EP0304420A1 - Electromagnetic switching device - Google Patents

Electromagnetic switching device

Info

Publication number
EP0304420A1
EP0304420A1 EP87902393A EP87902393A EP0304420A1 EP 0304420 A1 EP0304420 A1 EP 0304420A1 EP 87902393 A EP87902393 A EP 87902393A EP 87902393 A EP87902393 A EP 87902393A EP 0304420 A1 EP0304420 A1 EP 0304420A1
Authority
EP
European Patent Office
Prior art keywords
armature
electromagnet
permanent magnet
air gap
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87902393A
Other languages
German (de)
French (fr)
Inventor
Volker Holzgrefe
Ewald Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0304420A1 publication Critical patent/EP0304420A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/01Relays in which the armature is maintained in one position by a permanent magnet and freed by energisation of a coil producing an opposing magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures

Definitions

  • the invention is based on an electromagnetic switching device for generating fast switching operations according to the preamble of the main claim.
  • an electromagnetic switching device is known in which an armature contains a flat permanent magnet, which consists of finely divided permanent magnet material bound in elastic plastic. This arrangement has the advantage that the shock is absorbed by the elasticity of the armature magnet when the armature closes.
  • an auxiliary magnet between the end of a pole piece of the electromagnet and a side surface of the other pole piece. The auxiliary magnet reduces the influence of the stray field present in an air gap.
  • the switching device specified is not intended for the generation of rapid actuating processes. Advantages of the invention
  • the device according to the invention has the advantage that very fast adjustment processes can be generated.
  • the two pole pieces of an electromagnet are brought together in such a way that the end faces of the two pole pieces delimit an inner air gap.
  • a permanent magnet is arranged in this air gap, the north and south poles of which adjoin each end face.
  • the permanent magnet is a freely moving armature that is attracted when the electromagnet is switched on.
  • the permanent magnet amplifies the magnetic field of the electromagnet acting on the armature.
  • the permanent magnet supports the breakdown of the magnetic field. This shortens the switching process.
  • a short switching time is required in particular in the case of electromagnetically actuated valves which are provided as fuel injection valves of an internal combustion engine. Precise control of the amount of fuel injected and the time of injection enable a reduction in consumption and, at the same time, pollutant emissions.
  • FIG. 1 shows a magnetic field in an electromagnetic switching device shown as a sectional view when the electromagnet is switched off
  • FIG. 2 shows a magnetic field of an electromagnetic switching device shown as a sectional view when the electromagnet is switched on.
  • the two pole shoes 10, 11 of an electromagnet 12 shown in FIG. 1 delimit an inner air gap 15 with their end faces 13, 14.
  • the winding of the electromagnet 12 is designated by 16.
  • a permanent magnet 17 is arranged in place of the inner air gap 15 between the two end faces 13, 14 of the two pole shoes 10, 11.
  • the two connections 20 of the winding 16 of the electromagnet 12 can be connected to an energy source 22 via a switch 21.
  • the switch 21 is drawn in its open position.
  • 23 denotes a magnetic field of the permanent magnet 17 which extends in the pole shoes 10, 11 of the electromagnet 12 and in the permanent magnet 17.
  • FIG 2 the closed position of the switch 21 is shown.
  • the electromagnet 12 has drawn the armature 18 into the air gap 19.
  • 24 denotes a magnetic field generated by the electromagnet 12 and extending in the two pole pieces 10, 11.
  • the magnetic field 23 of the permanent magnet 17 extends in the region of the end faces 13, 14 of the pole shoes 10, 11 and in the armature 18.
  • the electromagnetic switching devices according to FIGS. 1 and 2 operate as follows:
  • the permanent magnet 17 arranged in the inner air gap 15 between the two end faces 13, 14 of the two pole shoes 10, 11 of the electromagnet 12 is polarized such that its north and south poles each adjoin one end face 13, 14.
  • the energetically most favorable state is when the magnetic field 23 of the permanent magnet 17 is guided completely in the magnetic circuit consisting of the permanent magnet 17 and the two pole pieces 10, 11.
  • a stray field in the outer air gap 19 is negligible. No force therefore acts on the armature 18.
  • the field orientation shown in FIG. 1 can be chosen arbitrarily.
  • the connections 20 of the winding 16 of the electromagnet 12 are switched to the energy source 22 with the switch 21.
  • the energy source 22 must produce a direct current in the electromagnet 12, which results in a field 24 of the electromagnet 12 which is directed against the field 23 of the permanent magnet 17.
  • the increasing magnetic field 24 of the electromagnet 12 in the pole pieces 10, 11 has the consequence that the field 23 of the permanent magnet 17 is displaced into the outer air gap 19.
  • the magnetic field 24 of the electromagnet 12 is also pushed into the outer air gap 19 for energy reasons.
  • the magnetic field resulting in the outer air gap 19 also penetrates the movable armature 18, to which a tightening force then acts.
  • the armature 18 is attracted until the outer air gap 19 has a minimum value.
  • the force-causing magnetic field is composed of the magnetic field 24 of the electromagnet 12 and the magnetic field 23 of the permanent magnet 17, which now runs in the armature 18.
  • the geometric dimensions of the armature 18 are expediently dimensioned such that the permanent magnet 17 and a certain part are in the tightened state of the two pole pieces 10, 11 are covered.
  • the common surface of the armature 18 with the pole shoes 10, 11 in each case should not be a cross-sectional narrowing for the magnetic field to avoid saturation effects.
  • the degradation of the magnetic field 24 of the electromagnet 12 begins.
  • the degradation process is accelerated by the opposing magnetic field 23 of the permanent magnet 17.
  • a rapid magnetic field degradation has the consequence that the force exerted on the armature 18 also subsides quickly.
  • a restoring force which is applied, for example, by a restoring spring, moves the armature 18 back into its starting position shown in FIG. 1.
  • the permanent magnet 17 supports the build-up of force by means of its additional magnetic field 23 when the electromagnet 12 is switched on and the breakdown of the magnetic field 24 of the electromagnet 12 in the switch-off process. Accordingly, shorter switching times than previously are achieved with the electromagnetic switching device according to the invention.
  • the armature 18 actuates the fuel injection valve, for example, via a mechanical connecting element (not shown). However, the armature 18 itself is preferably designed as a valve plate in order to obtain the lowest possible masses.
  • the switching device according to the invention can be used in known rotationally symmetrical valves, the permanent magnet 17 being designed as a ring magnet. The permanent magnet 17 contributes to a reduction in the electrical control effort for the electromagnet 12, since the force required by the electromagnet 12 can be reduced. A reduction in the control effort has a cost-effective effect because, in practical constructions, the switch 21 is designed as an electronic switching element.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnets (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Dispositif de commutation électromagnétique permettant de produire des commutations rapides. L'entrefer entre les deux pièces polaires (10, 11) d'un électro-aimant (12) comporte un aimant permanent (17). Face à cet électro-aimant (17) se trouve un induit (18) librement mobile dans l'entrefer (19) extérieur. L'aimant permanent (17) renforce l'effet dynamique exercé sur l'induit (18) après excitation de l'électro-aimant (12). Pendant la désexcitation de ce dernier, le champ magnétique (23) de l'aimant permanent (17) accélère la diminution du champ magnétique et par là même également la réduction de l'effet dynamique exercé sur l'induit (18). Le dispositif de commutation électromagnétique convient particulièrement pour des opérations de commutation rapides. Il est particulièrement indiqué pour être utilisé dans des soupapes injectrices de carburant d'un moteur à combustion interne.Electromagnetic switching device enabling rapid switching to be produced. The air gap between the two pole pieces (10, 11) of an electromagnet (12) comprises a permanent magnet (17). Facing this electromagnet (17) is an armature (18) freely movable in the air gap (19) outside. The permanent magnet (17) reinforces the dynamic effect exerted on the armature (18) after excitation of the electromagnet (12). During the de-excitation of the latter, the magnetic field (23) of the permanent magnet (17) accelerates the decrease in the magnetic field and thereby also the reduction of the dynamic effect exerted on the armature (18). The electromagnetic switching device is particularly suitable for rapid switching operations. It is particularly suitable for use in fuel injector valves of an internal combustion engine.

Description

Elektromagnetische SchaltvorrichtungElectromagnetic switching device
Stand der TechnikState of the art
Die Erfindung geht aus von einer elektromagnetischen Schaltvorrichtung zum Erzeugen schneller Schaltvorgänge nach der Gattung des Hauptanspruchs. Aus der DE-OS 21 39 405 ist eine elektromagnetische Schaltvorrichtung bekannt, bei der ein Anker einen flach ausgebildeten Dauermagneten enthält, der aus in elastischem Kunstoff gebundenem feinverteilten Dauermagnetmaterial besteht. Diese Anordnung weist den Vorteil auf, daß durch die Elastizität des Ankermagneten beim Schließen des Ankers der Stoß aufgefangen wird. Aus einem Ausführungsbeispiel ist es weiterhin bekannt, zwischen dem Ende eines Polschuhs des Elektromagneten und einer Seitenfläche des anderen Polschuhs einen Hilfsmagneten anzuordnen. Der Hilfsmagnet reduziert den Einfluß des in einem Luftspalt vorhandenen Streufeldes. Die angegebene Schaltvorrichtung ist nicht für das Erzeugen schneller Stellvorgänge vorgesehen. Vorteile der ErfindungThe invention is based on an electromagnetic switching device for generating fast switching operations according to the preamble of the main claim. From DE-OS 21 39 405 an electromagnetic switching device is known in which an armature contains a flat permanent magnet, which consists of finely divided permanent magnet material bound in elastic plastic. This arrangement has the advantage that the shock is absorbed by the elasticity of the armature magnet when the armature closes. From an exemplary embodiment it is also known to arrange an auxiliary magnet between the end of a pole piece of the electromagnet and a side surface of the other pole piece. The auxiliary magnet reduces the influence of the stray field present in an air gap. The switching device specified is not intended for the generation of rapid actuating processes. Advantages of the invention
Die erfindungsgemäße Vorrichtung hat demgegenüber den Vorteil, daß sehr schnelle Stellvorgänge erzeugt werden können. Die beiden Polschuhe eines Elektromagneten sind derart zusammengeführt, daß die Stirnflächen der beiden Polschuhe einen inneren Luftspalt begrenzen. In disem Luftspalt ist ein Permanentmagnet angeordnet, dessen Nord- und Südpol an jeweils eine Stirnfläche angrenzt. Gegenüber dem Permanentmagneten befindet sich ein frei beweglicher Anker, der bei eingeschaltetem Elektromagneten angezogen wird . In diesem Betriebszustand verstärkt der Permanentmagnet das auf den Anker wirkende magnetische Feld des Elektromagneten. Beim Ausschaltvorgang des Elektromagneten unterstützt der Permanentmagnet den Abbau des Magnetfeldes. Dadurch ergibt sich eine Verkürzung des Schaltvorgangs.In contrast, the device according to the invention has the advantage that very fast adjustment processes can be generated. The two pole pieces of an electromagnet are brought together in such a way that the end faces of the two pole pieces delimit an inner air gap. A permanent magnet is arranged in this air gap, the north and south poles of which adjoin each end face. Opposite the permanent magnet is a freely moving armature that is attracted when the electromagnet is switched on. In this operating state, the permanent magnet amplifies the magnetic field of the electromagnet acting on the armature. When the electromagnet is switched off, the permanent magnet supports the breakdown of the magnetic field. This shortens the switching process.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der im Hauptanspruch angegebenen Vorrichtung möglich. Eine kurze Schaltzeit ist insbesondere bei elektromagnetisch betätigten Ventilen erforderlich, die als Kraftstoffeinspritzventile einer Brennkraftmaschine vorgesehen sind. Eine präzise Steuerung der eingespritzten Kraftstoffmenge und des Einspritzzeitpunktes ermöglichen eine Verbrauchs- und gleichzeitig eine Schadstoffemissionsreduzierung.Advantageous developments of the device specified in the main claim are possible through the measures listed in the subclaims. A short switching time is required in particular in the case of electromagnetically actuated valves which are provided as fuel injection valves of an internal combustion engine. Precise control of the amount of fuel injected and the time of injection enable a reduction in consumption and, at the same time, pollutant emissions.
Weitere Einzelheiten und vorteilhafte Weiterbildungen der erfindungsgeaäßen Vorrichtung ergeben sich aus der folgenden Beschreibung. Further details and advantageous developments of the device according to the invention result from the following description.
Zeichnungdrawing
Figur 1 zeigt ein magnetisches Feld in einer als Schnittbild gezeigten elektromagnetischen Schaltvorrichtung bei ausgeschaltetem Elektromagneten und Figur 2 zeigt ein Magnetfeld einer als Schnittbild gezeigten elektromagnetischen Schaltvorrichtung bei eingeschaltetem Elektromagneten.FIG. 1 shows a magnetic field in an electromagnetic switching device shown as a sectional view when the electromagnet is switched off, and FIG. 2 shows a magnetic field of an electromagnetic switching device shown as a sectional view when the electromagnet is switched on.
Die beiden Polschuhe 10, 11 eines in Figur 1 gezeigten Elektromagneten 12 begrenzen mit ihren Stirnflächen 13, 14 einen inneren Luftspalt 15. Mit 16 ist die Wicklung des Elektromagneten 12 bezeichnet. Zwischen den beiden Stirnflächen 13. 14 der beiden Polschuhe 10, 11 ist ein Permanentmagnet 17 an Stelle des inneren Luftspaltes 15 angeordnet. Dem Permanentmagneten 17 gegenüber befindet sich ein Anker 18, der in einem äußeren Luftspalt 19 beweglich ist. Die beiden Anschlüsse 20 der Wicklung 16 des Elektromagneten 12 sind über einen Schalter 21 mit einer Energiequelle 22 verbindbar. In Figur 1 ist der Schalter 21 in seiner geöffneten Stellung gezeichnet. Mit 23 ist ein in den Polschuhen 10, 11 des Elektromagneten 12 und im Permanentmagneten 17 verlaufendes Magnetfeld des Permanentmagneten 17 bezeichnet.The two pole shoes 10, 11 of an electromagnet 12 shown in FIG. 1 delimit an inner air gap 15 with their end faces 13, 14. The winding of the electromagnet 12 is designated by 16. A permanent magnet 17 is arranged in place of the inner air gap 15 between the two end faces 13, 14 of the two pole shoes 10, 11. Opposite the permanent magnet 17 there is an armature 18 which is movable in an outer air gap 19. The two connections 20 of the winding 16 of the electromagnet 12 can be connected to an energy source 22 via a switch 21. In Figure 1, the switch 21 is drawn in its open position. 23 denotes a magnetic field of the permanent magnet 17 which extends in the pole shoes 10, 11 of the electromagnet 12 and in the permanent magnet 17.
In Figur 2 ist die geschlossene Stellung des Schalters 21 gezeigt. Der Elektromagnet 12 hat den Anker 18 in den Luftspalt 19 gezogen. Mit 24 (strichpunktierte Linie) ist ein vom Elektromagneten 12 erzeugtes, in den beiden Polschuhen 10, 11 verlaufendes, Magnetfeld bezeichnet. Das Magnetfeld 23 des Permanentmagneten 17 verläuft im Bereich der Stirnflächen 13, 14 der Polschuhe 10, 11 und im Anker 18.In Figure 2, the closed position of the switch 21 is shown. The electromagnet 12 has drawn the armature 18 into the air gap 19. 24 (dash-dotted line) denotes a magnetic field generated by the electromagnet 12 and extending in the two pole pieces 10, 11. The magnetic field 23 of the permanent magnet 17 extends in the region of the end faces 13, 14 of the pole shoes 10, 11 and in the armature 18.
Die elektromagnetische Schaltvorrichtungen gemäß den Figuren 1 und 2 arbeitet folgendermaßen: Der im inneren Luftspalt 15 zwischen den beiden Stirnflächen 13, 14 der beiden Polschuhe 10, 11 des Elektromagneten 12 angeordnete Permanentmagnet 17 ist so polarisiert, daß sein Nord- und Südpol an jeweils eine Stirnfläche 13, 14 angrenzt. Der energetisch günstigste Zustand ist gegeben, wenn das Magnetfeld 23 des Permanentmagneten 17 vollständig in dem magnetischen Kreis, bestehend aus Permanentmagnet 17 und den beiden Polschuhen 10, 11, geführt wird. Ein Streufeld im äußeren Luftspalt 19 ist vernachlässigbar gering. Auf den Anker 18 wirkt deshalb keine Kraft. Die in Figur 1 eingezeichnete Feldorientϊerung kann willkürlich gewählt werden.The electromagnetic switching devices according to FIGS. 1 and 2 operate as follows: The permanent magnet 17 arranged in the inner air gap 15 between the two end faces 13, 14 of the two pole shoes 10, 11 of the electromagnet 12 is polarized such that its north and south poles each adjoin one end face 13, 14. The energetically most favorable state is when the magnetic field 23 of the permanent magnet 17 is guided completely in the magnetic circuit consisting of the permanent magnet 17 and the two pole pieces 10, 11. A stray field in the outer air gap 19 is negligible. No force therefore acts on the armature 18. The field orientation shown in FIG. 1 can be chosen arbitrarily.
Dieser Feldverlauf bleibt so lange erhalten, bis der Elektromagnet 12 eingeschaltet wird. Die Anschlüsse 20 der Wicklung 16 des Elektromagneten 12 werden mit dem Schalter 21 an die Energiequelle 22 geschaltet. Die Energiequelle 22 muß einen Gleichstrom im Elektromagneten 12 hervorrufen, der ein Feld 24 des Elektromagneten 12 zur Folge hat, das entgegen dem Feld 23 des Permanentmagneten 17 gerichtet ist. Das in den Polschuhen 10, 11 ansteigende magnetische Feld 24 des Elektromagneten 12 hat zur Folge, daß das Feld 23 des Permanentmagneten 17 in den äußeren Luftspalt 19 verdrängt wird. Auch das magnetische Feld 24 des Elektromagneten 12 wird aus energetischen Gründen in den äußeren Luftspalt 19 abgedrängt. Das im äußeren Luftspalt 19 resultierende Magnetfeld durchdringt auch den beweglichen Anker 18, auf den daraufhin eine Anzugskraft wirkt. Der Anker 18 wird solange angezogen, bis der äußere Luftspalt 19 einen Minimalwert aufweist. Das kraftverursachende Magnetfeld setzt sich zusammen aus dem Magnetfeld 24 des Elektromagneten 12 und das, nunmehr im Anker 18 verlaufende, Magnetfeld 23 des Permanentmagneten 17. Die geometrischen Abmessungen des Ankers 18 sind zweckmäßigerweise so bemessen, daß im angezogenen Zustand der Permanentmagnet 17 und ein bestimmter Teil der beiden Polschuhe 10, 11 überdeckt sind. Die gemeinsame Fläche des Ankers 18 mit jeweils den Polschuhen 10, 11 sollte keine Querschnittsverengung für das magnetische Feld darstellen, um Sättigungseffekte zu vermeiden.This field profile is retained until the electromagnet 12 is switched on. The connections 20 of the winding 16 of the electromagnet 12 are switched to the energy source 22 with the switch 21. The energy source 22 must produce a direct current in the electromagnet 12, which results in a field 24 of the electromagnet 12 which is directed against the field 23 of the permanent magnet 17. The increasing magnetic field 24 of the electromagnet 12 in the pole pieces 10, 11 has the consequence that the field 23 of the permanent magnet 17 is displaced into the outer air gap 19. The magnetic field 24 of the electromagnet 12 is also pushed into the outer air gap 19 for energy reasons. The magnetic field resulting in the outer air gap 19 also penetrates the movable armature 18, to which a tightening force then acts. The armature 18 is attracted until the outer air gap 19 has a minimum value. The force-causing magnetic field is composed of the magnetic field 24 of the electromagnet 12 and the magnetic field 23 of the permanent magnet 17, which now runs in the armature 18. The geometric dimensions of the armature 18 are expediently dimensioned such that the permanent magnet 17 and a certain part are in the tightened state of the two pole pieces 10, 11 are covered. The common surface of the armature 18 with the pole shoes 10, 11 in each case should not be a cross-sectional narrowing for the magnetic field to avoid saturation effects.
Nachdem der Schalter 21 zum Ausschalten des Elektromagneten 12 geöffnet wird, beginnt der Abbau des Magnetfeldes 24 des Elektromagneten 12. Der Abbauvorgang wird beschleunigt durch das entgegenwirkende Magnetfeld 23 des Permanentmagneten 17. Ein schneller Magnetfeldabbau hat zur Folge, daß die auf den Anker 18 ausgeübte Kraft ebenfalls rasch nachläßt. Eine rückstellende Kraft, die beispielsweise von einer Rückstellfeder aufgebracht wird, bewegt den Anker 18 in seine in Figur 1 gezeigten Ausgangsposition zurück.After the switch 21 is opened to switch off the electromagnet 12, the degradation of the magnetic field 24 of the electromagnet 12 begins. The degradation process is accelerated by the opposing magnetic field 23 of the permanent magnet 17. A rapid magnetic field degradation has the consequence that the force exerted on the armature 18 also subsides quickly. A restoring force, which is applied, for example, by a restoring spring, moves the armature 18 back into its starting position shown in FIG. 1.
Der Permanentmagnet 17 unterstützt im Einschaltvorgang des Elektromagneten 12 den Kraftaufbau durch sein zusätzliches Magnetfeld 23 und im Ausschaltvorgang den Abbau des Magnetfeldes 24 des Elektromagneten 12. Mit der erfindungsgemäßen elektromagnetischen Schaltvorrichtung werden demzufolge kürzere Schaltzeiten als bisher erreicht.The permanent magnet 17 supports the build-up of force by means of its additional magnetic field 23 when the electromagnet 12 is switched on and the breakdown of the magnetic field 24 of the electromagnet 12 in the switch-off process. Accordingly, shorter switching times than previously are achieved with the electromagnetic switching device according to the invention.
Kurze Schaltzeiten sind beispielsweise wichtig bei elektromagnetisch betätigten Kraftstoffeinspritzventilen für Brennkraftmaschinen. Ein präzises Festlegen des Kraftstoffeinspritzbeginns und der Kraftstoffeinspritzdauer ermöglichen eine Reduzierung des Kraftstoffverbrauchs und reduzieren gleichzeitig die entstehende Abgasemission. Der Anker 18 betätigt beispielsweise über ein nicht dargestelltes mechanisches Verbindungselement das Kraftstoffeinspritzventil. Vorzugsweise wird jedoch der Anker 18 selbst als Ventiltellsr ausgebildet, um geringstmögliche Massen zu erhalten. Die erfindungsgemäße Schaltvorrichtung läßt sich in bekannten rotationssymetrischen Ventilen verwenden, wobei der Permanentmagnet 17 als Ringmagnet ausgebildet ist. Der Permanentmagnet 17 trägt zu einer Reduzierung des elektrischen Ansteueraufwandes für den Elektromagneten 12 bei, da die vom Elektromagneten 12 geforderte Kraft reduziert werden kann. Eine Reduzierung des Ansteueraufwandes wirkt sich kostengünstig aus, weil in praktischen Aufbauten der Schalter 21 als elektronisches Schalteleraent ausgeführt ist. Short switching times are important, for example, in the case of electromagnetically actuated fuel injection valves for internal combustion engines. A precise definition of the start of fuel injection and the duration of fuel injection enable a reduction in fuel consumption and at the same time reduce the resulting exhaust gas emission. The armature 18 actuates the fuel injection valve, for example, via a mechanical connecting element (not shown). However, the armature 18 itself is preferably designed as a valve plate in order to obtain the lowest possible masses. The switching device according to the invention can be used in known rotationally symmetrical valves, the permanent magnet 17 being designed as a ring magnet. The permanent magnet 17 contributes to a reduction in the electrical control effort for the electromagnet 12, since the force required by the electromagnet 12 can be reduced. A reduction in the control effort has a cost-effective effect because, in practical constructions, the switch 21 is designed as an electronic switching element.

Claims

Ansprüche Expectations
1. Elektromagnetische Schaltvorrichtung zum Erzeugen schneller Schaltvorgänge, mit wenigstens einem Magnetkreis, bestehend aus einem Elektromagneten, dessen Polschuhe derart zusammengeführt sind, daß die Stirnflächen der beiden Polschuhe einen inneren Luftspalt begrenzen, und mit wenigstens einem in einem äußeren Luftspalt beweglichen Anker, der dem inneren Luftspalt benachbart angeordnet ist und der mit dem Magnetkreis magnetisch zusammenwirkt, dadurch gekennzeichnet, daß im 3ereich des inneren Luftspaltes (15) zwischen den Stirnflächen (13, 14) der Polschuhe (10, 11) ein Permanentmagnet (17) vorgesehen ist, dessen Nord- und Südpol an jeweils eine Stirnfläche (13, 14) angrenzt .1. Electromagnetic switching device for generating fast switching operations, with at least one magnetic circuit consisting of an electromagnet, the pole pieces of which are brought together in such a way that the end faces of the two pole pieces delimit an inner air gap, and with at least one armature movable in an outer air gap, which connects the inner one Air gap is arranged adjacent and which magnetically interacts with the magnetic circuit, characterized in that a permanent magnet (17) is provided in the area of the inner air gap (15) between the end faces (13, 14) of the pole shoes (10, 11), the north and the south pole adjoins one end face (13, 14).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Anker (18) so bemessen ist, daß er in dem Betriebszustand, in welchem der Anker (18) vom Magnetkreis angezogen ist, den Permanentmagneten (17) und die beiden Polschuhe (10 11) wenigstens teilweise überdeckt.2. Device according to claim 1, characterized in that the armature (18) is dimensioned such that it in the operating state in which the armature (18) is attracted by the magnetic circuit, the permanent magnet (17) and the two pole shoes (10 11th ) at least partially covered.
3. Vorrichtung nach Anspruch 1 oder 2, gekennzeichnet durch die Verwendung als Teil eines elektromagnetisch betätigbaren Ventiles. 3. Device according to claim 1 or 2, characterized by the use as part of an electromagnetically actuated valve.
4. Vorrichtung nach Anspruch 1 oder 2, gekennzeichnet durch die Verwendung als Teil eines elektromagnetisch betätigbaren Xraftstoffeinspritzventiles für eine Brennkraftmaschine. 4. Apparatus according to claim 1 or 2, characterized by the use as part of an electromagnetically actuated X fuel injector for an internal combustion engine.
EP87902393A 1986-05-09 1987-04-11 Electromagnetic switching device Withdrawn EP0304420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863615744 DE3615744A1 (en) 1986-05-09 1986-05-09 ELECTROMAGNETIC SWITCHING DEVICE
DE3615744 1986-05-09

Publications (1)

Publication Number Publication Date
EP0304420A1 true EP0304420A1 (en) 1989-03-01

Family

ID=6300531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87902393A Withdrawn EP0304420A1 (en) 1986-05-09 1987-04-11 Electromagnetic switching device

Country Status (6)

Country Link
EP (1) EP0304420A1 (en)
JP (1) JPH01502705A (en)
KR (1) KR880701446A (en)
DE (1) DE3615744A1 (en)
ES (1) ES2005215A6 (en)
WO (1) WO1987007072A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307919A (en) * 2000-04-24 2001-11-02 Genesis:Kk Hybrid magnet
JP2002025819A (en) * 2000-05-01 2002-01-25 Genesis:Kk Magnetic force type attraction device using hybrid magnet
JP2002110418A (en) * 2000-09-29 2002-04-12 Genesis:Kk Basic attraction structure
FR2979745B1 (en) * 2011-09-06 2015-12-25 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR FOR MANEUVERING AN ELECTRICAL CONTACTOR
WO2013045715A1 (en) * 2011-09-27 2013-04-04 Cepex, S.A.U. Safety electrovalve for a main valve, and safety procedure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE971476C (en) * 1953-03-07 1959-02-05 Berker Geb Electric circuit breaker with fault current release
GB1598116A (en) * 1977-10-15 1981-09-16 Olympus Optical Co Electromagnets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8707072A1 *

Also Published As

Publication number Publication date
ES2005215A6 (en) 1989-03-01
JPH01502705A (en) 1989-09-14
DE3615744A1 (en) 1987-11-12
KR880701446A (en) 1988-07-27
WO1987007072A1 (en) 1987-11-19

Similar Documents

Publication Publication Date Title
EP1012469B1 (en) Fuel injection valve
DE3507443C2 (en)
DE19957172A1 (en) Fuel injector
DE3921151A1 (en) MAGNETIC SYSTEM
DE3507441C2 (en)
DE19855547A1 (en) Electromagnetically actuated valve
DE2600196A1 (en) MAGNETIC VALVE
EP0988447A1 (en) Fuel injection valve
DE19849030A1 (en) Fuel injector and method for controlling the same
EP0800621A1 (en) Valve for dosed feeding of vaporised fuel from a fuel tank of an internal combustion engine
DE3516917A1 (en) ELECTROMAGNETIC, INTERMITTENT INJECTION VALVE
DE3527174A1 (en) DOUBLE ACTING SOLENOID VALVE
DE60319562T2 (en) ELECTROMECHANICAL COLD TARTING DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE3817368C2 (en)
EP0304420A1 (en) Electromagnetic switching device
EP0348786A2 (en) Electromagnetic fuel-injection valve
DE19839580A1 (en) Electromagnet for a fuel injector
DE10124747A1 (en) Fuel injection valve for internal combustion engines comprises an armature buffer surface and/or a counter-buffer surface having in a recess an elastic damping element protruding over the armature buffer surface/ counter-buffer surface
DE3703615A1 (en) FUEL INJECTION VALVE
EP0278099A1 (en) Electromagnetic injection valve for compressed mixture engines
DE102011089360A1 (en) Fuel injection valve for internal combustion engines
DE19719299C1 (en) Gas exchange valve actuator for internal combustion engine
DE3114045A1 (en) FLOATING ELECTROMAGNETIC LIQUID PUMP WITH A MAGNETIC SWITCH, IN PARTICULAR A HALL EFFECT SWITCH
EP0200865A1 (en) Injection valve
DE10248070B4 (en) Electromagnetic valve actuation with soft stop against the valve seat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19901103

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLZGREFE, VOLKER

Inventor name: ZIEGLER, EWALD