EP0306420B1 - Verfahren zur Entfernung von Spuren radioaktiver Elemente, die während der Lagerung von Uran gebildet werden, das bei der Wiederaufbereitung von nuklearen Brennstoffen anfällt - Google Patents

Verfahren zur Entfernung von Spuren radioaktiver Elemente, die während der Lagerung von Uran gebildet werden, das bei der Wiederaufbereitung von nuklearen Brennstoffen anfällt Download PDF

Info

Publication number
EP0306420B1
EP0306420B1 EP88420294A EP88420294A EP0306420B1 EP 0306420 B1 EP0306420 B1 EP 0306420B1 EP 88420294 A EP88420294 A EP 88420294A EP 88420294 A EP88420294 A EP 88420294A EP 0306420 B1 EP0306420 B1 EP 0306420B1
Authority
EP
European Patent Office
Prior art keywords
uranium
porous material
purification
hexafluoride
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88420294A
Other languages
English (en)
French (fr)
Other versions
EP0306420A1 (de
Inventor
Alain Sarda
Jean-Pierre Segaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uranium Pechiney
Original Assignee
Uranium Pechiney
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uranium Pechiney filed Critical Uranium Pechiney
Publication of EP0306420A1 publication Critical patent/EP0306420A1/de
Application granted granted Critical
Publication of EP0306420B1 publication Critical patent/EP0306420B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Definitions

  • the invention relates to a process for purifying traces of particularly radioactive elements generated during the storage of uranium resulting from the reprocessing of irradiated nuclear fuels.
  • the uranium fuel is treated in a reprocessing plant where, after cooling, said irradiated fuel undergoes a succession of operations intended to selectively separate uranium, transuranium elements, including plutonium, and fission products.
  • the uranium thus obtained separated from the nuclear reaction products is called reprocessing or ex-reprocessing uranium; it must be as pure as possible in order to be able to be reused in the usual fuel cycle with a view to its enrichment and its reintroduction into a nuclear reactor.
  • this thorough purification provides a reprocessed uranium whose radioactivity level, meeting the specifications, is low and allows its use under normal conditions.
  • this uranium can be stored in the form of nitrate hexahydrate, oxide, tetrafluoride, hexafluoride, etc.
  • the periods range from ⁇ s to a few days, to 1, 91 years for Th 228 and 72 years for U232.
  • T1 208 is particularly annoying, it emits ⁇ and has a strong irradiating power ⁇ (2.6 MeV), and becomes annoying as soon as U 232 has given birth to a sufficient quantity of Th 228 and that the descendants of this have been generated in sufficient quantity.
  • this periodic purification can be done by a treatment which consists in putting the stored product in solution, then in purifying the solution obtained by conventional means such as resins, liquid-liquid exchange with solvents, selective precipitation ... before returning it to its storage form.
  • the subject of the invention is a simple non-polluting process for the purification of reprocessed uranium, therefore previously rid of the products of nuclear reactions such as transuranics and fission products, said uranium having reached a high radioactivity, following storage. prolonged, making it unsuitable for any storage or any use under normal protection conditions, this purification making it possible to lower said radioactivity to very low values, for example less than a few hundred Bq per g of U again making it possible to storage and / or use of uranium ex reprocessing under normal conditions.
  • Another object of the invention is to obtain uranium ex reprocessing which can be used directly in an installation for enriching and / or manufacturing nuclear fuel.
  • the method according to the invention makes it possible to resume said stock periodically to purify it in a simple and inexpensive manner before it reaches a level of inhibiting radioactivity; this therefore allows a new storage period under normal conditions, pending a further purification operation according to the invention, or another use also under normal conditions of radiation protection and contamination.
  • Another object of the invention is to have a process for purifying traces of radioactive elements of filiation easy to implement inexpensive and non-polluting: the impurities are recovered in compact form and not disseminated, their storage is thus easy, also inexpensive and does not generate effluent.
  • the invention is a process for purifying reprocessed uranium from uranium fuel, which as such is free, following a prior separation treatment, of the elements generated during the passage of uranium fuel, in a nuclear reactor, said reprocessing uranium having been stored and having reached during this storage a sufficiently high radioactivity capable of preventing its use under normal conditions; said purification process intended to eliminate this radioactivity due to the parentage of uranium 232 present, is characterized in that said reprocessing uranium is passed in its form of liquid or gaseous hexafluoride through a chemically inert porous material.
  • the purpose of the process according to the invention is therefore to eliminate the parentage products of uranium 232 which appear during storage and which cause the radioactivity to be eliminated when it becomes too high, for example greater than a value fixed by the regulation.
  • the reprocessed uranium to be purified, after storage, is put into the form of hexafluoride using known methods, insofar as it is stored in another chemical form.
  • the process consists in initially disposing of hexafluoride under conditions of temperature and pressure such that it is in the liquid or gaseous state. When it is stored in a container, it is enough to that of heating the latter in an oven.
  • the pressure must also have a value high enough to then be able to pass the flow of hexafluoride frontally through a porous material contained in an inert confinement enclosure, maintained in temperature by insulation and / or heating; the purified flow leaving the porous material is either recovered in a water-cooled storage container, or sent directly to a processing or use facility of any kind, for example enrichment, conversion, etc.
  • this process consists in circulating a main flow of UF6 inside porous tubes, called support tubes, internally covered with an active layer, or barrier layer, asymmetrical, the enrichment being made thanks to the selective tangential extraction of light isotopes from the UF6 flux, by diffusion through the barrier layer.
  • the porous tube only serves as a support for the active layer and does not come into play in the diffusion phenomenon.
  • the active layer is asymmetrical, that is to say that it is practically dense on the side in contact with the upstream UF6 flow so that the diffusion takes place, and has a microporosity on the other side in contact of the support tube to promote the passage of the partially enriched extracted UF6.
  • the porous material can be made of fabrics stacked one on top of the other. on the others, the flow of hexafluoride passing through them perpendicular to their surface, or of a canvas wound on itself, the flow of hexafluoride passing through it parallel to its winding axis; said fabrics must be chemically inert, and withstand the conditions of pressure and temperature.
  • fabrics are metallic, for example of the reps type; all inert metals can be used, for example steels, particularly stainless steel, nickel and its alloys, inconel or better still monel.
  • any porous sintered materials chemically inert, ceramic, for example alumina, nitrides, carbides, etc. or preferably made of metal, or even sintered metallic felts based on fiber, can be used, the metals which can be used are the same as those mentioned above.
  • the enclosure and the porous body must be chemically inert, i.e. they must resist the action of fluorine and its derivatives, HF fluorides, UF6 ...
  • the quantity by weight of parentage products to be purified is minute, practically non-dosable as such, given the very small quantity of uranium 232 present at the start (a few ppb); therefore care must be taken that the sampling for analysis is always representative. Also their analysis is usually done through their radioactivity and preferably on very large samples or even all of the hexafluoride used.
  • parentage products are in the form of solid or gaseous fluorides and that in the case where they are in the form of particles of solid fluorides in liquid UF6, or in gaseous UF6, these are probably of minute or even molecular size, due to the mode of generation "in situ" of parentage products.
  • the porous material fixes all of the parentage products although its structure and its breaking capacity can be chosen from a very wide range.
  • the latter can be chosen in a very wide range, too low values reducing the possible flow rates of hexafluoride for the same surface, too high values requiring a greater thickness of the porous material.
  • the equivalent diameter of the pores must be less than 100 ⁇ m and preferably less than 50 ⁇ m. This diameter is measured by bulloscopy according to standard ISO 4003-1977 (F).
  • the thickness of the porous material is generally at least 100 mm when it is canvas or metallic sintered felt.
  • the thickness is generally between 0.5 and 10 mm and preferably between 1.5 and 5 mm.
  • the speed of passage of the liquid or gaseous hexafluoride is usually chosen to be less than 250 m / h and preferably between 15 and 100 m / h; the contact time with the porous material is usually greater than a few hundredths of a second and preferably between 0.1 and 10 sec.
  • the method according to the invention makes it possible to eliminate at least 98% of the radioactivity present in the starting hexafluoride and due to the parentage of uranium 232, and this purification even generally reaches more than 99.7%.
  • the process is applicable to uranium reprocessing of any isotopic uranium 235 content; it is particularly advantageous to use it for enriched uranium which is therefore also enriched in U232 and whose storage periods at low irradiation are all the shorter the higher the U232 content.
  • the emitting container containing the product to be cleaned, is connected to the purification device which itself is connected to the receiving container; these connections are made of stainless steel and are fitted with the necessary shut-off or isolation valves and pressure gauges from 0 to 6 bar, located near the containers.
  • a primary vacuum pump designed to remove inert gases present in the circuit and the receiving container prior to the purification operation has been mounted on this circuit.
  • the receiving container is equipped with an external water circulation cooling coil. It is installed on a weighing device, which tracks the progress of the transfer.
  • the purification device consists of a cylindrical stainless steel enclosure with a diameter of 59 mm, at the ends of which open the connection tubes with the transmitter and receiver containers.
  • a disc of porous material with a diameter of 50 mm is positioned transversely in the enclosure.
  • a differential pressure gauge gives the pressure drop between the upstream and downstream of the porous material.
  • the transmitter canister and the purification device are in the same heating oven.
  • a vacuum is first made in the installation to eliminate the inert substances.
  • the oven is then heated so that the transmitter canister is at about 80 ° C and its pressure is stabilized.
  • the receiver can be cooled.
  • valves are operated so as to effect the transfer of gaseous UF6 through the porous body.
  • the decontamination of hexafluoride is measured by comparison of radiochemical analyzes of the activity of the descendants of U232 carried out on the starting UF6 and the purified UF6.
  • the installation used in this example makes it possible to treat cylinders containing up to 14 t of UF6; it is similar to that of Example 1, with the exception of the cooling of the receiving container by means of a watering boom and the purification device.
  • the latter consists of a cylindrical enclosure inside which are arranged, in parallel, five identical cartridges of porous material; they are cylindrical and closed at one end.
  • This arrangement makes it possible to increase the access surface to the porous material which in this case is 0.5 m2, while keeping a reduced space requirement of the enclosure: diameter 30 cm and volume 65 l.
  • the porous material is sintered monel, the equivalent pore diameter of which is 50 ⁇ m, the useful thickness of each cartridge is 2 mm.
  • the UF6 cylinder is brought to 80 ° C., the pressure in the emitting cylinder varies between 1.2 and 1.8 bar and that of the receiving cylinder between 0.6 and 1.2 bar, during the treatment. .
  • the flow rate of gaseous UF6 was varied between 57 kg / h and 331 kg / h, for a total transferred amount of 14 t of UF6.
  • the purification rate obtained after counting the activity of the descendants of U 232 carried out by ⁇ spectrometry of the representative samples taken before and after treatment is 99.7%.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Claims (7)

1. Verfahren zur Reinigung von wiederaufbereitetem Uran, von dem vorher die Spaltprodukte, die in einem Kernreaktor erzeugt werden, abgetrennt worden sind, wobei das Uran während einer langen Periode, in der seine Radioaktivität einen begrenzten hohen Wert angenommen hat, gespeichert gewesen ist, dadurch gekennzeichnet, daß zum Zweck der Beseitigung dieser Radioaktivität, die durch die Produkte der Zerfallsreihe des vorhandenen Urans 232 bewirkt wird, das wiederaufbereitete Uran in seiner flüssigen oder gasförmigen Hexafluorid-Form durch ein chemisch inertes poröses Material bewegt wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das poröse Material einen Durchmesser besitzt, der den Poren äquivalent ist, unter 100 µm und vorzugsweise unter 50 µm liegt.
3. Verfahren gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das poröse Material vorzugsweise ein gesintertes poröses Material und insbesondere ein gesintertes Metall ist.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß das gesinterte Metall Inox, Nickel oder dessen Legierungen oder Monelmetall ist.
5. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß das poröse gesinterte Material eine Dicke zwischen 0,5 und 10 mm und vorzugsweise zwischen 1,5 und 5 mm besitzt.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Hexafluorid in gasförmiger Form bearbeitet wird.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die Durchgangsgeschwindigkeit des gasförmigen Hexafluorids durch das poröse Material unter 250 m/h und vorzugsweise zwischen 15 und 100 m/h liegt.
EP88420294A 1987-09-01 1988-08-31 Verfahren zur Entfernung von Spuren radioaktiver Elemente, die während der Lagerung von Uran gebildet werden, das bei der Wiederaufbereitung von nuklearen Brennstoffen anfällt Expired - Lifetime EP0306420B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8712705A FR2619952B1 (fr) 1987-09-01 1987-09-01 Procede d'epuration des traces d'elements radioactifs generes lors du stockage de l'uranium issu du retraitement des combustibles nucleaires irradies
FR8712705 1987-09-01

Publications (2)

Publication Number Publication Date
EP0306420A1 EP0306420A1 (de) 1989-03-08
EP0306420B1 true EP0306420B1 (de) 1991-11-27

Family

ID=9354869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420294A Expired - Lifetime EP0306420B1 (de) 1987-09-01 1988-08-31 Verfahren zur Entfernung von Spuren radioaktiver Elemente, die während der Lagerung von Uran gebildet werden, das bei der Wiederaufbereitung von nuklearen Brennstoffen anfällt

Country Status (5)

Country Link
US (1) US4891192A (de)
EP (1) EP0306420B1 (de)
JP (1) JPH01138495A (de)
DE (1) DE3866477D1 (de)
FR (1) FR2619952B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771185B2 (ja) 2002-04-02 2006-04-26 株式会社エムアイシー 旋回装置
RU2499306C1 (ru) * 2012-05-15 2013-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ очистки облученного ядерного топлива
EP2899725B1 (de) * 2014-01-27 2018-04-25 Urenco Limited Regelung der Temperatur von Uranmaterial in einer Urananreicherungsanlage
RU2576530C1 (ru) * 2014-09-25 2016-03-10 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ очистки технологических урановых продуктов переработки отработавшего ядерного топлива от рутения

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925536A (en) * 1947-06-19 1975-12-09 Us Energy Method of recovering uranium hexafluoride
US3178258A (en) * 1962-08-30 1965-04-13 George I Cathers Separation of plutonium hexafluoride from uranium hexafluoride by selective sorption
US3978194A (en) * 1971-06-21 1976-08-31 Westinghouse Electric Corporation Production of sized particles of uranium oxides and uranium oxyfluorides
FR2309271A1 (fr) * 1973-07-26 1976-11-26 Commissariat Energie Atomique Procede de fabrication de filtres metalliques microporeux
US4031029A (en) * 1975-07-02 1977-06-21 General Electric Company Process for producing uranium oxide rich compositions from uranium hexafluoride using fluid injection into the reaction zone
US4522794A (en) * 1983-08-25 1985-06-11 The United States Of America As Represented By The Department Of Energy Fluorination process using catalyst
US4642186A (en) * 1984-02-02 1987-02-10 Tokyo Shibaura Denki Kabushiki Kaisha Clarifying apparatus

Also Published As

Publication number Publication date
DE3866477D1 (de) 1992-01-09
JPH01138495A (ja) 1989-05-31
EP0306420A1 (de) 1989-03-08
US4891192A (en) 1990-01-02
FR2619952A1 (fr) 1989-03-03
JPH0574038B2 (de) 1993-10-15
FR2619952B1 (fr) 1989-11-17

Similar Documents

Publication Publication Date Title
EP2474000B1 (de) Verfahren zur herstellung von porösem kernbrennstoff auf der basis der weniger häufigen aktiniden
EP1218104B1 (de) Verfahren und anlage zur entfernung von metallischen kationen aus einer flüssigkeit durch auf einem träger geprofte polyazacycloalkanharze
US4579069A (en) Volume reduction of low-level radioactive wastes
WO2009103703A1 (fr) Procede de decontamination d'un effluent liquide radioactif en un ou plusieurs elements chimiques radioactifs par extraction solide-liquide mettant en oeuvre une boucle de recyclage
EP0306420B1 (de) Verfahren zur Entfernung von Spuren radioaktiver Elemente, die während der Lagerung von Uran gebildet werden, das bei der Wiederaufbereitung von nuklearen Brennstoffen anfällt
FR2492271A1 (fr) Procede pour separer les gaz rares de fission xenon et krypton, des gaz de rejet d'installations nucleaires et systeme de colonne pour l'executer
EP0293730B1 (de) Verfahren und Einrichtung zur Reinigung eines Tritium enthaltenden Gases
EP0241349B1 (de) Verfahren und Vorrichtung zur Behandlung von Flüssigkeiten, die Teilchen in Suspension enthalten
EP1979498A1 (de) Trennverfahren für wässrige medien mit mindestens einem actinidelement aus lanthanidelementen durch komplexierung und membranfiltrierung
FR2601181A1 (fr) Procede et dispositif pour la decontamination du gaz rejete du cycle de combustible d'un reacteur nucleaire a fusion, gaz rejete contamine par des composants contenant du tritium et/ou du deuterium sous forme combinee chimiquement
BE1011754A3 (fr) Procede et installation de decontamination de surfaces metalliques.
EP2774155B1 (de) Verfahren zur behandlung einer verkleidung mit gesintertem calciumhydrid
EP1592498B1 (de) Verfahren und vorrichtung zum einfangen von in abgasen enthaltenem ruthenium
WO1996011478A1 (fr) PROCEDE DE DECONTAMINATION PARTIELLE α D'UN EFFLUENT AQUEUX
FR2500162A1 (fr) Echantillonneur de gaz pour atmosphere d'aerosol
Browning Jr et al. Characterization of millimicron radioactive aerosols and their removal from gases
FR2738502A1 (fr) Procede d'epuration par voie humide d'effluents gazeux contenant des oxydes d'azote et eventuellement de l'iode
FR2519792A1 (fr) Procede et appareil pour la reaction chimique nucleaire avec sel fondu
Fermandjian Study of the sodium oxide aerosol behavior in a containment building
Gendre Preparation of plutonium hexafluoride. Recovery of plutonium from waste dross (1962)
Brown et al. Treatment of irradiated graphite from french bugey reactor–13424
Lhiaubet et al. Characteristics of the aerosols released to the environment after a severe PWR accident
Beitz et al. Photochemical removal of NpF 6 and PuF 6 from UF 6 gas streams
Megy Spent fuel reprocessing past experience and future prospects
FR2777381A1 (fr) Procede de filtration physico-chimique des aerosols, gaz, et vapeurs radioactifs contenus dans un air contamine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB

17P Request for examination filed

Effective date: 19890414

17Q First examination report despatched

Effective date: 19910419

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3866477

Country of ref document: DE

Date of ref document: 19920109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930712

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950503

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070829

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071018

Year of fee payment: 20

BE20 Be: patent expired

Owner name: CIE GENERALE DES MATIERES *NUCLEAIRES

Effective date: 20080831

Owner name: SOC.POUR LA CONVERSION DE L'URANIUM EN METAL ET HE

Effective date: 20080831

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080830