lamp consist of a UV-permeable dielectric, which is provided on both sides with a UV-permeable electrically conductive layer.
  • This three-layer arrangement serves as a capacitor for stabilizing the lamp.
  • the outer of the two layers is also an electrode and consists of indium or tin oxide, i.e. materials which are known to be only transparent to visible light or near UV.
  • the invention has for its object to provide a UV lamp that has a high efficiency, can be operated with high electrical power densities, enables the generation of UV radiation in a wide spectral range and the construction of large-area lamps with practically any large light emission areas.
  • the geometry of the high-performance lamp can be adapted to the process in which it is used within wide limits. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible.
  • the discharges can be operated at high pressure (0.1 - 10 bar. With this construction, electrical power densities of 1 - 50 KW / m2 can be realized.
  • the wavelength of the radiation can be adjusted by the kind of the filling gas eg mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm) As with other gas discharges, it is also advisable to mix different types of gas.
  • the filling gas eg mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm)
  • the advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes.
  • This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire network or applied conductor tracks as electrodes, which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation.
  • a transparent electrolyte for example H2O, can be used as a further electrode, which is particularly advantageous for the irradiation of water / waste water, since in this way the radiation generated passes directly into the liquid to be irradiated and this liquid also serves as a coolant.
  • a metal electrode 1 which is in contact on one side with a cooling medium 2, for example water.
  • a plate 4 made of dielectric material is arranged, spaced apart by electrically insulating spacers 3, which are distributed over a certain area.
  • a UV high-performance lamp it consists, for example, of quartz or sapphire, which is transparent to the UV radiation. Materials such as magnesium fluoride and calcium fluoride are also suitable for very short-wave radiation.
  • Dielectric 4 and metal electrode 1 delimit a discharge space 5 with a typical gap width between 1 and 10 mm.
  • a wire mesh there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light, a gold layer 50-100 angstroms thick for visible and UV light, and especially a thin layer of alkali metals in UV can.
  • An AC power source 7 is connected between the metal electrode 1 and the counter electrode (wire mesh 6).
  • alternating current source 7 those can generally be used which have long been used in connection with ozone generators.
  • the discharge space 5 is laterally closed in the usual way, was evacuated before closing and was filled with an inert gas or a substance that forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • an inert gas or a substance that forms excimers under discharge conditions e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
  • a substance according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124 nm, 140-160 nm Krypton + fluorine 240 - 255 nm mercury 185, 254 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm
  • the electron energy distribution can be optimally adjusted by varying the gap width of the discharge space, pressure and / or temperature (via the intensity of the cooling).
  • a metal tube 8, a tube 9 made of dielectric material and an outer metal tube 10 are arranged coaxially one inside the other. Coolant or a gaseous coolant is passed through the interior 11 of the metal tube.
  • the annular gap 12 between the tubes 8 and 9 forms the discharge space.
  • the dielectric tube 9 a quartz tube in the example
  • the outer metal tube spaced from it by a further annular gap 13 is the liquid to be irradiated, in the example water, which forms the other electrode due to its electrolytic property.
  • the AC power source 7 is therefore connected to the two metal tubes 8 and 10.
  • This arrangement has the advantage that the radiation can act directly on the water, the water also serves as a coolant, and a separate electrode on the outer surface of the dielectric tube 9 is therefore unnecessary.
  • one of the electrodes mentioned in connection with FIG. 1 can be used (transparent electrically conductive layer, wire mesh) can be applied to the outer surface of the dielectric tube 9.
  • a quartz tube 9 provided with a transparent, electrically conductive inner electrode 14 is arranged coaxially in a metal tube 8.
  • An annular discharge gap 12 extends between the two tubes 8, 9.
  • the metal tube 8 is formed to form an annular cooling gap 15 through which a coolant, e.g. Water that can be passed through is surrounded by an outer tube 10.
  • the AC power source 7 is connected between the inner electrode 14 and the metal tube 8.
  • the substance to be irradiated is guided through the interior 16 of the dielectric tube 9 and, if suitable, simultaneously serves as a coolant.
  • an electrolyte e.g. Use water as an electrode.
  • the individual tubes are spaced or fixed relative to one another by means of spacing elements, such as are used in ozone technology.
  • FIG. 4 The basic structure of such a high-power radiator is shown in FIG. 4. There are those with the same effect as Fig. 1 Provide parts with the same reference numerals.
  • the basic difference between FIGS. 1 and 4 consists in the interposition of a second dielectric 17 between the discharge space 5 and the metallic electrode 1.
  • the metallic electrode 1 is cooled by a cooling medium 2; the radiation leaves the discharge space 5 through the dielectric 4 which is permeable to the radiation and the wire mesh 6 serving as the second electrode.
  • FIG. 5 A practical implementation of such a high-power radiator is illustrated schematically in FIG. 5.
  • a double-walled quartz tube 18, consisting of an inner tube 19 and an outer tube 20, is surrounded on the outside by a wire mesh 6, which serves as the first electrode.
  • the second electrode is designed as a metal layer 21 on the inner wall of the inner tube 19.
  • the AC power source 7 is connected to these two electrodes.
  • the annular space between the inner and outer tube serves as a discharge space 5. This is sealed off from the outer space by melting the filler neck.
  • the radiator is cooled by passing a coolant through the interior of the inner tube 19, a tube 23 being inserted into the inner tube 19 to guide the coolant, leaving an annular space 24 between the inner tube 19 and the tube 23.
  • the direction of flow of the coolant is shown by arrows.
  • the hermetically sealed radiator according to FIG. 5 can also be operated as an internal radiator analogous to FIG. 3 if the cooling is fitted on the outside and the UV-permeable electrode on the inside.
  • the high-power radiators according to FIGS. 4 and 5 can also be modified in a variety of ways without departing from the scope of the invention: 4, the metallic electrode 1 can be dispensed with if the cooling medium is an electrolyte which also serves as an electrode.
  • the wire mesh 6 can also be replaced by an electrically conductive, radiation-permeable layer.
  • the wire mesh 6 can be replaced by such a layer.
  • the metal layer 21 is formed as a layer which is transparent to the radiation, e.g. from indium or tin oxide, the radiation can be applied directly to the cooling medium, e.g. Water. If the coolant itself is an electrolyte, this can take over the function of the electrode 21.
  • each volume element in the discharge gap will emit its radiation in the entire solid angle 4 ⁇ . If one only wants to use the radiation that emerges from the UV-permeable electrode 6, the usable radiation can be practically doubled if the counter electrode 21 is made of a material that reflects UV radiation well (e.g. aluminum). 5, the inner electrode could be aluminum vapor deposition.
  • Thin (0.1-1 ⁇ m) layers of alkali metals are also suitable for the UV-permeable, electrically conductive electrode 6.
  • the alkali metals lithium, potassium, rubidium, cesium in the ultraviolet spectral range have a high transparency with little reflection. Alloys (e.g. 25% sodium / 75% potassium) are also suitable. Since the alkali metals react with air (sometimes very violently), they must be provided with a UV-permeable protective layer (e.g. Mg F2) after application in a vacuum.
  • a UV-permeable protective layer e.g. Mg F2

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

Die Erfindung bezieht sich auf einen UV-Strahler mit einem mit Füllgas gefüllten, von Wänden begrenzten Entladungsraum wobei mindestens eine Wand von einem Dielektrikum gebildet wird, mit einer ersten und einer zweiten metallischen Elektrode, wobei die erste Elektrode auf der dem Entladungsraum abgewandten Oberfläche des Dielektrikums angeordnet ist, und einer an die beiden Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung, sowie Mitteln zur Leitung der durch stille elektrische Entladungen erzeugten Strahlung in einen Aussenraum.The invention relates to a UV lamp with a discharge space filled with filling gas and delimited by walls, at least one wall being formed by a dielectric, with a first and a second metallic electrode, the first electrode on the surface of the dielectric facing away from the discharge space is arranged, and an alternating current source connected to the two electrodes for supplying the discharge, and means for directing the radiation generated by silent electrical discharges into an outside space.

Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich beispielsweise aus der Veröffentlichung "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" Von G.A. Volkova. N.N. Kirillova, E.N. Pavlovskaya and A.V. Yakovleva in der SU-Zeitschrift Zhurnal Prikladnoi Spektroskopii 41 -(1984) No. 4, 691-695. veröffentlicht in einer englischsprachigen Uebersetzung der Plenum Publishing Corporation 1985. Dok. Nr. 0021-9037/84/4104-1194 $ 08.50. S. 1194 ff., ergibt.The invention relates to a state of the art, such as that obtained from the publication "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" by GA Volkova. NN Kirillova, EN Pavlovskaya and AV Yakovleva in the SU magazine Zhurnal Prikladnoi Spektoskopii 41 - (1984) No. 4, 691-695. published in an English translation by Plenum Publishing Corporation 1985. Doc. No. 0021-9037 / 84 / 4104-1194 $ 08.50. P. 1194 ff., Results.

Stand der TechnikState of the art

Für Hochleistungsstrahler, insbesondere Hochleistungs-UV-Strahler, gibt es diverse Anwendungen wie z.B. Entkeimung, Aushärten von Lacken und Kunstharzen, Rauchgasreinigung, Zerstörung und Synthese spezieller chemischer Verbindungen. Im allgemeinen wird die Wellenlänge des Strahlers sehr genau auf den beabsichtigten Prozess abgestimmt sein müssen. Der bekannteste UV-Strahler ist vermutlich der Quecksilberstrahler, der UV-Strahlung der Wellenlänge 254 nm und 185 nm mit hohem Wirkungsgrad abstrahlt. In diesen Strahlern brennt eine Niederdruck-Glimmentladung in einem Edelgas-Quecksilberdampf-Gemisch.There are various applications for high-performance lamps, especially high-performance UV lamps, e.g. Disinfection, curing of paints and synthetic resins, flue gas cleaning, destruction and synthesis of special chemical compounds. In general, the wavelength of the emitter will have to be matched very precisely to the intended process. The best-known UV lamp is probably the mercury lamp, which emits UV radiation with wavelengths of 254 nm and 185 nm with high efficiency. A low-pressure glow discharge burns in a noble gas-mercury vapor mixture in these lamps.

In der eingangs genannten Veröffentlichung "Vakuum ultraviolet lamps ..." wird eine auf dem Prinzip der stillen elektrischen Entladung basierende UV-Strahlenquelle beschrieben. Dieser Strahler besteht aus einem Rohr aus dielektrischem Material mit Rechteckquerschnitt. Zwei gegenüberliegende Rohrwände sind mit flächenhaften Elektroden in Form von Metallfolien versehen, die an einen Impulsgenerator angeschlossen sind. Das Rohr ist an beiden Enden verschlossen und mit einem Edelgas (Argon. Krypton oder Xenon) gefüllt. Derartige Füllgase bilden beim Zünden einer elektrischen Entladung unter bestimmten Bedingungen sogenannte Excimere. Ein Excimer ist ein Molekül, das aus einem angeregten Atom und einem Atom im Grundzustand gebildet wird.

z.B. Ar + Ar - Ar * 2

Figure imgb0001

In the above-mentioned publication "Vacuum ultraviolet lamps ...", a UV radiation source based on the principle of silent electrical discharge is described. This radiator consists of a tube made of dielectric material with a rectangular cross section. Two opposite tube walls are provided with flat electrodes in the form of metal foils, which are connected to a pulse generator. The tube is closed at both ends and filled with an inert gas (argon, krypton or xenon). Such filling gases form so-called excimers when an electrical discharge is ignited under certain conditions. An excimer is a molecule that is formed from an excited atom and an atom in the ground state.

e.g. Ar + Ar - Ar * 2nd
Figure imgb0001

Es ist bekannt, dass die Umwandlung von Elektronenenergie in UV-Strahlung mit diesen Excimeren sehr effizient erfolgt. Bis zu 50 % der Elektronenenergie kann in UV-Strahlung umgewandelt werden, wobei die angeregten Komplexe nur einige Nanosekunden leben und beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung abgehen. Wellenlängenbereiche:

Figure imgb0002
It is known that the conversion of electron energy into UV radiation takes place very efficiently with these excimers. Up to 50% of the electron energy can be converted into UV radiation, whereby the excited complexes only live for a few nanoseconds and their decay energy is released in the form of UV radiation when they decay. Wavelength ranges:
Figure imgb0002

Bei dem bekannten Strahler gelangt das erzeugte UV-Licht bei einer ersten Ausführung über ein stirnseitiges Fenster im dielektrischen Rohr in den Aussenraum. Bei einer zweiten Ausführungsform sind die Breitseiten des Rohres mit Metallfolien versehen, welche die Elektroden bilden. An den Schmalseiten ist das Rohr mit Ausnehmungen versehen, über welche spezielle Fenster geklebt sind, durch welche die Strahlung austreten kann.In the known radiator, the UV light generated in a first embodiment reaches the outside through an end window in the dielectric tube. In a second embodiment, the broad sides of the tube are provided with metal foils which form the electrodes. On the narrow sides, the tube is provided with recesses, over which special windows are glued, through which the radiation can escape.

Der mit dem bekannten Strahler erreichbare Wirkungsgrad liegt in der Grössenordnung von 1 %, also weit unter dem theoretischen Wert von um 50 %, weil sich das Füllgas unzulässig aufheizt. Eine weitere Unzulänglichkeit des bekannten Strahlers ist darin zu sehen, dass sein Lichtaustrittsfenster aus Stabilitätsgründen nur eine vergleichsweise kleine Fläche aufweist.The efficiency that can be achieved with the known radiator is of the order of 1%, which is far below the theoretical value of around 50% because the filling gas heats up inadmissibly. Another inadequacy of the known radiator can be seen in the fact that its light exit window has only a comparatively small area for reasons of stability.

Aus der BE-A-739 064 ist eine UV-Niederdruck-Lampe für das nahe UV-Spektrum bekannt. Die Wandungen dieser Lampe bestehen aus einem UV-durchlässigem Dielektrikum, das auf beiden Seiten mit einer UV-durchlässigen elektrisch leitenden Schicht versehen ist. Diese Dreischicht-Anordnung dient als Kondensator zur Stabilisierung der Lampe. Die äussere der beiden Schichten ist gleichzeitig Elektrode und besteht aus Indium- oder Zinnoxid, also Materialien, welche bekanntlich nur für sichtbares Licht oder das nahe UV transparent sind.A low-pressure UV lamp for the near UV spectrum is known from BE-A-739 064. The walls of this lamp consist of a UV-permeable dielectric, which is provided on both sides with a UV-permeable electrically conductive layer. This three-layer arrangement serves as a capacitor for stabilizing the lamp. The outer of the two layers is also an electrode and consists of indium or tin oxide, i.e. materials which are known to be only transparent to visible light or near UV.

Aus der Zusammenfassung des Dokuments JP-A-60-79662 ist ferner bekannt, der negativen Wirkung, die sich aus einer unzulässigen Aufheizung des Füllgases einer UV-Sterilisationslampe ergibt, dadurch entgegenzutreten, indem ein Kühleffekt auf den Entladungsraum ausgeübt wird.From the summary of document JP-A-60-79662 it is also known to counteract the negative effect which results from an inadmissible heating of the filling gas of a UV sterilization lamp by exerting a cooling effect on the discharge space.

Kurze Beschreibung der ErfindungBrief description of the invention

Ausgehend vom Bekannten liegt der Erfindung die Aufgabe zugrunde, einen UV-Strahler zu schaffen, der einen hohen Wirkungsgrad aufweist, mit hohen elektrischen Leistungsdichten betrieben werden kann, die Erzeugung von UV-Strahlung in einem weiten Spektralbereich ermöglicht und den Bau grossflächiger Strahler mit praktisch beliebig grossen Lichtaustrittsflächen zulässt.Based on the known, the invention has for its object to provide a UV lamp that has a high efficiency, can be operated with high electrical power densities, enables the generation of UV radiation in a wide spectral range and the construction of large-area lamps with practically any large light emission areas.

Die Lösung dieser Aufgabe erfolgt erfindungsgemäss durch die in den Patentansprüchen gekennzeichneten Merkmale.This object is achieved according to the invention by the features characterized in the patent claims.

Auf diese Weise ist ein Hochleistungsstrahler geschaffen, der mit grossen elektrischen Leistungsdichten und hohem Wirkungsgrad betrieben werden kann. Die Geometrie des Hochleistungsstrahlers ist in weiten Grenzen dem Prozess anpassbar, in welchem er eingesetzt wird. So sind neben grossflächigen ebenen Strahlern auch zylindrische, die nach innen oder nach aussen strahlen, möglich. Die Entladungen können bei hohem Druck (0.1 - 10 bar betrieben werden. Mit dieser Bauweise lassen sich elektrische Leistungsdichten von 1 - 50 KW/m² realisieren. Da die Elektronenenergie in der Entladung weitgehend optimiert werden kann, liegt der Wirkungsgrad solcher Strahler sehr hoch, auch dann, wenn man Resonanzlinien geeigneter Atome anregt. Die Wellenlänge der Strahlung lässt sich durch die Art des Füllgases einstellen z.B. Quecksilber (185 nm, 254 nm), Stickstoff (337-415 nm), Selen (196, 204, 206 nm), Xenon (119, 130, 147 nm), Krypton (124 nm). Wie bei anderen Gasentladungen empfiehlt sich auch die Mischung verschiedener Gasarten.This creates a high-performance radiator that can be operated with high electrical power densities and high efficiency. The geometry of the high-performance lamp can be adapted to the process in which it is used within wide limits. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible. The discharges can be operated at high pressure (0.1 - 10 bar. With this construction, electrical power densities of 1 - 50 KW / m² can be realized. Since the electron energy in the discharge can be largely optimized, the efficiency of such emitters is very high, too then, if one excites resonance lines of suitable atoms The wavelength of the radiation can be adjusted by the kind of the filling gas eg mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm) As with other gas discharges, it is also advisable to mix different types of gas.

Der Vorteil dieser Strahler liegt in der flächenhaften Abstrahlung grosser Strahlungsleistungen mit hohem Wirkungsgrad. Fast die gesamte Strahlung ist auf einen oder wenige Wellenlängenbereiche konzentriert. Wichtig ist in allen Fällen, dass die Strahlung durch eine der Elektroden austreten kann. Dieses Problem ist lösbar mit transparenten, elektrisch leitenden Schichten oder aber auch, indem man ein feinmaschiges Drahtnetz oder aufgebrachte Leiterbahnen als Elektrode benützt, die einerseits die Stromzufuhr zum Dielektrikum gewährleisten, andererseits für die Strahlung aber weitgehend transparent sind. Auch kann ein transparenter Elektrolyt, z.B. H₂O, als weitere Elektrode verwendet werden, was insbesondere für die Bestrahlung von Wasser/Abwasser vorteilhaft ist, da auf diese Weise die erzeugte Strahlung unmittelbar in die zu bestrahlende Flüssigkeit gelangt und diese Flüssigkeit gleichzeitig als Kühlmittel dient.The advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes. This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire network or applied conductor tracks as electrodes, which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation. Also, a transparent electrolyte, for example H₂O, can be used as a further electrode, which is particularly advantageous for the irradiation of water / waste water, since in this way the radiation generated passes directly into the liquid to be irradiated and this liquid also serves as a coolant.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt

Fig. 1
ein Ausführungsbeispiel der Erfindung in Gestalt eines ebenen Flächenstrahlers im Schnitt
Fig. 2
einen zylindrischen nach aussen abstrahlenden Strahler, der in einen Bestrahlungsbehälter für durchströmende Flüssigkeiten oder Gase integriert ist im Schnitt
Fig. 3
einen zylindrischen nach innen abstrahlenden Strahler für photochemische Reaktionen
Fig. 4
eine Abwandlung des Strahlers nach Fig. 1 mit einem beidseits durch ein Dielektrikum begrenzten Enladungsraum
Fig. 5
ein Ausführungsbeispiel eines Strahlers in Gestalt eines doppelwandigen Quarzrohrs.
In the drawing, exemplary embodiments of the invention are shown schematically, and that shows
Fig. 1
an embodiment of the invention in the form of a flat surface radiator in section
Fig. 2
a cylindrical, outward-radiating radiator, which is integrated in a radiation container for fluids or gases flowing through
Fig. 3
a cylindrical inward radiator for photochemical reactions
Fig. 4
1 with a discharge space delimited on both sides by a dielectric
Fig. 5
an embodiment of a radiator in the form of a double-walled quartz tube.

Ausführliche Beschreibung der ErfindungDetailed description of the invention

Der Hochleistungsstrahler nach Fig. 1 umfasst eine Metallelektrode 1, die auf ihrer einen Seite mit einem Kühlmedium 2, z.B. Wasser, in Kontakt steht. Auf der anderen Seite der Metallelektrode 1 ist - distanziert durch elektrisch isolierende Distanzstücke 3, die punktuell über Fläche verteilt sind - eine Platte 4 aus dielektrischem Material angeordnet. Sie besteht für einen UV-Hochleistungsstrahler z.B. aus Quarz oder Saphir, das für die UV-Strahlung durchlässig ist. Für sehr kurzwellige Strahlungen kommen auch Materialien, wie z.B. Magnesiumfluorid und Calziumfluorid in Frage. Für Strahler, welche Strahlung im sichtbaren Bereich des Lichtes liefern sollen, ist das Dielektrikum Glas. Dielektrikum 4 und Metallelektrode 1 begrenzen einen Entladungsraum 5 mit einer typischen Spaltweite zwischen 1 und 10 mm. Auf der dem Entladungsraum 5 abgewandten Oberfläche der dielektrischen Platte 4 ist ein feines Drahtnetz 6 aufgebracht, von dem nur die Kett- oder Schussfäden in Fig. 1 sichtbar sind. Anstelle eines Drahtnetzes kann auch eine transparente elektrisch leitende Schicht vorhanden sein, wobei für sichtbares Licht die Schicht aus Indium- oder Zinnoxid, für sichtbares und UV-Licht eine 50 - 100 Angström dicke Goldschicht und speziell im UV auch eine dünne Schicht aus Alkalimetallen verwendet werden kann. Eine Wechselstromquelle 7 ist zwischen die Metallelektrode 1 und die Gegenelektrode (Drahtnetz 6) geschaltet.1 comprises a metal electrode 1 which is in contact on one side with a cooling medium 2, for example water. On the other side of the metal electrode 1, a plate 4 made of dielectric material is arranged, spaced apart by electrically insulating spacers 3, which are distributed over a certain area. For a UV high-performance lamp, it consists, for example, of quartz or sapphire, which is transparent to the UV radiation. Materials such as magnesium fluoride and calcium fluoride are also suitable for very short-wave radiation. For spotlights that deliver radiation in the visible range of light the dielectric is glass. Dielectric 4 and metal electrode 1 delimit a discharge space 5 with a typical gap width between 1 and 10 mm. A fine wire mesh 6, of which only the warp or weft threads are visible in FIG. 1, is applied to the surface of the dielectric plate 4 facing away from the discharge space 5. Instead of a wire mesh, there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light, a gold layer 50-100 angstroms thick for visible and UV light, and especially a thin layer of alkali metals in UV can. An AC power source 7 is connected between the metal electrode 1 and the counter electrode (wire mesh 6).

Als Wechselstromquelle 7 können generell solche verwendet werden, wie sie im Zusammenhang mit Ozonerzeugern seit langem eingesetzt werden.As an alternating current source 7, those can generally be used which have long been used in connection with ozone generators.

Der Entladungsraum 5 ist seitlich in üblicher Weise geschlossen, wurde vor dem Verschliessen evakuiert und mit einem inerten Gas, oder einer bei Entladungsbedingungen Excimere bildenden Substanz, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gefüllt, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases (Ar, He, Ne) als Puffergas.The discharge space 5 is laterally closed in the usual way, was evacuated before closing and was filled with an inert gas or a substance that forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.

Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz gemäss nachfolgender Tabelle Verwendung finden: Füllgas Strahlung Helium 60 - 100 nm Neon 80 - 90 nm Argon 107 - 165 nm Xenon 160 - 190 nm Stickstoff 337 - 415 nm Krypton 124 nm, 140 - 160 nm Krypton + Fluor 240 - 255 nm Quecksilber 185, 254 nm Selen 196, 204, 206 nm Deuterium 150 - 250 nm Xenon + Fluor 400 - 550 nm Xenon + Chlor 300 - 320 nm Depending on the desired spectral composition of the radiation, a substance according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124 nm, 140-160 nm Krypton + fluorine 240 - 255 nm mercury 185, 254 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm

In der sich bildenden stillen Entladung (dielectric barrier discharge) kann die Elektronenenergieverteilung durch Variation der Spaltweite des Entladungsraumes, Druck und/oder Temperatur (über die Intensität der Kühlung) optimal eingestellt werden.In the silent discharge (dielectric barrier discharge) that forms, the electron energy distribution can be optimally adjusted by varying the gap width of the discharge space, pressure and / or temperature (via the intensity of the cooling).

Beim Ausführungsbeispiel nach Fig. 2 sind ein Metallrohr 8, ein von diesem distanziertes Rohr 9 aus dielektrischem Material und ein äusseres Metallrohr 10 koaxial ineinander angeordnet. Durch den Innenraum 11 des Metallrohres wird Kühlflüssigkeit oder ein gasförmiges Kühlmittel geleitet. Der Ringspalt 12 zwischen den Rohren 8 und 9 bildet den Entladungsraum. Zwischen dem dielektrischen Rohr 9 (im Beispielsfall ein Quarzrohr) und dem von diesem durch einen weiteren Ringspalt 13 distanzierten äusseren Metallrohr befindet sich die zu bestrahlende Flüssigkeit, im Beispielsfall Wasser, das aufgrund seiner elektrolytischen Eigenschaft die andere Elektrode bildet. Die Wechselstromquelle 7 ist demzufolge an die beiden Metallrohre 8 und 10 angeschlossen.In the exemplary embodiment according to FIG. 2, a metal tube 8, a tube 9 made of dielectric material and an outer metal tube 10 are arranged coaxially one inside the other. Coolant or a gaseous coolant is passed through the interior 11 of the metal tube. The annular gap 12 between the tubes 8 and 9 forms the discharge space. Between the dielectric tube 9 (a quartz tube in the example) and the outer metal tube spaced from it by a further annular gap 13 is the liquid to be irradiated, in the example water, which forms the other electrode due to its electrolytic property. The AC power source 7 is therefore connected to the two metal tubes 8 and 10.

Diese Anordnung hat den Vorteil, dass die Strahlung unmittelbar auf das Wasser einwirken kann, das Wasser gleichzeitig als Kühlmittel dient, und damit eine separate Elektrode auf der äusseren Oberfläche des dielektrischen Rohres 9 entbehrlich ist.This arrangement has the advantage that the radiation can act directly on the water, the water also serves as a coolant, and a separate electrode on the outer surface of the dielectric tube 9 is therefore unnecessary.

Ist die zu bestrahlende Flüssigkeit kein Elektrolyt, so kann eine der im Zusammenhang mit Fig. 1 genannten Elektroden (transparente elektrisch leitende Schicht, Drahtnetz) auf die äussere Oberfläche des dielektrischen Rohres 9 aufgebracht sein.If the liquid to be irradiated is not an electrolyte, one of the electrodes mentioned in connection with FIG. 1 can be used (transparent electrically conductive layer, wire mesh) can be applied to the outer surface of the dielectric tube 9.

Im Ausführungsbeispiel nach Fig. 3 ist ein mit einer transparenten elektrisch leitenden Innenelektrode 14 versehenes Quarzrohr 9 koaxial in einem Metallrohr 8 angeordnet. Zwischen beiden Rohren 8, 9 erstreckt sich ein ringförmiger Entladungsspalt 12. Das Metallrohr 8 ist unter Bildung eines ringförmigen Kühlspaltes 15, durch den ein Kühlmittel, z.B. Wasser, hindurchleitbar ist, von einem äusseren Rohr 10 umgeben. Die Wechselstromquelle 7 ist zwischen die Innenelektrode 14 und das Metallrohr 8 geschaltet.In the exemplary embodiment according to FIG. 3, a quartz tube 9 provided with a transparent, electrically conductive inner electrode 14 is arranged coaxially in a metal tube 8. An annular discharge gap 12 extends between the two tubes 8, 9. The metal tube 8 is formed to form an annular cooling gap 15 through which a coolant, e.g. Water that can be passed through is surrounded by an outer tube 10. The AC power source 7 is connected between the inner electrode 14 and the metal tube 8.

Wie im Falle der Fig. 2 wird durch den Innenraum 16 des dielektrischen Rohres 9 die zu bestrahlende Substanz geführt und dient - sofern geeignet - gleichzeitig als Kühlmittel.As in the case of FIG. 2, the substance to be irradiated is guided through the interior 16 of the dielectric tube 9 and, if suitable, simultaneously serves as a coolant.

Auch bei der Anordnung nach Fig. 3 kann neben festen, auf dem Rohrinneren angebrachten Innenelektroden 14 (Schichten, Drahtnetz) ein Elektrolyt, z.B. Wasser als Elektrode Verwendung finden.3, in addition to fixed internal electrodes 14 (layers, wire mesh) attached to the inside of the tube, an electrolyte, e.g. Use water as an electrode.

Sowohl bei Aussenstrahlern gemäss Fig. 2 als auch bei Innenstrahlern nach Fig. 3 erfolgt die Distanzierung bzw. relative Fixierung der einzelnen Rohre gegeneinander durch Distanzierungselemente, wie sie in der Ozontechnik verwendet werden.Both with external emitters according to FIG. 2 and with internal emitters according to FIG. 3, the individual tubes are spaced or fixed relative to one another by means of spacing elements, such as are used in ozone technology.

Experimente haben gezeigt, dass es vorteilhaft sein kann, bei bestimmten Füllgasen hermetisch abgeschlossene Entladungsgeometrien, z.B. abgeschmolzene Quarz- oder Glasbehälter, zu verwenden. In einer solchen Konfiguration kommt das Füllgas nicht mehr mit einer metallischen Elektrode in Berührung, die Entladung ist allseits von Dielektrika begrenzt.
Der prinzipielle Aufbau eines derartigen Hochleistungsstrahlers geht aus Fig. 4 hervor. Dort sind die mit Fig. 1 gleichwirkenden Teile mit denselben Bezugszeichen versehen. Der prinzipielle Unterschied zwischen Fig. 1 und Fig. 4 besteht in der Zwischenschaltung eines zweiten Dielektrikums 17 zwischen Entladungsraum 5 und metallischer Elektrode 1. Wie im Falle der Fig. 1 ist die metallische Elektrode 1 durch ein Kühlmedium 2 gekühlt; die Strahlung verlässt den Entladungsraum 5 durch das für die Strahlung durchlässige Dielektrikum 4 und das als zweite Elektrode dienende Drahtnetz 6.
Experiments have shown that it can be advantageous to use hermetically sealed discharge geometries, for example melted quartz or glass containers, for certain filling gases. In such a configuration, the filling gas no longer comes into contact with a metallic electrode, and the discharge is limited on all sides by dielectrics.
The basic structure of such a high-power radiator is shown in FIG. 4. There are those with the same effect as Fig. 1 Provide parts with the same reference numerals. The basic difference between FIGS. 1 and 4 consists in the interposition of a second dielectric 17 between the discharge space 5 and the metallic electrode 1. As in the case of FIG. 1, the metallic electrode 1 is cooled by a cooling medium 2; the radiation leaves the discharge space 5 through the dielectric 4 which is permeable to the radiation and the wire mesh 6 serving as the second electrode.

Eine praktische Realisierung eines derartigen Hochleistungsstrahlers ist in Fig. 5 schematisch veranschaulicht. Ein doppelwandiges Quarzrohr 18, bestehend aus einem Innenrohr 19 und einem Aussenrohr 20 ist aussen von einem Drahtnetz 6 umgeben, das als erste Elektrode dient. Die zweite Elektrode ist als Metallschicht 21 an der Innenwandung des Innenrohrs 19 ausgeführt. Die Wechselstromquelle 7 ist an diese beiden Elektroden angeschlossen. Der Ringraum zwischen Innen- und Aussenrohr dient als Entladungsraum 5. Dieser ist durch Abschmelzen des Füllstutzens hermetisch gegenüber dem Aussenraum abgeschlossen. Die Kühlung des Strahlers erfolgt durch Hindurchleiten eines Kühlmittels durch den Innenraum des Innenrohrs 19, wobei zur Kühlmittelführung ein Rohr 23 in das Innenrohr 19 unter Belassung eines Ringraums 24 zwischen Innenrohr 19 und Rohr 23 eingesetzt ist. Die Strömungsrichtung des Kühlmittels ist durch Pfeile verdeutlicht. Auch der hermetisch abgeschlossene Strahler nach Fig. 5 lässt sich als Innenstrahler analog Fig. 3 betreiben, wenn man die Kühlung aussen anbringt und die UV-durchlässige Elektrode innen.A practical implementation of such a high-power radiator is illustrated schematically in FIG. 5. A double-walled quartz tube 18, consisting of an inner tube 19 and an outer tube 20, is surrounded on the outside by a wire mesh 6, which serves as the first electrode. The second electrode is designed as a metal layer 21 on the inner wall of the inner tube 19. The AC power source 7 is connected to these two electrodes. The annular space between the inner and outer tube serves as a discharge space 5. This is sealed off from the outer space by melting the filler neck. The radiator is cooled by passing a coolant through the interior of the inner tube 19, a tube 23 being inserted into the inner tube 19 to guide the coolant, leaving an annular space 24 between the inner tube 19 and the tube 23. The direction of flow of the coolant is shown by arrows. The hermetically sealed radiator according to FIG. 5 can also be operated as an internal radiator analogous to FIG. 3 if the cooling is fitted on the outside and the UV-permeable electrode on the inside.

Im Lichte der Ausführungen zu den in den Figuren 1 bis 3 beschriebenen Anordnungen versteht es sich von selbst, dass auch die Hochleistungsstrahler gemäss Fig. 4 und 5 in mannigfaltiger Weise abgewandelt werden können, ohne den Rahmen der Erfindung zu verlassen:
So kann bei der Ausführung nach Fig. 4 auf die metallische Elektrode 1 verzichtet werden, wenn das Kühlmedium ein Elektrolyt ist, der gleichzeitig als Elektrode dient. Auch kann das Drahtnetz 6 durch eine elektrisch leitfähige, für die Strahlung durchlässige Schicht ersetzt werden.
In the light of the explanations regarding the arrangements described in FIGS. 1 to 3, it goes without saying that the high-power radiators according to FIGS. 4 and 5 can also be modified in a variety of ways without departing from the scope of the invention:
4, the metallic electrode 1 can be dispensed with if the cooling medium is an electrolyte which also serves as an electrode. The wire mesh 6 can also be replaced by an electrically conductive, radiation-permeable layer.

Auch im Falle der Fig. 5 kann das Drahtnetz 6 durch eine derartige Schicht ersetzt werden. Bildet man die Metallschicht 21 als für die Strahlung durchlässige Schicht, z.B. aus Indium- oder Zinnoxid, aus, so kann die Strahlung unmittelbar auf das Kühlmedium, z.B. Wasser, einwirken. Ist das Kühlmittel selbst ein Elektrolyt, so kann dieses die Funktion der Elektrode 21 übernehmen.5, the wire mesh 6 can be replaced by such a layer. If the metal layer 21 is formed as a layer which is transparent to the radiation, e.g. from indium or tin oxide, the radiation can be applied directly to the cooling medium, e.g. Water. If the coolant itself is an electrolyte, this can take over the function of the electrode 21.

Bei den vorgeschlagenen inkohärenten Strahlern wird jedes Volumenelement im Entladungsspalt seine Strahlung in den ganzen Raumwinkel 4π abstrahlen. Will man nur die Strahlung ausnutzen, die aus der UV-durchlässigen Elektrode 6 austritt, kann man die nutzbare Strahlung praktisch verdoppeln, wenn die Gegenelektrode 21 aus einem Material ist, das UV-Strahlung gut reflektiert (z.B. Aluminium). Bei der Anordnung der Fig. 5 könnte die innere Elektrode eine Aluminiumbedampfung sein.In the case of the proposed incoherent emitters, each volume element in the discharge gap will emit its radiation in the entire solid angle 4π. If one only wants to use the radiation that emerges from the UV-permeable electrode 6, the usable radiation can be practically doubled if the counter electrode 21 is made of a material that reflects UV radiation well (e.g. aluminum). 5, the inner electrode could be aluminum vapor deposition.

Für die UV-durchlässige elektrisch leitfähige Elektrode 6 bieten sich auch dünne (0.1-1µm) Schichten aus Alkalimetallen an. Wie bekannt ist, weisen die Alkalimetalle Lithium, Kalium, Rubidium, Cäsium im ultravioletten Spektralbereich eine hohe Transparenz bei geringer Reflexion auf. Auch Legierungen (z.B. 25 % Natrium / 75 % Kalium) bieten sich an. Da die Alkali-Metalle mit Luft (z.T. sehr heftig) reagieren, muss man sie nach der Aufbringung im Vakuum mit einer UV-durchlässigen Schutzschicht (z.B. Mg F₂) versehen.Thin (0.1-1 μm) layers of alkali metals are also suitable for the UV-permeable, electrically conductive electrode 6. As is known, the alkali metals lithium, potassium, rubidium, cesium in the ultraviolet spectral range have a high transparency with little reflection. Alloys (e.g. 25% sodium / 75% potassium) are also suitable. Since the alkali metals react with air (sometimes very violently), they must be provided with a UV-permeable protective layer (e.g. Mg F₂) after application in a vacuum.

Claims (16)

  1. UV radiator having a discharge space (5) filled with filling gas and bounded by walls, at least one wall being formed by a dielectric (4;9;17;19;20), having a first (6;10;14) and a second metallic electrode (1;8;21), the first electrode being disposed on the surface of the dielectric facing away from the discharge space (5) and having an alternating current source (7), connected to the two electrodes, for supplying the discharge, and also having means for conducting the radiation produced by dark electrical discharges into an external space, characterised in that the first electrode is composed of linear or strip-like metal, in that both said first electrode and also the dielectric are transparent to the radiation produced by the dark electrical discharges, and in that at least the second electrode is cooled.
  2. UV radiator according to Claim 1, characterised in that the first electrode is composed of conductor tracks applied to the dielectric.
  3. UV radiator according to Claim 1, characterised in that the second electrode (1;8;21) is a layer which reflects UV light, preferably an aluminium layer.
  4. UV radiator according to Claim 1, characterised in that the filling gas is a noble gas or a noble gas mixture which forms excimers under discharge conditions.
  5. UV radiator according to Claim 1, characterised in that the filling gas is mercury, nitrogen, selenium, deuterium or a mixture of these substances alone or with a noble gas.
  6. UV radiator according to Claim 1, characterised in that the second metal electrode (1) and the dielectric (4) are of plate-type construction and the second metallic electrode (1) is spaced from the dielectric (4) by means of spacing pieces (3).
  7. UV radiator according to Claim 1, characterised in that the second metal electrode (8) and the dielectric (9) are of tubular construction and form the discharge space (12) between them.
  8. UV radiator according to Claim 7, characterised in that the dielectric (9) surrounds the second metal electrodes [sic] (8) concentrically and is provided on its outer surface with a transparent, electrically conducting layer or is directly adjacent to an electrolyte which forms the first electrode.
  9. UV radiator according to Claim 7, characterised in that the dielectric (9) is disposed concentrically inside the second metal electrode (8) and the inner surface of the dielectric is provided with a transparent, electrically conducting layer (14) or is adjacent to an electrolyte which forms the first electrode.
  10. UV radiator according to Claim 9, characterised in that the second metal electrode (8) is surrounded by a tube (10') with a cooling gap (15) being left, through which cooling gap a coolant can be passed.
  11. UV radiator according to Claim 1, characterised in that the discharge space (5) is essentially formed by two spaced plates (4,17) of dielectric material to which electrodes (6,1) outwardly make contact, one (1) of which is cooled.
  12. UV radiator according to Claim 1, characterised in that the discharge space (5) is formed by the annular space of two tubes (19, 20) of dielectric material, the surfaces of the tubes facing away from the discharge space (5) being provided with a first electrode (6) which is transparent to the radiation and with a cooled second electrode (21).
  13. UV radiator according to Claim 12, characterised in that the internal surface of the inner tube (19) is provided with an electrode (21), in that a coolant guide tube (23) projects into the internal space of the inner tube (19) and is spaced from the latter, through which tube a coolant can be supplied and can be removed through the annular space (24) between the latter and the inner tube (19) along the said electrode (21).
  14. UV radiator according to Claim 1, characterised in that the filling gas is a noble gas/halogen mixture, preferably an Ar/F, Kr/F, Xe/Cl, or Xe/I mixture.
  15. UV radiator according to one of Claims 1 to 14, characterised in that the filling gas contains a buffer gas in the form of an additional noble gas, preferably Ar, He or Ne.
  16. UV radiator according to one of Claims 1 to 15, characterised in that at least the second electrode (1) is liquid-cooled.
EP87109674A 1986-07-22 1987-07-06 Ultraviolett radiation device Expired - Lifetime EP0254111B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2924/86 1986-07-22
CH2924/86A CH670171A5 (en) 1986-07-22 1986-07-22

Publications (2)

Publication Number Publication Date
EP0254111A1 EP0254111A1 (en) 1988-01-27
EP0254111B1 true EP0254111B1 (en) 1992-01-02

Family

ID=4244683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87109674A Expired - Lifetime EP0254111B1 (en) 1986-07-22 1987-07-06 Ultraviolett radiation device

Country Status (5)

Country Link
US (1) US4837484A (en)
EP (1) EP0254111B1 (en)
CA (1) CA1288800C (en)
CH (1) CH670171A5 (en)
DE (1) DE3775647D1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363832A1 (en) * 1988-10-10 1990-04-18 Heraeus Noblelight GmbH Radiating device having a high output
EP0371304A1 (en) * 1988-12-01 1990-06-06 Heraeus Noblelight GmbH High-power radiation device
EP0378826A2 (en) * 1989-01-17 1990-07-25 Heidelberger Druckmaschinen Aktiengesellschaft Device for drying inks on paper
US4945290A (en) * 1987-10-23 1990-07-31 Bbc Brown Boveri Ag High-power radiator
EP0385205A1 (en) * 1989-02-27 1990-09-05 Heraeus Noblelight GmbH High-power radiation device
EP0389980A1 (en) * 1989-03-29 1990-10-03 Heraeus Noblelight GmbH High power radiation device
WO1991009984A1 (en) * 1989-12-22 1991-07-11 Asea Brown Boveri Aktiengesellschaft Coating process
CH678128A5 (en) * 1989-01-26 1991-07-31 Asea Brown Boveri High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode
EP0458140A1 (en) * 1990-05-22 1991-11-27 Heraeus Noblelight GmbH High power radiator
EP0459127A1 (en) * 1990-04-24 1991-12-04 Asea Brown Boveri Ag High power radiation device with power supply
EP0489184A1 (en) * 1990-12-03 1992-06-10 Heraeus Noblelight GmbH High power radiation device
EP0510503A2 (en) * 1991-04-25 1992-10-28 Heraeus Noblelight GmbH Process for the treatment of surfaces
EP0515711A1 (en) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH High power radiator
EP0517929A1 (en) * 1991-06-01 1992-12-16 Heraeus Noblelight GmbH Irradiation device with a high power radiator
EP0547366A1 (en) * 1991-12-09 1993-06-23 Heraeus Noblelight GmbH High power radiator
US5225251A (en) * 1989-12-22 1993-07-06 Asea Brown Boveri Aktiengesellschaft Method for forming layers by UV radiation of aluminum nitride
US5288305A (en) * 1991-03-20 1994-02-22 Asea Brown Boveri Ltd. Method for charging particles
DE4242171A1 (en) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Liquid disinfection
DE4332866A1 (en) * 1993-09-27 1995-03-30 Fraunhofer Ges Forschung Surface treatment with barrier discharge
US5432398A (en) * 1992-07-06 1995-07-11 Heraeus Noblelight Gmbh High-power radiator with local field distortion for reliable ignition
EP0721204A2 (en) * 1993-09-08 1996-07-10 Ushiodenki Kabushiki Kaisha Dielectric barrier discharge lamp
EP0732727A2 (en) * 1995-02-04 1996-09-18 Leybold Aktiengesellschaft Use and method for treatment of surfaces by means of a barrier discharge device producing plasma particles and/or UV-radiation
EP0782871A2 (en) 1995-11-22 1997-07-09 Heraeus Noblelight GmbH Body ultra-violet radiation process, its device and its use
EP0818206A2 (en) * 1996-07-12 1998-01-14 Heraeus Noblelight GmbH Method for cleaning and disinfecting small objects
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
US6409842B1 (en) 1999-11-26 2002-06-25 Heraeus Noblelight Gmbh Method for treating surfaces of substrates and apparatus
DE19922566B4 (en) * 1998-12-16 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the generation of ultraviolet radiation
WO2023222178A1 (en) 2022-05-19 2023-11-23 IOT - Innovative Oberflächentechnologien GmbH Irradiation device with excimer emitters as uv source

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675504A5 (en) * 1988-01-15 1990-09-28 Asea Brown Boveri
US5118989A (en) * 1989-12-11 1992-06-02 Fusion Systems Corporation Surface discharge radiation source
EP0482230B1 (en) * 1990-10-22 1995-06-21 Heraeus Noblelight GmbH High power radiation device
DE4041884A1 (en) * 1990-12-27 1992-07-02 Abb Patent Gmbh METHOD FOR TREATING SURFACES
US5220236A (en) * 1991-02-01 1993-06-15 Hughes Aircraft Company Geometry enhanced optical output for rf excited fluorescent lights
EP0509110B1 (en) 1991-04-15 1995-06-21 Heraeus Noblelight GmbH Irradation device
DE4113524A1 (en) * 1991-04-25 1992-10-29 Abb Patent Gmbh METHOD FOR TREATING SURFACES
DE69210113T2 (en) * 1991-07-01 1996-11-21 Philips Patentverwaltung High pressure glow discharge lamp
DE4208376A1 (en) * 1992-03-16 1993-09-23 Asea Brown Boveri High performance irradiator esp. for ultraviolet light - comprising discharge chamber, filled with filling gas, with dielectrics on its walls to protect against corrosion and erosion
DE4235743A1 (en) * 1992-10-23 1994-04-28 Heraeus Noblelight Gmbh High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
DE4238324A1 (en) * 1992-11-13 1994-05-19 Abb Research Ltd Removal of dangerous contaminants from oxygen-contg. gases - gas stream is treated with ozone as well as with UV-light
DE4242172A1 (en) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Disinfection process
DE4243210A1 (en) * 1992-12-19 1994-06-30 Heraeus Noblelight Gmbh High power radiator
DE4243208A1 (en) * 1992-12-19 1994-06-23 Heraeus Noblelight Gmbh Wastewater treatment processes
DE69409677T3 (en) * 1993-01-20 2001-09-20 Ushio Electric Inc Discharge lamp with a dielectric barrier
DE4302465C1 (en) * 1993-01-29 1994-03-10 Fraunhofer Ges Forschung Appts. for producing dielectrically-hindered discharge - comprises gas-filled discharge space between two ignition voltage-admitted electrodes
DE4305704B4 (en) * 1993-02-25 2006-02-16 Matter + Siegmann Ag Method and device for analyzing particles in a gas
DE4314510A1 (en) * 1993-05-03 1994-11-10 Abb Research Ltd Process for generating ozone
DE4342643C2 (en) * 1993-09-13 1999-04-29 Fraunhofer Ges Forschung Low-temperature fixation with barrier discharge in inkjet printers
TW260806B (en) * 1993-11-26 1995-10-21 Ushio Electric Inc
DE4415242A1 (en) * 1994-04-30 1995-11-02 Wissenschaftlich Tech Optikzen Quasi-continuous UV light producing excimer laser for photochemical industry, medicine, photolithography
DE4430300C1 (en) * 1994-08-26 1995-12-21 Abb Research Ltd Excimer emitters and their use
JP2775699B2 (en) * 1994-09-20 1998-07-16 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3025414B2 (en) * 1994-09-20 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP3082638B2 (en) * 1995-10-02 2000-08-28 ウシオ電機株式会社 Dielectric barrier discharge lamp
DE19627119A1 (en) * 1996-07-05 1998-01-15 Hassia Verpackung Ag Device for sterilizing and / or sterilizing packaging material webs
US5843374A (en) * 1996-10-11 1998-12-01 Tetra Laval Holdings & Finance, Sa Method and apparatus for sterilizing packaging
US6888041B1 (en) 1997-02-12 2005-05-03 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US6194821B1 (en) * 1997-02-12 2001-02-27 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
DE19708149A1 (en) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Electrodeless discharge tube containing mercury and noble gas mixture
DE19708148A1 (en) * 1997-02-28 1998-09-03 Umex Ges Fuer Umweltberatung U Electrodeless ultraviolet gas discharge lamp excited by high frequency oscillator
US5945790A (en) * 1997-11-17 1999-08-31 Schaefer; Raymond B. Surface discharge lamp
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
CA2224699A1 (en) * 1997-12-12 1999-06-12 Resonance Ltd. Hollow electrode electrodeless lamp
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP3346291B2 (en) 1998-07-31 2002-11-18 ウシオ電機株式会社 Dielectric barrier discharge lamp and irradiation device
JP3264898B2 (en) * 1999-02-25 2002-03-11 大村 智 Ultraviolet irradiation equipment for sterilization of liquid and muddy substances
FR2792774B1 (en) 1999-04-26 2003-08-01 Joint Industrial Processors For Electronics METHOD AND DEVICE FOR TREATING A MATERIAL BY ELECTROMAGNETIC RADIATION AND IN A CONTROLLED ATMOSPHERE
DE19920693C1 (en) * 1999-05-05 2001-04-26 Inst Oberflaechenmodifizierung Open UV / VUV excimer lamp and process for surface modification of polymers
US6133694A (en) * 1999-05-07 2000-10-17 Fusion Uv Systems, Inc. High-pressure lamp bulb having fill containing multiple excimer combinations
DE69942618D1 (en) * 1999-10-07 2010-09-02 Ushio Electric Inc DEVICE FOR PRODUCING ULTRAVIOLETTER RADIATION
IES20000339A2 (en) * 2000-05-05 2001-11-14 G A Apollo Ltd Apparatus for irradiating material
DE50109333D1 (en) * 2000-11-29 2006-05-11 Fraunhofer Ges Forschung METHOD AND DEVICE FOR SURFACE TREATMENT OF OBJECTS
US20020067130A1 (en) * 2000-12-05 2002-06-06 Zoran Falkenstein Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source
US6759664B2 (en) * 2000-12-20 2004-07-06 Alcatel Ultraviolet curing system and bulb
US7381976B2 (en) 2001-03-13 2008-06-03 Triton Thalassic Technologies, Inc. Monochromatic fluid treatment systems
DE10112900C1 (en) * 2001-03-15 2002-07-11 Heraeus Noblelight Gmbh Excimer UV light source has elongate electrode carrier fixed between tapered end of discharge envelope and socket incorporating current feed
US6597003B2 (en) * 2001-07-12 2003-07-22 Axcelis Technologies, Inc. Tunable radiation source providing a VUV wavelength planar illumination pattern for processing semiconductor wafers
US6646256B2 (en) 2001-12-18 2003-11-11 Agilent Technologies, Inc. Atmospheric pressure photoionization source in mass spectrometry
US6559607B1 (en) 2002-01-14 2003-05-06 Fusion Uv Systems, Inc. Microwave-powered ultraviolet rotating lamp, and process of use thereof
US20030157000A1 (en) * 2002-02-15 2003-08-21 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
DE50307658D1 (en) * 2002-04-29 2007-08-23 Fh Hildesheim Holzminden Goe METHOD AND DEVICE FOR TREATING THE OUTER SURFACE OF A METAL WIRE, ESPECIALLY AS A COATING TREATMENT
DE10235036A1 (en) * 2002-07-31 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraviolet light source, for carrying out photophysical or photochemical processes, has antenna(s) for emitting microwaves at distance from and directed towards vacuum container
DE10260579A1 (en) * 2002-12-21 2004-07-08 Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. Moving ion spectrometer, to detect traces in air or a carrier gas, has at least two pulsed UV lights of different wavelengths without separating the analytes
RU2236060C1 (en) * 2002-12-25 2004-09-10 Закрытое акционерное общество Научно-производственный центр "СОЛИТОН-НТТ" Gas-discharge ultraviolet radiation source
US7268355B2 (en) 2002-12-27 2007-09-11 Franek Olstowski Excimer UV fluorescence detection
US6971939B2 (en) * 2003-05-29 2005-12-06 Ushio America, Inc. Non-oxidizing electrode arrangement for excimer lamps
DE102004018887B4 (en) * 2004-04-15 2009-04-16 Heraeus Quarzglas Gmbh & Co. Kg A method of manufacturing a quartz glass component for use with a source of ultraviolet rays and a method of aptitude diagnosis of such a quartz glass component
DE102004020398A1 (en) * 2004-04-23 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with external electrodes and lighting system with this lamp
DE102004022859B4 (en) * 2004-05-06 2006-04-13 Kalle Gmbh Artificial food casing and process for its production
US7196473B2 (en) * 2004-05-12 2007-03-27 General Electric Company Dielectric barrier discharge lamp
CN101133475B (en) * 2004-07-09 2012-02-01 皇家飞利浦电子股份有限公司 UVC/VUV dielectric barrier discharge lamp with reflector
DE102005007370B3 (en) * 2005-02-17 2006-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes
US20090267004A1 (en) * 2005-12-21 2009-10-29 Trojan Technologies Inc. Excimer radiation lamp assembly, and source module and fluid treatment system containing same
EP1971999A4 (en) * 2005-12-21 2012-05-30 Trojan Techn Inc Excimer radiation lamp assembly, and source module and fluid treatment system containing same
US20090274576A1 (en) * 2006-01-18 2009-11-05 Barry Ressler System and method for container sterilization using UV light source
JP4971665B2 (en) * 2006-03-31 2012-07-11 公立大学法人名古屋市立大学 Phototherapy device for the treatment of skin diseases
WO2008010132A2 (en) * 2006-07-13 2008-01-24 Philips Intellectual Property & Standards Gmbh Fluid treatment system comprising radiation source module and cooling means
DE102007030915A1 (en) * 2007-07-03 2009-01-22 Cinogy Gmbh Device for the treatment of surfaces with a plasma generated by means of an electrode via a solid dielectric by a dielectrically impeded gas discharge
CN101874285B (en) * 2007-11-26 2012-09-05 欧司朗股份有限公司 Dielectric barrier discharge lamp configured as a double tube
JP2011522381A (en) * 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション Plasma-based chemical source apparatus and method of use thereof
WO2009149020A1 (en) * 2008-06-04 2009-12-10 Triton Thalassic Technologies, Inc. Methods, systems and apparatus for monochromatic uv light sterilization
GB2474032B (en) * 2009-10-01 2016-07-27 Heraeus Noblelight Gmbh Flash lamp or gas discharge lamp with integrated reflector
CN103026457B (en) 2010-06-04 2016-10-26 捷通国际有限公司 Fluid handling system and the method for operation lamp assembly
DE102010043208A1 (en) 2010-11-02 2012-05-03 Osram Ag Device for irradiating surfaces
TWI483285B (en) 2012-11-05 2015-05-01 Ind Tech Res Inst Dielectric barrier discharge lamp and fabrication method thereof
US9269544B2 (en) 2013-02-11 2016-02-23 Colorado State University Research Foundation System and method for treatment of biofilms
US9117636B2 (en) 2013-02-11 2015-08-25 Colorado State University Research Foundation Plasma catalyst chemical reaction apparatus
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US10237962B2 (en) 2014-02-26 2019-03-19 Covidien Lp Variable frequency excitation plasma device for thermal and non-thermal tissue effects
US9722550B2 (en) 2014-04-22 2017-08-01 Hoon Ahn Power amplifying radiator (PAR)
DE102014207688A1 (en) * 2014-04-24 2015-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for the photochemical treatment of contaminated water
US10524849B2 (en) 2016-08-02 2020-01-07 Covidien Lp System and method for catheter-based plasma coagulation
KR102116867B1 (en) 2018-05-08 2020-05-29 주식회사 원익큐엔씨 Surface treatment device for implant
JP7132540B2 (en) * 2018-06-13 2022-09-07 ウシオ電機株式会社 excimer lamp
DE102018214715B4 (en) * 2018-08-30 2020-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the degradation of pollutants in water
DE102021108009B4 (en) 2021-03-30 2023-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Multi-wavelength UV radiation source and UV probe, especially for fluorescence analysis

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769117A (en) * 1952-07-01 1956-10-30 Pirillo Santo Ozone producing device
US2943223A (en) * 1958-05-02 1960-06-28 Union Carbide Corp Silent electric discharge light source
NL6913956A (en) * 1968-09-19 1970-03-23
DE6753632U (en) * 1968-09-19 1969-05-29 Philips Nv LOW PRESSURE DISCHARGE LAMP WITH A WALL NOT CLOSING THE DISCHARGE SPACE, THAT U.A. CONSISTS OF A BEAM.
DE2222454A1 (en) * 1972-05-08 1973-11-22 Patra Patent Treuhand COOLED FEET FOR HIGH POWER DISCHARGE LAMP
US3763806A (en) * 1972-10-16 1973-10-09 C & W Sewing Machine Separately retractable paired needles
FR2406606A1 (en) * 1977-10-18 1979-05-18 Degremont ELECTRODE FOR OZONE GENERATOR
US4179616A (en) * 1978-02-21 1979-12-18 Thetford Corporation Apparatus for sanitizing liquids with ultra-violet radiation and ozone
CH631950A5 (en) * 1978-06-07 1982-09-15 Bbc Brown Boveri & Cie DEVICE FOR DISinfecting LIQUIDS, IN PARTICULAR WATER, BY means of ULTRAVIOLETTER RAYS.
US4266166A (en) * 1979-11-09 1981-05-05 Gte Laboratories Incorporated Compact fluorescent light source having metallized electrodes
JPS5834560A (en) * 1981-08-21 1983-03-01 周 成祥 Discharge lamp display unit
US4427921A (en) * 1981-10-01 1984-01-24 Gte Laboratories Inc. Electrodeless ultraviolet light source
US4492898A (en) * 1982-07-26 1985-01-08 Gte Laboratories Incorporated Mercury-free discharge lamp

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945290A (en) * 1987-10-23 1990-07-31 Bbc Brown Boveri Ag High-power radiator
EP0363832A1 (en) * 1988-10-10 1990-04-18 Heraeus Noblelight GmbH Radiating device having a high output
CH676168A5 (en) * 1988-10-10 1990-12-14 Asea Brown Boveri
US5006758A (en) * 1988-10-10 1991-04-09 Asea Brown Boveri Ltd. High-power radiator
EP0371304A1 (en) * 1988-12-01 1990-06-06 Heraeus Noblelight GmbH High-power radiation device
JPH02199767A (en) * 1988-12-01 1990-08-08 Asea Brown Boveri Ag High output beam geberator
CH677846A5 (en) * 1988-12-01 1991-06-28 Asea Brown Boveri
EP0378826A2 (en) * 1989-01-17 1990-07-25 Heidelberger Druckmaschinen Aktiengesellschaft Device for drying inks on paper
EP0378826A3 (en) * 1989-01-17 1991-04-17 Heidelberger Druckmaschinen Aktiengesellschaft Device for drying inks on paper
CH678128A5 (en) * 1989-01-26 1991-07-31 Asea Brown Boveri High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode
EP0385205A1 (en) * 1989-02-27 1990-09-05 Heraeus Noblelight GmbH High-power radiation device
CH677292A5 (en) * 1989-02-27 1991-04-30 Asea Brown Boveri
US5013959A (en) * 1989-02-27 1991-05-07 Asea Brown Boveri Limited High-power radiator
CH677557A5 (en) * 1989-03-29 1991-05-31 Asea Brown Boveri
US5049777A (en) * 1989-03-29 1991-09-17 Asea Brown Boveri Limited High-power radiator
EP0389980A1 (en) * 1989-03-29 1990-10-03 Heraeus Noblelight GmbH High power radiation device
WO1991009984A1 (en) * 1989-12-22 1991-07-11 Asea Brown Boveri Aktiengesellschaft Coating process
US5225251A (en) * 1989-12-22 1993-07-06 Asea Brown Boveri Aktiengesellschaft Method for forming layers by UV radiation of aluminum nitride
EP0459127A1 (en) * 1990-04-24 1991-12-04 Asea Brown Boveri Ag High power radiation device with power supply
CH680246A5 (en) * 1990-04-24 1992-07-15 Asea Brown Boveri
EP0458140A1 (en) * 1990-05-22 1991-11-27 Heraeus Noblelight GmbH High power radiator
CH680099A5 (en) * 1990-05-22 1992-06-15 Asea Brown Boveri
US5214344A (en) * 1990-05-22 1993-05-25 Asea Brown Boveri Ltd. High-power radiator
US5198717A (en) * 1990-12-03 1993-03-30 Asea Brown Boveri Ltd. High-power radiator
EP0489184A1 (en) * 1990-12-03 1992-06-10 Heraeus Noblelight GmbH High power radiation device
US5288305A (en) * 1991-03-20 1994-02-22 Asea Brown Boveri Ltd. Method for charging particles
EP0510503A2 (en) * 1991-04-25 1992-10-28 Heraeus Noblelight GmbH Process for the treatment of surfaces
EP0510503A3 (en) * 1991-04-25 1993-03-17 Abb Patent Gmbh Process for the treatment of surfaces
EP0515711A1 (en) * 1991-05-27 1992-12-02 Heraeus Noblelight GmbH High power radiator
EP0517929A1 (en) * 1991-06-01 1992-12-16 Heraeus Noblelight GmbH Irradiation device with a high power radiator
EP0547366A1 (en) * 1991-12-09 1993-06-23 Heraeus Noblelight GmbH High power radiator
US5386170A (en) * 1991-12-09 1995-01-31 Heraeus Noblelight Gmbh High-power radiator
US5432398A (en) * 1992-07-06 1995-07-11 Heraeus Noblelight Gmbh High-power radiator with local field distortion for reliable ignition
DE4242171A1 (en) * 1992-12-15 1994-06-16 Heraeus Noblelight Gmbh Liquid disinfection
EP0721204A2 (en) * 1993-09-08 1996-07-10 Ushiodenki Kabushiki Kaisha Dielectric barrier discharge lamp
DE4332866A1 (en) * 1993-09-27 1995-03-30 Fraunhofer Ges Forschung Surface treatment with barrier discharge
EP0732727A2 (en) * 1995-02-04 1996-09-18 Leybold Aktiengesellschaft Use and method for treatment of surfaces by means of a barrier discharge device producing plasma particles and/or UV-radiation
US5698039A (en) * 1995-02-04 1997-12-16 Leybold Ag Process for cleaning a substrate using a barrier discharge
EP0782871A2 (en) 1995-11-22 1997-07-09 Heraeus Noblelight GmbH Body ultra-violet radiation process, its device and its use
US5955840A (en) * 1995-11-22 1999-09-21 Heraeus Noblelight Gmbh Method and apparatus to generate ultraviolet (UV) radiation, specifically for irradiation of the human body
EP0818206A2 (en) * 1996-07-12 1998-01-14 Heraeus Noblelight GmbH Method for cleaning and disinfecting small objects
US6060828A (en) * 1996-09-11 2000-05-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Electric radiation source and irradiation system with this radiation source
DE19922566B4 (en) * 1998-12-16 2004-11-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the generation of ultraviolet radiation
US6409842B1 (en) 1999-11-26 2002-06-25 Heraeus Noblelight Gmbh Method for treating surfaces of substrates and apparatus
US6588122B2 (en) 1999-11-26 2003-07-08 Heraeus Noblelight Gmbh Method for treating surfaces of substrates and apparatus
WO2023222178A1 (en) 2022-05-19 2023-11-23 IOT - Innovative Oberflächentechnologien GmbH Irradiation device with excimer emitters as uv source

Also Published As

Publication number Publication date
US4837484A (en) 1989-06-06
DE3775647D1 (en) 1992-02-13
EP0254111A1 (en) 1988-01-27
CH670171A5 (en) 1989-05-12
CA1288800C (en) 1991-09-10

Similar Documents

Publication Publication Date Title
EP0254111B1 (en) Ultraviolett radiation device
EP0312732B1 (en) High power radiator
EP0324953B1 (en) High power radiation source
EP0578953B1 (en) High power emitting device
EP0458140B1 (en) High power radiator
DE4113241C2 (en) Pulsed gas discharge laser
EP0371304B1 (en) High-power radiation device
EP0389980B1 (en) High power radiation device
EP0509110B1 (en) Irradation device
DE4140497C2 (en) High-power radiation
DE10209191A1 (en) Device for generating UV radiation
CH676168A5 (en)
EP0482230B1 (en) High power radiation device
EP0517929B1 (en) Irradiation device with a high power radiator
DE19543342A1 (en) Process and radiation arrangement for generating UV rays for body radiation and use
DE4302465C1 (en) Appts. for producing dielectrically-hindered discharge - comprises gas-filled discharge space between two ignition voltage-admitted electrodes
EP0489184A1 (en) High power radiation device
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
DE4036122A1 (en) CORON DISCHARGE LIGHT SOURCE CELL
DE4022279A1 (en) Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer
DE4208376A1 (en) High performance irradiator esp. for ultraviolet light - comprising discharge chamber, filled with filling gas, with dielectrics on its walls to protect against corrosion and erosion
DE2461568A1 (en) VAPOR DISCHARGE LAMP
DE3240757A1 (en) OPTICAL DISPLAY DEVICE
EP0334355B1 (en) Wall-stabilized high-pressure discharge lamp
DE19613357A1 (en) Pulsed light source e.g. gas-discharge lamp for generating light of given wavelength in UV and visible light spectral range

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19880627

17Q First examination report despatched

Effective date: 19890905

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REF Corresponds to:

Ref document number: 3775647

Country of ref document: DE

Date of ref document: 19920213

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;HERAEUS NOBLELIGHT GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: HERAEUS NOBLELIGHT GMBH TE KLEINOSTHEIM, BONDSREPU

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060714

Year of fee payment: 20

Ref country code: FR

Payment date: 20060714

Year of fee payment: 20

Ref country code: DE

Payment date: 20060714

Year of fee payment: 20

Ref country code: CH

Payment date: 20060714

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060822

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070706

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070705

BE20 Be: patent expired

Owner name: *HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 20070706