EP0308838B1 - Procédé de production d'acides fluorés et leurs dérivés - Google Patents

Procédé de production d'acides fluorés et leurs dérivés Download PDF

Info

Publication number
EP0308838B1
EP0308838B1 EP88115288A EP88115288A EP0308838B1 EP 0308838 B1 EP0308838 B1 EP 0308838B1 EP 88115288 A EP88115288 A EP 88115288A EP 88115288 A EP88115288 A EP 88115288A EP 0308838 B1 EP0308838 B1 EP 0308838B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
acid
carried out
cell
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88115288A
Other languages
German (de)
English (en)
Other versions
EP0308838A1 (fr
Inventor
Steffen Dr. Dapperheld
Rudolf Dr. Heumüller
Manfred Wildt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to AT88115288T priority Critical patent/ATE72269T1/de
Publication of EP0308838A1 publication Critical patent/EP0308838A1/fr
Application granted granted Critical
Publication of EP0308838B1 publication Critical patent/EP0308838B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/27Halogenation
    • C25B3/28Fluorination

Definitions

  • the invention relates to an electrochemical process for the production of fluorinated acrylic acids and their derivatives by selective dehalogenation of halogen-containing fluoropropionic acids and their derivatives.
  • Acrylic acid and methacrylic acid derivatives have a very wide range of applications as organic intermediates. They allow access to a large number of useful compounds, but they are particularly suitable for the production of plastics.
  • Halogenated and deuterated acrylic and methacrylic acid derivatives have been of particular interest for some time, since such substances are suitable for the production of special plastics with special properties.
  • ⁇ -Haloacrylic acid ester used for the production of radiation-sensitive protective layers in resist technology.
  • ⁇ -fluoroacrylic acid esters are suitable, for example, for the production of plastic glasses for aviation technology and are also suitable starting materials for polymer optical fibers, with deuterated derivatives being of particular interest owing to their better optical properties.
  • halogenated fluorine-containing acrylic acid derivatives can be prepared by dehalogenation of correspondingly halogenated fluoropropionic acid derivatives.
  • the most common methods of eliminating two vicinal halogen atoms in halogen propionic acids to form a double bond use metals as dehalogenating agents, with zinc, which is used in various forms and activities, being of the greatest importance. Frequently, however, the reactions with zinc are so slow that one is forced to work in higher boiling solvents such as dimethylformamide or in diphenyl ether in the presence of thiourea.
  • An additional disadvantage, especially for technical implementation, is that the use of metals as a dehalogenating reagent inevitably involves the accumulation of metal salts.
  • Electrochemical dehalogenation is one way of avoiding the formation of metal salts during dehalogenation.
  • the previous efforts to simultaneously electrochemically split off two vicinal halogen atoms from halogenated propionic acids have mainly been of an analytical nature and have been carried out, for example, using polarographic or cyclic voltammetric methods on mercury electrodes or glassy carbon electrodes (J. Am. Chem. Soc. 80 , 5402 (1959); J. Chem. Research (M) 1983, 2401).
  • M J. Chem. Research
  • the object was therefore to provide a technically feasible and economical process according to which halogen atoms can be split off from fluorine-containing halogen propionic acids or their derivatives by electrochemical means to form fluorine-containing acrylic acids without losses due to polymerization or saturation of the acrylic acid double bond and without so that a forced attack of metal halides is associated.
  • this object can be achieved by electrochemical dehalogenation under galvanostatic conditions in water, optionally in the presence of an auxiliary solvent and / or a salt a metal with a hydrogen overvoltage of more than 0.25V is carried out.
  • Perhalogenated propionic acids such as 2,3-dichloro-2,3,3-trifluoropropionic acid, 2,3-dibromo-2,3,3-trifluoropropionic acid, 2-bromo-3-chloro-2,3,3-trifluoropropionic acid, 3-bromo -2-chloro-2,3,3-trifluoropropionic acid, 2,3,3-trichloro-2,3-difluoropropionic acid, 2,2,3-trichloro-3,3-difluoropropionic acid and 2,3,3,3-tetrachloro -2-fluoropropionic acid, preferably 2,3-dibromo-2,3,3-trifluoropropionic acid, 2,3,3-trichloro-2,3-difluoropropionic acid and 2,3,3,3-tetrachloro-2-fluoropropionic acid, preferably 2,3-dibromo-2,3,3-trifluoropropi
  • the method according to the invention is carried out in divided or undivided cells.
  • the common diaphragms made of polymers, preferably perfluorinated polymers, or other organic or inorganic materials, such as glass or ceramics, but preferably ion exchange membranes, are used to divide the cells into anode and cathode spaces.
  • Preferred ion exchange membranes are cation exchange membranes from polymers, preferably perfluorinated polymers with carboxyl and / or sulfonic acid groups. The use of stable anion exchange membranes is also possible.
  • the electrolysis can be carried out in all customary electrolysis cells, for example in beaker or plate and frame cells or cells with fixed bed or fluidized bed electrodes. Both the monopolar and the bipolar switching of the electrodes can be used.
  • a method of operation in divided electrolysis cells with discontinuous execution of the cathode reaction and continuous operation of the anode reaction is particularly expedient.
  • the electrolysis can be carried out on all cathodes stable in the electrolyte.
  • Materials with a medium to high hydrogen overvoltage such as Pb, Cd, Zn, carbon, Cu, Sn, Zr and mercury compounds such as copper amalgam, lead malgam etc. are particularly suitable, but also alloys such as e.g. Lead-tin or zinc-cadmium.
  • the use of carbon cathodes is preferred, especially for electrolysis in acidic electrolytes, since some of the electrode materials listed above, e.g. Zn, Sn, Cd and Pb, can suffer corrosion.
  • all possible carbon electrode materials come into question as carbon cathodes, e.g. Electrode graphites, impregnated graphite materials, carbon felts and also glassy carbon.
  • All materials on which the known anode reactions take place can be used as the anode material.
  • Examples are lead, lead oxide on lead or other carriers, platinum or with noble metal oxides, eg platinum oxide, doped titanium dioxide on titanium or other materials for the development of oxygen from dilute sulfuric acid or carbon or titanium dioxide doped with noble metal oxides on titanium or other materials for the development of chlorine from aqueous alkali metal chloride or aqueous or alcoholic hydrogen chloride Solutions.
  • Preferred anolyte liquids are aqueous mineral acids or solutions of their salts, such as, for example, dilute sulfuric acid, concentrated hydrochloric acid, sodium sulfate or sodium chloride solutions and solutions of hydrogen chloride in alcohol.
  • the electrolyte in the undivided cell or the catholyte in the divided cell contains 0 to 100% water and 100 to 0% of one or more organic solvents.
  • suitable solvents are: Short-chain, aliphatic alcohols such as methanol, ethanol, propanol or butanol, diols such as ethylene glycol, propanediol but also polyethylene glycols and their ethers, ethers such as tetrahydrofuran, dioxane, amides such as N, N-dimethylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, Nitriles such as acetonitrile, propionitrile, ketones such as acetone, and other solvents such as dimethyl sulfoxide and sulfolane.
  • suitable solvents are: Short-chain, aliphatic alcohols such as methanol, ethanol, propanol or butanol, diols such as ethylene glycol, propanediol but also polyethylene glycols and their ethers, ethers such as tetrahydrofuran, dioxane, amides such
  • the electrolyte can also consist of water and a water-insoluble organic solvent such as t-butyl methyl ether or methylene chloride in conjunction with a phase transfer catalyst.
  • a water-insoluble organic solvent such as t-butyl methyl ether or methylene chloride in conjunction with a phase transfer catalyst.
  • inorganic or organic acids can be added to the catholyte in the divided cell or to the electrolyte in the undivided cell, preferably Acids such as hydrochloric, boric, phosphoric, sulfuric or tetrafluoroboric acid and / or formic, acetic or citric acid and / or their salts.
  • organic bases may also be necessary to set the pH value which is favorable for the electrolysis and / or have a favorable influence on the course of the electrolysis.
  • Suitable are primary, secondary or tertiary C2-C12 alkyl or cycloalkylamines, aromatic or aliphatic-aromatic amines or their salts, inorganic bases such as alkali or alkaline earth metal hydroxides such as Li, Na, K, Cs, Mg, Ca, Ba hydroxide, quaternary ammonium salts, with anions such as fluorides, chlorides, bromides, iodides, acetates, sulfates, hydrogen sulfates, tetrafluoroborates, phosphates or hydroxides, and with cations such as C1-C12-tetraalkylammonium, C1-C12 -Trialkylarylammonium or C1-C12-trialkylalkylarylammonium, but also anionic or
  • compounds can be added to the electrolyte which are oxidized at a more negative potential than the released halogen ions in order to avoid the formation of the free halogen.
  • the salts of oxalic acid, methoxyacetic acid, glyoxylic acid, formic acid and / or hydrochloric acid are suitable.
  • the electrolyte in the undivided cell or the catholyte in the divided cell can be salts of Metals with a hydrogen overvoltage of at least 0.25 V (based on a current density of 300 mA / cm2) and / or dehalogenating properties can be added.
  • the most suitable salts are the soluble salts of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr or Ni, preferably the soluble Pb, Zn, Cd, Ag and Cr salts.
  • the preferred anions of these salts are Cl ⁇ , SO4 ⁇ , NO3 ⁇ , and CH3COO ⁇ .
  • the salts can be added directly to the electrolysis solution or, e.g. by adding oxides, carbonates etc. - in some cases also the metals themselves (if soluble) - in the solution.
  • Electrolysis is carried out at a current density of 1 to 600 mA / cm2, preferably at 10 to 500 mA / cm2, without potential control.
  • the electrolysis temperature is in the range from -10 ° C to the boiling point of the electrolyte liquid, preferably from 10 ° to 90 ° C, in particular from 15 ° to 80 ° C.
  • the electrolysis product is worked up in a known manner, e.g. by extracting or distilling off the solvent.
  • the compounds added to the catholyte can thus be returned to the process.
  • Electrolysis cell 1
  • Anolyte dilute aqueous sulfuric acid or methanolic hydrochloric acid
  • Cation exchange membrane single-layer membrane made from a copolymer of a perfluorosulfonylethoxy vinyl ether and tetrafluoroethylene Mass transfer: by magnetic stirrer
  • Electrolytic cell 2
  • Jacketed glass pot circulation cell with a volume of 450 cm3 Anode: platinum mesh, graphite or lead plate (20 cm2) Cathode area: 12 cm2 Electrode distance: 1 cm Anolyte: dilute aqueous sulfuric acid or methanolic hydrochloric acid Cation exchange membrane as in electrolysis cell 1 Current density: 83 mA / cm2 Terminal voltage: 5 V
  • Electrolysis cell 1
  • Electrolysis cell 1
  • CCl3-CFCl-COOH 0.428 g
  • CCl2 CF-COOH 0.206 g
  • CHCl CF-COOH 0.204 g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (9)

  1. Procédé pour préparer des composés fluorés répondant à la formule I
    Figure imgb0010
    dans laquelle
    R¹   représente un atome de fluor, un radical méthyle ou un radical deutérométhyle,
    R² et R³   représentent chacun, indépendamment l'un de l'autre, un atome de fluor, de chlore, de brome, d'iode, d'hydrogène ou de deutérium, et
    R⁴   représente un radical cyano ou un radical
    Figure imgb0011
    dont le symbole R⁵ représente -OH, -OD, -OMe (Me désignant un ion de métal alcalin, de métal alcalino-terreux ou NH₄⁺), un alcoxy en C₁-C₁₂, ou un radical -NR⁶R⁷ dans lequel R⁶ et R⁷ représentent chacun, indépendamment l'un de l'autre, H, D, un alkyle en C₁-C₁₂ ou un phényle,
    par réduction électrolytique, procédé caractérisé en ce qu'on soumet à une électrolyse des composés fluorés répondant à la formule II :
    Figure imgb0012
    dans laquelle R¹, R², R³ et R⁴ ont les significations qui leur ont été données ci-dessus et R⁸ et R⁹ représentent chacun, indépendamment l'un de l'autre, un atome de chlore, de brome ou d'iode,
    dans une cellule non compartimentée ou dans une cellule compartimentée, dans un liquide d'électrolyse constitué - à chaque fois par rapport à la quantité totale de l'électrolyte dans la cellule non compartimentée ou du catholyte dans la cellule compartimentée -
    de 0 à 100 % en poids d'eau
    de 100 à 0 % en poids d'un ou de plusieurs solvants organiques
    de 0 à 10 % en poids d'un sel d'un métal ayant une surtension d'hydrogène d'au moins 0,25 V (pour une densité de courant de 300 mA/cm²) et/ou des propriétés déshalogénantes,
    à une température comprise entre -10 °C et la température d'ébullition du liquide d'électrolyse et galvanostatiquement, avec une densité de courant de 1 à 600 mA/cm², la cathode étant constituée de plomb, de cadmium, de zinc, de cuivre, d'étain, de zirconium ou de carbone.
  2. Procédé selon la revendication 1 caractérisé en ce qu'on effectue l'hydrolyse à un pH compris entre 0 et 11 dans l'électrolyte de la cellule non compartimentée ou dans le catholyte de la cellule compartimentée.
  3. Procédé selon la revendication 1 caractérisé en ce qu'on soumet à une électrolyse :
    l'acide dibromo-2,3 trifluoro-2,3,3 propionique,
    l'acide trichloro-2,3,3 difluoro-2,3 propionique,
    l'acide tétrachloro-2,3,3,3 fluoro-2 propionique,
    l'acide dibromo-2,3 difluoro-2,3 propionique ou
    l'acide dibromo-2,3 fluoro-2 propionique,
    ou leurs dérivés.
  4. Procédé selon la revendication 1 caractérisé en ce qu'on effectue l'hydrolyse à une température de 10 à 90 °C.
  5. Procédé selon la revendication 1 caractérisé en ce qu'on effectue l'hydrolyse avec une densité de courant de 10 à 500 mA/cm².
  6. Procédé selon la revendication 1 caractérisé en ce qu'on effectue l'hydrolyse dans une cellule compartimentée avec réaction discontinue à la cathode et réaction continue à l'anode.
  7. Procédé selon la revendication 1 caractérisé en ce qu'on effectue l'hydrolyse dans une cellule non compartimentée.
  8. Procédé selon la revendication 1 caractérisé en ce qu'on effectue l'hydrolyse en utilisant une cathode en carbone.
  9. Procédé selon la revendication 1 caractérisé en ce qu'un sel soluble de cuivre, d'argent, d'or, de zinc, de cadmium, de mercure, d'étain, de plomb, de thallium, de titane, de zirconium, de bismuth, de vanadium, de tantale, de chrome, de cérium, de cobalt ou de nickel est présent en une concentration d'environ 10⁻⁵ à 10 % en poids par rapport à la quantité totale de l'électrolyte ou du catholyte.
EP88115288A 1987-09-23 1988-09-17 Procédé de production d'acides fluorés et leurs dérivés Expired - Lifetime EP0308838B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88115288T ATE72269T1 (de) 1987-09-23 1988-09-17 Verfahren zur herstellung von fluorierten acrylsaeuren und ihren derivaten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873731914 DE3731914A1 (de) 1987-09-23 1987-09-23 Verfahren zur herstellung von fluorierten acrylsaeuren und ihren derivaten
DE3731914 1987-09-23

Publications (2)

Publication Number Publication Date
EP0308838A1 EP0308838A1 (fr) 1989-03-29
EP0308838B1 true EP0308838B1 (fr) 1992-01-29

Family

ID=6336608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88115288A Expired - Lifetime EP0308838B1 (fr) 1987-09-23 1988-09-17 Procédé de production d'acides fluorés et leurs dérivés

Country Status (9)

Country Link
US (1) US5114546A (fr)
EP (1) EP0308838B1 (fr)
JP (1) JPH01108389A (fr)
KR (1) KR890005302A (fr)
CN (1) CN1021977C (fr)
AT (1) ATE72269T1 (fr)
AU (1) AU623865B2 (fr)
DE (2) DE3731914A1 (fr)
ES (1) ES2030129T3 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4029068A1 (de) * 1990-09-13 1992-03-19 Hoechst Ag Verfahren zur herstellung von halogenierten acrylsaeuren
US5729645A (en) * 1996-08-13 1998-03-17 The Trustees Of The University Of Pennsylvania Graded index optical fibers
DE102004023041B4 (de) * 2004-05-06 2012-02-16 Eastman Kodak Co. Verfahren zur Ausrichtung von Farbauszügen eines Druckbildes auf einem Bedruckstoff
CN101717949B (zh) * 2009-11-17 2011-06-29 华东师范大学 一种对乙烯基苯乙酸的制备方法
CN103819332A (zh) * 2014-02-20 2014-05-28 常州市正锋光电新材料有限公司 三氯丙烯酸的制备方法
CN104557512B (zh) * 2015-01-06 2016-05-11 山西大学 一种3-(溴代苯基)-2,2’-二氟丙酸的制备方法
RU2686408C1 (ru) * 2018-06-20 2019-04-25 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ электролитического получения алюминия
CN110438523B (zh) * 2019-09-05 2021-12-03 南京大学 一种以重水为氘源的无催化剂电化学氘代方法
WO2024030044A1 (fr) * 2022-08-02 2024-02-08 Владислав Владимирович ФУРСЕНКО Procédé de production d'aluminium par électrolyse d'une solution d'alumine dans de la cryolite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1498456A (en) * 1975-12-17 1978-01-18 Ici Ltd Electrochemical process for the preparation of dihaloalkenes
JPS53132504A (en) * 1977-04-26 1978-11-18 Central Glass Co Ltd Dehalogenation of halogenated hydrocarbons
DE3607446A1 (de) * 1986-03-07 1987-09-10 Hoechst Ag Verfahren zur enthalogenierung von chlor- und von bromessigsaeuren
DE3718726A1 (de) * 1987-06-04 1988-12-22 Hoechst Ag Verfahren zur herstellung fluorierter vinylether

Also Published As

Publication number Publication date
CN1032199A (zh) 1989-04-05
US5114546A (en) 1992-05-19
ES2030129T3 (es) 1992-10-16
DE3868204D1 (de) 1992-03-12
JPH01108389A (ja) 1989-04-25
ATE72269T1 (de) 1992-02-15
AU2272688A (en) 1989-03-23
AU623865B2 (en) 1992-05-28
EP0308838A1 (fr) 1989-03-29
DE3731914A1 (de) 1989-04-06
CN1021977C (zh) 1993-09-01
KR890005302A (ko) 1989-05-13

Similar Documents

Publication Publication Date Title
EP0280120B1 (fr) Procédé électrochimique d'échange d'atomes d'halogène dans un composé organique
DE3785548T2 (de) Verfahren zur Herstellung eines hochreinen quaternären Ammonium-Hydroxides.
EP0012215B1 (fr) Sel de choline et d'acide hydroxy-2-butane sulfonique et son utilisation comme sel conducteur
EP0457320B1 (fr) Procédé de déshalogénation électrolytique partielle des acides dichloro-acétiques et solution d'électrolyse
DE3631561A1 (de) Loesungen von fluorpolymeren und deren verwendung
WO1993017151A1 (fr) Procede electrochimique de preparation d'acide glyoxylique
EP0308838B1 (fr) Procédé de production d'acides fluorés et leurs dérivés
DE2949379C2 (de) Verfahren zur Herstellung von Glyoxalsäure durch Oxidation von Glyoxal
EP0334796B1 (fr) Procédé de préparation d'hydrocarbures halogénés insaturés
EP0241685B1 (fr) Procédé de déhalogénation des acides chloro- et bromoacétiques
DE4217338C2 (de) Elektrochemisches Verfahren zur Reduktion von Oxalsäure zu Glyoxylsäure
EP0326855B1 (fr) Procédé de préparation de l'acide fluoromalonique et de ses dérivés
DE4029068A1 (de) Verfahren zur herstellung von halogenierten acrylsaeuren
EP0293856B1 (fr) Procédé de préparation d'un éther de vinyle fluoriné
AT394214B (de) Funktionalisierung von jodpolyfluoralkanen durch elektrochemische reduktion
EP0382106B1 (fr) Procédé de préparation de dérivés de thiophène
DE4205423C1 (de) Elektrochemisches Verfahren zur Herstellung von Glyoxylsäure
EP0100498B1 (fr) Procédé pour la préparation de l'acide dichlorolactique, du nitrile ou de l'amide de l'acide dichlorolactique
DE2738349C2 (de) Elektrochemische Oxidation von 6-Methoxytetralin
DE2739315A1 (de) Verfahren zur herstellung von p-benzochinondiketalen
DE2854487A1 (de) Verfahren zur herstellung von oxalsaeure aus kohlendioxid und vorrichtung zu dessen durchfuehrung
DE3908384A1 (de) Verfahren zur herstellung von ungesaettigten halogenierten kohlenwasserstoffen
DE2107619A1 (de) Elektrochemische Oxydation von Thalhumderivaten
CH398523A (de) Verfahren zur Herstellung von Halogenhydrinen
DD237682A1 (de) Verfahren zur herstellung von benzoesaeuresulfimid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890429

17Q First examination report despatched

Effective date: 19910301

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 72269

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3868204

Country of ref document: DE

Date of ref document: 19920312

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030129

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930812

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930816

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930819

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930820

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930824

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930909

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930914

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930915

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931118

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940917

Ref country code: GB

Effective date: 19940917

Ref country code: AT

Effective date: 19940917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19940919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 88115288.8

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

EUG Se: european patent has lapsed

Ref document number: 88115288.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050917