EP0302464A2 - Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge - Google Patents

Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge Download PDF

Info

Publication number
EP0302464A2
EP0302464A2 EP88112593A EP88112593A EP0302464A2 EP 0302464 A2 EP0302464 A2 EP 0302464A2 EP 88112593 A EP88112593 A EP 88112593A EP 88112593 A EP88112593 A EP 88112593A EP 0302464 A2 EP0302464 A2 EP 0302464A2
Authority
EP
European Patent Office
Prior art keywords
sensor
centrifuge
filling
arm
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88112593A
Other languages
English (en)
French (fr)
Other versions
EP0302464B1 (de
EP0302464A3 (en
Inventor
Peter Sedlmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann Demag Krauss Maffei GmbH
Original Assignee
Krauss Maffei AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krauss Maffei AG filed Critical Krauss Maffei AG
Publication of EP0302464A2 publication Critical patent/EP0302464A2/de
Publication of EP0302464A3 publication Critical patent/EP0302464A3/de
Application granted granted Critical
Publication of EP0302464B1 publication Critical patent/EP0302464B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor
    • B04B11/043Load indication with or without control arrangements

Definitions

  • the invention relates to a device for controlling a filter centrifuge according to the preamble of claim 1.
  • a filter centrigue of this type is known from DE-OS 25 25 232, in which the layer height of the centrifuge content is tapped by means of a sensor arm.
  • the disadvantage of this device is that no statements can be made about the particular nature of the centrifuge contents. It cannot be determined whether the surface of the layer in the rotating sieve drum consists of suspension, washing liquid or solids.
  • the object of the invention is therefore to provide a device with which the particular nature of the surface of the centrifuge contents can be determined at any time of operation of the filter centrifuge.
  • the invention is based on the knowledge that a suspension has different physical properties than, for example, a solid cake or washing liquid.
  • thermocouple which is brought into contact with the surface by the sensor arm. Since each material has certain friction values and, accordingly, certain frictional heat values, the measured values generated by the thermocouple provide precise information about the nature of the centrifuge content at all times.
  • Another advantageous sensor for determining the physical Properties of the centrifuge filling consists of a sensor for determining the electrical conductivity.
  • the measurement signals generated by one or more sensors are thus varied in accordance with at least one such physical parameter of the filling surface, which shows different values for liquids, suspensions and solids, whereby in addition to the distinction between the aforementioned media, characteristic values are also obtained for each medium itself can, for example, allow a precise assessment of the respective temperature and the solids concentration in a suspension.
  • the sensor arm equipped with at least one sensor is provided with a measuring device for determining the radial position of the filling surface.
  • This measuring device expediently consists of a rotary encoder which is coupled to the sensor arm consisting of a sensor contacting the filling surface and a sensor shaft.
  • the solid-liquid separation in filter centrifuges can be optimized for any desired operating result.
  • the throughput and the residual moisture of the solid cake can be called up at any time in batch operation of the centrifuge.
  • FIGS. 1 and 2 show a screening drum 1, the drum interior 2 of which is closed by a closed drum wall 3, a curb ring 4 with curb 5 and a screen jacket 6 is delimited.
  • the sieve drum 1 rotates about the centrifuge axis 7 and is surrounded by a housing 8 which is closed by a housing cover 9.
  • a measuring device 11 is fastened in the housing cover 9 by means of a flange 10, which carries a sensor arm 12 projecting into the drum interior 2 and a rotation angle sensor 13 located outside the centrifuge housing.
  • the sensor arm 12 consists of a sensor 14 and a sensor shaft 15. At the free end of the sensor 14 there is the contact surface 16 in which one or more sensors are arranged which generate a measurement signal representing the physical properties of the centrifuge filling.
  • a measuring signal ⁇ representing the position of the contact surface 16 or a layer thickness of the centrifuge filling is generated by the rotary angle sensor 13.
  • the centrifuge filling consists of a solid layer or a solid cake 17, the layer thickness (cake height) of which is denoted by h k .
  • the solid layer is overlaid by a liquid layer 18, which can consist of washing liquid or filtrate liquid.
  • the sensor arm 12 can be pivoted in the direction of the arrows 19. For the measurement, the sensor arm 12 is pressed onto the filling surface 20 with little force, so that the contact surface 16 always remains in contact with the filling surface 20.
  • the sensor 14 is arranged in the trailed position with respect to the direction of rotation of the drum (arrow 21).
  • the axis 22 of the sensor shaft 15 is parallel to the centrifuge axis 7.
  • the sectional view of the measuring device 11 according to FIG. 3 shows the sensor 14, in whose contact surface 16 a thermocouple 23 is arranged.
  • the sensor 14 is shown in FIG. 4 in cross section like a Knife edge designed, the front edge 24 of the sensor 14 corresponding to the cutting edge being directed against the direction of rotation (arrow 21) of the sieve drum 1.
  • This configuration and arrangement of the contact area of the sensor 14 has the advantage that the contact with the filling surface 20 on the one hand provides reliable measurement results and on the other hand can be carried out largely without splashing.
  • the sensor 14 is detachably connected to the sensor shaft 15 via a plug 25 which has both mechanical and electrical coupling devices.
  • the sensor shaft 15 is pivotally mounted and leads the electrical signal line of the thermocouple 23 to the outside.
  • the rotation angle sensor 13 is also connected to the sensor shaft 15.
  • the signal lines for the measurement signal generated by the thermocouple 23 and the measurement signal ⁇ generated by the rotary encoder 13 are connected to a computer which delivers output signals for optimum centrifuge control in accordance with stored characteristic curves.
  • the diagram shown in FIG. 5 shows the temperature curve displayed by the thermocouple 23, with the sensor arm 12 at different pivoting positions.
  • T a is the temperature when the sensor arm is pivoted freely into the centrifuge space
  • T b the temperature when the sensor arm comes into contact with the surface 20 of the liquid layer 18 and designated by T c the temperature which arises when the liquid from the liquid layer 18 is immersed in the solid cake.
  • the points F1 E and F E mark exactly the point in time when the temperature sensor comes into contact with the liquid surface and when the liquid is immersed in the solid cake, whereby the rotary angle sensor provides a precise value for the respective layer height of the centrifuge filling at all times.
  • a variable, self-adjustable cycle time with a precise end time (in this case the immersion point F E ) is made possible, whereupon subsequent steps can be followed with an exactly precise time sequence.
  • the immersion point F E is set, further filling processes with suspension can follow in repeated sequence until the filter cake has reached a layer thickness in relation to the beltline 5, in which there is still enough space for the washing agent to be applied to the solid cake in one or more cycles .
  • the filtration speed and the volume of the solid cake can be measured, it is also possible to determine the throughputs of suspension liquid, washing medium and the remaining amount of solid or to be discharged with the peeling device in connection with a computer. Likewise, the residual moisture content of the solid can be queried at any time.
  • the dry spin cycle follows, in which the washing medium still present in the solid cake is removed. This phase was previously part of a fixed cycle time without taking into account the fluctuations caused by different filtering and washing times.
  • the time for dry spinning is determined by the computer in accordance with characteristic curves in which empirically determined influencing variables are taken into account.
  • Such an influencing variable can be given in the filtering properties of the so-called base layer, which changes from batch to batch, which remains on the screen surface after each peeling process after the dry centrifugation and which becomes increasingly denser, thus becoming increasingly impermeable and accordingly requiring an increasingly longer dry centrifuging time.
  • the invention enables variable and self-adjusting cycle times, with which a centrifuge can be applied to any desired operating result with little effort, e.g. low residual moisture, high filtration speed, low spin drying time and the like can be optimized.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung mit der mittels eines die Füllungsoberfläche einer Siebzentrifuge kontaktierenden Fühlerarms die Schichtdicke der Zentrifugenfüllung ermittelt werden kann. Um in der Lage zu sein, zu jedem Betriebszeitpunkt der Siebzentrifuge die jeweilige Beschaffenheit der Oberfläche des Zentrifugeninhalts bestimmen zu können, wird vorgeschlagen, an der Kontaktfläche des Fühlerarms einen physikalische Beschaffenheitswerte ermittelnden Meßfühler anzuordnen.

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung zum Steuern einer Filterzentrifuge gemäß Oberbegriff des Anspruchs 1.
  • Eine Filterzentrigue dieser Art ist aus der DE-OS 25 25 232 bekannt, bei der die Schichthöhe des Zentrifugeninhalts mittels eines Fühlerarms abgegriffen wird. Der Nachteil dieser Vorrichtung besteht darin, daß keine Aussagen über die jeweilige Beschaffenheit des Zentrifugeninhalts erzielt werden können. Es ist somit nicht festzustellen, ob die Oberfläche der in der rotierenden Siebtrommel befindlichen Schicht aus Suspension, Waschflüssigkeit oder Feststoffen besteht.
  • Die Aufgabe der Erfindung besteht daher, in der Schaffung einer Vorrich­tung, mit der zu jedem Betriebszeitpunkt der Filterzentrifuge die jeweilige Beschaffenheit der Oberfläche des Zentrifugeninhalts bestimmt werden kann.
  • Diese Aufgabe wird durch die im Anspruch 1 angezeigten Maßnahmen gelöst. Dei Erfindung basiert dabei auf der Erkenntnis, daß eine Suspension andere physikalische Eigenschaften aufweist als beispielsweise ein Feststoffkuchen oder Waschflüssigkeit.
  • Ein besonders vorteilhafter Weg zur Feststellung der Beschaffenheit und zur verzögerungsfreien Feststellung einer Beschaffenheitsänderung der Oberfläche des Zentrifugeninhalts ergibt sich durch einen aus einem Thermoelement bestehenden Meßfühler, der mit dem Fühlerarm mit der Oberfläche in Kontakt gebracht wird. Da jedem Stoff bestimmte Reibungs­werte und dementsprechend bestimmte Reibungswärmewerte zuzuordnen sind, geben die vom Thermoelement erzeugten Meßwerte jederzeit eine präzise Aussage über die Beschaffenheit des Zentrifugeninhalts.
  • Ein weiterer vorteilhafter Meßfühler zur Ermittlung der physikalischen Eigenschaften der Zentrifugenfüllung besteht aus einem Sensor zur Ermittlung der elektrischen Leitfähigkeit.
  • Die von einem oder mehreren Meßfühlern erzeugten Meßsignale werden somit nach Maßgabe mindestens eines solchen physikalischen Parameters der Füllungsoberfläche variiert, welcher für Flüssigkeiten, Suspensionen und Feststoffe jeweils unterschiedliche Werte zeigt, wobei neben der Unter­scheidung zwischen den vorgenannten Medien auch für jedes Medium selbst charakteristische Kennwerte erzielt werden können, die beispielsweise bei einer Suspension eine genaue Beurteilung der jeweiligen Temperatur und der Feststoffkonzentration erlauben.
  • In einer bevorzugten Ausführungsform der Erfindung ist der mit min­destens einem Meßfühler ausgestattete Fühlerarm mit einer Meßeinrichtung zur Ermittlung der radialen Position der Füllungsoberfläche versehen. Zweckmäßigerweise besteht diese Meßeinrichtung aus einem Drehwinkel­geber, der mit dem aus einem die Füllungsoberfläche kontaktierenden Fühler und einer Fühlerwelle bestehenden Fühlerarm gekoppelt ist.
  • Mit der Kombination der vom Meßfühler und der vom Drehwinkelgeber zeitgleich erhaltenen Werte über die Beschaffenheit und die Schichthöhe der Zentrifugenfüllung kann die Fest-Flüssig-Trennung in Filterzentrifu­gen für jedes gewünschte Betriebsergebnis optimiert werden.
  • Für eine derartige, auf ein bestimmtes Betriebsergebnis optimierte Steuerung einer Filterzentrifuge ist es von entscheidender Bedeutung, daß der Zeitpunkt, in dem die Suspensionsflüssigkeit in den bereits abfiltrierten Feststoffkuchen eindringt bzw. in dem die Oberfläche der Suspensionsflüssigkeit im Feststoffkuchen verschwindet, exakt bestimmbar ist. Dieser mit Eintauchpunkt (FE) bezeichnete Zeitpunkt macht sich bei einem erfindungsgemäß aus einem Thermoelement bestehenden Meßfühler in einem besonders deutlichen Temperatursprung bemerkbar, da im Ver­gleich zur Suspensionflüssigkeit beim Reibungskontakt mit der Feststoff­kuchen-Oberfläche eine wesentlich höher Reibungswärme erzeugt wird.
  • Da jeweils zeitgleich bzw. zeitkorrelierend mit dem Zeitpunkt des Eintauchpunktes (FE) ein die Höhe (hk) des abfiltrierten Feststoff­kuchens bestimmendes Meßsignal vorliegt, lassen sich in Verbindung mit einem Rechner trotz eventueller Schwankungen in der aufgegebenen Suspen­sion oder Änderungen der Füll-, Filtrations-, Wasch- und Schälbedingun­gen optimale Ergebnisse hinsichtlich einer gewünschten Restfeuchte bei optimalen Zykluszeiten für das Befüllen der Zentrifuge, das Waschen der Zentrifugenfüllung und das Trockenschleudern des Feststoffkuchens nach Erreichen des Eintauchpunktes (FE) erzielen.
  • Darüberhinaus kann im Chargenbetrieb der Zentrifuge zu jedem Zeitpunkt die Durchsatzleistung und die Restfeuchte des Feststoffkuchens abgerufen werden.
  • In der nachfolgenden Beschreibung ist anhand der Zeichnung ein Anwen­dungs- und Ausführungsbeispiel näher erläutert. Es zeigen :
    • Fig. 1 in schematischer Darstellung einen Teilbereich einer mit einem Fühlerarm ausgestatteten Filterzentrifuge im Schnitt,
    • Fig. 2 die Schnittansicht gemäß der Schnittlinie II-II in Fig. 1,
    • Fig. 3 den Fühlerarm gemäß Fig. 1 in vergrößertem Maßstab,
    • Fig. 4 die Querschnittsdarstellung des Fühlerarms gemäß der Schnitt­linie IV-IV in Fig. 3,
    • Fig. 5 ein den Temperaturverlauf beim Erreichen des Eintauchpunktes (FE) repräsentierendes Diagramm.
  • Die Figuren 1 und 2 zeigen eine Siebtrommel 1 deren Trommelinnenraum 2 von einer geschlossenen Trommelwand 3, einem Bordring 4 mit Bordkante 5 und einem Siebmantel 6 umgrenzt wird. Die Siebtrommel 1 rotiert um die Zentrifugenachse 7 und ist von einem Gehäuse 8 umgeben, das mit einem Gehäusedeckel 9 verschlossen ist. Im Gehäusedeckel 9 ist mittels eines Flansches 10 eine Meßeinrichtung 11 befestigt, die einen in den Trommel­innenraum 2 ragenden Fühlerarm 12 und einen außerhalb des Zentrifugenge­häuses gelegenen Drehwinkelgeber 13 trägt.
  • Der Fühlerarm 12 besteht aus einem Fühler 14 und einer Fühlerwelle 15. Am freien Ende des Fühlers 14 befindet sich die Kontaktfläche 16 in der einer oder mehrere Meßfühler angeordnet sind, die ein die physikalischen Beschaffenheitswerte der Zentrifugenfüllung repräsentierendes Meßsig­nal erzeugen.
  • Von Drehwinkelgeber 13 wird ein die Stellung der Kontaktfläche 16 bzw. ein die Schichtdicke der Zentrifugenfüllung repräsentierendes Meßsignal β erzeugt.
  • Die Zentrifugenfüllung besteht aus einer Feststoffschicht bzw. einem Feststoffkuchen 17, dessen Schichtdicke (Kuchenhöhe) mit hk bezeichnet ist. Die Feststoffschicht wird von einer Flüssigkeitsschicht 18 überla­gert, die aus Waschflüssigkeit oder aus Filtratflüssigkeit bestehen kann.
  • Der Fühlerarm 12 ist in Richtung der Pfeile 19 verschwenkbar. Zur Messung wird der Fühlerarm 12 mit geringer Kraft auf die Füllungsober­fläche 20 gedrückt, so daß die Kontaktfläche 16 stets in Berührung mit der Füllungsoberfläche 20 bleibt. Der Fühler 14 ist in Bezug auf die Trommeldrehrichtung (Pfeil 21) in geschleppter Stellung angeordnet. Die Achse 22 der Fühlerwelle 15 liegt parallel zur Zentrifugenachse 7.
  • Die Schnittdarstellung der Meßeinrichtung 11 nach Fig. 3 zeigt den Fühler 14, in dessen Kontaktfläche 16 ein Thermoelement 23 angeordnet ist. Der Fühler 14 ist gemäß Fig. 4 im Querschnitt nach Art einer Messerschneide gestaltet, wobei die der Schneidkante entsprechende Vorderkante 24 des Fühlers 14 entgegen der Drehrichtung (Pfeil 21) der Siebtrommel 1 gerichtet ist. Diese Ausgestaltung und Anordnung des Kontaktbereiches des Fühlers 14 hat den Vorteil, daß der Berührungskon­takt mit der Füllungsoberfläche 20 zum einen sichere Meßergebnisse liefert und zum anderen weitestgehend spritzfrei erfolgen kann.
  • Der Fühler 14 ist mit der Fühlerwelle 15 über einen Stecker 25 lösbar verbunden, der sowohl mechanische als auch elektrische Kopplungsein­richtungen aufweist. Die Fühlerwelle 15 ist schwenkbar gelagert und führt die elektrische Siganalleitung des Thermoelementes 23 nach außen. Mit der Fühlerwelle 15 ist ferner der Drehwinkelgeber 13 verbunden. Die Signalleitungen für das vom Thermoelement 23 erzeugte Meßsignal und das vom Drehwinkelgeber 13 erzeugte Meßsignal β sind an einen Rechner angeschlossen, der nach Maßgabe eingespeicherter Kennlinien Ausgangssig­nale für eine optimale Zentrifugensteuerung liefert.
  • Das in Fig. 5 dargestellte Diagramm zeigt den vom Thermoelement 23 angezeigten Temperaturverlauf, bei verschiedenen Schwenkstellungen des Fühlerarms 12. Mit Ta ist die Temperatur bei frei in den Zentrifugen­raum geschwenktem Fühlerarm, mit Tb die Temperatur bei Kontakt des Fühlerarms mit der Oberfläche 20 Flüssigkeitsschicht 18 und mit Tc die Temperatur bezeichnet, die sich einstellt, wenn die Flüssigkeit aus der Flüssigkeitsschicht 18 in den Feststoffkuchen eingetaucht ist.
  • Die Punkte F1E und FE kennzeichnen dabei exakt den Zeitpunkt, wenn der Temperaturfühler mit der Flüssigkeitsoberfläche in Kontakt kommt und wenn die Flüssigkeit in den Feststoffkuchen eintaucht, wobei durch den Drehwinkelgeber zu jedem Zeitpunkt jeweils ein genauer Wert über die jeweilige Schichthöhe der Zentrifugenfüllung vorliegt.
  • Im nachfolgenden wird in Gegenüberstellung zum Stand der Technik der chargenweise Betrieb einer Filterzentrifuge erläutert, der im wesent­lichen durch die Verfahrensschritte
    - Füllen der Siebtrommel mit Suspension
    -Waschen mit Waschflüssigkeit
    -Trockenschleudern des Feststoffkuchens und
    -Schälen des Feststoffkuchens mittels einer Schälvorrichtung (nicht dargestellt)
    gekennzeichnet ist.
  • Nach dem Füllen der Siebtrommel mit Suspension baut sich ein Filter­kuchen bzw. ein Feststoffkuchen auf, durch den die Suspensionflüssigkeit hindurchfiltriert, wobei der Zeitpunkt FE, zu dem die Suspensionsflüs­sigkeit durch die Oberfläche des Filterkuchens verschwindet, exakt angezeigt wird.
  • Dieser Zeitpunkt ist mit den bisher bekannten Verfahren zur Bestimmung des Eintauchpunktes FE überhaupt nicht oder nur in sehr unzureichendem Maße zu ermitteln, da aufgrund des starken Suspensions - Sprühnebels im Trommelinnenraum herkömmliche Meßmethoden oder die Beobachtungsmethode durch eine Bedienungsperson meist versagen.
  • Die Filterzentrifugen werden daher überwiegend nach fest vorgegebenen Zeiten gesteuert. Dies kann zu folgenden Nachteilen führen :
    • 1. Die Schleuderzeit ist zu lang. Neben dem Nachteil, daß unnötige Betriebszeit aufzuwenden ist, besteht die Gefahr, daß Luft in den Filterkuchen eindringt, wodurch sich ein schlechter Wascheffekt ergibt.
    • 2. Die Schleuderzeit ist zu kurz. Hierbei erfolgt noch eine Vermischung von Mutterlauge mit Waschmedium, wodurch ebenfalls ein schlechter Wascheffekt in Kauf zu nehmen ist.
  • Nach der vorliegenden Erfindung hingegen ermöglicht sich eine variable, selbst einstellbare Zykluszeit mit präzisem Endzeitpunkt (im hier gegebenen Fall der Eintauchpunkt FE), worauf nachfolgende Schritte mit gleichgeartet präzisem Zeitablauf nachgeschaltet werden können. Danach können sich bei Einstellen des Eintauchpunktes FE in mehrmaliger Abfolge weitere Füllvorgänge mit Suspension anschließen bis der Filter­kuchen in Bezug auf die Bordkante 5 eine Schichtdicke erreicht hat, bei der noch genügend Raum für die Beaufschlagung des Feststoffkuchens mit Waschmedium in einem oder mehreren Zyklen gegeben ist.
  • Aufgrund der Tatsache, daß die Filtrationsgeschwindigkeit und das Volumen des Feststoffkuchens gemessen werden, kann, ist man darüberhinaus in die Lage versetzt, in Verbindung mit einem Rechner jederzeit die Durchsatzmengen von Suspensionsflüssigkeit, Waschmedium und die verblei­bende oder mit der Schälvorrichtung auszutragende Feststoffmenge zu bestimmen. Desgleichen ist jederzeit eine Abfrage der Restfeuchte des Feststoffes möglich.
  • Nach Bestimmung des Eintauchpunktes FE nach dem letzten Waschvorgang schließt sich das Trockenschleudern an, bei dem das noch im Feststoff­kuchen vorhandene Waschmedium entfernt wird. Diese Phase war bisher Bestandteil einer fest vorgegebenen Zykluszeit ohne Berücksichtigung der durch unterschiedliche Filtrier- und Waschzeiten gegebenen Schwankungen.
  • Nach der Präzisen Erfassung der Filtrierzeit wird die Zeit zum Trocken­schleudern vom Rechner nach Maßgabe von Kennlinien bestimmt, in denen empirisch erfaßte Einflußgrößen berücksichtigt sind. Eine derartige Einflußgröße kann in den von Charge zu Charge sich verändernden Fil­triereigenschaften der sogenannten Grundschicht gegeben sein, die nach jedem, dem Trockenschleudern nachgeschalteten Schälvorgang auf der Siebfläche verbleibt und die sich zunehmend verdichtet, somit immer undurchlässiger wird und eine dementsprechend immer länger dauernde Trockenschleuderzeit erfordert.
  • Abgesehen von den vom Rechner über die Kennlinien erzeugten Steuerungs­größen ermöglicht die Erfindung variable und sich selbst einstellende Zykluszeiten, womit eine Zentrifuge mit geringem Aufwand auf jedes gewünschte Betriebsergebnis, wie z.B. geringe Restfeuchte, hohe Fil­trationsgeschwindigkeit, geringe Trockenschleuderzeit und dergleichen optimiert werden kann.

Claims (10)

1. Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge nach Maßgabe eines Meßsignals, das von einem mit der Füllungsoberfläche des Zentrifugeninhalts in Kontakt schwenkbaren Fühlerarm erzeugt wird, dadurch gekennzeichnet, daß der Fühlerarm (12) an seiner Kontaktfläche (16) mindestens einen, einen oder mehrere physikalische Beschaffenheits­werte ( ) der Füllungsoberfläche (20) des Zentrifugeninhalts ermitteln­den Meßfühler trägt.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Meßfühler ein Temperaturmeßfühler ist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Temperaturmeßfühler ein Thermoelement (23) ist.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Meßfühler ein Sensor zur Ermittlung der elektrischen Leitfähigkeit ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekenn­zeichnet, daß der Fühlerarm (12) mit einer die radiale Position der Kontaktfläche (16) auf der Füllungsoberfläche (20), bzw. die Schicht­dicke des Zentrifugeninhalts anzeigenden Meßeinrichtung gekoppelt ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekenn­zeichnet, daß der Fühlerarm (12) aus einem senkrecht zur Zentrifugen­achse (7) angeordneten Fühler (14) und einer parallel zur Zentrifugen­achse (7) im Zentrifugengehäuse (8) drehbar gelagerten Fühlerwelle (15) besteht.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Fühler (14) mit der Fühlerwelle (15) mittels einer lösbaren Steckerver­bindung (25) gekoppelt ist.
8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekenn­zeichnet, daß die Fühlerwelle (15) mit einem Drehwinkelgeber (13), beispielsweise einem Drehpotentiometer gekoppelt ist.
9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekenn­zeichnet, daß die Fühlerwelle (15) mit einem Stellantrieb gekoppelt ist.
10.Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekenn­zeichnet, daß der Fühlerarm (12) zumindest im Bereich seiner Kontakt­fläche (16) im Querschnitt nach Art einer Messerschneide gestaltet ist, wobei die der Schneide entsprechende Vorderkante (24) des Fühlers (14) entgegen der Zentrifugendrehrichtung (Pfeil 21) gerichtet ist.
EP88112593A 1987-08-07 1988-08-03 Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge Expired - Lifetime EP0302464B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873726227 DE3726227A1 (de) 1987-08-07 1987-08-07 Vorrichtung zum ergebnisabhaengigen steuern einer filterzentrifuge
DE3726227 1987-08-07

Publications (3)

Publication Number Publication Date
EP0302464A2 true EP0302464A2 (de) 1989-02-08
EP0302464A3 EP0302464A3 (en) 1990-01-17
EP0302464B1 EP0302464B1 (de) 1991-11-06

Family

ID=6333233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88112593A Expired - Lifetime EP0302464B1 (de) 1987-08-07 1988-08-03 Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge

Country Status (5)

Country Link
US (1) US4900453A (de)
EP (1) EP0302464B1 (de)
JP (1) JP2540358B2 (de)
DE (1) DE3726227A1 (de)
ES (1) ES2026607T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032258A (en) * 1988-05-19 1991-07-16 Krauss-Maffei Aktiengesellschaft Filter centrifuge for separating suspensions with system to release accumulated gas
AT399300B (de) * 1993-09-23 1995-04-25 Tauss Johann Gmbh Verfahren und vorrichtung zur automatischen füllstandsüberwachung von zentrifugen
CN108027433A (zh) * 2015-08-03 2018-05-11 联邦科学和工业研究组织 监视***和方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925198A1 (de) * 1988-09-01 1990-03-15 Krauss Maffei Ag Vorrichtung zum ergebnisabhaengigen steuern einer filterzentrifuge
EP0456861A1 (de) * 1989-07-29 1991-11-21 Krauss-Maffei Aktiengesellschaft Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge
DE3940053A1 (de) * 1989-12-04 1991-06-06 Krauss Maffei Ag Verfahren und vorrichtung zum abziehen von fluessigkeiten aus einer zentrifuge
DE3940057A1 (de) * 1989-12-04 1991-06-06 Krauss Maffei Ag Verfahren und vorrichtung zum betrieb einer filterzentrifuge
DE4004584A1 (de) * 1990-02-15 1991-08-22 Krauss Maffei Ag Verfahren und vorrichtung zum betrieb einer filterzentrifuge
FR2665379B1 (fr) * 1990-07-31 1993-08-13 Fives Cail Babcock Procede de conduite automatisee d'une essoreuse centrifuge a marche discontinue.
US5254241A (en) * 1992-08-12 1993-10-19 The Western States Machine Company Loading control system for a cyclical centrifugal machine which adjusts pinch position
DE4327291C2 (de) * 1993-08-13 1997-07-31 Krauss Maffei Ag Verfahren und Vorrichtung zur Bestimmung von Meßgrößen einer Zentrifuge
NO301562B1 (no) * 1994-12-21 1997-11-10 Exxon Production Research Co Anordning for måling
DE19703353C2 (de) * 1997-01-30 2003-10-09 Krauss Maffei Process Technolo Verfahren zum Betrieb einer Filterzentrifuge
DE19716128C1 (de) * 1997-04-17 1999-01-21 Krauss Maffei Ag Verfahren zum ergebnisabhängigen Steuern von diskontinuierlich arbeitenden Filterzentrifugen
US6063292A (en) 1997-07-18 2000-05-16 Baker Hughes Incorporated Method and apparatus for controlling vertical and horizontal basket centrifuges
AU9487998A (en) * 1997-09-19 1999-04-12 Baker Hughes Incorporated Method and apparatus for monitoring, controlling and operating rotary drum filters
US6213928B1 (en) 1999-08-17 2001-04-10 Shrinivas G. Joshi Method and apparatus for measuring the thickness of sludge deposited on the sidewall of a centrifuge
DE10103769C2 (de) * 2001-01-27 2003-07-31 Westfalia Separator Food Tec G Zentrifuge
US7832566B2 (en) * 2002-05-24 2010-11-16 Biomet Biologics, Llc Method and apparatus for separating and concentrating a component from a multi-component material including macroparticles
US20030205538A1 (en) 2002-05-03 2003-11-06 Randel Dorian Methods and apparatus for isolating platelets from blood
US7845499B2 (en) 2002-05-24 2010-12-07 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US20060278588A1 (en) 2002-05-24 2006-12-14 Woodell-May Jennifer E Apparatus and method for separating and concentrating fluids containing multiple components
DE10323516B3 (de) * 2003-05-24 2004-10-28 Johannes Gerteis Vorrichtung zur Entfeuchtungsmessung zur Steuerung einer Filterzentrifuge
CN100417428C (zh) * 2003-09-30 2008-09-10 博奥生物有限公司 离心分离的仪器和方法
DE102004037414A1 (de) * 2004-07-30 2006-03-23 Mann + Hummel Gmbh Zentrifugalabscheider
WO2006086201A2 (en) * 2005-02-07 2006-08-17 Hanuman Llc Platelet rich plasma concentrate apparatus and method
EP2910258B1 (de) * 2005-02-07 2018-08-01 Hanuman LLC Vorrichtung für blutplättchenreiches plasmakonzentrat
US7866485B2 (en) 2005-02-07 2011-01-11 Hanuman, Llc Apparatus and method for preparing platelet rich plasma and concentrates thereof
DE102005028832A1 (de) * 2005-06-15 2006-12-28 Fima Maschinenbau Gmbh Zentrifugenvorrichtung mit verbesserter Prozessanalysetechnologie
US8567609B2 (en) 2006-05-25 2013-10-29 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
JP5479319B2 (ja) 2007-04-12 2014-04-23 バイオメット・バイオロジックス・リミテッド・ライアビリティ・カンパニー ブイ式懸濁液分画システム
US8328024B2 (en) 2007-04-12 2012-12-11 Hanuman, Llc Buoy suspension fractionation system
EP2259774B1 (de) 2008-02-27 2012-12-12 Biomet Biologics, LLC Verfahren und zusammensetzungen zur abgabe eines interleukin-1-rezeptor-antagonisten
EP2254991B1 (de) 2008-02-29 2018-08-22 Biomet Manufacturing, LLC System und verfahren zur trennung eines materials
US8012077B2 (en) * 2008-05-23 2011-09-06 Biomet Biologics, Llc Blood separating device
US8187475B2 (en) 2009-03-06 2012-05-29 Biomet Biologics, Llc Method and apparatus for producing autologous thrombin
US8313954B2 (en) 2009-04-03 2012-11-20 Biomet Biologics, Llc All-in-one means of separating blood components
US9011800B2 (en) * 2009-07-16 2015-04-21 Biomet Biologics, Llc Method and apparatus for separating biological materials
DE102009039910A1 (de) * 2009-09-03 2011-03-10 Kmpt Ag Vorrichtung zum Messen des Füllstandes und der Oberflächenbeschaffenheit des Füllgutes in einer Zentrifuge
US8591391B2 (en) 2010-04-12 2013-11-26 Biomet Biologics, Llc Method and apparatus for separating a material
US9642956B2 (en) 2012-08-27 2017-05-09 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US9895418B2 (en) 2013-03-15 2018-02-20 Biomet Biologics, Llc Treatment of peripheral vascular disease using protein solutions
US10208095B2 (en) 2013-03-15 2019-02-19 Biomet Manufacturing, Llc Methods for making cytokine compositions from tissues using non-centrifugal methods
US20140271589A1 (en) 2013-03-15 2014-09-18 Biomet Biologics, Llc Treatment of collagen defects using protein solutions
US9950035B2 (en) 2013-03-15 2018-04-24 Biomet Biologics, Llc Methods and non-immunogenic compositions for treating inflammatory disorders
US10143725B2 (en) 2013-03-15 2018-12-04 Biomet Biologics, Llc Treatment of pain using protein solutions
US9713810B2 (en) 2015-03-30 2017-07-25 Biomet Biologics, Llc Cell washing plunger using centrifugal force
US9757721B2 (en) 2015-05-11 2017-09-12 Biomet Biologics, Llc Cell washing plunger using centrifugal force
US20220111402A1 (en) 2018-11-06 2022-04-14 Ferrum Process Systems Ag Method for operating a centrifuge device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1208695B (de) * 1958-12-18 1966-01-05 Siemens Ag Verfahren zur Steuerung und Regelung selbsttaetig arbeitender Zuckerzentrifugen
FR1518549A (fr) * 1966-04-13 1968-03-22 Ajinomoto Kk Séparateur centrifuge avec détecteur de quantité de séparation et procédé pour couper l'alimentation en suspension en fonction de la quantité de matière séparée
DE2525232A1 (de) * 1975-06-06 1976-12-16 Riedel De Haen Ag Vorrichtung zur messung der fuellschichthoehe einer siebschleuder

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE621908C (de) * 1932-10-04 1935-11-15 Poth & Co Presshefefabrik G M Verfahren zur Entwaesserung von Hefe
US3011641A (en) * 1957-10-28 1961-12-05 Western States Machine Co Overriding loading control for centrifugal machines
US3044625A (en) * 1957-11-04 1962-07-17 Ametek Inc Load indicator for centrifugal separator
US3019902A (en) * 1958-06-23 1962-02-06 Hepworth Machine Company Inc Probe for centrifugal
US3141846A (en) * 1962-04-05 1964-07-21 Western States Machine Co Load control unit for cyclical centrifugal installation
DE1432808A1 (de) * 1962-12-31 1969-01-09 Heinrich Hinz Vorrichtung zum Messen und Regeln der Fuellmenge einer waehrend des Laufens zu fuellenden Schleudertrommel,insbesondere fuer eine Zentrifuge
JPS497539B1 (de) * 1966-04-13 1974-02-21
FR1485669A (fr) * 1966-05-05 1967-06-23 Robatel Et Mulatier Atel Perfectionnements aux machines séparatrices centrifuges à couteau râcleur
US3559808A (en) * 1968-09-27 1971-02-02 Ametek Inc Load indicator for centrifugal separator
SE348121B (de) * 1970-12-07 1972-08-28 Alfa Laval Ab
US4162980A (en) * 1978-06-02 1979-07-31 The De Laval Separator Company Load indicator for centrifuges
US4229298A (en) * 1979-02-05 1980-10-21 The Western States Machine Company Method and apparatus for determining the thickness of a charge wall formed in a centrifugal basket
US4382382A (en) * 1979-11-01 1983-05-10 General Electric Company Multilevel liquid sensing system
DE2946585A1 (de) * 1979-11-19 1981-05-27 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zum elektrischen ueberwachen des niveaus einer in einem behaelter enthaltenen fluessigkeit
JPS5926158A (ja) * 1982-08-03 1984-02-10 Matsumoto Kikai Seisakusho:Kk 遠心分離機
DE3523907A1 (de) * 1985-07-04 1987-01-15 Westfalia Separator Ag Verfahren und vorrichtung zur zentrifugalen reinigung von gebrauchten mineraloelen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1208695B (de) * 1958-12-18 1966-01-05 Siemens Ag Verfahren zur Steuerung und Regelung selbsttaetig arbeitender Zuckerzentrifugen
FR1518549A (fr) * 1966-04-13 1968-03-22 Ajinomoto Kk Séparateur centrifuge avec détecteur de quantité de séparation et procédé pour couper l'alimentation en suspension en fonction de la quantité de matière séparée
DE2525232A1 (de) * 1975-06-06 1976-12-16 Riedel De Haen Ag Vorrichtung zur messung der fuellschichthoehe einer siebschleuder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032258A (en) * 1988-05-19 1991-07-16 Krauss-Maffei Aktiengesellschaft Filter centrifuge for separating suspensions with system to release accumulated gas
AT399300B (de) * 1993-09-23 1995-04-25 Tauss Johann Gmbh Verfahren und vorrichtung zur automatischen füllstandsüberwachung von zentrifugen
CN108027433A (zh) * 2015-08-03 2018-05-11 联邦科学和工业研究组织 监视***和方法
CN108027433B (zh) * 2015-08-03 2022-09-06 联邦科学和工业研究组织 监视***和方法

Also Published As

Publication number Publication date
EP0302464B1 (de) 1991-11-06
DE3726227A1 (de) 1989-02-16
JP2540358B2 (ja) 1996-10-02
JPS6467270A (en) 1989-03-13
US4900453A (en) 1990-02-13
DE3726227C2 (de) 1991-03-14
EP0302464A3 (en) 1990-01-17
ES2026607T3 (es) 1992-05-01

Similar Documents

Publication Publication Date Title
EP0302464B1 (de) Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge
DE4327291C2 (de) Verfahren und Vorrichtung zur Bestimmung von Meßgrößen einer Zentrifuge
DE2854821C2 (de) Vorrichtung zum Verfolgen der Zusammensetzungsänderungen eines strömenden heterogenen Flüssigkeitsgemisches
DE2423204C2 (de) Verfahren und Vorrichtung zum Bereiten eines dünnen, gleichmäßigen Blutfilms auf einem Objektträger
DE2558794C3 (de) Verfahren zum Entwässern von Suspensionen mittels mit Unterdruck arbeitender Filter und Filter zur Durchführung des Verfahrens
DE3925198C2 (de)
EP0255623A2 (de) Vorrichtung zum Trennen von Suspensionen
DE19732006C1 (de) Vorrichtung zur Durchführung einer Gewichtsmessung bei Zentrifugen
DE3940053A1 (de) Verfahren und vorrichtung zum abziehen von fluessigkeiten aus einer zentrifuge
DE3615013C1 (en) Method for monitoring the drying phase in filtration centrifuges
DE2737759C2 (de) Vollmantelzentrifuge
EP1444045B1 (de) Zentrifuge mit einer vorrichtung zur bestimmung des restfeuchtegehalts von feststoffkuchen
EP2277627B1 (de) Diskontinuierliche Zentrifuge mit einer Füllgutmengensteuerung und ein Verfahren zum Betreiben der Zentrifuge
DE19816683A1 (de) Vorrichtung zum Erfassen der Drehstellung eines Lenkrads
DE2745310A1 (de) Verfahren und vorrichtung zur messung der durchlaessigkeit von filtermitteln
DE1773147C3 (de) Verfahren und Vorrichtung zum Trennen der unlöslichen Bestandteile einer Bitumenprobe zur Bestimmung des Gehaltes und der granulometrischen Zusammensetzung
DE19703353A1 (de) Filterzentrifuge
EP0456861A1 (de) Vorrichtung zum ergebnisabhängigen Steuern einer Filterzentrifuge
EP2294398A1 (de) Vorrichtung und verfahren zur durchführung von messungen eines analysenfluids
EP0009228B1 (de) Vorrichtung zur wiederholten selbsttätigen Bestimmung der Entwässerungsfähigkeit einer Faserstoffsuspension
DE4334939A1 (de) Verfahren und Anordnung zum Feststellen einer vorgegebenen Grenzbedingung für den Zustand einer in einer Zentrifuge behandelten Suspension
EP0431426A1 (de) Verfahren und Vorrichtung zum Betrieb einer Filterzentrifuge
DE3215306A1 (de) Einrichtung zur bestimmung und registrierung des mahlungsgrades von faserstoffen
DE10358020B3 (de) Gerät für die Papierherstellung
DE3640304C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: B04B 11/04

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900209

17Q First examination report despatched

Effective date: 19910411

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH ES FR GB IT LI NL SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2026607

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88112593.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950810

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950811

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

EUG Se: european patent has lapsed

Ref document number: 88112593.4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KRAUSS-MAFFEI AKTIENGESELLSCHAFT TRANSFER- MANNESM

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MANNESMANN DEMAG KRAUSS-MAFFEI AG TRANSFER- KRAUSS

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050720

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050819

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050824

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050829

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070803