EP0307816B1 - Process for improving the printability of paper - Google Patents

Process for improving the printability of paper Download PDF

Info

Publication number
EP0307816B1
EP0307816B1 EP88114757A EP88114757A EP0307816B1 EP 0307816 B1 EP0307816 B1 EP 0307816B1 EP 88114757 A EP88114757 A EP 88114757A EP 88114757 A EP88114757 A EP 88114757A EP 0307816 B1 EP0307816 B1 EP 0307816B1
Authority
EP
European Patent Office
Prior art keywords
weight
polymer
cationic
paper
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88114757A
Other languages
German (de)
French (fr)
Other versions
EP0307816A3 (en
EP0307816A2 (en
Inventor
Werner Auhorn
Hans-Juergen Dr. Degen
Lothar Dr. Hoehr
Ulrich Riebeling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to AT88114757T priority Critical patent/ATE82783T1/en
Publication of EP0307816A2 publication Critical patent/EP0307816A2/en
Publication of EP0307816A3 publication Critical patent/EP0307816A3/en
Application granted granted Critical
Publication of EP0307816B1 publication Critical patent/EP0307816B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/12Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
    • D21H5/14Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of cellulose fibres only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31899Addition polymer of hydrocarbon[s] only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31899Addition polymer of hydrocarbon[s] only
    • Y10T428/31902Monoethylenically unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer

Definitions

  • a pigment coat For example, it is known from EP-B-51 144 to use finely divided polymer dispersions containing nitrogen-containing monomers in copolymerized form as mass and surface sizing agents for paper and for coating or impregnating paper and building materials.
  • these coating compositions contain no pigments.
  • the polymer dispersions are prepared by a two-stage polymerization, in which in the first stage of polymerization a monomer mixture comprising a nitrogen-containing monomer, e.g.
  • these polymer dispersions are good surface sizing agents.
  • a paper coating composition is known from DE-A-28 35 125 which contains 1 to 30 parts by weight, based on the solids content, of an amphoteric copolymer latex per 100 parts by weight of a pigment.
  • the copolymer contains 20 to 50% by weight of an aliphatic conjugated diolefin, 0.5 to 5% by weight of an ethylenically unsaturated acidic monomer, for example acrylic acid, methacrylic acid or itaconic acid, 0.5 to 5% by weight of an ethylenically unsaturated amine monomer, for example diethylaminoethyl methacrylate , and 10 to 74% by weight of a monoolefinically unsaturated monomer, for example styrene.
  • the latex must not contain more than 1% by weight, based on the copolymer, of an emulsifier and should have a gel point within the pH range from 3.5 to 8.5 and should be gellable during the drying of the paper coated with the coating composition.
  • the amount of the coating composition applied to one side of the paper is approximately 16 g / m 2.
  • the pigment coat improves the printability of the paper. This procedure is from suffered from the outset that, due to the high application quantity of the coating composition, no papers with particularly low basis weights can be produced.
  • the disadvantages of surface sizing are the limited production capacity due to the application of the surface sizing agent using the size press.
  • the present invention has for its object to provide a method for improving the printability of paper, which can be operated at high machine speeds, so that a direct coupling of the remuneration of the paper with the paper production is possible.
  • any uncoated, uncoated or otherwise uncoated base paper can be improved.
  • These are natural papers, preferably wood-containing printing paper, which in most cases is heavily satined and has a weight per unit area of at least 30 g / m2, preferably more than 35 g / m2.
  • the natural paper used should have the same color acceptability and have a high smoothness.
  • Such papers are mainly used for newspapers, magazines and advertising brochures.
  • the paper qualities mentioned are printed, for example, using the offset or gravure printing process.
  • the coating agent to be used according to the invention is a mixture of the above-mentioned components a) to c).
  • Fine-particle pigments are used as component a) of the mixture. These are the pigments commonly used in paper coating, e.g. Calcium carbonate, chalk, kaolin, clay, titanium dioxide, barium sulfate, satin white, talc, aluminum silicate, calcium sulfate, magnesium carbonate.
  • the particle size of the pigments is 0.2 to 10 ⁇ m. Calcium carbonate, the particle size of which is 87% below 2 ⁇ m, is preferably used as the pigment.
  • Cationic aqueous polymer dispersions of a paper sizing agent whose polymer has a glass transition temperature of 5 to 80 ° C. are used as component b).
  • Such cationic polymer dispersions are known and, when applied alone to the surface of the paper, result in paper sizing.
  • the cationic character of the dispersion arises from the fact that at least one cationic monomer is polymerized into the polymer of the dispersion or, if nonionic monomers are used exclusively, at least one cationic emulsifier is used in the polymerization. It is of course also possible to use both cationic monomers and cationic emulsifiers in the polymerization.
  • Suitable cationic dispersions b) contain, for example, 1 to 40% by weight of at least one cationic monomer in copolymerized form. Dispersions of this type are known, for example, from DE-C-1 696 326 and DE-B-1 546 236. These cationic dispersions are produced by emulsion polymerization in the presence of cationic and / or nonionic emulsifiers.
  • the other substituents have the meaning given in formula I.
  • Basic, ethylenically unsaturated monomers are, for example, acrylic and methacrylic esters of amino alcohols, e.g. Dimethylaminoethyl acrylate, dimethylaminethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropylacrylate, dimethylaminopropyl methacrylate, dibutylaminopropylacrylate, dibutylaminopropyl methacrylate, dimethylaminoneopentylacrylate, methacrylate amide, methacrylate amide, methacrylate amide, methacrylate amide,
  • the quaternary compounds of formula II are obtained by reacting the basic monomers of formula I with known quaternizing agents, e.g. with benzyl chloride, methyl chloride, ethyl chloride, butyl bromide, dimethyl sulfate and diethyl sulfate. In the quaternized form, these monomers lose their basic character.
  • the compounds of the formula I can also be used in the form of the salts with inorganic or saturated organic acids in the copolymerization.
  • Suitable basic monomers are, for example, N-vinylimidazole, 2-methylvinylimidazole, N-vinylimidazoline, 2-methylvinylimidazoline and the corresponding quaternization products or salts of the basic monomers mentioned.
  • Suitable cationic paper sizing agents are known, for example, from the following references: DE-A-24 52 585, EP-B-51 144, DE-B-16 21 689, DE-A-34 01 573, DE-A-25 19 581, EP-B-58 313, EP-A-221 400 and EP-A-165 150.
  • the group 2) monomers include acrylic and methacrylic esters derived from monohydric, saturated C3 to C8 alcohols, e.g. n-propyl acrylate, iso-propyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, neopentyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate and the corresponding methacrylic acid esters, e.g.
  • n-propyl methacrylate, iso-propyl methacrylate, iso-butyl methacrylate and 2-ethylhexyl methacrylate are preferably used in amounts of 38 to 75% by weight.
  • Suitable monomers of group 3 which are optionally used to modify the copolymers, are, for example, ethylenically unsaturated C3- to C5-carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and maleic acid semiesters.
  • This group of monomers also includes vinylsulfonic acid and 2-acrylamidomethylpropanesulfonic acid or water-soluble salts of the carboxylic acids and sulfonic acids mentioned.
  • the ethylenically unsaturated carboxylic acids and sulfonic acids can be completely neutralized with sodium hydroxide solution, potassium hydroxide solution, ammonia and / or amines or only partially, e.g. to 5 to 95%.
  • a further modification possibility of the copolymers from the monomers of groups 1) and 2) results from the fact that basic compounds which have already been mentioned above can be polymerized in as a monomer of group 3), cf.
  • the monomers of groups 1) to 3) are copolymerized in the manner of an emulsion copolymerization in an aqueous medium in the presence of degraded cationic starches with a viscosity ⁇ i of 0.04 to 0.50 dl / g.
  • Such starches contain quaternized aminoalkyl groups. These strengths are commercially available. If the viscosity of these starches is not already in the specified range, they are subjected to oxidative, thermal, acidolytic or enzymatic degradation to the desired viscosity. Cationized, enzymatically degraded potato starch is preferably used.
  • the degree of substitution of the cationic starch is 0.01 to 0.1 mol of nitrogen per mol of glucose unit.
  • concentration is given in g / 100 ml.
  • the conversion to ⁇ i is carried out according to the relationship given above on the basis of the information in "Methods in Carbohydrate Chemistry", Volume IV, Starch, Academic Press, New York and London, 1964, page 127.
  • an aqueous solution is first prepared which dissolves 1.5 to 25, preferably 1.7 to 21% by weight of a degraded starch with a viscosity ⁇ i of 0.04 to 0.50 dl / g contains.
  • Degraded starches with a viscosity in the range of 0.3 to 0.5 dl / g are preferably used when it is desired to produce dispersions with a low solids content.
  • the degraded starches with a lower viscosity, ie in the range from 0.04 to about 0.3 dl / g, are preferably used in the production of dispersions with higher solids contents, for example 25 to 40% by weight.
  • an emulsifier In order to stabilize the emulsion, a small amount of an emulsifier can be added to the aqueous starch solution.
  • the monomers can also first be emulsified in water with the aid of an emulsifier and then added in the form of the emulsion to the aqueous starch solution.
  • Products with anionic or cationic character are suitable as emulsifiers.
  • Such emulsifiers are, for example, sodium alkyl sulfonate, sodium lauryl sulfate, sodium dodecylbenzenesulfonate or dimethylalkylbenzylammonium chloride.
  • anionic emulsifiers for anionic starches and cationic emulsifiers for cationic starches.
  • the amount of emulsifier which is optionally used is 0 to 0.3, preferably 0.05 to 0.2% by weight, based on the sum of the monomers (1) to (3) used.
  • the emulsion polymerization is preferably carried out in the absence of an emulsifier.
  • the copolymerization of the monomers in the aqueous solution of the degraded starch is carried out at temperatures from 40 to 110, preferably 50 to 100 ° C. in the presence of an initiator containing peroxide groups.
  • Hydrogen peroxide combinations of hydrogen peroxide with a heavy metal salt, e.g. Iron-II-sulfate or a redox system made of hydrogen peroxide with a suitable reducing agent, such as sodium formaldehyde sulfoxylate, ascorbic acid, sodium disulfite and / or sodium dithionite.
  • a redox system of hydrogen peroxide, a reducing agent or a mixture of the reducing agents mentioned and, in addition, a small amount of a heavy metal salt, such as, for example, iron (II) sulfate, are preferably used.
  • a heavy metal salt such as, for example, iron (II) sulfate
  • Other suitable initiators containing peroxide groups are, for example, organic peroxides, hydroperoxides and peroxydisulfates.
  • Suitable compounds of this type are, for example, tert-butyl hydroperoxide, acetylcyclohexylsulfonyl peroxide, sodium peroxydisulfate, potassium peroxydisulfate or ammonium peroxydisulfate.
  • the components must be thoroughly mixed during the polymerization.
  • the reaction mixture is preferably stirred for the entire duration of the polymerization and any subsequent polymerization, if appropriate, to lower the residual monomer content.
  • the polymerization is carried out in the absence of oxygen in an inert gas atmosphere, for example under nitrogen.
  • the oxygen is first removed from the aqueous solution of the starch and from the monomers and first 1 to 40% of the monomers to be polymerized are added to the aqueous solution of the starch and the monomers therein are emulsified by stirring the reaction mixture.
  • the polymerisation begins, as a rule after a short induction period, by adding an aqueous initiator solution beforehand, simultaneously or subsequently.
  • the heat of polymerization which arises at the beginning of the polymerization can be used to heat the reaction mixture.
  • the temperature can rise up to 90 ° C.
  • the rest of the monomers and the initiator solution are added continuously or in portions and polymerized with stirring.
  • the copolymerization can also be carried out batchwise or continuously.
  • a finely divided, aqueous dispersion is obtained in which the copolymer particles are surrounded by a protective colloid shell based on a degraded starch.
  • a measure of the fine particle size of the dispersion is the LD value (light transmission value of the dispersion).
  • the LD value is measured by measuring the dispersion in 0.01% by weight aqueous solution in a cuvette with an edge length of 2.5 cm with light of the wavelength 546 nm and comparing it with the permeability of water under the conditions mentioned above .
  • the permeability of water is given as 100%. The more finely divided the dispersion, the higher the LD value, which is measured using the method described above.
  • the average particle size of the copolymer particles without the protective colloid shell from degraded starch can be determined if the starch shell of the latex particles is virtually completely enzymatically degraded. Possible coagulation of the copolymer dispersion can be prevented by adding a suitable emulsifier. After enzymatic degradation, the particle size of the copolymer dispersion can then be measured using commercially available devices, e.g. with the help of the Nanosizer from Coulter Electronics. The average diameter of the copolymer particles without the protective colloid shell is 75 to 110 nm.
  • the aqueous polymer dispersions of component b) are prepared with a composition such that the polymers have a glass transition temperature of 5 to 80, preferably 15 to 60 ° C.
  • the concentration of the polymer in the aqueous dispersion is 15 to 55, preferably 20 to 45,% by weight.
  • the coating compositions contain, based on the solids of the dispersion, 5 to 70, preferably 8 to 30, parts by weight of component b), based on 100 parts by weight of a finely divided pigment or a mixture of pigments. 5 to 30% by weight of the polymer of component b) or a mixture of Polymers of component b) replaced by at least one water-soluble polysaccharide.
  • Suitable water-soluble polysaccharides are water-soluble starches, carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose and galactomannans.
  • component c) of the coating compositions surface-active substances and / or polymeric dispersants come into consideration, each of which disrupt or prevent the formation of surface sizing by the surface sizing agent b).
  • the surface-active substances and the polymeric dispersants improve the wettability of the paper with water.
  • Suitable surface-active compounds have an HLB value of at least 10 (for a definition of the HLB value, see WC Griffin, J. Cosmetic Chemist, Volume 5, 311 (1954).
  • the surface-active substances in question are, for example, as surfactant classes in the Tensid-Taschenbuch by Dr. Stachel, Carl-Hanser-Verlag, Kunststoff-Vienna, 2nd edition 1981, pages 4 to 10.
  • Nonionic, anionic as well as cationic surfactants can be used. Products of this type are produced, for example, by the addition of ethylene oxide and / alcohols, phenols, amines and fatty acids containing 8 to 22 carbon atoms are of particular interest from this group of compounds are, for example, the adducts of 10 to 50 moles of ethylene oxide with 1 mole of dodecanol, C9 / C13 alcohols and nonylphenol Anionic surfactants are particularly suitable as component c) sodium lauryl sulfonate.
  • Suitable polymeric dispersants of component c) are, for example, polymers of ethylenically unsaturated C3- to C5-carboxylic acids with a K value of 10 to 50 (measured in 1% strength aqueous solution at 25 ° C.
  • polymeric dispersant of component c preference is given to using homopolymers of acrylic acid or methacrylic acid with a K value of 10 to 40 (measured in 1% by weight aqueous solution at 25 ° C. and pH 8 on the sodium salt of the polymers).
  • a method for producing such polymers is known, for example, from US Pat. No. 4,301,266.
  • copolymers of acrylic acid and / or are also used in the preferred embodiment of the process according to the invention Methacrylic acid with acrylamidomethylpropanesulfonic acids used. Copolymers of this type are known, for example, from US Pat. No. 4,450,013 as dispersants and grinding aids for pigments.
  • Preferred copolymers used contain 5 to 60% by weight of copolymerized acrylamidomethylpropanesulfonic acid and have a K value in the range from 12 to 35 (measured using the Na salt in a 1% strength aqueous solution at pH 8).
  • copolymers of acrylic acid and methacrylic acid which contain the monomers copolymerized in any ratio and have a K value in the range from 10 to 50, or homopolymers of acrylamido-2-methylpropanesulfonic acid with K values from 10 to 35, as polymeric dispersant of component c) are used.
  • the coating compositions to be used according to the invention are obtained by mixing the individual components a) to c).
  • the pigments can be introduced into the aqueous cationic polymer dispersion of a paper sizing agent and then at least one of the compounds suitable according to c) can be added, or the procedure can be followed in that an aqueous pigment slurry is first prepared by mixing components a) and c), the solids concentration of which is, for example, in the range from 40 to 85% by weight and the aqueous pigment slurry thus obtained is then mixed with at least one cationic aqueous polymer dispersion of a paper sizing agent.
  • a method of operation is particularly preferred in which aqueous slurries of pigments are used, which are obtained by grinding and dispersing the pigments in the presence of polymers of ethylenically unsaturated C3- to C5-carboxylic acids with a K value of 10 to 50 (measured in 1% aqueous Solution at 25 ° C and pH 8 on the sodium salt of the polymer) are available.
  • calcium carbonate or chalk is preferably used as the pigment and polyacrylic acid or a copolymer of acrylic acid and acrylamidomethylpropanesulfonic acid with a K value of 10 to 30 (measured as Na salt as stated above) is used as the polymeric dispersant.
  • pigment slurries are obtained with a particle size of the dispersed particles of approximately 90% ⁇ 2 ⁇ m.
  • Such pigment slurries even in high concentrations, for example at solids contents between 60 and 80% by weight, still have such a viscosity that the slurries are easy to handle.
  • These pigment slurries are then mixed with at least one cationic aqueous polymer dispersion according to b).
  • the coating compositions which are then applied to the surface of the paper have a solids content in the range from 5 to 60, preferably 15 to 35% by weight.
  • the pH of the coating compositions is in the range from 5 to 10.
  • the coating compositions are applied to paper on one or both sides.
  • the coating compositions are preferably applied continuously using known devices such as those used in paper coating, e.g. Blade, speed sizer and short dwell coater.
  • the paper web is guided through the coating unit at a speed of more than 750 m / min, preferably 1000 to 1400 m / min.
  • These high coating speeds make it possible to couple the coating of the paper directly with the paper production and to integrate a coating unit into a paper machine.
  • a natural paper is then directly obtained, which can be used, for example, in offset printing and gravure printing and as newsprint.
  • the parts given in the examples are parts by weight, the percentages are percentages by weight.
  • the relative viscosity was measured in 1% by weight aqueous solutions at 25 ° C. and a pH of 3.5 using a capillary viscometer.
  • the intrinsic viscosity was calculated from the relative viscosity using the formula given above.
  • the printability properties of the coated papers were assessed on the basis of whiteness, brightness, opacity, bleed through and translucency.
  • whiteness was measured in accordance with DIN 53145.
  • opacity was determined in accordance with DIN 53146.
  • the other criteria were determined using the following methods:
  • a printed sheet is covered with an unprinted, identical test series in such a way that the two identical sides lie on one another (for example, the printed side is printed unprinted on screening devices). Measurements are taken over the large, rectangular solid field without a black velvet pad. Usually the average of 3 individual measurements per sheet is given, the measurement values being given as reflection values in percent, based on the white standard according to DIN 53 145.
  • a printed sheet is measured from the back over the large rectangular solid field, also without a black velvet pad. The average of 3 individual measurements is also given. In this measurement too, the values are given as reflectance values in percent, based on the white standard according to DIN 53 145.
  • the degree of sizing of the papers was determined with the aid of the Cobb value (60 sec) according to DIN 53132 and the ink swimming time up to 50% breakthrough with a standard ink according to DIN 53 126.
  • a 40% cationic polymer dispersion is prepared by copolymerizing 20 parts by weight of an N-vinylimidazole quaternized with dimethyl sulfate, 26 parts of acrylonitrile and 54 parts of n-butyl acrylate, which has an LD- Has a value of 84.
  • Starch II submitted and heated to a temperature of 85 ° C with stirring.
  • Starch I is a degraded, cationic potato starch with an intrinsic viscosity ⁇ i of 0.47 dl / g, a degree of substitution of 0.027 mol nitrogen per mol glycose unit and 0.015 mol COOH groups per mol glycose unit.
  • the solids content of the starch is 83%.
  • Starch II is a degraded, cationic potato starch with an intrinsic viscosity ⁇ i of 1.16 dl / g with a degree of substitution of 0.07 mole nitrogen per mole glycose unit.
  • the solids content of the starch is 83%.
  • Anionic copolymer dispersion is prepared by polymerizing in the manner of an emulsion polymerization at 80 ° C. by mixing an emulsion of 66.3 parts of n-butyl acrylate, 14 parts of acrylonitrile, 15 parts of styrene and 4 parts of acrylic acid and at the same time an aqueous solution of potassium peroxydisulfate in one metered aqueous solution of sodium lauryl sulfonate and polymerized therein. A 50% anionic polymer dispersion with an LD value of 72 is obtained.
  • JP-A-58/115196 500 parts of a 6.6% strength aqueous solution of an oxidatively degraded potato starch are placed in a 2 l flask provided with a stirrer and a reflux condenser.
  • the degraded potato starch has an intrinsic viscosity ⁇ i of 0.27 dl / g and a degree of substitution of 0.034 moles of carboxyl groups per mole of glucose unit.
  • aqueous starch solution is prepared separately, which is obtained by dissolving 6.7 kg of a cationic or oxidatively degraded starch in 70 kg of water.
  • the cationic starch has an intrinsic viscosity ⁇ i of 1.6 and a degree of substitution of 0.09 mol nitrogen per mol glucose unit.
  • the oxidatively degraded starch has an intrinsic viscosity of ⁇ i of 0.6 dl / g and a degree of substitution of 0.025 moles of COOH groups per mole of glucose unit.
  • the coating compositions are then prepared in each case by adding 33.3 kg, based on the polymer, of the cationic dispersions 1 to 3 and of the comparative dispersions 1 and 2 to the mixture of pigment slurry and soluble starch described above.
  • the coating agent is adjusted to a solids content of approx. 25% by weight by adding 150 kg of water in each case.
  • a natural gravure paper with a basis weight of 60 g / m2 is coated on both sides with the coating agents described above in a technical coater by means of a blade applicator at a speed of the paper web of 1000 m / min.
  • the application weight is 1 g / m2 and page.
  • the coated paper web is dried in each case.
  • the table shows the coating compositions used in each case and the properties of the coated papers obtained in each case. It can be seen from this that, according to the invention, a considerable improvement in the printability compared to the comparative dispersions is achieved.

Landscapes

  • Paper (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Cable Accessories (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Optical Filters (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Process for improving the printability of paper by a single- or two-sided application of aqueous coating materials consisting of a) 100 parts by weight of a finely dispersed pigment b) 5 to 70 parts by weight (based on solids) of a cationic aqueous polymer dispersion of a paper size and c) 0.01 to 10 parts by weight of a surfactant which interferes with the formation of the surface sizing and/or of a polymeric dispersant to the surface of the paper in a quantity of 0.5 to 4 g/m<2> and drying the coated paper.

Description

Um die Eigenschaften von Rohpapieren zu verbessern, führt man entweder eine Oberflächenleimung durch oder versieht die Oberfläche der Papiere mit einem Pigmentstrich. So ist beispielsweise aus der EP-B-51 144 bekannt, feinteilige, stickstoffhaltige Monomere einpolymerisiert enthaltende Polymerdispersionen als Masse- und Oberflächenleimungsmittel für Papier sowie zum Beschichten oder Imprägnieren von Papier und Baustoffen zu verwenden. Diese Beschichtungsmittel enthalten jedoch keine Pigmente. Die Polymerdispersionen werden durch eine zweistufige Polymerisation hergestellt, wobei man in der ersten Polymerisationsstufe eine Monomerenmischung, die ein stickstoffhaltiges Monomer, z.B. Dimethylaminoethylacrylat, mindestens ein nichtionisches, hydrophobes, ethylenisch ungesättigtes Monomer, wobei diese Monomeren, wenn sie für sich alleine polymerisiert werden, hydrophobe Polymerisate bilden, und eine ethylenisch ungesättigte Carbonsäure oder Maleinsäureanhydrid in einem mit Wasser mischbaren Lösemittel nach Art einer Lösungscopolymerisation ein niedrig-molekulares Vorpolymerisat herstellt, die Lösung des Vorpolymerisats dann mit Wasser verdünnt und in dieser Polymerlösung in der zweiten Stufe der Polymerisation, bezogen auf 1 Gew.-Teil des Lösungscopolymerisats, 1 bis 32 Gew.-Teile mindestens eines nichtionischen, hydrophoben, ethylenisch ungesättigten Monomeren nach Art einer Emulsionspolymerisation in Gegenwart von üblichen Mengen an wasserlöslichen Polymerisationsinitiatoren polymerisiert. Wie aus den Beispielen hervorgeht, sind diese Polymerdispersionen gute Oberflächenleimungsmittel.In order to improve the properties of base papers, one either carries out surface sizing or provides the surface of the papers with a pigment coat. For example, it is known from EP-B-51 144 to use finely divided polymer dispersions containing nitrogen-containing monomers in copolymerized form as mass and surface sizing agents for paper and for coating or impregnating paper and building materials. However, these coating compositions contain no pigments. The polymer dispersions are prepared by a two-stage polymerization, in which in the first stage of polymerization a monomer mixture comprising a nitrogen-containing monomer, e.g. Dimethylaminoethyl acrylate, at least one nonionic, hydrophobic, ethylenically unsaturated monomer, these monomers, when polymerized on their own, form hydrophobic polymers, and an ethylenically unsaturated carboxylic acid or maleic anhydride in a water-miscible solvent in the manner of a solution copolymerization, a low molecular weight prepolymer prepares, the solution of the prepolymer is then diluted with water and in this polymer solution in the second stage of the polymerization, based on 1 part by weight of the solution copolymer, 1 to 32 parts by weight of at least one nonionic, hydrophobic, ethylenically unsaturated monomer in the manner of Emulsion polymerization polymerized in the presence of conventional amounts of water-soluble polymerization initiators. As can be seen from the examples, these polymer dispersions are good surface sizing agents.

Aus der DE-A-28 35 125 ist eine Papierüberzugsmasse bekannt, die auf 100 Gew.-Teile eines Pigments 1 bis 30 Gew.-Teile, bezogen auf den Feststoffgehalt, eines amphoteren Copolymerisatlatex enthält. Das Copolymerisat enthält 20 bis 50 Gew.% eines aliphatischen konjugierten Diolefins, 0,5 bis 5 Gew.% eines ethylenisch ungesättigten sauren Monomeren, z.B. Acrylsäure, Methacrylsäure oder Itaconsäure, 0,5 bis 5 Gew.% eines ethylenisch ungesättigten Aminmonomeren, z.B. Diethylaminoethylmethacrylat, und 10 bis 74 Gew.% eines monoolefinisch ungesättigten Monomeren, z.B. Styrol. Der Latex darf nicht mehr als 1 Gew.%, bezogen auf das Copolymerisat, eines Emulgators enthalten und soll einen Gelpunkt innerhalb des pH-Bereichs von 3,5 bis 8,5 haben und während der Trocknung des mit der Überzugsmasse gestrichenen Papiers gelierbar sein. Gemäß den Angaben in Beispiel 1 beträgt die Menge der auf eine Seite des Papiers aufgetragenen Überzugsmasse etwa 16 g/m². Mit Hilfe des Pigmentstrichs wird die Bedruckbarkeit des Papiers verbessert. Dieses Verfahren ist von vornherein mit dem Nachteil behaftet, daß aufgrund der hohen Auftragsmenge der Überzugsmasse keine Papiere mit besonders niedrigen Flächengewichten herstellbar sind. Die Nachteile bei der Oberflächenleimung liegen in der begrenzten Produktionskapazität aufgrund der Applikation der Oberflächenleimungsmittel mit Hilfe der Leimpresse.A paper coating composition is known from DE-A-28 35 125 which contains 1 to 30 parts by weight, based on the solids content, of an amphoteric copolymer latex per 100 parts by weight of a pigment. The copolymer contains 20 to 50% by weight of an aliphatic conjugated diolefin, 0.5 to 5% by weight of an ethylenically unsaturated acidic monomer, for example acrylic acid, methacrylic acid or itaconic acid, 0.5 to 5% by weight of an ethylenically unsaturated amine monomer, for example diethylaminoethyl methacrylate , and 10 to 74% by weight of a monoolefinically unsaturated monomer, for example styrene. The latex must not contain more than 1% by weight, based on the copolymer, of an emulsifier and should have a gel point within the pH range from 3.5 to 8.5 and should be gellable during the drying of the paper coated with the coating composition. According to the information in Example 1, the amount of the coating composition applied to one side of the paper is approximately 16 g / m 2. The pigment coat improves the printability of the paper. This procedure is from suffered from the outset that, due to the high application quantity of the coating composition, no papers with particularly low basis weights can be produced. The disadvantages of surface sizing are the limited production capacity due to the application of the surface sizing agent using the size press.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Verbesserung der Bedruckbarkeit von Papier zur Verfügung zu stellen, bei dem mit hohen Maschinengeschwindigkeiten gearbeitet werden kann, so daß unmittelbar eine Kopplung der Vergütung des Papiers mit der Papierherstellung möglich ist.The present invention has for its object to provide a method for improving the printability of paper, which can be operated at high machine speeds, so that a direct coupling of the remuneration of the paper with the paper production is possible.

Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Verbesserung der Bedruckbarkeit von Papier durch ein- oder beidseitiges Auftragen von wäßrigen Beschichtungsmitteln aus Pigmenten und Bindemitteln auf die Oberfläche des Papiers und Trocknen des beschichteten Papiers, wenn man als Beschichtungsmittel eine Mischung aus

  • a) 100 Gew.-Teilen eines feinteiligen Pigmentes,
  • b) 5 bis 70 Gew.-Teilen, bezogen auf Polymer, einer kationischen wäßrigen Polymerdispersion eines Papierleimungsmittels, dessen Polymer eine Glasübergangstemperatur von 5 bis 80°C hat, und
  • c) 0,01 bis 10 Gew.-Teilen eines die Ausbildung der Oberflächenleimung störenden oberflächenaktiven Stoffs und/oder eines polymeren Dispergiermittels
in einer Menge von 0,5 bis 4 g/m² aufträgt. Bis zu 90, vorzugsweise 5 bis 30 Gew.% des Polymerisats der Komponente b) können durch ein wasserlösliches Polysaccharid ersetzt sein. Obwohl die Komponente b) ein typisches kationisches Oberflächenleimungsmittel für Papier darstellt, wird die Leimungswirkung des Leimungsmittels in der applizierten Formulierung praktisch aufgehoben und überraschenderweise eine deutliche Verbesserung der Bedruckbarkeit des so behandelten Papiers erzielt. Besonders hervorzuheben sind hierbei die Eigenschaften, wie Opazität, Durchschlagen, Durchscheinen, Weiße und Helligkeit, die nach dem erfindungsgemäßen Verfahren verbessert werden.The object is achieved according to the invention with a process for improving the printability of paper by applying aqueous coating compositions of pigments and binders to the surface of the paper on one or both sides and drying the coated paper if a mixture of is used as the coating composition
  • a) 100 parts by weight of a finely divided pigment,
  • b) 5 to 70 parts by weight, based on polymer, of a cationic aqueous polymer dispersion of a paper sizing agent, the polymer of which has a glass transition temperature of 5 to 80 ° C., and
  • c) 0.01 to 10 parts by weight of a surface-active substance which disturbs the formation of surface sizing and / or a polymeric dispersant
in an amount of 0.5 to 4 g / m². Up to 90, preferably 5 to 30% by weight of the polymer of component b) can be replaced by a water-soluble polysaccharide. Although component b) is a typical cationic surface sizing agent for paper, the sizing effect of the sizing agent in the applied formulation is practically eliminated and, surprisingly, a significant improvement in the printability of the paper treated in this way is achieved. Particularly noteworthy here are the properties, such as opacity, penetration, show-through, whiteness and brightness, which are improved by the method according to the invention.

Nach dem erfindungsgemäßen Verfahren kann generell jedes ungestrichene, unbeschichtete oder sonst keiner Veredlung unterzogene Rohpapier in der Bedruckbarkeit verbessert werden. Es handelt sich hierbei um Naturpapiere, vorzugsweise um holzhaltiges Druckpapier, das in den meisten Fällen stark satiniert ist und ein Flächengewicht von mindestens 30 g/m², vorzugsweise mehr als 35 g/m² aufweist. Das verwendete Naturpapier soll gleiche Farbannahmefähigkeit und eine hohe Glätte aufweisen. Derartige Papiere werden vornehmlich für Zeitungen, Illustrierte Zeitschriften und Werbeprospekte verwendet. Die genannten Papierqualitäten werden beispielsweise nach dem Offset- oder Tiefdruckverfahren bedruckt.In general, the printability of any uncoated, uncoated or otherwise uncoated base paper can be improved. These are natural papers, preferably wood-containing printing paper, which in most cases is heavily satined and has a weight per unit area of at least 30 g / m², preferably more than 35 g / m². The natural paper used should have the same color acceptability and have a high smoothness. Such papers are mainly used for newspapers, magazines and advertising brochures. The paper qualities mentioned are printed, for example, using the offset or gravure printing process.

Das gemäß Erfindung zu verwendende Beschichtungsmittel ist eine Mischung aus den oben angegebenen Komponenten a) bis c). Als Komponente a) der Mischung werden feinteilige Pigmente eingesetzt. Hierbei handelt es sich um die üblicherweise in der Papierstreicherei verwendeten Pigmente, z.B. Calciumcarbonat, Kreide, Kaolin, Clay, Titandioxid, Bariumsulfat, Satinweiß, Talkum, Aluminiumsilikat, Calciumsulfat, Magnesiumcarbonat. Die Teilchengröße der Pigmente beträgt 0,2 bis 10 µm. Vorzugsweise verwendet man als Pigmente Calciumcarbonat, dessen Teilchengröße zu 87 % unterhalb 2 µm beträgt.The coating agent to be used according to the invention is a mixture of the above-mentioned components a) to c). Fine-particle pigments are used as component a) of the mixture. These are the pigments commonly used in paper coating, e.g. Calcium carbonate, chalk, kaolin, clay, titanium dioxide, barium sulfate, satin white, talc, aluminum silicate, calcium sulfate, magnesium carbonate. The particle size of the pigments is 0.2 to 10 µm. Calcium carbonate, the particle size of which is 87% below 2 μm, is preferably used as the pigment.

Als Komponente b) werden kationische wäßrige Polymerdispersionen eines Papierleimungsmittels eingesetzt, dessen Polymer eine Glasübergangstemperatur von 5 bis 80°C hat. Derartige kationische Polymerdispersionen sind bekannt und ergeben, für sich allein auf die Oberfläche des Papiers aufgetragen, eine Papierleimung. Der kationische Charakter der Dispersion kommt dadurch zustande, daß man in das Polymerisat der Dispersion mindestens ein kationisches Monomer einpolymerisiert oder beim ausschließlichen Einsatz nichtionischer Monomerer bei der Polymerisation mindestens einen kationischen Emulgator verwendet. Es ist selbstverständlich auch möglich, bei der Polymerisation sowohl kationische Monomere als auch kationische Emulgatoren einzusetzen. In der Mischung mit den anderen beiden Bestandteilen des Beschichtungsmittels wirken diese Dispersionen jedoch als Bindemittel und tragen zusammen mit den anderen Bestandteilen zur Verbesserung der Bedruckbarkeit des Papiers bei. Geeignete kationische Dispersionen b) enthalten beispielsweise 1 bis 40 Gew.% mindestens eines kationischen Monomers einpolymerisiert. Dispersionen dieser Art sind beispielsweise aus der DE-C-1 696 326 und der DE-B-1 546 236 bekannt. Diese kationischen Dispersionen werden durch Emulsionspolymerisation in Gegenwart von kationischen und/oder nichtionischen Emulgatoren hergestellt. Geeignete kationische Verbindungen haben beispielsweise die allgemeine Formel

Figure imgb0001

in der
A = O, NH,
B = CmH2n, n = 1 bis 8,
R¹, R² = CmH2m+1, m = 1 bis 4 und
R³ = H, CH₃
bedeutet.Cationic aqueous polymer dispersions of a paper sizing agent whose polymer has a glass transition temperature of 5 to 80 ° C. are used as component b). Such cationic polymer dispersions are known and, when applied alone to the surface of the paper, result in paper sizing. The cationic character of the dispersion arises from the fact that at least one cationic monomer is polymerized into the polymer of the dispersion or, if nonionic monomers are used exclusively, at least one cationic emulsifier is used in the polymerization. It is of course also possible to use both cationic monomers and cationic emulsifiers in the polymerization. In the mixture with the other two constituents of the coating agent, however, these dispersions act as binders and, together with the other constituents, contribute to improving the printability of the paper. Suitable cationic dispersions b) contain, for example, 1 to 40% by weight of at least one cationic monomer in copolymerized form. Dispersions of this type are known, for example, from DE-C-1 696 326 and DE-B-1 546 236. These cationic dispersions are produced by emulsion polymerization in the presence of cationic and / or nonionic emulsifiers. Suitable cationic compounds have, for example, the general formula
Figure imgb0001

in the
A = O, NH,
B = C m H 2n , n = 1 to 8,
R¹, R² = C m H 2m + 1 , m = 1 to 4 and
R³ = H, CH₃
means.

Die quaternierten Verbindungen können mit Hilfe der folgenden Formel

Figure imgb0002

X⁻ = OH⁻, Cl⁻, Br⁻, CH₃-OSO₃-H⁻
R⁴ = CmH2m+1, m = 1 bis 4
charakterisiert werden. Die übrigen Substituenten haben die in Formel I angegebene Bedeutung.The quaternized compounds can be made using the following formula
Figure imgb0002

X⁻ = OH⁻, Cl⁻, Br⁻, CH₃-OSO₃-H⁻
R⁴ = C m H 2m + 1 , m = 1 to 4
be characterized. The other substituents have the meaning given in formula I.

Basische, ethylenisch ungesättigte Monomere sind beispielsweise Acrylsäure- und Methacrylsäureester von Aminoalkoholen, z.B. Dimethylaminoethylacrylat, Dimethylaminethylmethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminopropylmethacrylat, Dibutylaminopropylacrylat, Dibutylaminopropylmethacrylat, Dimethylaminoneopentylacrylat, Aminogruppen enthaltende Derivate des Acrylamids oder Methacrylamids, wie Acrylamidodimethylpropylamin, Methacrylamidodimethylpropylamin und Methacrylamidodiethylpropylamin.Basic, ethylenically unsaturated monomers are, for example, acrylic and methacrylic esters of amino alcohols, e.g. Dimethylaminoethyl acrylate, dimethylaminethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropylacrylate, dimethylaminopropyl methacrylate, dibutylaminopropylacrylate, dibutylaminopropyl methacrylate, dimethylaminoneopentylacrylate, methacrylate amide, methacrylate amide, methacrylate amide, methacrylate amide,

Die quaternären Verbindungen der Formel II werden erhalten, indem man die basischen Monomeren der Formel I mit bekannten Quaternisierungsmitteln umsetzt, z.B. mit Benzylchlorid, Methylchlorid, Ethylchlorid, Butylbromid, Dimethylsulfat und Diethylsulfat. Diese Monomeren verlieren in der quaternisierten Form ihren basischen Charakter. Die Verbindungen der Formel I können auch in Form der Salze mit anorganischen oder gesättigten organischen Säuren bei der Copolymerisation einsetzt werden.The quaternary compounds of formula II are obtained by reacting the basic monomers of formula I with known quaternizing agents, e.g. with benzyl chloride, methyl chloride, ethyl chloride, butyl bromide, dimethyl sulfate and diethyl sulfate. In the quaternized form, these monomers lose their basic character. The compounds of the formula I can also be used in the form of the salts with inorganic or saturated organic acids in the copolymerization.

Weitere geeignete basische Monomere sind beispielsweise N-Vinylimidazol, 2-Methylvinylimidazol, N-Vinylimidazolin, 2-Methylvinylimidazolin und die entsprechenden Quaternisierungsprodukte oder Salze der genannten basischen Monomeren.Other suitable basic monomers are, for example, N-vinylimidazole, 2-methylvinylimidazole, N-vinylimidazoline, 2-methylvinylimidazoline and the corresponding quaternization products or salts of the basic monomers mentioned.

Geeignete kationische Papierleimungsmittel sind beispielsweise aus folgenden Literaturstellen bekannt:
DE-A-24 52 585, EP-B-51 144, DE-B-16 21 689, DE-A-34 01 573,
DE-A-25 19 581, EP-B-58 313, EP-A-221 400 und EP-A-165 150.
Suitable cationic paper sizing agents are known, for example, from the following references:
DE-A-24 52 585, EP-B-51 144, DE-B-16 21 689, DE-A-34 01 573,
DE-A-25 19 581, EP-B-58 313, EP-A-221 400 and EP-A-165 150.

Bei den in den vorstehend genannten Schriften angegebenen kationischen Leimungsmitteln handelt es sich um Dispersionen, die nach einem zweistufigen Polymerisationsverfahren hergestellt werden, um kationisch modifizierte Polyurethandispersionen sowie um Copolymerisate, die durch direkte Copolymerisation der Monomeren erhältlich sind. Bei der zweistufigen Polymerisation stellt man zunächst ein niedrigmolekulares Polymerisat her, das dann als Emulgator für die nachfolgende Emulsionspolymerisation verwendet wird. Das als kationischer Emulgator verwendete niedrigmolekulare Polymerisat, das zunächst hergestellt wird, kann beispielsweise 5 bis 100 Gew.% eines basische Stickstoffatome aufweisenden Monomers einpolymerisiert enthalten und eine Lösungsviskosität ηrel von 1,05 bis 1,4 haben. Die Viskosität ηrel wird in Wasser bei einem pH-Wert von 3,5 und einer Temperatur von 25°C bei einer Polymerkonzentration von 1 g/100 ml Wasser gemessen. Dieses niedrigmolekulare Polymerisat dient dann als Emulgator für die Emulsionspolymerisation von Monomermischungen, die beispielsweise folgende Zusammensetzung haben:

  • 1) 20 bis 65 Gew.% Acrylnitril, Methacrylnitril, Methacrylsäuremethylester und/oder Styrol,
  • 2) 35 bis 80 Gew.% mindestens eines Acrylsäure- oder Methacrylsäureesters von jeweils einwertigen, gesättigten C₃- bis C₈-Alkoholen, Vinylacetat, Vinylpropionat und/oder Butadien-1,3 und
  • 3) 0 bis 10 Gew.% anderen ethylenisch ungesättigten copolymerisierbaren Monomeren,
wobei die Summe der Angaben in Gew.% unter 1) bis 3) immer 100 beträgt. Der kationische Charakter der Polymerdispersionen beruht dann auf dem Gehalt an dem in der ersten Stufe der Polymerisation hergestellten niedrigmolekularen kationischen Polymerisat.The cationic sizing agents specified in the abovementioned documents are dispersions which are prepared by a two-stage polymerization process, cationically modified polyurethane dispersions and copolymers which are obtainable by direct copolymerization of the monomers. In the two-stage polymerization, a low molecular weight polymer is first prepared, which is then used as an emulsifier for the subsequent emulsion polymerization. The low molecular weight polymer used as a cationic emulsifier, which is initially produced, can contain, for example, 5 to 100% by weight of a monomer having basic nitrogen atoms in copolymerized form and have a solution viscosity η rel of 1.05 to 1.4. The viscosity η rel is measured in water at a pH of 3.5 and a temperature of 25 ° C at a polymer concentration of 1 g / 100 ml of water. This low molecular weight polymer then serves as an emulsifier for the emulsion polymerization of monomer mixtures which, for example, have the following composition:
  • 1) 20 to 65% by weight of acrylonitrile, methacrylonitrile, methacrylic acid methyl ester and / or styrene,
  • 2) 35 to 80 wt.% At least one acrylic or methacrylic acid ester of monohydric, saturated C₃ to C₈ alcohols, vinyl acetate, vinyl propionate and / or 1,3-butadiene and
  • 3) 0 to 10% by weight of other ethylenically unsaturated copolymerizable monomers,
the sum of the percentages by weight under 1) to 3) is always 100. The cationic character of the polymer dispersions is then based on the content of the low molecular weight cationic polymer produced in the first stage of the polymerization.

Besonders bevorzugt werden als Komponente b) Polymerdispersionen eingesetzt, die durch Copolymerisieren von 10 bis 56 Gew.-Teilen einer Monomermischung aus

  • 1) 20 bis 65 Gew.% Acrylnitril, Methacrylnitril, Methacrylsäuremethylester und/oder Styrol,
  • 2) 35 bis 80 Gew.% mindestens eines Acrylsäure- oder Methacrylsäureesters von jeweils einwertigen, gesättigten C₃- bis C₈-Alkoholen, Vinylacetat, Vinylpropionat und/oder Butadien-1,3 und
  • 3) 0 bis 10 Gew.% anderen ethylenisch ungesättigten copolymerisierbaren Monomeren,
wobei die Summe der Angaben in Gew.% unter 1) bis 3) immer 100 beträgt, nach Art einer Emulsionspolymerisation in 100 Gew.-Teilen einer wäßrigen Lösung, die 1,5 bis 25 Gew.% einer kationischen Stärke mit einer Viskosität ηi = 0,04 bis 0,50 dl/g gelöst enthält, bei Temperaturen von 40 bis 100°C in Gegenwart eines Peroxidgruppen aufweisenden Initiators erhältlich sind. Die Monomeren der Gruppe 1) werden vorzugsweise zu 25 bis 62 Gew.% verwendet. Aus dieser Gruppe von Monomeren werden vorzugsweise Styrol und Acrylnitril eingesetzt.Particularly preferred as component b) are polymer dispersions which consist of 10 to 56 parts by weight of a monomer mixture by copolymerization
  • 1) 20 to 65% by weight of acrylonitrile, methacrylonitrile, methacrylic acid methyl ester and / or styrene,
  • 2) 35 to 80 wt.% At least one acrylic or methacrylic acid ester of monohydric, saturated C₃ to C₈ alcohols, vinyl acetate, vinyl propionate and / or 1,3-butadiene and
  • 3) 0 to 10% by weight of other ethylenically unsaturated copolymerizable monomers,
the sum of the data in% by weight under 1) to 3) is always 100, in the manner of an emulsion polymerization in 100 parts by weight of an aqueous solution which contains 1.5 to 25% by weight of a cationic starch with a viscosity η i = 0.04 to 0.50 dl / g dissolved, can be obtained at temperatures from 40 to 100 ° C in the presence of an initiator containing peroxide groups. The monomers of group 1) are preferably used in an amount of 25 to 62% by weight. From this group of monomers, styrene and acrylonitrile are preferably used.

Die Monomeren der Gruppe 2) umfassen Acrylsäure- und Methacrylsäureester, die sich von einwertigen, gesättigten C₃- bis C₈-Alkoholen ableiten, z.B. n-Propylacrylat, iso-Propylacrylat, n-Butylacrylat, iso-Butylacrylat, tert.-Butylacrylat, Neopentylacrylat, n-Hexylacrylat, Cyclohexyl-acrylat, 2-Ethylhexylacrylat und die entsprechenden Methacrylsäureester, z.B. n-Propylmethacrylat, iso-Propylmethacrylat, iso-Butylmethacrylat und 2-Ethylhexylmethacrylat. Die Monomeren der Gruppe 2) werden vorzugsweise in Mengen von 38 bis 75 Gew.% eingesetzt.The group 2) monomers include acrylic and methacrylic esters derived from monohydric, saturated C₃ to C₈ alcohols, e.g. n-propyl acrylate, iso-propyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, neopentyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate and the corresponding methacrylic acid esters, e.g. n-propyl methacrylate, iso-propyl methacrylate, iso-butyl methacrylate and 2-ethylhexyl methacrylate. The monomers of group 2) are preferably used in amounts of 38 to 75% by weight.

Als Monomere der Gruppe 3), die gegebenenfalls zur Modifizierung der Copolymerisate verwendet werden, eignen sich beispielsweise ethylenisch ungesättigte C₃- bis C₅-Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure und Maleinsäurehalbester. Zu dieser Gruppe von Monomeren gehören auch Vinylsulfonsäure und 2-Acrylamidomethylpropansulfonsäure bzw. wasserlösliche Salze der genannten Carbonsäuren und Sulfonsäuren. Die ethylenisch ungesättigten Carbonsäuren und Sulfonsäuren können vollständig mit Natronlauge, Kalilauge, Ammoniak und/oder Aminen neutralisiert sein oder auch nur partiell, z.B. zu 5 bis 95 %.Suitable monomers of group 3), which are optionally used to modify the copolymers, are, for example, ethylenically unsaturated C₃- to C₅-carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and maleic acid semiesters. This group of monomers also includes vinylsulfonic acid and 2-acrylamidomethylpropanesulfonic acid or water-soluble salts of the carboxylic acids and sulfonic acids mentioned. The ethylenically unsaturated carboxylic acids and sulfonic acids can be completely neutralized with sodium hydroxide solution, potassium hydroxide solution, ammonia and / or amines or only partially, e.g. to 5 to 95%.

Eine weitere Modifizierungsmöglichkeit der Copolymerisate aus den Monomeren der Gruppen 1) und 2) ergibt sich dadurch, daß man als Monomer der Gruppe 3) basische Verbindungen einpolymerisieren kann, die oben bereits genannt worden sind, vgl. Formeln I und II sowie zusätzlich N-Vinylimidazol und N-Vinylimidazolin sowie die entsprechenden quaternisierten und substituierten Verbindungen.A further modification possibility of the copolymers from the monomers of groups 1) and 2) results from the fact that basic compounds which have already been mentioned above can be polymerized in as a monomer of group 3), cf. Formulas I and II and in addition N-vinylimidazole and N-vinylimidazoline and the corresponding quaternized and substituted compounds.

Die Copolymerisation der Monomeren der Gruppen 1) bis 3) erfolgt nach Art einer Emulsionscopolymerisation in wäßrigem Medium in Gegenwart von abgebauten kationischen Stärken mit einer Viskosität ηi von 0,04 bis 0,50 dl/g. Solche Stärken enthalten quaternisierte Aminoalkylgruppen. Diese Stärken sind im Handel erhältlich. Sofern die Viskosität dieser Stärken nicht bereits in dem angegebenen Bereich liegt, werden sie einem oxidativen, thermischen, acidolytischen oder enzymatischen Abbau bis zur gewünschten Viskosität unterworfen. Vorzugsweise verwendet man kationisierte, enzymatisch abgebaute Kartoffelstärke. Der Substitutionsgrad der kationischen Stärke beträgt 0,01 bis 0,1 Mol Stickstoff pro Mol Glucose-Einheit.The monomers of groups 1) to 3) are copolymerized in the manner of an emulsion copolymerization in an aqueous medium in the presence of degraded cationic starches with a viscosity η i of 0.04 to 0.50 dl / g. Such starches contain quaternized aminoalkyl groups. These strengths are commercially available. If the viscosity of these starches is not already in the specified range, they are subjected to oxidative, thermal, acidolytic or enzymatic degradation to the desired viscosity. Cationized, enzymatically degraded potato starch is preferably used. The degree of substitution of the cationic starch is 0.01 to 0.1 mol of nitrogen per mol of glucose unit.

Die Viskosität ηi - auch "Intrinsic-Viskosität" genannt - von Stärke wird aus der relativen Viskosität ηrel gemäß folgender Gleichung

η i = (2,303 x log η rel )/Konzentration

Figure imgb0003


errechnet. Die Konzentration wird dabei in g/100 ml angegeben. Die relative Viskosität der aufgeschlossenen Stärkelösungen wird an 1 gew.%igen wäßrigen Lösungen mit Hilfe eines Kapillar-Viskosimeters bei 25°C und einem pH-Wert von 3,5 bestimmt, wobei man die relative Viskosität aus den korrigierten Durchlaufzeiten für Lösungsmittel t₀ und Lösung t₁ gemäß folgender Gleichung

η rel = t₁/t₀
Figure imgb0004


errechnet. Die Umrechnung auf ηi erfolgt nach der oben angegebenen Beziehung aufgrund der Angaben in "Methods in Carbohydrate Chemistry", Volume IV, Starch, Academic Press, New York and London, 1964, Seite 127.The viscosity η i - also called "intrinsic viscosity" - of starch becomes the relative viscosity η rel according to the following equation

η i = (2.303 x log η rel )/Concentration
Figure imgb0003


calculated. The concentration is given in g / 100 ml. The relative viscosity of the digested starch solutions is determined in 1% by weight aqueous solutions using a capillary viscometer at 25 ° C. and a pH of 3.5, the relative viscosity being determined from the corrected throughput times for solvent and solution t₁ according to the following equation

η rel = t₁ / t₀
Figure imgb0004


calculated. The conversion to η i is carried out according to the relationship given above on the basis of the information in "Methods in Carbohydrate Chemistry", Volume IV, Starch, Academic Press, New York and London, 1964, page 127.

Zur Herstellung der feinteiligen Copolymerisat-Dispersionen bereitet man zunächst eine wäßrige Lösung, die 1,5 bis 25, vorzugsweise 1,7 bis 21 Gew.% einer abgebauten Stärke mit einer Viskosität ηi von 0,04 bis 0,50 dl/g gelöst enthält. Abgebaute Stärken mit einer Viskosität in dem Bereich von 0,3 bis 0,5 dl/g werden vorzugsweise dann eingesetzt, wenn man Dispersionen mit einem niedrigen Feststoffgehalt herstellen will. Die abgebauten Stärken mit einer niedrigeren Viskosität, d.h. in dem Bereich von 0,04 bis etwa 0,3 dl/g, werden bevorzugt bei der Herstellung von Dispersionen mit höheren Feststoffgehalten, z.B. 25 bis 40 Gew.%, verwendet. Man kann auch Mischungen aus Stärken einer unterschiedlichen Viskosität ηi als Schutzkolloid einsetzen, jedoch muß die Viskosität der Mischung im angegebenen ηi-Bereich von 0,04 bis 0,50 dl/g liegen, d.h. es können in diesem Fall auch Stärkemischungen eingesetzt werden, in denen die Viskosität einer Stärkesorte außerhalb des angegebenen Bereichs liegt. Pro 100 Gewichtsteile einer solchen wäßrigen Stärkelösung unterwirft man 10 bis 56 Gewichtsteile einer Monomermischung aus den Komponenten (1) bis (3) der Copolymerisation. Die Monomeren können entweder in Form einer Mischung oder getrennt voneinander in die wäßrige Lösung der abgebauten Stärke einemulgiert werden. Um die Emulsion zu stabilisieren, kann man der wäßrigen Stärkelösung eine geringe Menge eines Emulgators zusetzen. Man kann jedoch auch die Monomeren mit Hilfe eines Emulgators zunächst in Wasser emulgieren und sie dann in Form der Emulsion zur wäßrigen Stärkelösung zugeben. Als Emulgatoren kommen hierfür Produkte mit anionischem oder kationischem Charakter in Betracht. Solche Emulgatoren sind beispielsweise Natriumalkylsulfonat, Natriumlaurylsulfat, Natriumdodecylbenzolsulfonat oder Dimethylalkylbenzylammoniumchlorid. Es ist empfehlenswert, bei anionischen Stärken anionische Emulgatoren, bei kationischen Stärken kationische Emulgatoren einzusetzen. Die Menge an Emulgator, die gegebenenfalls mitverwendet wird, beträgt 0 bis 0,3, vorzugsweise 0,05 bis 0,2 Gew.%, bezogen auf die Summe der eingesetzten Monomeren (1) bis (3). Vorzugsweise wird die Emulsionspolymerisation jedoch in Abwesenheit eines Emulgators durchgeführt.To prepare the finely divided copolymer dispersions, an aqueous solution is first prepared which dissolves 1.5 to 25, preferably 1.7 to 21% by weight of a degraded starch with a viscosity η i of 0.04 to 0.50 dl / g contains. Degraded starches with a viscosity in the range of 0.3 to 0.5 dl / g are preferably used when it is desired to produce dispersions with a low solids content. The degraded starches with a lower viscosity, ie in the range from 0.04 to about 0.3 dl / g, are preferably used in the production of dispersions with higher solids contents, for example 25 to 40% by weight. Mixtures of starches with different viscosities η i can also be used as protective colloids, but the viscosity of the mixture must be in the specified η i range of 0.04 to 0.50 dl / g, ie starch mixtures can also be used in this case , in which the viscosity of a starch is outside the specified range. 10 to 56 parts by weight of a monomer mixture of components (1) to (3) are subjected to the copolymerization per 100 parts by weight of such an aqueous starch solution. The monomers can be emulsified either in the form of a mixture or separately from one another in the aqueous solution of the degraded starch. In order to stabilize the emulsion, a small amount of an emulsifier can be added to the aqueous starch solution. However, the monomers can also first be emulsified in water with the aid of an emulsifier and then added in the form of the emulsion to the aqueous starch solution. Products with anionic or cationic character are suitable as emulsifiers. Such emulsifiers are, for example, sodium alkyl sulfonate, sodium lauryl sulfate, sodium dodecylbenzenesulfonate or dimethylalkylbenzylammonium chloride. It is recommended to use anionic emulsifiers for anionic starches and cationic emulsifiers for cationic starches. The amount of emulsifier which is optionally used is 0 to 0.3, preferably 0.05 to 0.2% by weight, based on the sum of the monomers (1) to (3) used. However, the emulsion polymerization is preferably carried out in the absence of an emulsifier.

Die Copolymerisation der Monomeren in der wäßrigen Lösung der abgebauten Stärke wird bei Temperaturen von 40 bis 110, vorzugsweise 50 bis 100°C in Gegenwart eines Peroxidgruppen enthaltenden Initiators durchgeführt. Als Polymerisationsinitiator kommen in erster Linie Wasserstoffperoxid, Kombinationen von Wasserstoffperoxid mit einem Schwermetallsalz, z.B. Eisen-II-sulfat oder ein Redoxsystem aus Wasserstoffperoxid mit einem geeigneten Reduktionsmittel, wie Natriumformaldehydsulfoxylat, Ascorbinsäure, Natriumdisulfit und/oder Natriumdithionit in Betracht. Vorzugsweise verwendet man ein Redoxsystem aus Wasserstoffperoxid, einem Reduktionsmittel oder einer Mischung der genannten Reduktionsmittel und zusätzlich eine geringe Menge eines Schwermetallsalzes, wie beispielsweise Eisen-II-sulfat. Weitere geeignete Peroxidgruppen enthaltende Initiatoren sind beispielsweise organische Peroxide, Hydroperoxide und Peroxidisulfate. Geeignete Verbindungen dieser Art sind beispielsweise tert.-Butylhydroperoxid, Acetylcyclohexylsulfonylperoxid, Natriumperoxidisulfat, Kaliumperoxidisulfat oder Ammoniumperoxidisulfat.The copolymerization of the monomers in the aqueous solution of the degraded starch is carried out at temperatures from 40 to 110, preferably 50 to 100 ° C. in the presence of an initiator containing peroxide groups. Hydrogen peroxide, combinations of hydrogen peroxide with a heavy metal salt, e.g. Iron-II-sulfate or a redox system made of hydrogen peroxide with a suitable reducing agent, such as sodium formaldehyde sulfoxylate, ascorbic acid, sodium disulfite and / or sodium dithionite. A redox system of hydrogen peroxide, a reducing agent or a mixture of the reducing agents mentioned and, in addition, a small amount of a heavy metal salt, such as, for example, iron (II) sulfate, are preferably used. Other suitable initiators containing peroxide groups are, for example, organic peroxides, hydroperoxides and peroxydisulfates. Suitable compounds of this type are, for example, tert-butyl hydroperoxide, acetylcyclohexylsulfonyl peroxide, sodium peroxydisulfate, potassium peroxydisulfate or ammonium peroxydisulfate.

Während der Polymerisation ist für eine gute Durchmischung der Komponenten zu sorgen. So wird das Reaktionsgemisch vorzugsweise während der gesamten Dauer der Polymerisation und einer sich gegebenenfalls daran anschließenden Nachpolymerisation zur Erniedrigung des Restmonomerengehaltes gerührt. Die Polymerisation wird unter Ausschluß von Sauerstoff in einer Inertgasatmosphäre, z.B. unter Stickstoff, durchgeführt. Um die Polymerisation zu starten, entfernt man zunächst den Sauerstoff aus der wäßrigen Lösung der Stärke sowie aus den Monomeren und gibt zunächst 1 bis 40 % der zu polymerisierenden Monomeren zu der wäßrigen Lösung der Stärke und emulgiert durch Rühren der Reaktionsmischung die Monomeren darin. Durch vorhergehende, gleichzeitige oder nachträgliche Zugabe einer wäßrigen Initiatorlösung beginnt - in aller Regel nach einer kurzen Induktionsperiode - die Polymerisation. Dabei kann die zu Beginn der Polymerisation entstehende Polymerisationswärme dazu verwendet werden, um das Reaktionsgemisch zu erwärmen. Die Temperatur kann dabei bis auf 90°C ansteigen. Sobald die vorgelegten Monomeren polymerisiert sind, wird der Rest der Monomeren und der Initiatorlösung kontinuierlich oder portionsweise zugefügt und unter Rühren polymerisiert. Die Copolymerisation kann jedoch auch diskontinuierlich oder kontinuierlich vorgenommen werden. Man erhält eine feinteilige, wäßrige Dispersion, bei der die Copolymerisatteilchen von einer Schutzkolloidhülle auf Basis einer abgebauten Stärke umgeben sind. Ein Maß für die Feinteiligkeit der Dispersion ist der LD-Wert (Lichtdurchlässigkeitswert der Dispersion). Der LD-Wert wird gemessen, indem man die Dispersion in 0,01 gew.%iger wäßriger Lösung in einer Küvette einer Kantenlänge von 2,5 cm mit Licht der Wellenlänge 546 nm vermißt und mit der Durchlässigkeit von Wasser unter den vorstehend genannten Bedingungen vergleicht. Die Durchlässigkeit von Wasser wird dabei mit 100 % angegeben. Je feinteiliger die Dispersion ist, desto höher ist der LD-Wert, der nach der oben beschriebenen Methode gemessen wird.The components must be thoroughly mixed during the polymerization. For example, the reaction mixture is preferably stirred for the entire duration of the polymerization and any subsequent polymerization, if appropriate, to lower the residual monomer content. The polymerization is carried out in the absence of oxygen in an inert gas atmosphere, for example under nitrogen. To the To start polymerization, the oxygen is first removed from the aqueous solution of the starch and from the monomers and first 1 to 40% of the monomers to be polymerized are added to the aqueous solution of the starch and the monomers therein are emulsified by stirring the reaction mixture. The polymerisation begins, as a rule after a short induction period, by adding an aqueous initiator solution beforehand, simultaneously or subsequently. The heat of polymerization which arises at the beginning of the polymerization can be used to heat the reaction mixture. The temperature can rise up to 90 ° C. As soon as the submitted monomers are polymerized, the rest of the monomers and the initiator solution are added continuously or in portions and polymerized with stirring. However, the copolymerization can also be carried out batchwise or continuously. A finely divided, aqueous dispersion is obtained in which the copolymer particles are surrounded by a protective colloid shell based on a degraded starch. A measure of the fine particle size of the dispersion is the LD value (light transmission value of the dispersion). The LD value is measured by measuring the dispersion in 0.01% by weight aqueous solution in a cuvette with an edge length of 2.5 cm with light of the wavelength 546 nm and comparing it with the permeability of water under the conditions mentioned above . The permeability of water is given as 100%. The more finely divided the dispersion, the higher the LD value, which is measured using the method described above.

Die mittlere Teilchengröße der Copolymerisatteilchen ohne die Schutzkolloidhülle aus abgebauter Stärke kann ermittelt werden, wenn man die Stärkehülle der Latexteilchen praktisch vollständig enzymatisch abbaut. Eine mögliche Koagulation der Copolymerisat-Dispersion kann dabei durch Zusatz eines geeigneten Emulgators verhindert werden. Nach dem enzymatischen Abbau kann dann die Teilchengröße der Copolymerisatdispersion mit handelsüblichen Geräten gemessen werden, z.B. mit Hilfe des Nanosizers der Firma Coulter Electronics. Der mittlere Durchmesser der Copolymerisatteilchen ohne die Schutzkolloidhülle beträgt 75 bis 110 nm.The average particle size of the copolymer particles without the protective colloid shell from degraded starch can be determined if the starch shell of the latex particles is virtually completely enzymatically degraded. Possible coagulation of the copolymer dispersion can be prevented by adding a suitable emulsifier. After enzymatic degradation, the particle size of the copolymer dispersion can then be measured using commercially available devices, e.g. with the help of the Nanosizer from Coulter Electronics. The average diameter of the copolymer particles without the protective colloid shell is 75 to 110 nm.

Die wäßrigen Polymerdispersionen der Komponente b) werden in allen Fällen mit einer solchen Zusammensetzung hergestellt, daß die Polymerisate eine Glasübergangstemperatur von 5 bis 80, vorzugsweise 15 bis 60°C haben. Die Konzentration des Polymerisats in der wäßrigen Dispersion beträgt 15 bis 55, vorzugsweise 20 bis 45 Gew.%. Die Beschichtungsmittel enthalten, bezogen auf die Feststoffe der Dispersion 5 bis 70, vorzugsweise 8 bis 30 Gew.-Teile der Komponente b), bezogen auf 100 Gew.-Teile eines feinteiligen Pigments oder einer Mischung von Pigmenten. Vorzugsweise werden 5 bis 30 Gew.% des Polymerisats der Komponente b) oder einer Mischung von Polymerisaten der Komponente b) durch mindestens ein wasserlösliches Polysaccharid ersetzt. Geeignete wasserlösliche Polysaccharide sind wasserlösliche Stärken, Carboxymethylcellulose, Methylcellulose, Hydroxyethylcellulose und Galactomannane.In all cases, the aqueous polymer dispersions of component b) are prepared with a composition such that the polymers have a glass transition temperature of 5 to 80, preferably 15 to 60 ° C. The concentration of the polymer in the aqueous dispersion is 15 to 55, preferably 20 to 45,% by weight. The coating compositions contain, based on the solids of the dispersion, 5 to 70, preferably 8 to 30, parts by weight of component b), based on 100 parts by weight of a finely divided pigment or a mixture of pigments. 5 to 30% by weight of the polymer of component b) or a mixture of Polymers of component b) replaced by at least one water-soluble polysaccharide. Suitable water-soluble polysaccharides are water-soluble starches, carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose and galactomannans.

Als Komponente c) der Beschichtungsmittel kommen oberflächenaktive Stoffe und/oder polymere Dispergiermittel in Betracht, die jeweils die Ausbildung der Oberflächenleimung durch das Oberflächenleimungsmittel b) stören bzw. verhindern. Die oberflächenaktiven Stoffe und die polymeren Dispergiermittel verbessern die Benetzbarkeit des Papiers mit Wasser. Geeignete oberflächenaktive Verbindungen haben einen HLB-Wert von mindestens 10 (zur Definition des HLB-Wertes vgl. W.C. Griffin, J. Cosmetic Chemist, Band 5, 311 (1954). Die in Betracht kommenden oberflächenaktiven Stoffe sind beispielsweise als Tensidklassen im Tensid-Taschenbuch von Dr. Stachel, Carl-Hanser-Verlag, München-Wien, 2. Auflage 1981, Seiten 4 bis 10, aufgelistet. Man kann sowohl nichtionische, anionische als auch kationische Tenside einsetzen. Produkte dieser Art werden beispielsweise durch Anlagerung von Ethylenoxid und/oder Propylenoxid an 8 bis 22 Kohlenstoffatome enthaltende Alkohole, Phenole, Amine und Fettsäuren erhalten. Von besonderem Interesse aus dieser Gruppe von Verbindungen sind beispielsweise die Anlagerungsprodukte von 10 bis 50 Mol Ethylenoxid an 1 Mol Dodecanol, C₉/C₁₃-Alkohole und Nonylphenol. Von den anionischen Tensiden kommt vor allem als Komponente c) Natriumlaurylsulfonat in Betracht.As component c) of the coating compositions, surface-active substances and / or polymeric dispersants come into consideration, each of which disrupt or prevent the formation of surface sizing by the surface sizing agent b). The surface-active substances and the polymeric dispersants improve the wettability of the paper with water. Suitable surface-active compounds have an HLB value of at least 10 (for a definition of the HLB value, see WC Griffin, J. Cosmetic Chemist, Volume 5, 311 (1954). The surface-active substances in question are, for example, as surfactant classes in the Tensid-Taschenbuch by Dr. Stachel, Carl-Hanser-Verlag, Munich-Vienna, 2nd edition 1981, pages 4 to 10. Nonionic, anionic as well as cationic surfactants can be used. Products of this type are produced, for example, by the addition of ethylene oxide and / alcohols, phenols, amines and fatty acids containing 8 to 22 carbon atoms are of particular interest from this group of compounds are, for example, the adducts of 10 to 50 moles of ethylene oxide with 1 mole of dodecanol, C₉ / C₁₃ alcohols and nonylphenol Anionic surfactants are particularly suitable as component c) sodium lauryl sulfonate.

Geeignete polymere Dispergiermittel der Komponente c) sind beispielsweise Polymerisate ethylenisch ungesättigter C₃- bis C₅-Carbonsäuren mit einem K-Wert von 10 bis 50 (gemessen in 1 %iger wäßriger Lösung bei 25°C und pH 8 am Natriumsalz der Polymerisate), Polymerisate von Acrylamid, Methacrylamid und Vinylpyrrolidon mit einem K-Wert von 10 bis 60, Polyvinylalkohole mit einem Molekulargewicht von 2.000 bis 200.000, Ligninsulfonate, Phenol-Formaldehyd-Kondensationsprodukte, Harnstoff-Formaldehyd-Kondensationsprodukte, Melamin-Formaldehyd-Kondensationsprodukte, sulfonierte, aromatische Formaldehydkondensationsprodukte, Polyamidoamine, handelsübliche Polyethylenimine und Polydiallyldimethylaminochloride mit einem Molekulargewicht von 2.000 bis 200.000.Suitable polymeric dispersants of component c) are, for example, polymers of ethylenically unsaturated C₃- to C₅-carboxylic acids with a K value of 10 to 50 (measured in 1% strength aqueous solution at 25 ° C. and pH 8 on the sodium salt of the polymers), polymers of Acrylamide, methacrylamide and vinyl pyrrolidone with a K value of 10 to 60, polyvinyl alcohols with a molecular weight of 2,000 to 200,000, lignin sulfonates, phenol-formaldehyde condensation products, urea-formaldehyde condensation products, melamine-formaldehyde condensation products, sulfonated, aromatic formaldehyde condensation products, polyamido , commercially available polyethyleneimines and polydiallyldimethylaminochlorides with a molecular weight of 2,000 to 200,000.

Als polymeres Dispergiermittel der Komponente c) verwendet man vorzugsweise Homopolymerisate der Acrylsäure oder der Methacrylsäure mit einem K-Wert von 10 bis 40 (gemessen in 1 gew.%iger wäßriger Lösung bei 25°C und pH 8 am Na-Salz der Polymerisate). Ein Verfahren zur Herstellung solcher Polymerisate ist beispielsweise aus der US-A-4 301 266 bekannt. Außer den genannten Homopolymerisaten werden in der bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens auch Copolymerisate aus Acrylsäure und/oder Methacrylsäure mit Acrylamidomethylpropansulfonsäuren eingesetzt. Copolymerisate dieser Art sind beispielsweise aus der US-A-4 450 013 als Dispergiermittel und Mahlhilfsmittel für Pigmente bekannt. Bevorzugte, zur Anwendung gelangende Copolymerisate enthalten 5 bis 60 Gew.% Acrylamidomethylpropansulfonsäure einpolymerisiert und haben einen K-Wert in dem Bereich von 12 bis 35 (gemessen am Na-Salz in 1 %iger wäßriger Lösung bei pH 8). Selbstverständlich können auch Copolymerisate aus Acrylsäure und Methacrylsäure, die die Monomeren in jedem beliebigen Verhältnis einpolymerisiert enthalten und einen K-Wert in dem Bereich von 10 bis 50 haben, oder Homopolymerisate von Acrylamido-2-methylpropansulfonsäure mit K-Werten von 10 bis 35, als polymeres Dispergiermittel der Komponente c) eingesetzt werden.As the polymeric dispersant of component c), preference is given to using homopolymers of acrylic acid or methacrylic acid with a K value of 10 to 40 (measured in 1% by weight aqueous solution at 25 ° C. and pH 8 on the sodium salt of the polymers). A method for producing such polymers is known, for example, from US Pat. No. 4,301,266. In addition to the homopolymers mentioned, copolymers of acrylic acid and / or are also used in the preferred embodiment of the process according to the invention Methacrylic acid with acrylamidomethylpropanesulfonic acids used. Copolymers of this type are known, for example, from US Pat. No. 4,450,013 as dispersants and grinding aids for pigments. Preferred copolymers used contain 5 to 60% by weight of copolymerized acrylamidomethylpropanesulfonic acid and have a K value in the range from 12 to 35 (measured using the Na salt in a 1% strength aqueous solution at pH 8). Of course, copolymers of acrylic acid and methacrylic acid, which contain the monomers copolymerized in any ratio and have a K value in the range from 10 to 50, or homopolymers of acrylamido-2-methylpropanesulfonic acid with K values from 10 to 35, as polymeric dispersant of component c) are used.

Die erfindungsgemäß anzuwendenden Beschichtungsmittel werden durch Mischen der einzelnen Komponenten a) bis c) erhalten. Man kann beispielsweise die Pigmente in die wäßrige kationische Polymerdispersion eines Papierleimungsmittels eintragen und dann mindestens eine der gemäß c) in Betracht kommenden Verbindungen zusetzen oder auch so verfahren, daß man zunächst durch Mischen der Komponenten a) und c) eine wäßrige Pigmentanschlämmung herstellt, deren Feststoffkonzentration beispielsweise in dem Bereich von 40 bis 85 Gew.% beträgt und die so erhaltene wäßrige Pigmentanschlämmung dann mit mindestens einer kationischen wäßrigen Polymerdispersion eines Papierleimungsmittels mischt. Besonders bevorzugt ist eine Arbeitsweise, bei der wäßrige Anschlämmungen von Pigmenten eingesetzt werden, die durch Mahlen und Dispergieren der Pigmente in Gegenwart von Polymerisaten ethylenisch ungesättigter C₃- bis C₅-Carbonsäuren mit einem K-Wert von 10 bis 50 (gemessen in 1 %iger wäßriger Lösung bei 25°C und pH 8 am Na-Salz des Polymerisats) erhältlich sind. In diesen Fällen verwendet man als Pigment vorzugsweise Kalziumcarbonat oder Kreide und als polymeres Dispergiermittel Polyacrylsäure oder ein Copolymerisat aus Acrylsäure und Acrylamidomethylpropansulfonsäure mit einem K-Wert von 10 bis 30 (gemessen als Na-Salz wie oben angegeben). Man erhält auf diese Weise besonders feinteilige Pigmentanschlämmungen mit einer Teilchengröße der dispergierten Teilchen von ca. 90 % <2 µm. Derartige Pigmentanschlämmungen haben selbst in hohen Konzentrationen, z.B. bei Feststoffgehalten zwischen 60 und 80 Gew.%, noch eine solche Viskosität, daß die Anschlämmungen leicht zu handhaben sind. Diese Pigmentanschlämmungen werden dann noch mit mindestens einer kationischen wäßrigen Polymerdispersion gemäß b) gemischt. Die Beschichtungsmittel, die dann auf die Oberfläche des Papiers aufgetragen werden, haben einen Feststoffgehalt in dem Bereich von 5 bis 60, vorzugsweise 15 bis 35 Gew.%. Der pH-Wert der Beschichtungsmittel liegt in dem Bereich von 5 bis 10.The coating compositions to be used according to the invention are obtained by mixing the individual components a) to c). For example, the pigments can be introduced into the aqueous cationic polymer dispersion of a paper sizing agent and then at least one of the compounds suitable according to c) can be added, or the procedure can be followed in that an aqueous pigment slurry is first prepared by mixing components a) and c), the solids concentration of which is, for example, in the range from 40 to 85% by weight and the aqueous pigment slurry thus obtained is then mixed with at least one cationic aqueous polymer dispersion of a paper sizing agent. A method of operation is particularly preferred in which aqueous slurries of pigments are used, which are obtained by grinding and dispersing the pigments in the presence of polymers of ethylenically unsaturated C₃- to C₅-carboxylic acids with a K value of 10 to 50 (measured in 1% aqueous Solution at 25 ° C and pH 8 on the sodium salt of the polymer) are available. In these cases, calcium carbonate or chalk is preferably used as the pigment and polyacrylic acid or a copolymer of acrylic acid and acrylamidomethylpropanesulfonic acid with a K value of 10 to 30 (measured as Na salt as stated above) is used as the polymeric dispersant. In this way, particularly finely divided pigment slurries are obtained with a particle size of the dispersed particles of approximately 90% <2 μm. Such pigment slurries, even in high concentrations, for example at solids contents between 60 and 80% by weight, still have such a viscosity that the slurries are easy to handle. These pigment slurries are then mixed with at least one cationic aqueous polymer dispersion according to b). The coating compositions which are then applied to the surface of the paper have a solids content in the range from 5 to 60, preferably 15 to 35% by weight. The pH of the coating compositions is in the range from 5 to 10.

Die Beschichtungsmittel werden entweder ein- oder beidseitig auf Papier aufgebracht. Der Auftrag der Beschichtungsmittel erfolgt vorzugsweise kontinuierlich mit Hilfe bekannter Vorrichtungen, wie sie in der Papierstreicherei verwendet werden, z.B. Blade, Speed-Sizer und Short-dwell-coater. Die Papierbahn wird dabei mit einer Geschwindigkeit von mehr als 750 m/min, vorzugsweise 1000 bis 1400 m/min durch das Beschichtungsaggregat geführt. Diese hohen Geschwindigkeiten bei der Beschichtung erlauben es, die Beschichtung des Papiers unmittelbar mit der Papierherstellung zu koppeln und eine Beschichtungseinheit in eine Papiermaschine zu integrieren. Man erhält dann direkt ein Naturpapier, das beispielsweise im Offset-Druck und Tiefdruck und als Zeitungsdruckpapier verwendet werden kann.The coating compositions are applied to paper on one or both sides. The coating compositions are preferably applied continuously using known devices such as those used in paper coating, e.g. Blade, speed sizer and short dwell coater. The paper web is guided through the coating unit at a speed of more than 750 m / min, preferably 1000 to 1400 m / min. These high coating speeds make it possible to couple the coating of the paper directly with the paper production and to integrate a coating unit into a paper machine. A natural paper is then directly obtained, which can be used, for example, in offset printing and gravure printing and as newsprint.

Bei den hohen Arbeitsgeschwindigkeiten erhält man einen Auftrag an Beschichtungsmittel von 0,5 bis 4, vorzugsweise 1 bis 2,5 g/m². Infolge dieses gegenüber dem üblichen Verfahren zum Streichen von Papier wesentlich geringeren Auftrags an Beschichtungsmittel ist auch die Herstellung relativ leichter Papiere, die eine gute Bedruckbarkeit aufweisen, möglich.At the high working speeds, an application of coating agent of 0.5 to 4, preferably 1 to 2.5 g / m² is obtained. As a result of this application of coating agent, which is considerably less than the conventional process for coating paper, it is also possible to produce relatively light papers which have good printability.

Die in den Beispielen angegebenen Teile sind Gewichtsteile, die Angaben in Prozet bedeuten Gew.%. Die K-Werte wurden nach H.Fikentscher, Cellulose Chemie, Band 13, 48 bis 64 und 71 bis 74 (1932) in wäßriger Lösung bei einem pH-Wert von 8, einer Temperatur von 25°C und einer Polymerkonzentration von 1 % des Natriumsalzes des Copolymerisats bestimmt; dabei bedeutet K = k·10³.

Figure imgb0005
Die relative Viskosität wurde an 1 gew.%igen wäßrigen Lösungen bei 25°C und einem pH von 3,5 mit Hilfe eines Kapillar-Viskosimeters gemessen. Die Intrinsic-Viskosität wurde aus der relativen Viskosität nach der oben angegebenen Formel berechnet.The parts given in the examples are parts by weight, the percentages are percentages by weight. The K values were determined according to H. Fikentscher, Cellulose Chemie, Vol. 13, 48 to 64 and 71 to 74 (1932) in aqueous solution at a pH of 8, a temperature of 25 ° C and a polymer concentration of 1% of Sodium salt of the copolymer determined; means K = k · 10³.
Figure imgb0005
The relative viscosity was measured in 1% by weight aqueous solutions at 25 ° C. and a pH of 3.5 using a capillary viscometer. The intrinsic viscosity was calculated from the relative viscosity using the formula given above.

Die Bedruckbarkeitseigenschaften der beschichteten Papiere wurden anhand der Weiße, Helligkeit, Opazität, des Durchschlagens und des Durchscheinens beurteilt. Für die Bestimmung der Weiße wurde der Reflektionsfaktor nach DIN 53145 gemessen. Die Bestimmung der Opazität erfolgte nach DIN 53146. Die übrigen Kriterien wurden nach folgenden Methoden bestimmt:The printability properties of the coated papers were assessed on the basis of whiteness, brightness, opacity, bleed through and translucency. To determine the whiteness, the reflection factor was measured in accordance with DIN 53145. The opacity was determined in accordance with DIN 53146. The other criteria were determined using the following methods:

HelligkeitsmessungBrightness measurement

Gerät:Device:
Elrepho MeßgerätElrepho measuring device
Filter:Filter:
FMY/CFMY / C

Für diese Messung werden so viele unbedruckte Blätter (mit der gleichen Seite nach oben zeigend) auf einer schwarzen Samtunterlage übereinandergelegt, daß der abzulesende Wert sich nicht mehr durch Hinzufügen weiterer Blätter verändern läßt (Unendlichkeitsmessung). Je nach Größe der Papierbögen bekommt man mit 3 bis 5 Einzelmessungen einen repräsentativen Mittelwert. Die Ergebnisse werden als Reflexionswerte in Prozent, bezogen auf den Weißestandard nach DIN 53 145, angegeben. Die Helligkeitsmessung beruht auf dem gleichen Prinzip wie die Weißgradmessung (DIN 53145).For this measurement, so many unprinted sheets (with the same side facing up) are placed on a black velvet surface that the value to be read can no longer be determined by adding more Leaves can be changed (infinity measurement). Depending on the size of the paper sheets, you get a representative average with 3 to 5 individual measurements. The results are given as reflection values in percent, based on the white standard according to DIN 53 145. The brightness measurement is based on the same principle as the whiteness measurement (DIN 53145).

DurchschlagenPunch through

Gerät für den Druck :Device for printing:
Haindl TiefdruckgerätHaindl gravure printing device
Gerät für die Messung :Device for measurement:
Elrepho MeßgerätElrepho measuring device
Filter für die Messung:Measurement filter:
FMY/CFMY / C
X =X =
Helligkeit verdecktBrightness obscured
Y =Y =
Helligkeit Vollton Rückseite,Brightness full tone back,
Z =Z =
Helligkeit im StapelBrightness in the stack
Messung X:Measurement X:

Ein bedruckter Bogen wird mit einem unbedruckten gleicher Versuchsreihe derart abgedeckt, daß die zwei gleichen Seiten aufeinander liegen (z.B. Siebseite unbedruckt auf Siebgeräte bedruckt). Gemessen wird über dem großen, rechteckigen Volltonfeld ohne schwarze Samtunterlage. Üblicherweise gibt man den Mittelwert aus 3 Einzelmessungen pro Bogen an, wobei die Meßwerte als Reflexionswerte in Prozent, bezogen auf den Weißestandard nach DIN 53 145, angegeben werden.A printed sheet is covered with an unprinted, identical test series in such a way that the two identical sides lie on one another (for example, the printed side is printed unprinted on screening devices). Measurements are taken over the large, rectangular solid field without a black velvet pad. Usually the average of 3 individual measurements per sheet is given, the measurement values being given as reflection values in percent, based on the white standard according to DIN 53 145.

Messung Y:Measurement Y:

Ein bedruckter Bogen wird von der Rückseite her über dem großen rechteckigen Volltonfeld, ebenfalls ohne schwarze Samtunterlage, gemessen. Es wird gleich falls der Mittelwert aus 3 Einzelmessungen angegeben. Auch bei dieser Messung sind die Werte als Reflexionswerte in Prozent, bezogen auf den Weißestandard nach DIN 53 145, angegeben.

Figure imgb0006
A printed sheet is measured from the back over the large rectangular solid field, also without a black velvet pad. The average of 3 individual measurements is also given. In this measurement too, the values are given as reflectance values in percent, based on the white standard according to DIN 53 145.
Figure imgb0006

DurchscheinenTo shine through

Messungen und Geräte: siehe oben unter Durchschlagen

Figure imgb0007
Measurements and devices: see above under breakdown
Figure imgb0007

Der Leimungsgrad der Papiere wurde mit Hilfe des Cobb-Wertes (60 sec) nach DIN 53132 und der Tintenschwimmzeit bis zum 50 %igen Durchschlag mit einer Normtinte nach DIN 53 126 ermittelt.The degree of sizing of the papers was determined with the aid of the Cobb value (60 sec) according to DIN 53132 and the ink swimming time up to 50% breakthrough with a standard ink according to DIN 53 126.

Herstellung der kationischen PolymerdispersionenPreparation of the cationic polymer dispersions Kationische Dispersion 1Cationic dispersion 1

Gemäß der Lehre der DE-C-16 96 326 wird durch Copolymerisation von 20 Gew.-Teilen eines mit Dimethylsulfat quaternierten N-Vinylimidazols, 26 Teilen Acrylnitril und 54 Teilen n-Butylacrylat, eine 40 %ige kationische Polymerdispersion hergestellt, die einen LD-Wert von 84 hat.According to the teaching of DE-C-16 96 326, a 40% cationic polymer dispersion is prepared by copolymerizing 20 parts by weight of an N-vinylimidazole quaternized with dimethyl sulfate, 26 parts of acrylonitrile and 54 parts of n-butyl acrylate, which has an LD- Has a value of 84.

Kationische Dispersion 2Cationic dispersion 2

In einem Polymerisationsgefäß, das mit Rührer, Dosiervorrichtungen und einer Einrichtung für das Arbeiten unter Stickstoff ausgestattet ist, werden unter Rühren 20,7 Teile einer 82 %igen wäßrigen kationischen Kartoffelstärke (ηi = 0,1 dl/g, Substitutionsgrad 0,025 mol Stickstoff pro Mol Glycoseeinheit) in 133 Gew.-Teilen Wasser bei 85°C gelöst. Man fügt 3,7 Teile Eisessig und 0,03 Teile Eisensulfat (FeSO₄.7H₂O) zu, gibt dann 0,8 Teile 30 %iges Wasserstoffperoxid zu und nach 20 Minuten 0,8 g 30 %iges Wasserstoffperoxid. Man dosiert dann innerhalb von 2 Stunden eine Emulsion von 44 Teilen n-Butylacrylat und 39 Teilen Styrol in einer Lösung von 0,045 Teilen Natriumlaurylsulfat in 29 Teilen Wasser und gleichbeginnend damit aus einem zweiten Zulaufgefäß 14 Teile einer 5,5 %igen Wasserstoffperoxidlösung. Nach Beendigung der Monomeren- und der Wasserstoffperoxid-Zugabe wird das Reaktionsgemisch noch eine Stunde bei 85°C nachpolymerisiert. Man erhält eine kationische Dispersion mit einem Feststoffgehalt von 34 % und einem LD-Wert von 86.In a polymerization vessel equipped with a stirrer, metering devices and a device for working under nitrogen, 20.7 parts of an 82% strength aqueous cationic potato starch (η i = 0.1 dl / g, degree of substitution 0.025 mol of nitrogen per Mol of glycose unit) dissolved in 133 parts by weight of water at 85.degree. 3.7 parts of glacial acetic acid and 0.03 part of iron sulfate (FeSO₄.7H₂O) are added, then 0.8 part of 30% hydrogen peroxide is added and after 20 minutes 0.8 g of 30% hydrogen peroxide. An emulsion of 44 parts of n-butyl acrylate and 39 parts of styrene in a solution of 0.045 parts of sodium lauryl sulfate in 29 parts of water is then metered in over the course of 2 hours, and 14 parts of a 5.5% strength hydrogen peroxide solution from a second feed vessel. After the addition of monomers and hydrogen peroxide has ended, the reaction mixture is polymerized for a further hour at 85.degree. A cationic dispersion with a solids content of 34% and an LD value of 86 is obtained.

Kationische Dispersion 3Cationic dispersion 3

In einem 1-l-Vierhalskolben, der mit Rührer, Rückflußkühler, Dosiervorrichtungen und einer Einrichtung zum Arbeiten unter Stickstoffatmosphäre ausgestattet ist, werden 148 g Wasser und 34,0 g der im folgenden beschriebenen Stärke I sowie 8,4 g der im folgenden ebenfalls charakterisierten Stärke II vorgelegt und unter Rühren auf eine Temperatur von 85°C erhitzt. Bei der Stärke I handelt es sich um eine abgebaute, kationische Kartoffelstärke mit einer Intrinsic-Viskosität ηi von 0,47 dl/g, einem Substitutionsgrad von 0,027 Mol Stickstoff pro Mol Glykoseeinheit sowie 0,015 Mol COOH-Gruppen pro Mol Glykoseeinheit. Der Feststoffgehalt der Stärke beträgt 83 %. Bei der Stärke II handelt es sich um eine abgebaute, kationische Kartoffelstärke mit einer Intrinsic-Viskosität ηi von 1,16 dl/g mit einem Substitutionsgrad von 0,07 Mol Stickstoff pro Mol Glykoseeinheit. Der Feststoffgehalt der Stärke beträgt 83 %.In a 1 liter four-necked flask equipped with a stirrer, reflux condenser, metering devices and a device for working under a nitrogen atmosphere, 148 g of water and 34.0 g of starch I described below and 8.4 g of the following are also characterized Starch II submitted and heated to a temperature of 85 ° C with stirring. Starch I is a degraded, cationic potato starch with an intrinsic viscosity η i of 0.47 dl / g, a degree of substitution of 0.027 mol nitrogen per mol glycose unit and 0.015 mol COOH groups per mol glycose unit. The solids content of the starch is 83%. Starch II is a degraded, cationic potato starch with an intrinsic viscosity η i of 1.16 dl / g with a degree of substitution of 0.07 mole nitrogen per mole glycose unit. The solids content of the starch is 83%.

Nach 30 minütigem Rühren bei 85°C werden 2,6 g einer wäßrigen 10 %igen Kalziumacetatlösung und 10 g einer 1 %igen Enzymlösung (α-Amylase A) zugefügt. Nach weiteren 20 Minuten bei 85°C wird der enzymatische Stärkeabbau durch Zugabe von 7,5 g Eisessig abgestoppt. Anschließend werden 16,5 g einer 1 %igen Eisen(II)sulfatlösung und 1,75 g 30 %iges Wasserstoffperoxid zugesetzt. Nach 20 Minuten ist das Wasserstoffperoxid zersetzt und der oxidative Stärkeabbau beendet. Die Intrinsic-Viskosität der Stärkemischung beträgt dann 0,08 dl/g. Man gibt dann 1,8 g 30 %iges Wasserstoffperoxid zu und beginnt sofort damit, eine Emulsion, die aus 93,7 g Acrylnitril, 76,4 g n-Butylacrylat und einer Lösung von 0,2 g Natrium-C₁₄-Alkylsulfonat in 50 g Wasser besteht, gleichmäßig innerhalb einer Stunde sowie gleichzeitig separat davon 50 g einer 3,12 %igen Wasserstoffperoxidlösung innerhalb von 1,75 Stunden zuzufügen. Während dieser Zeit und noch 60 Minuten nach dem Ende der Monomer- und Wasserstoffperoxiddosierung wird die Temperatur des Reaktionsgemisches auf 85°C gehalten. Es resultiert eine kationische Dispersion mit einem Feststoffgehalt von 40,5 % und einem LD-Wert von 82 (Teilchendurchmesser ohne Stärkehülle, 143 nm).After stirring for 30 minutes at 85 ° C., 2.6 g of an aqueous 10% calcium acetate solution and 10 g of a 1% enzyme solution (α-amylase A) are added. After a further 20 minutes at 85 ° C, the enzymatic starch degradation is stopped by adding 7.5 g of glacial acetic acid. Then 16.5 g of a 1% iron (II) sulfate solution and 1.75 g of 30% hydrogen peroxide are added. After 20 minutes the hydrogen peroxide has decomposed and the oxidative starch degradation has ended. The intrinsic viscosity of the starch mixture is then 0.08 dl / g. 1.8 g of 30% hydrogen peroxide are then added and an emulsion consisting of 93.7 g of acrylonitrile, 76.4 g of n-butyl acrylate and a solution of 0.2 g of sodium C₁₄-alkyl sulfonate in 50 is immediately started g of water consists of adding 50 g of a 3.12% strength hydrogen peroxide solution evenly within one hour and separately at the same time within 1.75 hours. During this time and 60 minutes after the end of the monomer and hydrogen peroxide metering, the temperature of the reaction mixture is kept at 85 ° C. The result is a cationic dispersion with a solids content of 40.5% and an LD value of 82 (particle diameter without starch shell, 143 nm).

Vergleichsdispersion 1Comparative dispersion 1

Durch Polymerisieren nach Art einer Emulsionspolymerisation bei 80°C wird eine anionische Copolymerisatdispersion hergestellt, indem man eine Emulsion von 66,3 Teilen n-Butylacrylat, 14 Teilen Acrylnitril, 15 Teilen Styrol und 4 Teilen Acrylsäure und gleichzeitig damit eine wäßrige Lösung von Kaliumperoxidisulfat in eine wäßrige Lösung von Natriumlaurylsulfonat dosiert und darin polymerisiert. Man erhält eine 50 %ige anionische Polymerdispersion mit einem LD-Wert von 72.Anionic copolymer dispersion is prepared by polymerizing in the manner of an emulsion polymerization at 80 ° C. by mixing an emulsion of 66.3 parts of n-butyl acrylate, 14 parts of acrylonitrile, 15 parts of styrene and 4 parts of acrylic acid and at the same time an aqueous solution of potassium peroxydisulfate in one metered aqueous solution of sodium lauryl sulfonate and polymerized therein. A 50% anionic polymer dispersion with an LD value of 72 is obtained.

Vergleichsdispersion 2Comparative dispersion 2

Entsprechend der Lehre der JP-A-58/115196 werden in einem mit einem Rührer und einem Rückflußkühler versehenen 2-l-Kolben 500 Teile einer 6,6 %igen wäßrigen Lösung einer oxidativ abgebauten Kartoffelstärke vorgelegt. Die abgebaute Kartoffelstärke hat eine Intrinsic-Viskosität ηi von 0,27 dl/g und einen Substitutionsgrad von 0,034 Mol Carboxylgruppen pro Mol Glukoseeinheit. Zu der auf 80 bis 90°C erwärmten Vorlage gibt man dann 44 Teile Styrol, 71,7 Teile n-Butylacrylat und 21,7 Teile tert.-Butylacrylat sowie 3 Teile Kaliumperoxidisulfat in 50 Teilen Wasser. Man erhält eine anionische Polymerdispersion mit einem Feststoffgehalt von 25 % und einem LD-Wert von 90.According to the teaching of JP-A-58/115196, 500 parts of a 6.6% strength aqueous solution of an oxidatively degraded potato starch are placed in a 2 l flask provided with a stirrer and a reflux condenser. The degraded potato starch has an intrinsic viscosity η i of 0.27 dl / g and a degree of substitution of 0.034 moles of carboxyl groups per mole of glucose unit. 44 parts of styrene, 71.7 parts of n-butyl acrylate and 21.7 parts of tert-butyl acrylate and 3 parts of potassium peroxydisulfate in 50 parts of water are then added to the template, which has been heated to 80 to 90 ° C. An anionic polymer dispersion with a solids content of 25% and an LD value of 90 is obtained.

Allgemeine Vorschrift für die Herstellung der BeschichtungsmittelGeneral regulations for the production of coating materials

In einem Kessel, der mit einem Rührer versehen ist, werden 100 kg des in der Tabelle angegebenen Pigments unter Zusatz von jeweils 0,5 kg des Natriumsalzes eines Homopolymerisats der Acrylsäure vom K-Wert 20 in 150 kg Wasser dispergiert. Separat davon wird jeweils eine wäßrige Stärkelösung hergestellt, die man durch Lösen von 6,7 kg einer kationischen bzw. oxidativ-abgebauten Stärke in 70 kg Wasser erhält. Die kationische Stärke hat eine Intrinsic-Viskosität ηi von 1,6 und einen Substitutionsgrad von 0,09 Mol Stickstoff pro Mol Glukoseeinheit. Die oxidativ abgebaute Stärke hat eine Intrinsik-Viskosität von ηi von 0,6 dl/g und einen Substitutionsgrad von 0,025 Mol COOH-Gruppen pro Mol Glukoseeinheit.In a kettle equipped with a stirrer, 100 kg of the pigment shown in the table are dispersed in 150 kg of water with the addition of 0.5 kg of the sodium salt of a homopolymer of acrylic acid with a K value of 20. An aqueous starch solution is prepared separately, which is obtained by dissolving 6.7 kg of a cationic or oxidatively degraded starch in 70 kg of water. The cationic starch has an intrinsic viscosity η i of 1.6 and a degree of substitution of 0.09 mol nitrogen per mol glucose unit. The oxidatively degraded starch has an intrinsic viscosity of η i of 0.6 dl / g and a degree of substitution of 0.025 moles of COOH groups per mole of glucose unit.

Man stellt dann jeweils die Beschichtungsmittel her, indem man zu der oben beschriebenen Mischung aus Pigmentanschlämmung und löslicher Stärke jeweils 33,3 kg, bezogen auf Polymerisat, der kationischen Dispersionen 1 bis 3 und der Vergleichsdispersionen 1 und 2 zusetzt. Durch Zugabe von jeweils 150 kg Wasser wird das Beschichtungsmittel auf einen Feststoffgehalt von ca. 25 Gew.% eingestellt.The coating compositions are then prepared in each case by adding 33.3 kg, based on the polymer, of the cationic dispersions 1 to 3 and of the comparative dispersions 1 and 2 to the mixture of pigment slurry and soluble starch described above. The coating agent is adjusted to a solids content of approx. 25% by weight by adding 150 kg of water in each case.

Mit den oben beschriebenen Beschichtungsmitteln wird jeweils ein Naturtiefdruckpapier eines Flächengewichts von 60 g/m² in einer Technikums-Streichanlage mittels eines Blade-Auftragswerkes bei einer Geschwindigkeit der Papierbahn von 1000 m/min beidseitig gestrichen. Das Auftragsgewicht beträgt 1 g/m² und Seite. Nach dem Auftragen des Beschichtungsmittels erfolgt jeweils ein Trocknen der beschichteten Papierbahn. Der Tabelle sind die jeweils verwendeten Beschichtungsmittel sowie die Eigenschaften der jeweils erhaltenen beschichteten Papiere angegeben. Man ersieht daraus, daß erfindungsgemäß eine beträchtliche Verbesserung der Bedruckbarkeit gegenüber den Vergleichsdispersionen erzielt wird.

Figure imgb0008
A natural gravure paper with a basis weight of 60 g / m² is coated on both sides with the coating agents described above in a technical coater by means of a blade applicator at a speed of the paper web of 1000 m / min. The application weight is 1 g / m² and page. After the coating agent has been applied, the coated paper web is dried in each case. The table shows the coating compositions used in each case and the properties of the coated papers obtained in each case. It can be seen from this that, according to the invention, a considerable improvement in the printability compared to the comparative dispersions is achieved.
Figure imgb0008

Claims (10)

  1. A process for improving the printability of paper by applying an aqueous coating agent consisting of pigments and binders to one or both surfaces of the paper and drying the coated paper, wherein a mixture of
    a) 100 parts by weight of a finely divided pigment,
    b) from 5 to 70 parts by weight, based on polymer, of a cationic aqueous polymer dispersion of a paper size whose polymer has a glass transition temperature of from 5 to 80°C and
    c) from 0.01 to 10 parts by weight of a surfactant which interferes with the formation of the paper size or of a polymeric dispersant
    is applied as the coating agent in an amount of from 0.5 to 4 g/m².
  2. A process as claimed in claim 1, wherein up to 90% by weight of the polymer of component (b) is replaced with a water-soluble polysaccharide.
  3. A process as claimed in claim 1, wherein from 5 to 30% by weight of the polymer of component (b) is replaced with a water-soluble polysaccharide.
  4. A process as claimed in any of claims 1 to 3, wherein a coating agent is used which is obtainable by mixing components a) and c) in the form of aqueous pigment suspensions with component b).
  5. A process as claimed in claim 4, wherein components a) and c) are used in the form of aqueous suspensions of pigments, which are obtainable by milling and dispersing the pigments in the presence of a polymer of an ethylenically unsaturated C₃-C₅-carboxylic acid having a K value of from 10 to 50 (measured in 1% strength by weight aqueous solution at 25°C and pH 8 on the Na salt of the polymer) as a polymeric dispersant of component c).
  6. A process as claimed in any of claims 1 to 5, wherein a cationic polymer dispersion which contains from 1 to 40% by weight of one or more cationic monomers as copolymerized units is used as component b).
  7. A process as claimed in any of claims 1 to 6, wherein a polymer dispersion is used which is obtainable by polymerizing the monomers in the presence of from 0.2 to 40% by weight, based on the monomers, of a cationic emulsifier.
  8. A process as claimed in claim 7, wherein cationic starch is used as the cationic emulsifier.
  9. A process as claimed in claim 7, wherein the cationic emulsifier used is a polymer which contains, as copolymerized units, from 5 to 100% by weight of a monomer possessing basic nitrogen atoms and has a solution viscosity ηrel of from 1.05 to 1.4 (measured in 1% strength by weight aqueous solution at 25 °C and pH 3.5).
  10. A process as claimed in claim 7, wherein the component b) used is a polymer dispersion which is obtainable by copolymerization of from 10 to 56 parts by weight of a monomer mixture of
    1) from 20 to 65% by weight of acrylonitrile, methacrylonitrile or styrene,
    2) from 35 to 80% by weight of one or more acrylates or methacrylates of monohydric, saturated C₃-C₈-alcohols, vinyl acetate, vinyl propionate or 1,3-butadiene and
    3) from 0 to 10% by weight of other ethylenically unsaturated copolymerizable monomers,
    by an emulsion polymerization method in 100 parts by weight of an aqueous solution which contains from 1.5 to 25% by weight of a cationic starch having a viscosity ηi of from 0.04 to 0.50 dl/g, at from 40 to 100°C in the presence of an initiator possessing peroxide groups.
EP88114757A 1987-09-15 1988-09-09 Process for improving the printability of paper Expired - Lifetime EP0307816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88114757T ATE82783T1 (en) 1987-09-15 1988-09-09 METHOD OF IMPROVING THE PRINTABILITY OF PAPER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873730887 DE3730887A1 (en) 1987-09-15 1987-09-15 METHOD FOR IMPROVING THE PRINTABILITY OF PAPER
DE3730887 1987-09-15

Publications (3)

Publication Number Publication Date
EP0307816A2 EP0307816A2 (en) 1989-03-22
EP0307816A3 EP0307816A3 (en) 1990-12-12
EP0307816B1 true EP0307816B1 (en) 1992-11-25

Family

ID=6336006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114757A Expired - Lifetime EP0307816B1 (en) 1987-09-15 1988-09-09 Process for improving the printability of paper

Country Status (13)

Country Link
US (1) US4908240A (en)
EP (1) EP0307816B1 (en)
JP (1) JPH0197297A (en)
KR (1) KR890005349A (en)
AT (1) ATE82783T1 (en)
AU (1) AU603258B2 (en)
CA (1) CA1327146C (en)
DE (2) DE3730887A1 (en)
DK (1) DK510788A (en)
ES (1) ES2037165T3 (en)
FI (1) FI884196A (en)
NO (1) NO884078L (en)
NZ (1) NZ226157A (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045426A (en) * 1989-06-21 1991-09-03 The Standard Register Company Toner adhesion-enhancing coating for security documents
US5038997A (en) * 1990-02-26 1991-08-13 Brown & Williamson Tobacco Corporation Water resistant paperboard and method of making same
US5216065A (en) * 1990-11-29 1993-06-01 The Mead Corporation Emulsion polymerization with large particle size
US5370770A (en) * 1992-11-09 1994-12-06 The Mead Corporation Method for deinking printed waste paper using soybean peroxidase
DE4324028C1 (en) * 1993-07-17 1994-12-01 Feldmuehle Ag Stora Roll paper coated on both sides and process for its production
DE19545182C2 (en) * 1995-03-30 1998-09-17 Oji Paper Co Process for the production of coated paper
KR970704942A (en) * 1995-06-06 1997-09-06 데릭 제이 맥코마크 Cellulose sheet material
US7208225B2 (en) * 1995-06-30 2007-04-24 Lafarge Platres Prefabricated plaster board
GB2310216A (en) * 1995-10-13 1997-08-20 Ecc Int Ltd Coating composition
AU7309296A (en) * 1995-10-13 1997-04-30 Ecc International Limited Paper coating
US6087457A (en) * 1996-03-29 2000-07-11 Eka Chemicals Ab Surface sizing of cellulose based products
AU723792B2 (en) * 1996-08-09 2000-09-07 Ever Ready Limited Coated paper separators for electrolytic cells
US6060203A (en) * 1996-08-27 2000-05-09 Nashua Corporation High gloss electrostatographic substrates
FI108283B (en) * 1997-01-13 2001-12-31 M Real Oyj Procedure for coating paper and cardboard
FI105840B (en) 1997-09-16 2000-10-13 Metsae Serla Oyj A method for coating a web of material
FI107274B (en) 1997-09-16 2001-06-29 Metsae Serla Oyj Procedure for making base paper for fine paper
FI104502B (en) 1997-09-16 2000-02-15 Metsae Serla Oyj A method of making a paper web
FI103417B1 (en) 1997-09-16 1999-06-30 Metsae Serla Oyj Paper web and method of making it
DE19806745A1 (en) 1998-02-18 1999-08-19 Bayer Ag Aqueous polymer dispersion useful as surface sizing agent for paper, cardboard etc.
FI108950B (en) 1998-03-13 2002-04-30 M Real Oyj A process for making coated wood-free paper
FI111649B (en) 1998-05-11 2003-08-29 M Real Oyj The use of calcium carbonate is made from calcium oxalate as pigment
US6156384A (en) * 1998-08-26 2000-12-05 Westvaco Corporation Ink-jet printing method
US20030105190A1 (en) * 1999-08-05 2003-06-05 Diehl David F. Latex binder for nonwoven fibers and article made therewith
US6337359B1 (en) 1999-08-05 2002-01-08 Gencorp Inc. Latex binder for nonwoven fibers and article made therewith
US6881300B2 (en) * 1999-12-02 2005-04-19 Space Environmental Technology Company, Inc. Sizing agent and recording paper comprising sizing agent
US20040226675A1 (en) * 2000-01-11 2004-11-18 Raisio Chemicals Ltd. Method for improving printability and coatability of paper and board
KR100337995B1 (en) * 2000-03-15 2002-05-24 정삼열 Method of making recycleable paper that has touch ffeeling of leather
DE10039388A1 (en) 2000-08-11 2002-02-21 Basf Ag Starchy polymer dispersions
JP2002173895A (en) * 2000-09-25 2002-06-21 Nippon Paper Industries Co Ltd Gravure printing paper
US20050150625A1 (en) * 2000-09-25 2005-07-14 Takashi Ochi Gravure paper
DE50102060D1 (en) * 2001-08-01 2004-05-27 Real Zanders Gmbh M Patterned paper
CN100400749C (en) * 2001-12-26 2008-07-09 日本制纸株式会社 Dullish coated paper for printing
DE10218418A1 (en) 2002-04-24 2003-11-06 Basf Ag Aqueous polymer dispersions based on copolymers of vinyl aromatics and butadiene, processes for their preparation and their use as sizes for paper
US20040204535A1 (en) * 2002-05-20 2004-10-14 Philip Confalone Cationic coating for printable surfaces
ITVA20020041A1 (en) * 2002-07-03 2004-01-05 Lamberti Spa COMPOSITIONS FOR PAPER COATING FOR ROTOCALCO PRINTING
EP1550770B1 (en) * 2002-08-27 2009-07-01 Kao Corporation method of improving paper stiffness
ATE312238T1 (en) * 2003-01-15 2005-12-15 M Real Oyj PATTERNED PAPER WITH IMPROVED PRINTING AND LABELING PROPERTIES
CN1795307B (en) * 2003-04-07 2010-09-08 国际纸业公司 Papers for liquid electrophotographic printing and method for making same
DE10318066A1 (en) * 2003-04-17 2004-11-11 Basf Ag Process for treating paper surfaces
EP1522629A1 (en) * 2003-10-08 2005-04-13 M-real Oyj Coated paper for printing
CN101351596A (en) 2005-11-01 2009-01-21 国际纸业公司 A paper substrate having enhanced print density
US7682438B2 (en) 2005-11-01 2010-03-23 International Paper Company Paper substrate having enhanced print density
EP1844945A1 (en) * 2006-04-13 2007-10-17 M-real Oyj Process of applying interference pigments onto a substrate
US7954714B2 (en) * 2006-09-18 2011-06-07 Xerox Corporation Inline coatings process for xerographically prepared MICR checks
US20100324178A1 (en) * 2006-12-14 2010-12-23 Basf Se Finely divided, starch-containing polymer dispersions
KR100845602B1 (en) * 2007-01-31 2008-07-10 주식회사 케이에프텍 Artificial leather paper
WO2008144074A1 (en) * 2007-05-21 2008-11-27 International Paper Company Recording sheet with improved image waterfastness, surface strength, and runnability
WO2009085308A2 (en) * 2007-12-26 2009-07-09 International Paper Company A paper substrate containing a wetting agent and having improved print mottle
US9296244B2 (en) * 2008-09-26 2016-03-29 International Paper Company Composition suitable for multifunctional printing and recording sheet containing same
WO2010039996A1 (en) * 2008-10-01 2010-04-08 International Paper Company A paper substrate containing a wetting agent and having improved printability
US8652593B2 (en) * 2009-12-17 2014-02-18 International Paper Company Printable substrates with improved brightness from OBAs in presence of multivalent metal salts
US8574690B2 (en) * 2009-12-17 2013-11-05 International Paper Company Printable substrates with improved dry time and acceptable print density by using monovalent salts
US9580869B2 (en) * 2010-12-30 2017-02-28 Kimberly-Clark Worldwide, Inc. Process for applying high viscosity composition to a sheet with high bulk
US10837141B2 (en) * 2015-05-18 2020-11-17 Basf Se Use of a coating layer with an acrylate polymer on a paper substrate for blocking oxygen transfer
KR20180008543A (en) 2015-05-18 2018-01-24 바스프 에스이 Use of a coating layer having a styrene-butadiene copolymer on a paper substrate for blocking oxygen transfer
CN105088857A (en) * 2015-08-18 2015-11-25 浙江华川实业集团有限公司 High-quality paper and preparation method thereof
RU2757921C2 (en) * 2017-03-30 2021-10-22 Кемира Оюй Composition for surface sizing, method for its preparation and application

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320080A (en) * 1964-06-05 1967-05-16 Nat Starch Chem Corp Water resistant paper coating compositions
US3671472A (en) * 1968-10-07 1972-06-20 Rohm & Haas Mineral-coating compositions comprising an amine polymer and an amylaceous substance and papers coated therewith
DE2220443A1 (en) * 1972-04-26 1973-11-15 Basf Ag BINDERS FOR PAPER COATING COMPOUNDS
JPS5949360B2 (en) * 1977-08-10 1984-12-01 日本ゼオン株式会社 Paper coating composition
US4304703A (en) * 1980-06-23 1981-12-08 Ppg Industries, Inc. Cationic polymer dispersions and their method of preparation
US4554181A (en) * 1984-05-07 1985-11-19 The Mead Corporation Ink jet recording sheet having a bicomponent cationic recording surface
FR2603042B1 (en) * 1986-08-22 1988-11-10 Coatex Sa COMPLEX PIGMENT COMPOSITIONS FOR COATING PAPER

Also Published As

Publication number Publication date
JPH0197297A (en) 1989-04-14
FI884196A (en) 1989-03-16
DK510788A (en) 1989-03-16
EP0307816A3 (en) 1990-12-12
CA1327146C (en) 1994-02-22
AU2220188A (en) 1989-03-16
AU603258B2 (en) 1990-11-08
NO884078L (en) 1989-03-16
DE3876192D1 (en) 1993-01-07
NO884078D0 (en) 1988-09-14
FI884196A0 (en) 1988-09-13
US4908240A (en) 1990-03-13
ATE82783T1 (en) 1992-12-15
EP0307816A2 (en) 1989-03-22
NZ226157A (en) 1990-05-28
DE3730887A1 (en) 1989-03-23
DK510788D0 (en) 1988-09-14
KR890005349A (en) 1989-05-13
ES2037165T3 (en) 1993-06-16

Similar Documents

Publication Publication Date Title
EP0307816B1 (en) Process for improving the printability of paper
EP0735065B1 (en) Amphoteric polymer dispersion, process for preparation and its use
EP0257412B1 (en) Paper-sizing agent based on particulate aqueous dispersions
EP0276770B1 (en) Paper-sizing agent based on particulate aqueous dispersions
DE69130936T3 (en) Multi-shell particles in emulsion and process for their preparation
WO1996030420A9 (en) Amphoteric and anionic polymer dispersions, process for their preparation and use thereof
EP1501880B1 (en) Aqueous polymer dispersions, based on copolymers of vinyl aromatics and butadiene, method for their production and their use as sizing agents for paper
DE60016186T2 (en) POLYMER DISPERSION AND METHOD FOR THE PRODUCTION THEREOF
EP2373745B1 (en) Aqueous suspensions of fine-particulate fillers, method for the manufacture thereof and use thereof for the manufacture of papers containing fillers
EP2300664B1 (en) Aqueous suspensions of fine-particulate fillers, method for the manufacture thereof and use thereof for the manufacture of fluid-containing papers
WO1999042490A1 (en) Fine-particle polymer dispersions for paper sizing
DE4338486A1 (en) Process for the production of recording materials for ink jet printers
DE2941714A1 (en) PAPER PRODUCT MADE OF CELLULOSE FIBERS AND AN ORGANIC PIGMENT
DE60017144T2 (en) COATING COMPOSITION
DE2107287B2 (en) Process for the production of paper coating slips
DE2605575C2 (en) Banknote and security document paper
EP0051144B1 (en) Small-particles polymer dispersions containing polymerised nitrogen-containing monomers
EP0024602A1 (en) Aqueous dispersions, their preparation and their use in preparing coating compositions
DE2017323A1 (en) coating compound
EP0484520B1 (en) Method of treating an aqueous suspension of a pigment, and a paper-manufacturing process
DE1546315B2 (en) Binder mixture for paper coating slips
DE1214985B (en) Use of dispersions of cationic copolymers for sizing paper
DE1913667B2 (en) POLYVINYL ALCOHOL BASED PIGMENT BINDERS FOR PAPER COATING COMPOUNDS
DE19821089A1 (en) Preparation of aqueous suspension of finely-divided particulate for paper production
DE4141860A1 (en) Newspaper covering layer with good printing lustre - comprises mixt. of pigments consisting of clay, amphoteric copolymer matrix mfd. by copolymerisation of unsatd. amine with butadiene]

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

RHK1 Main classification (correction)

Ipc: D21H 19/58

17P Request for examination filed

Effective date: 19901108

17Q First examination report despatched

Effective date: 19920323

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 82783

Country of ref document: AT

Date of ref document: 19921215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921207

REF Corresponds to:

Ref document number: 3876192

Country of ref document: DE

Date of ref document: 19930107

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2037165

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930804

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930805

Year of fee payment: 6

Ref country code: CH

Payment date: 19930805

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930812

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930827

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930901

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930906

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930920

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940909

Ref country code: AT

Effective date: 19940909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940910

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19940910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 88114757.3

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940909

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 88114757.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050909