EP0301121B1 - Rippenrohr - Google Patents

Rippenrohr Download PDF

Info

Publication number
EP0301121B1
EP0301121B1 EP19870111019 EP87111019A EP0301121B1 EP 0301121 B1 EP0301121 B1 EP 0301121B1 EP 19870111019 EP19870111019 EP 19870111019 EP 87111019 A EP87111019 A EP 87111019A EP 0301121 B1 EP0301121 B1 EP 0301121B1
Authority
EP
European Patent Office
Prior art keywords
finned tube
fin
tube according
range
finned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP19870111019
Other languages
English (en)
French (fr)
Other versions
EP0301121A1 (de
Inventor
Manfred Dr.-Ing. Hage
Manfred Dipl.-Ing. Knab
Karl Dipl.-Ing. Noll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8197168&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0301121(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Priority to EP19870111019 priority Critical patent/EP0301121B1/de
Priority to DE8787111019T priority patent/DE3762920D1/de
Publication of EP0301121A1 publication Critical patent/EP0301121A1/de
Application granted granted Critical
Publication of EP0301121B1 publication Critical patent/EP0301121B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features

Definitions

  • the invention relates to a finned tube according to the preamble of claim 1.
  • Finned tubes of this type with a fin height h R of about 10 mm are used in particular in air-cooled heat exchangers.
  • a relatively small fin pitch t R ⁇ 1.34 mm (at least 19 finned inches) is assigned a relatively small fin height h R of 0.8 to 1.25 mm.
  • the invention has for its object to provide a finned tube that retains good heat transfer properties even when used in corrosive, erosive and contaminated media.
  • the object is achieved by the characterizing features a) and b) of claim 1 (the rib cross-sectional area A R is measured in the longitudinal direction of the tube).
  • the rib height h R is preferably in the range 0.8 mm ⁇ h R ⁇ 1.7 mm, in particular in the range 1.0 mm ⁇ h R ⁇ 1.5 mm.
  • the values for the surface ratio of the corrugated outer surface Ao / smooth outer surface Ao, smooth as a function of the rib pitch t R lie between the values of the equations.
  • the smooth tube has an outer diameter which corresponds to the fin diameter of the finned tube.
  • a rib width B> 0.3 mm at the tip of the rib is preferred.
  • the finned tube For use in shell and tube heat exchangers, it is recommended that the finned tube have smooth ends, the diameter of which roughly corresponds to the fin diameter.
  • the finned tube in corrosive or erosive media, it preferably consists of a corrosion-resistant metallic material, such as steel, high-alloy steel or titanium.
  • finned tube according to the invention for heat exchangers for condensation and evaporation as well as heat transfer without phase change (on the tube outside) of corrosive and erosive substances which have a critical pressure p crit ⁇ 200 bar is preferred. Because of the favorable surface area, these finned tubes are also ideally suited for use in contaminated process streams.
  • Particularly suitable substances of this type are hydrocarbon mixtures from chemistry or petrochemicals, for example ethylene / propylene, n-pentane / para-xylene.
  • Fig. 3 shows a finned tube 1 with integral fins 2, which run helically around the outside of the tube.
  • the finned tubes 1 are produced in a manner known per se by the finned tube rolling method (cf. for example US Pat. No. 3,327,512).
  • FIG. 4 clearly shows, the ribs 2 taper towards the tip of the rib, the bottom of the groove between the ribs 2 is rounded.
  • rib pitch t R distance from rib center to rib center
  • rib height h R rib cross-sectional area A R (hatched in Fig. 4)
  • rib width B at the rib tip radius R in the groove base
  • Rib diameter d R inside diameter of the tube (in the finned part) di.
  • the finned tube 1 has a smooth end 1 ', the diameter of which corresponds to the fin diameter d R.
  • condensation performance of the condenser equipped with finned tubes according to the invention was at least a factor 2 higher than the condensation performance of the condenser provided with standard finned tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • Die Erfindung betrifft ein Rippenrohr nach dem Oberbegriff des Anspruchs 1.
  • Es sind Rippenrohre mit dem angegebenen Bereich der Teilung tR von 1,60 bis 3,90 mm (6,5 bis 16 Rippen/Zoll) bekannt.
  • Rippenrohre dieser Art mit einer Rippenhöhe hR von etwa über 10 mm werden insbesondere in luftgekühlten Wärmeaustauschern eingesetzt.
  • Aus der DE-A 2 303 192 sind ebenfalls Rippenrohre bekannt, bei denen einer relativ großen Rippenteilung tR von 2,12 bis 2,54 mm (10-12 Rippen/Zoll) eine relativ große Rippenhöhe h R von mehr als 2,54 mm zugeordnet ist.
  • Eine Verwendung dieser Rippenrohre bei korrosiven, erosiven und verunreinigten Medien, wie sie beispielsweise im Bereich der Chemie und Petrochemie auftreten, ist bereits deshalb ausgeschlossen, weil die Nuten zwischen den Rippen leicht mit Ablagerungen angefüllt würden und damit die Leistung des Rippenrohres als Wärmeübertragungselement wesentlich beeinträchtigt würde.
  • Bei den Rippenrohren nach der DE-A 2 119 245 ist einer relativ kleinen Rippenteilung tR < 1,34 mm (mindestens 19 RippenlZoll) eine relativ kleine Rippenhöhe hR von 0,8 bis 1,25 mm zugeordnet. Der Erfindung liegt die Aufgabe zugrunde, ein Rippenrohr anzugeben, das auch bei der Verwendung in korrosiven, erosiven und verunreinigten Medien gute Wärmeübertragungseigenschaften behält. Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale a) und b) des Anspruchs 1 gelöst (Die Rippenquerschnittsfläche AR wird dabei in Rohrlängsrichtung gemessen).
  • Damit wird einerseits eine offene Rippenstruktur vorgeschlagen, die einer Verschmutzung der Nuten zwischen den Rippen entgegenwirkt, und andererseits wird eine relativ massive Rippe zur Verfügung gestellt, die widerstandsfähig ist gegen die Angriffe der korroviven und erosiven Medien.
  • Die Rippenhöhe hR liegt vorzugsweise im Bereich 0,8 mm < hR < 1,7 mm, insbesondere im Bereich 1,0 mm < hR < 1,5 mm. Nach einer besonderen Ausführungsform der Erfindung liegen die Werte für das Verhältnis tR / hR im Bereich 1,2 < tR / hR < 5, insbesondere im Bereich 1,3 < tR / hR < 3,2. Es empfiehlt sich, die Werte für die Rippenquerschnittsfläche AR als Funktion der Rippenhöhe hR zwischen den Werten der Gleichungen AR = 0,5 mm hR und AR = 0,7 mm2 + 1 mm hR zu wählen (vgl. das Diagramm in Fig. 1). Nach einer weiteren Ausführungsform der Erfindung liegen die Werte für das Oberflächenverhältnis der berippten Außen-Oberfläche Ao/ glatter Außen-Oberfläche Ao, glatt als Funktion der Rippenteilung tR zwischen den Werten der Gleichungen. Ao / Ao, glatt = 1,05 und Ao / Ao, glatt = 1,49 + 0,214 . (tR -3,97)2, vgl. Fig. 2 mit tR in mm. Bei diesem Vergleich hat das Glattrohr einen Außendurchmesser, der dem Rippendurchmesser des Rippenrohres entspricht.
  • Für die Herstellung mittels des üblichen Rippenrohr-Walzverfahrens empfiehlt es sich, daß die Rippen zur Rippenspitze hin konisch zulaufen. Eine Rippenbreite B > 0,3 mm an der Rippenspitze ist dabei bevorzugt.
  • Für die Verwendung in Rohrbündelwärmeaustauschem empfiehlt es sich, wenn das Rippenrohr glatte Enden aufweist, deren Durchmesser in etwa dem Rippendurchmesser entspricht.
  • Für die Verwendung des Rippenrohres in korrosiven bzw. erosiven Medien besteht es vorzugsweise aus einem korrosionsbeständigen metallischen Werkstoff, wie etwa Stahl, hochlegiertem Stahl oder Titan.
  • Die Verwendung des erfindungsgemäßen Rippenrohres für Wärmeaustauscher sowohl für Kondensation und Verdampfung als auch Wärmeübertragung ohne Phasenwechsel (auf der Rohraußenseite) von korrosiven und erosiven Stoffen, die einen kritischen Druck p krit < 200 bar haben, ist bevorzugt. Wegen des günstigen Oberflächenverhäftnisses sind diese Rippenrohre ebenfalls ausgezeichnet für den Einsatz in verunreinigten Prozeßströmen geeignet.
  • Als Stoffe dieser Art kommen insbesondere Kohlenwasserstoffgemische aus der Chemie oder Petrochemie in Frage, beispielsweise Äthylen / Propylen, n-Pentan/Para-Xylol.
  • Die Erfindung wird an Hand der folgenden Ausführungsbeispiele näher erläutert. Es zeigt
    • Fig. 3 einen Längsschnitt durch ein Rippenrohr,
    • Fig. 4 in vergößertem Maßstab einen Teillängsschnitt durch ein Rippenrohr,
    • Fig. 5 ein Foto eines Längsschliffes eines Rippenrohres,
    • Fig. 6 den Einsatz der Rippenrohre in einem Rohrbündel.
  • Die Fig. 3 zeigt ein Rippenrohr 1 mit integralen Rippen 2, die auf der Rohraußenseite schraubenlinienförmig umlaufen. Die Herstellung der Rippenrohre 1 erfolgt in an sich bekannter Weise nach dem Rippenrohrwalzverfahren (vgl. beispielsweise US-PS 3.327.512). Wie Fig. 4 deutlich zeigt, laufen die Rippen 2 konisch zur Rippenspitze zu, der Nutengrund zwischen den Rippen 2 ist ausgerundet.
  • An Hand der Fig. 3/4 sind die Rippenrohrgrößen erläutert: Rippenteilung tR (Abstand von Rippenmitte zur Rippenmitte), Rippenhöhe hR, Rippenquerschnittftäche AR (in Fig. 4 schraffiert), Rippenbreite B an der Rippenspitze, Radius R im Nutengrund, Rippendurchmesser dR, Innendurchmesser des Rohres (im berippten Teil) di.
  • Aus Fig. 3 geht deutlich hervor, daß das Rippenrohr 1 ein glattes Ende 1' aufweist, dessen Durchmesser dem Rippendurchmesser dR entspricht.
  • BeisDiel:
  • Es wurden Rippenrohre 1 aus Edelstahl 1,4571 mit 11,2 Rippen/Zoll (tR = 2,27 mm) mit den Abmessungen nach folgender Tabelle hergestellt:
    Figure imgb0001
  • Damit ist tR/hR =1,63; AR/hR = 0,62 mm.
    Ein Längsschliff durch die so hergestellten Rohre ist mit dem Foto nach Fig. 5 gezeigt die Rohrinnenseite ist glatt. Rippenrohre und Vergleichsrippenrohre (Standardrippenrohre mit 19 Rippen/Zoll und demselben Rippendurchmesser dR) wurden jeweils in einem Rohrbündel-Kondensator 3 nach Fig. 6 eingesetzt (also Wasser im Rohr, kondensierendes Kohlenwasserstoffgemisch - CnHm-Gemisch - außen).
  • Es zeigte sich, daß die Kondensationsleistung des mit erfindungsgemäßen Rippenrohren bestückten Kondensators mindestens um den Faktor 2 höher lag als die Kondensationsleistung des mit Standard-Rippenrohren versehenen Kondensators.

Claims (13)

1. Rippenrohr (1), insbesondere für Wärmeaustauscher, mit auf der Rohraußenseite schraubenlinienförmig oder ringförmig umlaufenden, integralen Rippen (2), die durch die Größen Teilung tR, Rippenhöhe hR und Rippenquerschnittsfläche AR beschrieben werden, die eine Teilung tR von 1,60 bis 3,90 mm (6,5 bis 16 Rippen/Zoll) aufweisen und bei denen das Verhältnis Rippenquerschnittsfläche AR / Rippenhöhe hR beträgt:
AR/hR < 0,5 mm, gekennzeichnet durch folgende Merkmale:
a) die Rippenhöhe hR liegt in folgendem Bereich:
0,2 mm < hR < 2,0 mm;
b) das Verhältnis Rippenteilung tR / Rippenhöhe hR liegt in folgendem Bereich:
1 < tR/hR < 15.
2. Rippenrohr nach Anspruch 1,
dadurch gekennzeichnet,
daß die Rippenhöhe hR im Bereich 0,8 mm < hR < 1,7 mm liegt.
3. Rippenrohr nach Anspruch 2,
dadurch gekennzeichnet,
daß die Rippenhöhe hR im Bereich 1,0 mm < hR < 1,5 mm liegt.
4. Rippenrohr nach einem oder mehreren der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß das Verhältnis tR / hR im Bereich 1,2 < tR / hR < 5 liegt.
5. Rippenrohr nach Anspruch 4,
dadurch gekennzeichnet,
daß das Verhältnis tR / hR im Bereich 1,3 < tR / hR < 3,2 liegt.
6. Rippenrohr nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet,
daß die Werte für die Rippenquerschnittsfläche AR als Funktion der Rippenhöhe hR zwischen den Werten der Gleichungen AR = 0,5 mm hR und AR = 0,7 mm2 + 1 mm hR liegen (Fig. 1)
7. Rippenrohr nach einem oder mehreren der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Werte für das Oberflächenverhältnis der berippten Außenoberfläche Ao / glatte Außenoberfläche A0,glatt als Funktion der Rippenteilung tR zwischen den Werten der Gleichungen Ao / Ao, glatt = 1,05 und Ao / Ao, glatt = 1,49 + 0,214. (tR - 3,97)2 liegen (Fig. 2 mit tR in mm).
8. Rippenrohr nach einem oder mehreren der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die Rippen (2) zur Rippenspitze hin konisch zulaufen.
9. Rippenrohr nach Anspruch 8,
dadurch gekennzeichnet,
daß die an der Rippenspitze gemessene Rippenbreite B > 0,3 mm beträgt.
10. Rippenrohr nach einem oder mehreren der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
daß es glatte Enden (1') aufweist, deren Durchmesser in etwa dem Rippendurchmesser dR entspricht.
11. Rippenrohr nach einem oder mehreren der Ansprüche 1 bis 10,
dadurch gekennzeichnet,
daß es aus einem korrosionsbeständigen, metallischen Werkstoff, wie etwa Stahl, hochlegiertem Stahl oder Titan, besteht.
12. Verwendung eines Rippenrohres anch einem oder mehreren der Ansprüche 1 bis 11 für Wärmeaustauscher für Kondensation, Verdampfung oder Wärmeübergang ohne Phasenwechsel von korrosiven und erosiven Stoffen, die einen kritischen Druck pkrit. < 200 bar haben.
13. Verwendung eines Rippenrohres als Wärmeaustauscher für Kohlenwasserstoffgemische für den Zweck nach Anspruch 12.
EP19870111019 1987-07-30 1987-07-30 Rippenrohr Revoked EP0301121B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19870111019 EP0301121B1 (de) 1987-07-30 1987-07-30 Rippenrohr
DE8787111019T DE3762920D1 (de) 1987-07-30 1987-07-30 Rippenrohr.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19870111019 EP0301121B1 (de) 1987-07-30 1987-07-30 Rippenrohr

Publications (2)

Publication Number Publication Date
EP0301121A1 EP0301121A1 (de) 1989-02-01
EP0301121B1 true EP0301121B1 (de) 1990-05-23

Family

ID=8197168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870111019 Revoked EP0301121B1 (de) 1987-07-30 1987-07-30 Rippenrohr

Country Status (2)

Country Link
EP (1) EP0301121B1 (de)
DE (1) DE3762920D1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832995A (en) * 1994-09-12 1998-11-10 Carrier Corporation Heat transfer tube
FR2756090A1 (fr) * 1996-11-19 1998-05-22 Transnucleaire Dispositif a cannelures pour le refroidissement exterieur de conteneurs pour matieres radioactives
US6298673B1 (en) * 2000-05-18 2001-10-09 Carrier Corporation Method of operating a refrigerated merchandiser system
WO2005068927A1 (en) * 2004-01-07 2005-07-28 Dow Global Technologies Inc. Method of manufacturing heat transfer tube
FR2872956B1 (fr) * 2004-07-12 2006-11-17 Cogema Logistics Sa Dispositif externe d'evacuation de chaleur pour emballage destine au stockage et/ou au transport de matieres nucleaires
US7128139B2 (en) * 2004-10-14 2006-10-31 Nova Chemicals (International) S.A. External ribbed furnace tubes
CN104810068A (zh) * 2014-01-26 2015-07-29 上海核工程研究设计院 一种外壁面带有翅片的压力容器
CN112303978A (zh) * 2019-07-30 2021-02-02 开利公司 制冷柜***和制冷柜***控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384154A (en) * 1956-08-30 1968-05-21 Union Carbide Corp Heat exchange system
US3600922A (en) * 1969-03-05 1971-08-24 Carrier Corp Manufacture of integrally finned tubing
DE2043459A1 (en) * 1970-09-02 1972-03-09 Battelle Institut E V Heat transfer tube - for steam condensation
DE2119345A1 (en) * 1971-04-21 1972-11-02 R. & G. Schmöle Metallwerke, 575OMenden Finned tube - fin dimensions ensure optimum heat conduction at minimum material usage
US3795125A (en) * 1972-01-27 1974-03-05 Universal Oil Prod Co High-fin integral finned tube of heat-resisting alloys, and multi-pass process for making the same
EP0102407B1 (de) * 1982-09-03 1986-02-19 Wieland-Werke Ag Rippenrohr mit inneren Vorsprüngen sowie Verfahren und Vorrichtung zu dessen Herstellung
CA1247592A (en) * 1983-08-04 1988-12-28 James L. Cunningham Finned heat exchanger tubes and method and apparatus for making same
US4546819A (en) * 1984-02-10 1985-10-15 Amtrol Inc. Double wall heat exchanger

Also Published As

Publication number Publication date
EP0301121A1 (de) 1989-02-01
DE3762920D1 (de) 1990-06-28

Similar Documents

Publication Publication Date Title
DE69200089T2 (de) Wärmeübertragungsrohr.
DE69102556T2 (de) Wärmetauscher.
DE2903079C2 (de) Wärmeaustauscherrohr für einen Sprühwasser-Plattenverdampfer und Verfahren zu dessen Herstellung
DE4020592C2 (de) Wärmetauscher des Gleichstrom-Typs für Fahrzeuge
DE4404357C1 (de) Wärmeaustauschrohr zum Kondensieren von Dampf
EP1223400B1 (de) Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
DE2053544C3 (de) Rohrbündel für Fallfilmverdampfer zum Destillieren von Flüssigkeiten
DE69401731T2 (de) Wärmetauscherrohr
EP1711772B1 (de) Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage
DE3048959A1 (de) Rippenrohr fuer waermeuebertrager od. dgl.
DE69419121T2 (de) Wärmetauscher mit rippenrohren
EP2253922B1 (de) Metallisches Wärmeaustauscherrohr
EP1182416A2 (de) Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe
EP0798529A1 (de) Austauscherrohr
DE3606253C2 (de)
EP0301121B1 (de) Rippenrohr
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
EP3111153B1 (de) Metallisches wärmeaustauscherrohr
EP0102407B1 (de) Rippenrohr mit inneren Vorsprüngen sowie Verfahren und Vorrichtung zu dessen Herstellung
DE10255487A1 (de) Wärmeübertrager
EP3465055B1 (de) Wärmeübertragerrohr
DE202016104687U1 (de) Kondensator
DE3208838C2 (de) Wärmeübertrager
EP1342971A2 (de) Wärmeaustauschrohr mit berippter Innenoberfläche
DE102014200708A1 (de) Flachrohr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

EL Fr: translation of claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
17Q First examination report despatched

Effective date: 19890531

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19900523

Ref country code: SE

Effective date: 19900523

REF Corresponds to:

Ref document number: 3762920

Country of ref document: DE

Date of ref document: 19900628

R20 Corrections of a patent specification

Effective date: 19900609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19900824

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: H.D. EICHELBERG & CO. GESELLSCHAFT MIT BESCHRAENKT

Effective date: 19910225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940613

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940728

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 728C

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950106

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 728A

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19950704

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 950704

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO