EP0313038B1 - Verfahren zur Herstellung einer Rohrbodenstruktur eines Wärmetauschers - Google Patents

Verfahren zur Herstellung einer Rohrbodenstruktur eines Wärmetauschers Download PDF

Info

Publication number
EP0313038B1
EP0313038B1 EP88117464A EP88117464A EP0313038B1 EP 0313038 B1 EP0313038 B1 EP 0313038B1 EP 88117464 A EP88117464 A EP 88117464A EP 88117464 A EP88117464 A EP 88117464A EP 0313038 B1 EP0313038 B1 EP 0313038B1
Authority
EP
European Patent Office
Prior art keywords
tube
metallic
plate structure
fibres
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117464A
Other languages
English (en)
French (fr)
Other versions
EP0313038A1 (de
Inventor
Klaus Hagemeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0313038A1 publication Critical patent/EP0313038A1/de
Application granted granted Critical
Publication of EP0313038B1 publication Critical patent/EP0313038B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/454Heat exchange having side-by-side conduits structure or conduit section
    • Y10S165/471Plural parallel conduits joined by manifold
    • Y10S165/481Partitions in manifold define serial flow pattern for conduits/conduit groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet
    • Y10T29/49368Sheet joined to sheet with inserted tubes

Definitions

  • the invention relates to a method for producing a tube sheet structure of a heat exchanger according to the preamble of patent claim 1.
  • the tube sheet is to be composed of a large number of precisely pre-shaped or pre-profiled elements; According to the number and the desired spacing of the profile tubes of the matrix, the relevant layer-to-layer elements should be pre-deformed in such a way that they can enclose half of the arranged tube ends of the matrix in a form-fitting manner.
  • the invention is based on the object of specifying a method in which the tube ends of a profile tube matrix of a heat exchanger can be optimally integrally bonded into a floor or distributor tube structure which is to be created essentially free of predetermined solid component specifications.
  • the rings forming the central tube plate are not made from solid material as already known, but from a fiber mesh.
  • the fiber braid is compressed under the action of axial joining forces in such a way that it nestles completely around the enclosed heat exchanger tubes.
  • the compression of the fiber structure is strongest locally where the surfaces of adjacent pipes are at the smallest distance from each other in the joining area of the heat exchanger pipe field.
  • Metallic material (metal matrix) is then infiltrated into this initially porous structure of the central tube sheet in this way, which fills the cavities of the fiber structure and also creates a material connection to the surfaces of the enclosed tubes and the fibers of the wickerwork.
  • the formation of the fiber rings can be designed in detail as follows.
  • Orientation of a certain proportion of fibers in the circumferential direction is desirable in order to absorb the high circumferential forces during operation of the heat exchanger which result from the internal pressure load on the central tube with the relevant heat exchanger base.
  • Another part of the fiber structure should protrude like bristles from the side surfaces of said fiber ring. When they are joined, these bristle structures of adjacent rings penetrate each other and, after infiltrating the metallic matrix, transmit the forces in the longitudinal direction of the central tube; the bristle structures also ensure that the areas that are least compressed during assembly, in particular on the leading and trailing edges of the heat exchanger tubes, are filled correctly and with a sufficient volume of the fiber material.
  • the fiber material should preferably be heat-resistant in accordance with the temperature load on the component, but not necessarily resistant to oxidation and corrosion. The latter is not the case if the fibers are completely enclosed by the system of the matrix, so that they are protected against the entry of aggressive media. So metallic, but also ceramic and carbon fibers come into question.
  • the fiber rings For assembling the heat exchanger, it can also be advantageous to enclose the fiber rings with solid rings.
  • the width of these rings corresponds to the closest local distances of the heat exchanger tubes in the field, so that the rings can ensure the required distances when they are joined or pressed together. Since they have to follow the corrugated track of the tube field in the circumferential direction, it is necessary to make them correspondingly flexible or to impress the corrugated shape on the rings before joining.
  • the infiltration of the fiber matrix can also be carried out as follows.
  • a lance-like cast crockery is passed inside the resulting central tube over its inner jacket and the molten matrix material is injected which, due to the capillary action, fills the fiber structure, binds with fibers and tube surfaces and solidifies.
  • the molten matrix material is injected which, due to the capillary action, fills the fiber structure, binds with fibers and tube surfaces and solidifies.
  • the above-mentioned massive ring which surrounds the fiber structure on the outside, as well as a corresponding, if necessary, corresponding, arranged on the inside diameter of the fiber structure massive ring similar construction can also be made of a material that becomes molten when heated in the furnace like a solder and by capillary action in the fiber structure penetrates to fill the matrix volume and make the bonds.
  • Pipes of the matrix and fibers or fiber braiding can be subjected to a surface pretreatment in all cases in order to achieve improved wetting and integration into the matrix.
  • Fig. 1 illustrates a heat exchanger 1 for guiding gases of very different temperatures
  • the cross-countercurrent matrix 2 in the hot gas flow G consists of separate compressed air lines 3 (Fig. 2), which on the one hand to a first stationary pipe guide 4 for the supply of cold compressed air D in the matrix 2 (cold) and on the other hand connected to a second stationary pipe guide 5, from which the compressed air D (hot) heated via the matrix 2 can be fed to a consumer.
  • the two pipe guides 4, 5 are arranged separately from one another and integrated in a common header pipe 6.
  • Each profile tube 3 of the matrix 2 - starting from its tube-side connections to the first 4 and second tube guide 5 of the header tube 6 - should initially run parallel to a laterally extended header tube meridian plane before it turns into a common, U deflecting the compressed air D by 180 ° -shaped wiring harness merges.
  • the matrix 2 should also flow through the hot gas G transversely to the elongated manifold meridian plane and while ensuring the permissible hot gas blockage between the adjacent profile tubes 3.
  • each profile tube 3 of the matrix 2 (FIG. 2) also contains two compressed air channels 8, 9 separated from one another by a profile web 7, which have triangular flow cross sections in the sense of the two tapered outer wall sections of the profile tubes 3 concerned.
  • two or more separate manifolds or manifolds for the compressed air supply into the matrix can also be used instead of the common manifold 6, essentially arranged one above the other or next to one another 2 or for the compressed air discharge (hot) from the matrix 2.
  • the invention therefore relates to the manufacture of the relevant floor structure 10, but in particular to the manufacture of the header pipe 6 together with the floor structure 10 or the manufacture of one or more header or distributor pipes in a heat exchanger of the cross-countercurrent construction discussed at the beginning.
  • a method for producing a tube sheet structure 10 or a header tube 6 of a heat exchanger using strip-shaped layers 11, 12 or 12, 13 (FIG. 5) is thus specified, between which tube ends of the profile tubes 3 of the matrix 2 are firmly integrated in a fluid-tight manner; the strip-shaped layers 11, 12; 12, 13 are to be produced from fibers which are initially bundled uniformly (fiber bundles 11 ', 12'; 12 ' , 13') between the tube ends of adjacent rows of profile tubes (tubes 3) and are thus deformed under pressure (arrow direction P, P ') They should form an initially porous bottom structure (Fig. 5) under half-sided pipe wrapping, into which a metallic material is then infiltrated in a molten state, in which all fibers including the pipe ends are integrally bonded.
  • the fiber bundles e.g. 12 ', composed of interwoven fiber layers with main fibers 14 running in the circumferential direction of the tube sheet structure and transverse fibers 15 running transversely thereto, such that the latter - after the pressing and deformation phase (FIG. 5) have been completed - engage in a bristle-like manner essentially outside the tube encapsulation areas.
  • the secondary fibers 15 of the adjacent fiber layers e.g. 12, 13, intertwine like bristles.
  • a complete interweaving of fibers should also be achieved in the respective profile end or tip areas.
  • the aforementioned contact planes 16 are arranged in a longitudinally symmetrical alignment with the profile longitudinal center planes E.
  • the fiber bundles, e.g. 12 ', 13' (Fig. 3) layers, e.g. 12, 13 (FIG. 5) are covered entirely or partially by metallic ring elements 17, 18 (FIG. 7) or 18, 19 (FIG. 8) extending along the inside and / or outside of the floor structure.
  • the ring elements mentioned can e.g. can be provided to stiffen the floor or pipe structure, and to protect the fiber structures from local environmental influences such as temperature influences.
  • the ring elements mentioned can also be aids in the infiltration process in that they are intended to prevent the infiltration agent from flowing off. If e.g. the infiltration process of a molten metallic material from the outside of a tube sheet into the fiber material, the relevant ring elements, e.g. 19 (Fig. 8) can only be arranged on the inside of the tube sheet to prevent the metallic material from flowing away. After infiltration has been completed, the ring elements, e.g. 19 (Fig. 8) can be removed again.
  • the metallic ring elements e.g. 18, 19 (FIG. 8) are manufactured from a solder material which ensures metallic infiltration.
  • the ring elements, e.g. 18, 19 (FIG. 8) on the inside and outside of the porous tube sheet structure as elements corrugated in the sense of the profile tube profile (FIG. 7) are placed on the fiber bundles 12 '(FIG. 8).
  • a metallic composite material (matrix) can be melted within a vacuum furnace via a lance-shaped casting tableware that sweeps the corrugated porous floor structure (FIG. 5) along the inside and outside of the tube sheet be injected.
  • the ends of the profile tubes 3 of the matrix which are open on the inside of the tube sheet can be closed before metallic infiltration is carried out from the inside of the base structure and can be opened again by mechanical processing after the infiltration has been completed.
  • the fibers of the fiber bundles) 11 ' , 12' or 12 ', 13' can be made from a metallic material or from wires, from a ceramic material, for example from partially stabilized zirconium oxide or from carbon.
  • the metallic material infiltrated after the pressing and deformation phase can be made from an aluminum alloy.
  • a circular cylindrical (Fig. 1, 6 or 8), square or rectangular header or distributor pipe of a cross-countercurrent heat exchanger can be used with the collector or distributor pipes, e.g. 6-fig. 1, U-shaped protruding profile tube matrix 2 are produced, the fiber bundles 11 ', 12' or 12 ', 13' (FIG. 3) being compressed to the desired length of header or distributor tube, including the required mutual profile tube spacing of the matrix 2, and the metallic infiltration, for example by means of the aforementioned crockery, can be carried out continuously over the entire circumference of the porous collecting or distribution pipe structure (FIG. 5).
  • rings made of a suitable plastic e.g. can be provided from a fiber-reinforced plastic or from a suitable ceramic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Rohrbodenstruktur eines Wärmetauschers gemäß Oberbegriff des Patentanspruchs 1.
  • Bei einem aus der DE-OS 33 10 061 bekannten Verfahren zur Herstellung einer Rohrverteileranordnung bzw. eines Verteilerrohrs eines Wärmetauschers soll der Rohrboden aus einer Vielzahl genauestens vorgeformter bzw. vorprofilierter Elemente zusammengesetzt werden; entsprechend der Anzahl und der gewünschten Beabstandung der Profilrohre der Matrix sollen dabei die betreffenden Schicht auf Schicht zusammenzufügenden Elemente also so vorverformt sein, daß sie die angeordneten Rohrenden der Matrix jeweils zur Hälfte formschlüssig umschließen können.
  • Im bekannten Fall wird es als nachteilhaft angesehen, daß trotz verhältnismäßig genauer Fertigung der betreffenden, die Schichten bildenden Elemente Fertigungtoleranzen zu berücksichtigen sind, derart, daß die Gesamtlänge des zu erstellenden Bodens oder Rohrs mit der Summe der Dickentoleranz der Elemente schwankt; neben Boden- oder Rohrlängenschwankungen sind ferner im bekannten Fall örtliche Belochungsversätze gegenüber der normalen Profilrohrbeabstandung und -Anordnung nicht auszuschließen; durch die massive Formvorgabe der Elemente sind also grundsätzlich Fertigungstoleranzen nicht zu vermeiden und praktisch kaum oder nur mit extrem kostenaufwendiger Nachbearbeitung korrigierbar.
  • Genannte Belochungsversätze wie aber auch schon geringfügige Belochungsformschwankungen setzen ein mühsames Feinjustieren bzw. Zentrieren der betreffenden Rohrenden der Matrix voraus, zumal das spätere Verlöten der Rohrenden im Schichtboden eine extrem genaue Sitzpassung der Rohrenden erzwingt, um örtliche Lotwertstoff-Verlagerungen möglichst zu vermeiden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, bei dem die Rohrenden einer Profilrohrmatrix eines Wärmetauschers in eine im wesentlichen frei von vorgegebenen Massivbauteilvorgaben zu erstellende Boden- oder Verteilerrohrstruktur optimal stoffschlüssig einbindbar sind.
  • Bei einem Verfahren nach dem Oberbegriff des Patentanspruchs 1 ist die genannte Aufgabe durch die Merkmale des Kennzeichnungsteils des Patentanspruchs 1 erfindungsgemäß gelöst.
  • Gemäß der Erfindung ist es also vorgesehen, die den Zentralrohrboden bildenden Ringe nicht aus massivem Material wie bereits als bekannt erwähnt herzustellen, sondern aus einem Fasergeflecht. Beim Zusammenfügen der Schichten - gebildet aus ebenen Lagen von Wärmetauscherrohren und den den Zentralrohrboden darstellenden Faserringen - wird erfindungsgemäß das Fasergeflecht unter der Wirkung von axialen Fügekräften in der Weise komprimiert, daß es sich vollständig um die eingeschlossenen Wärmetauscherrohre schmiegt. Dabei ist die Verdichtung der Faserstruktur örtlich dort am stärksten, wo im Fügebereich des Wärmetauscherohrfeldes die Oberflächen benachbarter Rohre den geringsten Abstand zueinander haben.
  • In diese derart gebildete, zunächst noch poröse Struktur des Zentralrohrbodens wird anschließend metallisches Material (Metall-Matrix) schmelzflüssig infiltriert, das sowohl die Hohlräume der Faserstruktur ausfüllt als auch eine stoffschlüssige Verbindung zu den Oberflächen der umschlossenen Rohre und den Fasern des Flechtwerks herstellt.
  • Die Ausbildung der Faserringe kann im Einzelnen wie folgt gestaltet werden.
  • In Umfangsrichtung ist eine Orientierung eines gewissen Faseranteils anzustreben, um damit im Betrieb des Wärmetauschers die hohen Umfangskräfte aufzunehmen, die aus der Innendruckbelastung des Zentralrohres mit dem betreffenden Wärmetauscherboden resultieren. Ein anderer Teil der Faserstruktur sollte borstenartig aus den Seitenflächen des besagten Faserringes herausragen. Beim Zusammenfügen durchdringen sich diese Borstenstrukturen benachbarter Ringe und vermitteln, nach Infiltrieren der metallischen Matrix, die Kräfte übertragung in Längsrichtung des Zentralrohres; die Borstenstrukturen stellen außerdem sicher, daß die beim Zusammenfügen am geringsten komprimierten Gebiete, insbesondere an den Anström- und Abströmkanten der Wärmetauscherrohre, einwandfrei und mit einem genügenden Volumen des Fasermaterials ausgefüllt werden.
  • Das Fasermaterial sollte vorzugsweise der Temperaturbelastung des Bauteils entsprechend warmfest sein, jedoch nicht unbedingt oxidations-und korrosionsfest. Letzteres dann nämlich nicht, wenn die Fasern vom System der Matrix völlig umschlossen werden, so daß sie vor Zutritt aggressiver Medien geschützt sind. In Frage kommen also metallische, aber auch keramische und Kohle-Fasern.
  • Für das Zusammenfügen des Wärmetauschers kann es ferner vorteilhaft sein, die Faserringe mit massiven Ringen zu umfassen. Die Breite dieser Ringe entspricht den engsten örtlichen Abständen der Wärmetauscherrohre im Feld, so daß die Ringe beim Zusammenfügen bzw. -pressen die erforderlichen Abstände sicherstellen können. Da sie dabei der jeweils gewellten Spur des Rohrfeldes in Umfangsrichtung folgen müssen, ist es erforderlich, sie entsprechend biegeweich zu gestalten oder aber den Ringen die gewellte Form schon vor dem Fügen aufzuprägen.
  • Das Infiltrieren der Fasermatrix kann ferner wie folgt vorgenommen werden.
  • 1. In Vakuumöfen wird ein lanzenartiges Gießgeschirr im Inneren des entstehenden Zentralrohres über dessen Innenmantel geführt und das schmelzflüssige Matrixmaterial injiziert, das aufgrund der Kapillarwirkung die Faserstruktur ausfüllt, mit Fasern und Rohroberflächen Bindungen eingeht und erstarrt. Dazu kann es erforderlich sein, die in den Innenraum des Zentralrohres hineinreichenden Rohrenden der Wärmetauscher-Matrix zuvor zu verschließen, um sie nach Abschluß des Fertigungsprozesses abzuarbeiten und damit wieder zu öffenen.
  • 2. Der oben erwähnte massive, die Faserstruktur außen um fassende Ring sowie auch ein gegebenenfalls entsprechender, am Innendurchmesser der Faserstruktur angeordneter massiver Ring ähnlicher Bauweise können ferner aus einem Material hergestellt sein, das beim Erhitzen im Ofen wie ein Lot schmelzflüssig wird und durch Kapillarwirkung in die Faserstruktur eindringt, um das Matrixvolumen auszufüllen und die Bindungen bzw. Verbindungen herzustellen.
  • Rohre der Matrix und Fasern bzw. Faserflechtwerke können in allen Fällen einer Oberflächenvorbehandlung unterzogen werden, um eine verbesserte Benetzung und Einbindung in die Matrix zu erzielen.
  • Die zuvor genannten Ausführungen beruhen auf dem Grundgedanken der Erfindung gemäß Anspruch 1 unter sachlicher Verdeutlichung weiterer Ausgestaltungen des Verfahrens nach Anspruch 1 im Rahmen der Patentansprüche 2 bis 17.
  • Anhand der Zeichnungen ist die Erfindung beispielsweise weiter erläutert; es zeigen:
    • Fig. 1 die perspektivische Darstellung eines bekannten und für die Durchführung des erfindungsgemäßen Verfahrens geeigneten Profilrohr-Wärmetauschers in Kreuz-Gegenstrom-Bauweise,
    • Fig. 2 einen Profilausschnitt (geradschenkeliger Bereich) aus der Matrix des Wärmetauschers nach Fig.1,
    • Fig. 3 ein grob vorjustiertes, in die Zeichnungsebene projiziertes Profilrohrfeld für die Matrix des Wärmetauschers nach Fig. 1 mit in gleichmäßigen Abständen zwischen benachbarten Profilrohrenden lose angeordneten Faserbündeln im Rahmen einer Ausgangsphase des Herstellverfahrens für eine Boden- oder Zentralrohrausbildung,
    • Fig. 4 die perspektivische Darstellung eines Faserbündelabschnitts,
    • Fig. 5 ein aus der Ausgangsstufe des betreffenden Verfahrens nach Fig. 3 durch Pressung und Verformung der betreffenden Faserbündel unter jeweiliger Profilrohrendumschließung ausgebildeter Abschnitt eines Wärmetauscherbodens mit regulärer gewünschter gegenseitiger Profilrohrbeabstandung im Feld,
    • Fig. 6 ein im Wege der Pressung und Verformung nach Fig. 5 hergestelltes zylindrisches Sammel-oder Verteilerrohr mit beidseitig zwischen benachbarten Faserbündeln ins Rohrinnere einmündenden Profilrohrenden der Matrix, hier im Wege einer örtlich freigelegten Seitenansicht der betreffenden Profilrohrenden in Kombination mit einem innenliegenden zylindrischen Faserbündel verdeutlicht,
    • Fig. 7 die nach Fig. 5 hergestellte Bodenstruktur unter Verwendung zusätzlicher, hier entlang der Bodenaußenseite sich gewellt zwischen den Profilrohrenden erstreckenden metallischen Zwischenringen und
    • Fig. 8 eine gemäß Fig. 6 dargestellte Weiterentwicklung des Verfahrensgegenstandes unter Verwendung jeweils äußerer und innerer metallischer Zwischenringe an gemäß Fig. 5 verformten und gepressten Faserbündeln zwecks Ausbildung einer zylindrischen Sammel- oder Verteilerrohrstruktur.
  • Fig. 1 veranschaulicht einen Wärmetauscher 1 zur Führung von Gasen stark unterschiedlicher Temperaturen, dessen im Heißgasstrom G liegende Kreuz-Gegenstrom-Matrix 2 aus seperaten Druckluftleitungen 3 (Fig. 2) besteht, die einerseits an eine erste stationäre Rohrführung 4 für die Zufuhr kalter Druckluft D in die Matrix 2 (kalt) und andererseits an eine zweite stationäre Rohrführung 5 angeschlossen sind, aus der die über die Matrix 2 aufgeheizte Druckluft D (heiß) einem Verbraucher zuführbar ist. Die beiden Rohrführungen 4, 5 sind voneinander getrennt angeordnet und in ein gemeinsames Sammelrohr 6 integriert. Dabei soll jedes Profilrohr 3 der Matrix 2 - ausgehend von deren rohrbodenseitigen Anschlüssen an die erste 4 und zweite Rohrführung 5 des Sammelrohrs 6 - zunächst parallel zu einer seitlich verlängerten Sammelrohrmeridianebene verlaufen, bevor sie in einen gemeinsamen, die Druckluft D um 180° umlenkenden, U-förmigen Leitungsstrang übergeht. Die Matrix 2 soll ferner quer zur verlängerten Sammelrohrmeridianebene sowie unter Gewährleistung der zulässigen Heißgasversperrung zwischen den einander benachbarten Profilrohren 3 vom Heißgas G durchströmt sein.
  • Wie insbesondere aus Fig. 2 entnehmbar, weisen die mit strömungsgünstig zugespitzten Enden an-und abströmseitig in der Heißgasströmungsrichtung G liegenden Profilrohre 3 der Matrix einen linsenförmigen Querschnitt auf; dabei greifen die jeweils parallel zu einer gemeinsamen Matrixquerebene verlaufend angeordneten Profilrohre 3 mit ihren an- bzw. abströmseitig einander benachbarten Profilzuspitzungen unter Ausnutzung der infolge dieser Zuspitzungen sich räumlich ausbildenden Erweiterungen ineinander; jedes Profilrohr 3 der Matrix 2 (Fig. 2) enthält ferner zwei durch einen Profilsteg 7 voneinander getrennte Druckluftkanäle 8,9, die im Sinne der beiden zugespitzten Außenwandabschnitte der betreffenden Profilrohre 3 dreieckförmig ausgebildete Strömungsquerschnitte aufweisen.
  • Beim eingangs beschriebenen Wärmetauscher, wie er im übrigen aus der DE-PS 29 07 810 bekannt ist, können ferner anstelle des gemeinsamen Sammelrohrs 6 zwei oder mehrere separate, im wesentlichen parallel über- oder nebeneinander angeordnete Verteiler- oder Sammelrohre für die Druckluftzufuhr in die Matrix 2 bzw. für die Druckluftableitung (heiß) aus der Matrix 2 vorgesehen werden.
  • Die Erfindung betrifft also die Herstellung der betreffenden Bodenstruktur 10, insbesondere aber die Herstellung des Sammelrohrs 6 nebst Bodenstruktur 10 bzw. die Herstellung einzelner oder mehrerer Sammel- oder Verteilerrohre bei einem eingangs behandelten Wärmetauscher in Kreuz-Gegenstrom-Bauweise.
  • Es wird also ein Verfahren zur Herstellung einer Rohrbodenstruktur 10 bzw. eines Sammelrohres 6 eines Wärmetauschers unter Anwendung streifenförmiger Schichten 11, 12 bzw. 12, 13 (Fig. 5) angegeben, zwischen denen Rohrenden der Profilrohre 3 der Matrix 2 fluiddicht fest eingebunden sind; die streifenförmigen Schichten 11,12; 12,13 sollen aus Fasern hergestellt werden, die zunächst gleichförmig gebündelt (Faserbündei 11',12'; 12',13') zwischen den Rohrenden benachbarter Profilrohrreihen (Rohre 3) angeordnet und unter Pressung (Pfeilrichtung P,P') so verformt werden sollen, daß sie unter jeweils halbseitiger Rohrumschmiegung eine zunächst poröse Bodenstruktur (Fig. 5) ausbilden, in die dann ein metallischer Werkstoff schmelzflüssig infiltriert wird, in den sämtliche Fasern einschließlich der Rohrenden stoffschlüssig eingebunden werden.
  • Gemäß Fig. 4 können die Faserbündel, z.B. 12', aus miteinander verwobenen Faserlagen mit in Umfangsrichtung der Rohrbodenstruktur verlaufenden Hauptfasern 14 und quer dazu ver laufenden Nebenfasern 15 so zusammengesetzt werden, daß die letzteren - nach vollzogener Press- und Verformungsphase (Fig. 5) - im wesentlichen außerhalb der Rohrumschmiegungsbereiche borstenartig ineinandergreifen.
  • Im Bereich der gegenseitigen Kontaktebenen 16 sollen also die Nebenfasern 15 der jeweils benachbarten Faserschichten, z.B. 12, 13, borstenartig innig ineinandergreifen. Insbesondere soll dabei auch in den jeweiligen Profilend- oder -spitzenbereichen eine lückenlose Faserverflechtung erreicht werden. Die genannten Kontaktebenen 16 sind dabei längssymmetrisch fluchtend zu den Profillängsmittelebenen E angeordnet.
  • Gemäß Fig. 7 und 8 können die aus den Faserbündein, z.B. 12', 13' (Fig. 3) gebildeten Schichten, z.B. 12, 13 (Fig.5) gänzlich oder teilweise von sich entlang der Innen- und/oder Außenseite der Bodenstruktur erstreckenden metallischen Ringelementen 17, 18 (Fig. 7) bzw. 18, 19 (Fig. 8) abgedeckt werden.
  • Die genannten Ringelemente können z.B. vorgesehen werden, um die Boden- oder Rohrstruktur zu versteifen, sowie, um die Faserstrukturen vor örtlichen Umgebungseinflüssen, wie Temperatureinflüssen, zu schützen.
  • Die genannten Ringelemente können aber auch Hilfsmittel beim Infiltrationsvorgang sein, indem sie ein Abfließen des Infiltriermittels verhüten sollen. Wenn z.B. der Infiltrationsvorgang eines schmelzflüssigen metallischen Materials von der Außenseite eines Rohrbodens aus in das Fasermaterial erfolgt, so können die betreffenden Ringelemente, z.B. 19 (Fig. 8) ausschließlich an der Rohrbodeninnenseite angeordnet werden, um das Abfließen des metallischen Materials zu verhindern. Nach vollzogener Infiltration können dann die Ringelemente, z.B. 19 (Fig. 8), wieder entfernt werden.
  • In einer weiteren Verfahrensausbildung besteht ferner die Möglichkeit, daß die metallischen Ringelemente, z.B. 17, 18 (Fig. 7), unter Gewährleistung der erforderlichen Profilbeabstandung, in der Bodenstruktur zusammen mit den Faserbündeln 12', 13' (Fig. 3) verformt werden, und zwar entsprechend gewellt verformt.
  • Anstelle der gemeinsamen Verpressung von Faserbündeln und Ringelementen wäre es auch möglich, daß im Sinne des endgültigen Profilrohrverlaufs vorgeformte oder gewellte metallische Ringelement, z.B. 18, 19 (Fig. 8), vor der metallischen Infiltration, an der Innen- und Außenseite des Rohrbodens auf die Faserschichten, z.B. 12, aufgesetzt werden.
  • Gemäß einer weiteren vorteilhaften Variante des Verfahrens können die metallischen Ringelemente, z.B. 18, 19 (Fig. 8), aus einem die metallische Infiltration gewährleistenden Lotwerkstoff gefertigt werden. Hierbei können also die Ringelemente, z.B. 18, 19 (Fig. 8) an der Innen- und Außenseite der porösen Rohrbodenstruktur als im Sinne des Profilrohrverlaufs gewellte Elemente (Fig. 7) auf die Faserbündel 12' (Fig. 8) aufgesetzt werden.
  • Eine äußerst praktikable Handhabung des Infiltrationsvorgangs wird darin gesehen, daß die mit metallischen Ringelementen 17,18 (Fig. 7) bzw. 18,19 (Fig. 8) aus einem Lotwerkstoff bestückte Rohrbodenstruktur zur Schmelzverflüssigung und Infiltration des Lots in einem Ofen erhitzt wird.
  • Sofern beispielsweise keine den Lot- und Verbundwerkstoff breitstellenden Ringelemente angewendet werden sollten, kann ein metallischer Verbundwerkstoff (Matrix) innerhalb eines Vakuumofens über ein die gewellt verformte poröse Bodenstruktur (Fig. 5) bestreichendes, lanzenartig ausgebildetes Gießgeschirr entlang der Innen- und Außenseite des Rohrbodens schmelzflüssig injiziert werden.
  • In weiterer Verfahrensausgestaltung können die rohrbodeninnenseitig offenen Enden der Profilrohre 3 der Matrix vor einer von der Innenseite der Bodenstruktur aus durchgeführten metallischen Infiltration verschlossen und nach vollzogener Infiltration durch mechanische Bearbeitung wieder geöffnet werden.
  • Die Fasern der Faserbünde) 11', 12' bzw. 12', 13' (Fig. 3) können aus einem metallischen Werkstoff bzw. aus Drähten, aus einem keramischen Werkstoff, z.B. aus partiell stabilisiertem Zirkonoxid oder aus Kohlenstoff gefertigt sein.
  • Der nach der Press- und Verformungsphase infiltrierte metallische Werkstoff kann aus einer Aluminiumlegierung hergestellt sein.
  • Im Rahmen des Verfahrens kann ein kreiszylindrisches (Fig. 1, 6 oder 8), quadratisches oder rechteckiges Sammel- oder Verteilerrohr eines Kreuz-Gegenstrom-Wärmetauschers mit von den Sammel- oder Verteilerrohren, z.B. 6-Fig. 1, U-förmig auskragender Profilrohrmatrix 2 hergestellt werden, wobei die Faserbündel 11', 12' bzw. 12', 13' (Fig. 3) auf das gewünschte Sammel- oder Verteilerrohrlängenmaß unter Einschluß der geforderten gegenseitigen Profilrohrbeabstandung der Matrix 2 zusammengepreßt werden und wobei die metallische Infiltration, z.B. mittels zuvor erwähnten Gießgeschirrs, fortlaufend über dem gesamten Umfang der porösen Sammel- oder Verteilerrohrstruktur (Fig. 5) durchgeführt werden kann.
  • Anstelle der eingangs erwähnten metallischen Ringe können im übrigen auch Ringe aus einem geeigneten Kunststoff, z.B. aus einem faserverstärkten Kunststoff oder aus einem geeigneten keramischen Werkstoff vorgesehen werden.

Claims (17)

1. Verfahren zur Herstellung einer Rohrbodenstruktur eines Wärmetauschers, die aus streifenförmigen Schichten zusammengesetzt wird, zwischen denen Rohrenden einer Profilrohrmatrix fluiddicht fest eingebunden sind, dadurch gekennzeichnet, daß die streifenförmigen Schichten (12,13) aus Fasern hergestellt werden, die zwischen den Rohrenden benachbarter Profilrohrreihen angeordnet und unter Pressung so verformt werden, daß sie unter jeweils halbseitiger Rohrumschmiegung eine zunächst poröse Bodenstruktur ausbilden, in die ein metallischer Werkstoff schmelzflüssig infiltriert wird, wobei aufgrund der Kapillarwirkung die Faserstruktur ausgefüllt wird, mit Fasern und Rohroberflächen eine Bindung eingeht und erstarrt, wobei sämtliche Fasern einschließlich der Rohrenden stoffschlüssig eingebunden werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Faserbündel (12') aus miteinander verbundenen Faserlagen mit in Umfangsrichtung der Rohrbodenstruktur verlaufenden Hauptfasern (14) und quer dazu verlaufenden Nebenfasern (15) so zusammengesetzt werden, daß die letzteren - nach vollzogener Press- und Verformphase - außerhalb der Rohrumschmiegungsbereiche borstenartig ineinandergreifen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die aus Faserbündeln (12') hergestellten Schichten (12) gänzlich oder teilweise von sich entlang der Innen- und/oder Außenseite der Bodenstruktur erstreckenden Ringelementen (18,19) abgedeckt werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß auf der Innen- und Außenseite der Bodenstruktur vorgesehene Ringelemente (18, 19) nach vollzogener metallischer Infiltration entfernt werden.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Ringelemente (17; 18), unter Gewährleistung der erforderlichen Profilbeabstandung in der Bodenstruktur, zusammen mit den Faserbündeln (12'; 13') verformt werden.
6. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß im Sinne des endgültigen Profilrohrverlaufs vorgeformte oder gewellte Ringelemente (18; 19), vor der metallischen Infiltration, an der Innen- oder Außenseite des Rohrbodens auf die Faserschichten (12) aufgesetzt werden.
7. Verfahren nach Anspruch 3 oder 5, dadurch gekennzeichnet, daß die Ringelemente (18;19) aus einem die metallische Infiltration gewährleistenden Lotwerkstoff gefertigt werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die aus einem Lotwerkstoff gefertigten metallischen Ringelemente (18; 19) an der Innen-und Außenseite der porösen Rohrbodenstruktur als im Sinne des Profilrohrverlaufs gewellte Elemente auf die Faserbündel (12') aufgesetzt werden.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die mit metallischen Ringelementen aus einem Lotwerkstoff bestückte Rohrbodenstruktur zur Schmelzverflüssigung und Infiltration des Lots in einem Ofen erhitzt wird.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichent, daß der metallische Verbundwerkstoff innerhalb eines Vakuumofens über ein die gewellt verformte poröse Bodenstruktur bestreichendes, lanzenartig ausgebildetes Gießgeschirr entlang der Innen- oder Au- βenseite des Rohrbodens schmelzflüssig injiziert wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die rohrbodeninnenseitig offenen Rohrenden der Matrix vor einer von der Innenseite der Bodenstruktur aus durchgeführten metallischen Infiltration verschlossen und nach vollzogener Infiltration durch mechanische Bearbeitung wieder geöffnet werden.
12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Fasern der Faserbündel aus einem metallischen Werkstoff bzw. aus Drähten gefertigt sind.
13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Fasern der Faserbündel aus einem keramischen Werkstoff gefertigt sind.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Fasern der Faserbündel aus partiell stabilisiertem Zirkonoxid gefertigt sind.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß der nach der Press-und Verfomungsphase infiltrierte metallische Werkstoff aus einer Aluminiumlegierung hergestellt ist.
16. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Fasern der Faserbündel aus Kohlenstoff gefertigt sind.
17. Verfahren nach einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß über die Rohrbodenstruktur ein kreiszylindrisches, quadratisches oder rechteckiges Sammel-oder Verteilerrohr (6) eines Kreuz-Gegenstrom-Wärmetauschers mit von Sammel- oder Verteilerrohren (6) U-förmig auskragender Profilrohrmatrix (2) hergestellt wird, wobei die Faserbündel (11',12'; 12', 13') auf das gewünschte Sammel- oder Verteilerrohrlängsmaß unter Einschluß der geforderten Profilrohrbeabstandung der Matrix (2) zusammengepreßt werden und wobei die metallische Infiltration über dem gesamten Umfang der porösen Sammel- oder Verteilerrohrstruktur durchgeführt wird.
EP88117464A 1987-10-23 1988-10-20 Verfahren zur Herstellung einer Rohrbodenstruktur eines Wärmetauschers Expired - Lifetime EP0313038B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873735846 DE3735846A1 (de) 1987-10-23 1987-10-23 Verfahren zur herstellung einer rohrbodenstruktur eines waermetauschers
DE3735846 1987-10-23

Publications (2)

Publication Number Publication Date
EP0313038A1 EP0313038A1 (de) 1989-04-26
EP0313038B1 true EP0313038B1 (de) 1990-12-27

Family

ID=6338896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117464A Expired - Lifetime EP0313038B1 (de) 1987-10-23 1988-10-20 Verfahren zur Herstellung einer Rohrbodenstruktur eines Wärmetauschers

Country Status (5)

Country Link
US (1) US4893674A (de)
EP (1) EP0313038B1 (de)
JP (1) JPH01147295A (de)
DE (2) DE3735846A1 (de)
ES (1) ES2019682B3 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177865A (en) * 1989-05-05 1993-01-12 Mtu Motoren-Und Turbinen-Union Method for making heat exchanger having at least two collecting pipes
DE3914773C2 (de) * 1989-05-05 1994-03-03 Mtu Muenchen Gmbh Wärmetauscher mit mindestens zwei Sammelrohren
US5269276A (en) * 1992-09-28 1993-12-14 Ford Motor Company Internal combustion engine fuel supply system
DE4322431C2 (de) * 1993-07-06 1997-04-10 Mtu Muenchen Gmbh Kühlstruktur und Verfahren zu ihrer Herstellung
CN1228591C (zh) * 2002-07-12 2005-11-23 株式会社电装 用于冷却空气的制冷剂循环***
US7117680B2 (en) * 2004-04-22 2006-10-10 United Technologies Corporation Cooling scheme for scramjet variable geometry hardware
DE102006021436A1 (de) * 2006-05-09 2007-11-15 Mtu Aero Engines Gmbh Gasturbinentriebwerk
DE102010025587A1 (de) * 2010-06-29 2011-12-29 Mtu Aero Engines Gmbh Gasturbine mit Profilwärmetauscher
DE102010025998A1 (de) * 2010-07-03 2012-03-29 Mtu Aero Engines Gmbh Profilwärmetauscher und Gasturbine mit Profilwärmetauscher
US10190828B2 (en) * 2015-10-22 2019-01-29 Hamilton Sundstrand Corporation Heat exchangers
US11092384B2 (en) * 2016-01-14 2021-08-17 Hamilton Sundstrand Corporation Thermal stress relief for heat sinks
US11892250B2 (en) 2021-05-14 2024-02-06 Rtx Corporation Heat exchanger tube support
US11859910B2 (en) * 2021-05-14 2024-01-02 Rtx Corporation Heat exchanger tube support

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962488A1 (de) * 1968-12-13 1970-11-26 Dunlop Co Ltd Waermetauscher-Element
US3825063A (en) * 1970-01-16 1974-07-23 K Cowans Heat exchanger and method for making the same
FR2337867A1 (fr) * 1976-01-12 1977-08-05 Chausson Usines Sa Echangeur de chaleur a collecteurs epais
DE2907810C2 (de) * 1979-02-28 1985-07-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher zur Führung von Gasen stark unterschiedlicher Temperaturen
DE3310061A1 (de) * 1982-11-19 1984-05-24 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur herstellung einer rohrverteileranordnung sowie ein nach diesem verfahren gefertigter waermetauscher-sammelbehaelter
US4512069A (en) * 1983-02-04 1985-04-23 Motoren-Und Turbinen-Union Munchen Gmbh Method of manufacturing hollow flow profiles
DE3329202A1 (de) * 1983-08-12 1985-02-21 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Profilrohr-waermetauscher
DE3447145A1 (de) * 1984-12-22 1986-06-26 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur herstellung zylindrische waermetauschersammelrohrstrukturen bildender ringscheibenartiger bauteile
DE3543893A1 (de) * 1985-12-12 1987-06-25 Mtu Muenchen Gmbh Waermetauscher
DE3635548C1 (de) * 1986-10-20 1988-03-03 Mtu Muenchen Gmbh Waermetauscher

Also Published As

Publication number Publication date
DE3735846A1 (de) 1989-05-03
EP0313038A1 (de) 1989-04-26
ES2019682B3 (es) 1991-07-01
JPH01147295A (ja) 1989-06-08
DE3861453D1 (de) 1991-02-07
US4893674A (en) 1990-01-16

Similar Documents

Publication Publication Date Title
EP0313038B1 (de) Verfahren zur Herstellung einer Rohrbodenstruktur eines Wärmetauschers
EP0881422A1 (de) Leitungselement mit wenigstens zwei Bälgen und einem diese verbindenden Zwischenrohr
WO2016138997A1 (de) 3d-gedrucktes heizflächenelement für einen plattenwärmeübertrager
DE2733048A1 (de) Rohrverbindung und verfahren zu ihrer herstellung
EP1400002A1 (de) Elektromotor mit kühlschlange
EP0582985A1 (de) Abgaskrümmer
EP0298340B1 (de) Vorrichtung zur pulvermetallurgischen Herstellung eines Sammelrohrabschnittes
EP0265725A1 (de) Wärmetauscher
EP0618842B1 (de) Wabenkörper mit einer innenstruktur, die durch eine stützstruktur gehalten ist
DE102019101740B4 (de) Verfahren zur Herstellung eines Mikrokanalbündel-Wärmetauschers
DE3785933T2 (de) Faserverstärkte polymere zusammensetzungen und verfahren und vorrichtung zur herstellung.
EP2452805A1 (de) Verfahren zum Verbinden zweier Schüsse einer Fernwärmeleitung
DE2539440A1 (de) Waermetauscher
EP1161626A1 (de) Sauganlage für eine brennkraftmaschine
DE3914773C2 (de) Wärmetauscher mit mindestens zwei Sammelrohren
EP0889768B1 (de) Gelöteter metallischer wabenkörper mit abstandshaltern in den lötspalten und verfahren und lot zu seiner herstellung
DE102020105454B4 (de) Verfahren zur Herstellung eines Mikrokanalbündel-Wärmetauschers und Verwendung eines Mikrokanalbündel-Wärmetauschers
WO2009106416A1 (de) Wabenkörper mit verbindungsfreiem bereich
DE4321393A1 (de) Wandstruktur, insbesondere für ein Staustrahltriebwerk
DE3803948A1 (de) Waermetauscher
EP0891510B1 (de) Verfahren zum herstellen einer aus thermisch anschweissbarem material bestehenden rohrarmatur
DE4141393A1 (de) Spritzgiessverfahren zum herstellen eines rohres aus kunststoff
EP0331026B1 (de) Verfahren zur Herstellung eines Wärmetauscherblockes sowie Vorrichtung zur Durchführung des Verfahrens
EP1386066B1 (de) Wabenkörper und verfahren zu seiner herstellung
EP1525377B1 (de) Abgasfilter mit mindestens einer filterlage und verfahren zur herstellung einer filterlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19891023

17Q First examination report despatched

Effective date: 19900417

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3861453

Country of ref document: DE

Date of ref document: 19910207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88117464.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041008

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041011

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041012

Year of fee payment: 17

Ref country code: FR

Payment date: 20041012

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041019

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051020

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051021

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051021