EP0293015B1 - Device for the command of a railway track levelling and aligning machine - Google Patents

Device for the command of a railway track levelling and aligning machine Download PDF

Info

Publication number
EP0293015B1
EP0293015B1 EP88108740A EP88108740A EP0293015B1 EP 0293015 B1 EP0293015 B1 EP 0293015B1 EP 88108740 A EP88108740 A EP 88108740A EP 88108740 A EP88108740 A EP 88108740A EP 0293015 B1 EP0293015 B1 EP 0293015B1
Authority
EP
European Patent Office
Prior art keywords
track
receiver
machine
shifting
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88108740A
Other languages
German (de)
French (fr)
Other versions
EP0293015A1 (en
Inventor
Fritz Bühler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LES FILS D'AUGUSTE SCHEUCHZER SA
Original Assignee
LES FILS D'AUGUSTE SCHEUCHZER SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LES FILS D'AUGUSTE SCHEUCHZER SA filed Critical LES FILS D'AUGUSTE SCHEUCHZER SA
Priority to DE8888108740T priority Critical patent/DE3584294D1/en
Priority to EP88108740A priority patent/EP0293015B1/en
Priority claimed from EP85201055A external-priority patent/EP0207197B1/en
Priority to AT88108740T priority patent/ATE68027T1/en
Publication of EP0293015A1 publication Critical patent/EP0293015A1/en
Application granted granted Critical
Publication of EP0293015B1 publication Critical patent/EP0293015B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • the cord of a section of track which is, in the known machine, formed by a laser beam in a fan or scanning in a vertical plane.
  • This cord extends between the emitter which is on the director rail or axis of the track and the point of intersection of the beam with the director rail or axis of the track.
  • the measurement interval for which the transmitter remains fixed while the machine approaches it step by step is identical to the rope, i.e. the initial measurement in a measurement interval begins at the point of intersection of the beam with the director rail or track axis.
  • This measurement interval corresponding to the rope is limited in length by the condition that the largest arrow must not be greater than the possibility of lateral movement of the receiver on the machine, because this receiver must adjust to the point of impact of the beam, the value of the possible lateral displacement out of the chassis of the machine being generally limited by the prohibition to enter the gauge of the parallel rail so as not to hinder traffic on this rail.
  • the receivers for shifting and leveling are installed on a front measurement carriage which defines the front point of a relative measurement base constituted by a reference line; the position of this reference line is used to determine, by means of the adjustment data of these receivers, the correction values of the channel which is directly displaced under the reference line, at the working point which is behind said point before. Under these conditions, the machine operator only knows the correction values when the track is moving, and an obstacle may prevent any movement or require a specific movement of the track.
  • the present invention provides a device for controlling a machine for repairing a track which avoids the aforementioned drawbacks.
  • the device according to the invention is characterized by the features of claim 1.
  • Figure 1 shows, schematically in side view, the laser transmitter with the receiver for leveling and, in phantom, the horizontal beam, and in dotted lines the vertical beam.
  • Figure 2 shows the same view as Figure 1, but in plan, with the receiver for shifting, the vertical beam being drawn in dashed lines while the horizontal beam is drawn in dotted lines.
  • FIG. 3 schematically represents the laser receiver either for shifting or for leveling with the adjusted laser beam.
  • FIG. 4 schematically represents a transverse view of the track with the leveling and shifting receivers.
  • Figure 5 is a schematic perspective view illustrating the principle of the device with the two beams and the two receivers.
  • FIG. 6 schematically represents a top view, on a curved section of the track, the deviation from the theoretical curve indicated in phantom has been exaggerated for better understanding, and on which several points have been represented to illustrate the shifting.
  • Figure 7 shows an enlarged partial view of the curved section of the track, according to Figure 6, at a working place.
  • Figures 8, 8a, 8b show block diagrams of the device for three different methods of controlling channel corrections.
  • Figure 9 shows, schematically, a cross section of the track at the level of the receiver for shifting, showing the deflection calculation system, and below, the path traveled by this receiver on its support during the measurements at the different measurement points .
  • FIG. 10 schematically represents a top view of a preferred embodiment of the device according to the invention.
  • Figures 11 and 11a show schematically a transverse and lateral view of an arrangement preferred of the two receivers.
  • FIGS. 1 to 5 The operating principle of a machine making it possible to carry out the process according to the invention will firstly be described by means of FIGS. 1 to 5 for its application to the straight sections of the rails, with a view to explaining the shifting and leveling.
  • a machine is moreover described in patent EP No. 90098.
  • a single laser transmitter 1 is therefore provided, placed in front of a leveling and ripping machine on a railway track, advancing along the arrow (fig. . 1) and shown diagrammatically in the drawings by a main chassis 2.
  • This transmitter 1 is suitable for emitting a fan-shaped or sweeping beam either horizontally for leveling (beam Fn), and after a rotation of 90 ° or vertically for the shifting (beam Fr), a leveling receiver Rn and a shifting receiver Rr being both mounted on the machine, that is to say on a front measuring carriage (not shown) of the machine.
  • Figure 1 showing a side view of the leveling control device is illustrated by line 3 the old way which must be corrected, the faults of this way were naturally very exaggerated for the understanding of the figure, in dotted lines is illustrated the portion of this old channel which has just been corrected, line 4 represents the new corrected channel and the line in phantom 4 'represents the desired channel which is defined by the axis of the laser which is adjusted, at the start of work, parallel to this desired path.
  • the device comprises a laser transmitter 1, emitting a horizontal beam Fn and which is mounted on a carriage 5 stationary in a fixed position, at a location chosen on the old track 3, in front of the machine which is, in the present case, a tamper-grader-ripeuse symbolized by the chassis 2 and which will be hereinafter simply designated by machine.
  • This machine is equipped with a known relative measurement base, formed by the points A, B, C on the track, which are defined in a known way, for example by feelers belonging to measuring carriages rolling on the tracks. independent of the bogies of the machine, and suspended above the main chassis 2 of the latter. Point C defined by the rear measuring carriage is on track 4 already corrected.
  • Point A whose position in Figure 1 has been exaggerated, is on the track not yet corrected, this is why the chassis 2 is tilted forward.
  • the point B represents the working point which is therefore located near the working elements used to position the track and which are constituted, in the known manner, by shifting and leveling clamps. In Figure 1, point B has just been corrected, as point C is also corrected.
  • a laser receiver for leveling Rn which can be adjusted vertically with respect to the chassis of the carriage by means of an adjustment motor Mn.
  • a reference line Ln serves as a relative measurement base for leveling.
  • an element which carries the front end AL of this reference line Ln is fixed to the receiver Rn.
  • This end AL is located above point A.
  • this reference line Ln is assumed to be made by a taut wire on measuring trolleys. This wire is fixed at point CL situated at the height of point C and controls by its position in a well-known manner, via a control device, the position of the leveling clamps, at point BL, situated at the height of point B .
  • the laser receiver for leveling Rn like the laser receiver for shifting Rr which will be discussed below, consists of four photoelectric cells C1 to C4, shown in FIG. 3, and it is designed in such a way that it can be moved to the desired position by means of the adjustment motor Mn as a function of the line of impact of the horizontal laser beam Fn on the cells, the adjustment being carried out as soon as the beam is exactly between the two central cells C2 and C3.
  • this reference line Ln could be formed by any other mechanical means or not, for example a light ray, and the carriages of measurement defining points A and C are not necessarily below the chassis 2 but can be located on small auxiliary carriages which would roll at a fixed distance at the front, respectively at the rear of the chassis 2.
  • FIG. 2 a top view of the shift control device working with a vertical laser beam Fr has been shown in a manner similar to FIG. 1.
  • the shift receiver Rr installed like the receiver Rn, on the carriage front measurement is adjustable relative to this carriage on a transverse guide according to the vertical beam Fr by means of a motor M.
  • a reference line Lr serves as a relative measurement base for the shifting and is, in the example considered and for the shifts carried out on the rectilinear channels, linked to the receiver Rr.
  • the position of the reference line Lr already corrected is shown in FIG. 2 and in dashed lines the reference line L′r to the uncorrected state.
  • position A of the reference point includes the two points AG on the left rail and AD on the right rail.
  • the clamps for the track corrections to the horizontal and vertical planes at point B of the machine are actuated by positioning motors for leveling and shifting, controlled according to the deviations x B , respectively y B determined by the bases of relative measurements as shown in Figures 1 and 2.
  • the reference lines Ln and Lr forming the relative measurement base can also be arranged on the measurement carriages in a fixed manner and therefore independently of the receivers Rn and Rr, for example at the height of the central axis longitudinal of the front (point A) and rear (point C) measuring carriages or at the level of the guide rail.
  • the deviations x B respectively y B which determine the corrections of the channel are determined, from the deviations x A and y A , by the ratios x A / x B and y a / y B which only depend known distances AC and AB .
  • These deviations x A and Y A are given by the position of the receivers Rn and Rr on the basis of measurement relative to point A.
  • FIG 5 there is shown simultaneously, in perspective, the two systems and we see the horizontal beam Fn and vertical Fr and the two leveling receivers Rn which can move vertically and shifting Rr which can move horizontally.
  • the laser transmitter 1 is located on the axis of the track.
  • the rope was chosen as the measurement interval in which the machine moves step by step towards the transmitter without having to change the position of the latter, and the measurement initial was carried out at the intersection of the beam with the guide rail or track axis, in this way there were only the arrows of the rope located on the same side of the rail.
  • the maximum rope was of course limited by the condition that the maximum deflection did not exceed the possible travel of the receiver on the machine.
  • a larger measurement interval G ′ is chosen, which exceeds the chord beyond the point of intersection of the beam with the director rail or axis of the track, up to point A0 which represents, in the example chosen, the place of initial measurement and correction.
  • the maximum measurement interval G ′ must of course be chosen so that the sum of the maximum left and right arrows which are, in the example considered, the arrows fm0 + fm4, is compatible with the travel of the receiver Rr which s 'always adjusts to the beam Fr.
  • the machine follows the curve of track 3 and arrives successively after a distance traveled S1, S2, S3, S4 etc, at points A1, A2, A3, A4 etc, while the shift receiver Rr follows the beam vertical Fr of the laser and therefore always moves automatically on its carriage to the point of impact with the beam Fr. This position of the receiver each time determines the current value of the arrow fm1, fm2, etc.
  • the setpoint value of the arrow f1, f2, etc. which corresponds to the theoretical curve 4 ′ is calculated.
  • the calculator UC calculates the setpoint value of the deflection in a known manner for the curves and all the connection curves, as a function of the geometric data, such as the radius R of the curve, the length G ′ of the interval of chosen measurement, data for the variable radius of a connection curve which includes the length L of this curve, etc., and of the path traveled S, and compares it with the arrow measured, therefore the current value of this arrow. From the difference of the two values, the corresponding deviations y1, y2 etc. are calculated.
  • the setpoint value of the arrow f2 is zero, because the receiver is precisely at the point of intersection between the theoretical curve 4 ′ and the beam Fr.
  • the current value of the arrow fm2 is equal to the deviation y2.
  • the arrow f B of the relative measurement base must also be taken into account, as illustrated diagrammatically in FIG. 7 for a working position of the machine.
  • the arrow f B is the distance between the theoretical curve and the reference line forming a chord of this curve.
  • the theoretical curve 4 ⁇ is indicated relative to the relative measurement base with the reference line L ⁇ r not yet corrected; the arrow f B shown therefore relates to this theoretical curve.
  • FIG. 7 and of FIG. 8 shows the block diagram of control and command in a curve.
  • the variable data are introduced: the path traveled S, measured by a unit of measurement UM; the current value of the deflection fm measured by the receiver Rr as well as the tilt angle ⁇ measured in a known manner by a pendulum Pe.
  • the channels to be adjusted are always subject to superelevation faults and, therefore, it is essential to correct the deviation y A , respectively y B , as a function of the superelevation at the measurement points. This is done using a Pe pendulum, installed on the relative measurement base.
  • a reference line Lr adjustable independently of the position of the receiver Rr transversely by a motor Mf (FIGS. 8 and 9).
  • the difference y A appears at point A corresponding to the difference fm - f0, corrected if necessary by a correction depending on the angle ⁇ .
  • This difference y A controls the motor Mf which moves the reference line Lr to point A of this difference y A.
  • This corresponds to a gap y B at the working point B, where a stop, or a reference element, is moved with the reference line Lr defining the desired position or set position of the clamps which correct the rails.
  • the computer UR calculates the deflection f B of the relative measurement base from data S and R, respectively L and from the other data for the variable radius of a connection curve.
  • the calculator UR emits an output signal corresponding to this arrow f B which controls a second motor Mb (FIG. 8). This motor corrects the position of the mentioned stop relative to the reference line Lr by a distance equal to f B , such that the stop is now exactly on the theoretical curve 4 ′.
  • the clamps which engage the rails are moved from the shift correction ⁇ B by a hydraulic drive engaged until the track is at the set position defined by the stop, therefore on the theoretical line 4 ′.
  • the value ⁇ B is equal to the addition of the deviations y B and yf B , yf B representing the distance between the current position of the uncorrected channel 3 and the uncorrected reference line L′r.
  • the output signal y B of the computer UC can be introduced into the computer UR which directly calculates the total displacement y B + f B and gives a signal corresponding to the motor Mb.
  • the calculator UC it is also possible for the calculator UC to send a signal corresponding to the difference y A to the calculator UR which transforms it into a signal corresponding to the difference y B at point B. In this case, the calculator UC must not emit a signal y B.
  • the calculator UR gives a signal corresponding to f B to the calculator UC which emits a signal corresponding to the sum y B + f B as a control signal to the motor Mb.
  • the hydraulic drive of the grippers is therefore indirectly controlled by the UC and UR computers.
  • a position detector is provided which at all times determines the current position of the clamps and therefore of channel 3 and sends a signal relating thereto for the computer UR.
  • This UR computer calculates not only the arrow f B , but also from this arrow f B and from the signal which represents the current position of channel 3, directly the difference yf B ( Figure 7).
  • the clamps are controlled directly by means of the output signal y B of the calculator UC and the output signal yf B of the calculator UR, or else from the signal corresponding to the sum y B + yf B of the UR computer without the need to use a stop or a movable reference element which determines the set position.
  • the block diagrams corresponding to this way of controlling the hydraulic drive of the grippers would correspond to Figures 8, 8a and 8b with the only modifications that the motor Mb shown would represent the hydraulic drive of the grippers and that the output signal corresponding to the arrow f B should be replaced by the signal corresponding to the deviation yf B.
  • the unit EC shown in FIG. 8, 8a and 8b, which receives the signal y A , will be explained during the description of FIG. 10.
  • FIG. 9 shows a sectional view of the track and the front measuring carriage - seen from the front - at point A availability (FIG. 6) and, in phantom, at level of point A3, and this before correction.
  • the shifting receiver Rr is moved to the front end of the relative measurement base on the support 6 of the measurement carriage , at a distance from the central axis La of the measuring device (therefore the central longitudinal axis of the measuring carriages) equal to the value of the current deflection fm0, for example by means of a screw, driven by the motor Mr The vertical beam Fr is centered at the receiver Rr.
  • the front point AL0 of the reference line is moved on the support 7 of the measuring carriage by the motor Mf of the difference y0, therefore of the difference fm0 - f0 at the center of the theoretical way 4′0.
  • the receiver Rr has moved on the support 6 by the value of the measured arrow fm3 smaller than the theoretical arrow f3, making it possible to calculate the difference y3.
  • the front end AL3 of the relative base is moved on the support 7 of the measuring carriage at the center of the theoretical path 4′3.
  • the path of the receiver Rr has been shown on its support 6 during the measurements at points A0 and A4.
  • the maximum width that the transverse support 6 can occupy is generally 3 meters.
  • the effective shift value is stored in the calculation unit UC until the carriage measure 9 arrives at the measurement point A ′.
  • These shifted values (and the leveling values) stored are in the example displayed on an EC display, indicated in FIGS. 8, 8a and 8b, such as a screen, a recorder or other means. This allows the machine operator to intervene 10 to 20 sleepers before the job is done to make any corrections. It is obvious that the leveling system will be designed in the same way.
  • FIG. 11 an arrangement as illustrated in FIG. 11 is proposed.
  • the receiver Rn for the horizontal beam is mounted on the underside of a transverse support 6 along which the receiver Rr for the vertical beam can move, for example on a screw driven by the motor Mr , to perform the shift measurement.
  • the assembly of this support 6 with the receiver Rr and the receiver Rn is mounted on its side on a vertical support 8 along which said assembly can move vertically, for example on screws, driven by the motor Mn, so that the receiver Rn can perform leveling measurement.
  • This makes it possible to use almost the entire distance to the transmitter, as illustrated in FIG. 11a, and therefore to increase the effective interval G ′.
  • the receiver Rr which can naturally also be fixed to the upper face of the support 6, always moves vertically with the receiver Rn and is only at a small constant vertical distance from it.
  • interval of measure G ′ can be chosen wider than hitherto also means that the distances between the fixed markers or stakes installed along the track and defining the theoretical route can be greater and therefore that the number of these markers is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

Use is made of a levelling and aligning machine and an emitter system installed on a carriage parked on the track and emitting a fan-shaped beam in the horizontal plane for the levelling operation and a fan-shaped beam in the vertical plane for the aligning operation, these beams defining an absolute measurement base. Two receivers for the levelling operation and the aligning operation are provided in order to centre themselves, at each measurement, at the line of impact of one or the other of the said beams. These two receivers are placed on a special measurement carriage (10) at a fixed distance (b) in front of the front measurement carriage (9) of the relative measurement base, making it possible to store a specific number of aligning and levelling values. A display (EC), such as a screen, a recorder or other means, is provided in order to display these values. In a curve of the track, the vertical beam (Fr) defines a chord of this curve and the adjusted position of the receiver defines the actual value of the deflection of the curve. A computer calculates the reference value of the deflection and the divergence of the two values which determines the aligning correction. <IMAGE>

Description

L'invention se rapporte à un dispositif selon le préambule de la revendication 1.The invention relates to a device according to the preamble of claim 1.

Un dispositif sous la forme d'une bourreuse-niveleuse-ripeuse est connu du brevet européen No 90098 de la demanderesse. L'émetteur qui est constitué par un émetteur laser est conçu pour que son faisceau puisse être tourné sur son axe pour émettre un faisceau en éventail ou à balayage dans un plan vertical servant de base de référence pour le ripage et un faisceau horizontal servant de base de référence pour le nivellement. Les deux récepteurs s'ajustent automatiquement sur le faisceau vertical, respectivement horizontal. La machine avance pas à pas, de traverses en traverses, et à chaque arrêt on procède au nivellement puis, après avoir tourné de 90° l'émetteur laser, au ripage. Il est aussi possible de procéder au nivellement toutes les deux traverses tandis que le ripage est effectué à chaque traverse intermédiaire.A device in the form of a tamper-grader-ripper is known from European patent No 90098 of the applicant. The transmitter which is constituted by a laser transmitter is designed so that its beam can be rotated on its axis to emit a fan or scanning beam in a vertical plane serving as a reference base for the shifting and a horizontal beam serving as a base. of reference for leveling. The two receivers automatically adjust to the vertical and respectively horizontal beam. The machine advances step by step, from sleepers to sleepers, and at each stop we proceed to leveling then, after having turned the laser transmitter by 90 °, to shifting. It is also possible to level every two sleepers while the shifting is carried out at each intermediate sleeper.

Dans les courbes, il est connu d'utiliser comme ligne de référence absolue la corde d'une section de voie qui est, dans la machine connue, formée par un faisceau laser en éventail ou à balayage dans un plan vertical. Cette corde s'étend entre l'émetteur qui se trouve sur le rail directeur ou axe de la voie et le point d'intersection du faisceau avec le rail directeur ou axe de la voie. Pour effectuer la correction de ripage, on mesure la flèche de cette corde, on la compare avec la flèche connue de la courbe voulue, et l'on calcule la différence qui est une mesure pour le déplacement latéral des rails dans un ou l'autre sens.In curves, it is known to use as the absolute reference line the cord of a section of track which is, in the known machine, formed by a laser beam in a fan or scanning in a vertical plane. This cord extends between the emitter which is on the director rail or axis of the track and the point of intersection of the beam with the director rail or axis of the track. To perform the shift correction, we measure the deflection of this string, we compare it with the known deflection of the desired curve, and we calculate the difference which is a measure for the displacement side of the rails in either direction.

Jusqu'ici, l'intervalle de mesure pour lequel l'émetteur reste fixe tandis que la machine s'approche de lui pas à pas, est identique à la corde, c'est à dire que la mesure initiale dans un intervalle de mesure commence au point d'intersection du faisceau avec le rail directeur ou axe de la voie. Cet intervalle de mesure correspondant à la corde est limité en longueur par la condition que la plus grande flèche ne doit pas être supérieure à la possibilité de déplacement latéral du récepteur sur la machine, car ce récepteur doit s'ajuster au point d'impact du faisceau, la valeur du déplacement latéral possible hors du chassis de la machine étant en général limitée par l'interdiction de pénétrer dans le gabarit du rail parallèle pour ne pas gêner le trafic sur ce rail.So far, the measurement interval for which the transmitter remains fixed while the machine approaches it step by step, is identical to the rope, i.e. the initial measurement in a measurement interval begins at the point of intersection of the beam with the director rail or track axis. This measurement interval corresponding to the rope is limited in length by the condition that the largest arrow must not be greater than the possibility of lateral movement of the receiver on the machine, because this receiver must adjust to the point of impact of the beam, the value of the possible lateral displacement out of the chassis of the machine being generally limited by the prohibition to enter the gauge of the parallel rail so as not to hinder traffic on this rail.

A cause de ces conditions, dans les courbes, on est obligé de choisir des intervalles de mesure relativement courts, donc de déplacer fréquemment l'émetteur laser pour définir l'intervalle de mesure suivant, ce qui entraîne des pertes de temps, augmente le nombre des manipulations et diminue le rendement des opérations de ripage.Because of these conditions, in the curves, one is forced to choose relatively short measurement intervals, therefore to frequently move the laser transmitter to define the next measurement interval, which leads to loss of time, increases the number manipulations and decreases the yield of shifting operations.

Sur les machines connues, les récepteurs pour le ripage et le nivellement sont installés sur un chariot de mesure avant qui définit le point avant d'une base de mesure relative constituée par une ligne de référence; la position de cette ligne de référence sert à déterminer, au moyen des données d'ajustage de ces récepteurs, les valeurs de correction de la voie laquelle est directement déplacée sous la ligne de référence, au point de travail qui se trouve derrière ledit point avant. Dans ces conditions, l'opérateur de la machine connaît les valeurs de correction seulement au moment du déplacement de la voie, et il se peut qu'un obstacle interdise tout déplacement ou prescrive un déplacement déterminé de la voie.On known machines, the receivers for shifting and leveling are installed on a front measurement carriage which defines the front point of a relative measurement base constituted by a reference line; the position of this reference line is used to determine, by means of the adjustment data of these receivers, the correction values of the channel which is directly displaced under the reference line, at the working point which is behind said point before. Under these conditions, the machine operator only knows the correction values when the track is moving, and an obstacle may prevent any movement or require a specific movement of the track.

La présente invention propose un dispositif pour la commande d'une machine de réfection d'une voie qui évite les inconvénients précités.The present invention provides a device for controlling a machine for repairing a track which avoids the aforementioned drawbacks.

A cet effet, le dispositif selon l'invention est caractérisé par les caractéristiques de la revendication 1.To this end, the device according to the invention is characterized by the features of claim 1.

Une disposition préférée des récepteurs est décrite dans la revendication 2.A preferred arrangement of the receivers is described in claim 2.

Dans ce qui suit, l'invention est exposée plus en détail à l'aide des dessins représentant, schématiquement, un mode d'éxécution du dispositif et des détails préférés du dispositif.In the following, the invention is explained in more detail using the drawings showing, schematically, an embodiment of the device and preferred details of the device.

La figure 1 représente, schématiquement en vue latérale, l'émetteur laser avec le récepteur pour le nivellement et, en traits mixtes, le faisceau horizontal, et en pointillés le faisceau vertical.Figure 1 shows, schematically in side view, the laser transmitter with the receiver for leveling and, in phantom, the horizontal beam, and in dotted lines the vertical beam.

La figure 2 représente la même vue que la figure 1, mais en plan, avec le récepteur pour le ripage, le faisceau vertical étant dessiné en traits mixtes tandis que le faisceau horizontal est dessiné en pointillés.Figure 2 shows the same view as Figure 1, but in plan, with the receiver for shifting, the vertical beam being drawn in dashed lines while the horizontal beam is drawn in dotted lines.

La figure 3 représente, schématiquement, le récepteur laser soit pour le ripage, soit pour le nivellement avec le faisceau laser ajusté.FIG. 3 schematically represents the laser receiver either for shifting or for leveling with the adjusted laser beam.

La figure 4 représente, schématiquement, une vue transversale de la voie avec les récepteurs de nivellement et de ripage.FIG. 4 schematically represents a transverse view of the track with the leveling and shifting receivers.

La figure 5 est une vue schématique en perspective illustrant le principe du dispositif avec les deux faisceaux et les deux récepteurs.Figure 5 is a schematic perspective view illustrating the principle of the device with the two beams and the two receivers.

La figure 6 représente, schématiquement, une vue de dessus, sur une section courbée de la voie, dont l'écart par rapport de la courbe théorique indiquée en traits mixtes a été exagéré pour une meilleure compréhension, et sur laquelle on a représenté plusieurs points de mesure pour illustrer le ripage.FIG. 6 schematically represents a top view, on a curved section of the track, the deviation from the theoretical curve indicated in phantom has been exaggerated for better understanding, and on which several points have been represented to illustrate the shifting.

La figure 7 représente une vue partielle agrandie de la section courbée de la voie, selon la figure 6, à un endroit de travail.Figure 7 shows an enlarged partial view of the curved section of the track, according to Figure 6, at a working place.

Les figures 8, 8a, 8b représentent des schéma-blocs du dispositif pour trois différentes méthodes de commande des corrections de voie.Figures 8, 8a, 8b show block diagrams of the device for three different methods of controlling channel corrections.

La figure 9 représente, schématiquement, une coupe transversale de la voie au niveau du récepteur pour le ripage, montrant le système de calcul de flèche, et au dessous, le trajet parcouru par ce récepteur sur son support pendant les mesures aux différents points de mesure.Figure 9 shows, schematically, a cross section of the track at the level of the receiver for shifting, showing the deflection calculation system, and below, the path traveled by this receiver on its support during the measurements at the different measurement points .

La figure 10 représente, schématiquement, une vue de dessus d'une forme d'exécution préférée du dispositif selon l'invention.FIG. 10 schematically represents a top view of a preferred embodiment of the device according to the invention.

Les figures 11 et 11a représentent, schématiquement, une vue transversale et latérale d'une disposition préférée des deux récepteurs.Figures 11 and 11a show schematically a transverse and lateral view of an arrangement preferred of the two receivers.

Le principe de fonctionnement d'une machine permettant de réaliser le procédé selon l'invention sera tout d'abord décrit au moyen des figures 1 à 5 pour son application aux sections droites des rails, en vue d'expliquer les procédés de ripage et de nivellement. Une telle machine est d'ailleurs décrite dans le brevet EP No 90098. Selon ce principe, il est donc prévu un seul émetteur laser 1, placé devant une machine à niveler et riper une voie de chemin de fer, avançant selon la flèche (fig. 1) et schématisée sur les dessins par un châssis principal 2. Cet émetteur 1 est adapté pour émettre un faisceau en éventail ou à balayage dirigé soit horizontalement pour le nivellement (faisceau Fn), et après une rotation de 90° soit verticalement pour le ripage (faisceau Fr), un récepteur de nivellement Rn et un récepteur de ripage Rr étant montés tous deux sur la machine, c'est-à-dire sur un chariot de mesure avant (non représenté) de la machine.The operating principle of a machine making it possible to carry out the process according to the invention will firstly be described by means of FIGS. 1 to 5 for its application to the straight sections of the rails, with a view to explaining the shifting and leveling. Such a machine is moreover described in patent EP No. 90098. According to this principle, a single laser transmitter 1 is therefore provided, placed in front of a leveling and ripping machine on a railway track, advancing along the arrow (fig. . 1) and shown diagrammatically in the drawings by a main chassis 2. This transmitter 1 is suitable for emitting a fan-shaped or sweeping beam either horizontally for leveling (beam Fn), and after a rotation of 90 ° or vertically for the shifting (beam Fr), a leveling receiver Rn and a shifting receiver Rr being both mounted on the machine, that is to say on a front measuring carriage (not shown) of the machine.

Sur la figure 1 montrant une vue latérale du dispositif de commande du nivellement on a illustré par la ligne 3 l'ancienne voie qui doit être corrigée, les défauts de cette voie ont été naturellement très exagérés pour la compréhension de la figure, en traits pointillés est illustrée la portion de cette ancienne voie qui vient d'être corrigée, la ligne 4 représente la nouvelle voie corrigée et la ligne en traits mixtes 4´ représente la voie désirée qui est définie par l'axe du laser lequel est ajusté, en début de travail, parallèlement à cette voie désirée.In Figure 1 showing a side view of the leveling control device is illustrated by line 3 the old way which must be corrected, the faults of this way were naturally very exaggerated for the understanding of the figure, in dotted lines is illustrated the portion of this old channel which has just been corrected, line 4 represents the new corrected channel and the line in phantom 4 'represents the desired channel which is defined by the axis of the laser which is adjusted, at the start of work, parallel to this desired path.

Le dispositif comprend un émetteur laser 1, émettant un faisceau horizontal Fn et qui est monté sur un chariot 5 stationné d'une manière fixe, à un emplacement choisi sur l'ancienne voie 3, en avant de la machine laquelle est, dans le cas considéré, une bourreuse-niveleuse-ripeuse symbolisée par le châssis 2 et qui sera ci-après simplement désignée par machine. Cette machine est équipée d'une base de mesure relative connue, formée par les points A, B, C sur la voie, lesquels sont définis d'une manière connue, par exemple par des palpeurs appartenant à des chariots de mesure roulant sur les voies indépendants des boggies de la machine, et suspendus au-dessus du châssis principal 2 de celle-ci. Le point C défini par le chariot de mesure arrière se trouve sur la voie 4 déjà corrigée. Le point A dont la position sur la figure 1 a été exagérée, se trouve sur la voie pas encore corrigé, c'est pourquoi le châssis 2 est incliné vers l'avant. Le point B représente le point de travail qui est donc situé à proximité des éléments de travail servant à positionner la voie et qui sont constitués, de la manière connue, par des pinces de ripage et de nivellement. Sur la figure 1, le point B vient juste d'être corrigé, comme le point C est également corrigé.The device comprises a laser transmitter 1, emitting a horizontal beam Fn and which is mounted on a carriage 5 stationary in a fixed position, at a location chosen on the old track 3, in front of the machine which is, in the present case, a tamper-grader-ripeuse symbolized by the chassis 2 and which will be hereinafter simply designated by machine. This machine is equipped with a known relative measurement base, formed by the points A, B, C on the track, which are defined in a known way, for example by feelers belonging to measuring carriages rolling on the tracks. independent of the bogies of the machine, and suspended above the main chassis 2 of the latter. Point C defined by the rear measuring carriage is on track 4 already corrected. Point A whose position in Figure 1 has been exaggerated, is on the track not yet corrected, this is why the chassis 2 is tilted forward. The point B represents the working point which is therefore located near the working elements used to position the track and which are constituted, in the known manner, by shifting and leveling clamps. In Figure 1, point B has just been corrected, as point C is also corrected.

A la hauteur du point A se trouve, monté sur le chariot de mesure avant, un récepteur laser pour le nivellement Rn qui peut être ajusté dans le sens vertical par rapport au châssis du chariot au moyen d'un moteur d'ajustage Mn. Une ligne de référence Ln sert comme base de mesure relative pour le nivellement. Dans l'exemple considéré, un élément qui porte l'extrémité antérieure AL de cette ligne de référence Ln est fixé au récepteur Rn. Cette extrémité AL se trouve au-dessus du point A. Dans le cas présent, cette ligne de référence Ln est supposée être réalisée par un fil tendu sur les chariots de mesure. Ce fil est fixe au point CL situé à la hauteur du point C et commande par sa position d'une manière bien connue, via un dispositif de commande, la position des pinces de nivellement, au point BL, situé à la hauteur du point B.At the height of point A is mounted on the front measuring carriage a laser receiver for leveling Rn which can be adjusted vertically with respect to the chassis of the carriage by means of an adjustment motor Mn. A reference line Ln serves as a relative measurement base for leveling. In the example considered, an element which carries the front end AL of this reference line Ln is fixed to the receiver Rn. This end AL is located above point A. In the present case, this reference line Ln is assumed to be made by a taut wire on measuring trolleys. This wire is fixed at point CL situated at the height of point C and controls by its position in a well-known manner, via a control device, the position of the leveling clamps, at point BL, situated at the height of point B .

Le récepteur laser pour le nivellement Rn, comme le récepteur laser pour le ripage Rr dont il sera question ci-après, est constitué par quatre cellules photoélectriques C1 à C4, représentées sur la figure 3, et il est conçu de telle manière qu'il peut être déplacé dans la position voulue au moyen du moteur d'ajustage Mn en fonction de la ligne d'impact du faisceau laser horizontal Fn sur les cellules, l'ajustement étant réalisé dès que le faisceau se trouve exactement entre les deux cellules centrales C2 et C3.The laser receiver for leveling Rn, like the laser receiver for shifting Rr which will be discussed below, consists of four photoelectric cells C1 to C4, shown in FIG. 3, and it is designed in such a way that it can be moved to the desired position by means of the adjustment motor Mn as a function of the line of impact of the horizontal laser beam Fn on the cells, the adjustment being carried out as soon as the beam is exactly between the two central cells C2 and C3.

Dans le cas représenté sur la figure 1, l'ajustage a déjà été effectué de telle manière que la ligne de référence Ln qui avait, avant correction, la position représentée par la ligne L'n a maintenant la position correcte parallèle à l'axe du laser. Cela signifie que le point AL s'est déplacé verticalement vers le haut de l'écart xA, qui correspond à la hauteur dont la voie devrait être soulevée au point A, et que le point BL a été corrigé verticalement de l'écart xB, ce qui définit au point de travail le point Bx situé exactement sur la ligne théorique 4´ et sur lequel la voie 3 a été soulevée de la correction de nivellement ΔBn par les pinces. BC représente donc le tronçon de la voie corrigée tandis que AB représente le tronçon non corrigé.In the case shown in FIG. 1, the adjustment has already been made in such a way that the reference line Ln which had, before correction, the position represented by the line L'n now has the correct position parallel to the axis of the laser. This means that the point AL has moved vertically upwards by the distance x A , which corresponds to the height by which the track should be lifted at point A, and that the point BL has been corrected vertically by the distance x B , which defines at the working point the point Bx located exactly on the theoretical line 4´ and on which track 3 was lifted from the leveling correction ΔBn by the clamps. BC therefore represents the section of the corrected track while AB represents the uncorrected section.

Bien entendu, cette ligne de référence Ln pourrait être formée par n'importe quel autre moyen mécanique ou non, par exemple un rayon lumineux, et les chariots de mesure définissant les points A et C ne se trouvent pas obligatoirement au-dessous du châssis 2 mais peuvent se trouver sur des petits chariots auxiliaires qui rouleraient à une distance fixe à l'avant, respectivement à l'arrière du châssis 2.Of course, this reference line Ln could be formed by any other mechanical means or not, for example a light ray, and the carriages of measurement defining points A and C are not necessarily below the chassis 2 but can be located on small auxiliary carriages which would roll at a fixed distance at the front, respectively at the rear of the chassis 2.

Sur la figure 2 on a montré d'une manière analogue à la figure 1 une vue de dessus du dispositif de commande du ripage travaillant avec un faisceau laser vertical Fr. Le récepteur de ripage Rr, installé comme le récepteur Rn, sur le chariot de mesure avant est ajustable par rapport à ce chariot sur un guide transversal en fonction du faisceau vertical Fr par l'intermédiaire d'un moteur Mr. Une ligne de référence Lr sert de base de mesure relative pour le ripage et est, dans l'exemple considéré et pour les ripages effectués sur les voies rectilignes, liée au récepteur Rr. On a indiqué sur la figure 2, en ligne continue, la position de la ligne de référence Lr déjà corrigée et en traits pointillés la ligne de référence L′r à l'état non corrigé. Dans cette vue, la position A du point de référence comprend les deux points AG sur le rail gauche et AD sur le rail droit. A la hauteur de ces points AG, AD, la ligne de référence Lr s'est déplacée transversalement de l'écart yA et à la hauteur du point B de l'écart yB, ce qui définit la position voulue By de l'axe de la voie qui est déplacée de la correction de ripage ΔBr par les pinces commandées.In FIG. 2, a top view of the shift control device working with a vertical laser beam Fr has been shown in a manner similar to FIG. 1. The shift receiver Rr, installed like the receiver Rn, on the carriage front measurement is adjustable relative to this carriage on a transverse guide according to the vertical beam Fr by means of a motor M. A reference line Lr serves as a relative measurement base for the shifting and is, in the example considered and for the shifts carried out on the rectilinear channels, linked to the receiver Rr. The position of the reference line Lr already corrected is shown in FIG. 2 and in dashed lines the reference line L′r to the uncorrected state. In this view, position A of the reference point includes the two points AG on the left rail and AD on the right rail. At the height of these points AG, AD, the reference line Lr has moved transversely from the gap y A and at the height of the point B of the gap y B , which defines the desired position By of the axis of the track which is displaced from the shift correction ΔBr by the controlled clamps.

Les pinces pour les corrections de la voie aux plans horizontal et vertical au point B de la machine, sont actionnées par des moteurs de positionnement pour le nivellement et le ripage, commandés en fonction des écarts xB, respectivement yB déterminés par les bases de mesure relatives comme indiqué dans les figures 1 et 2.The clamps for the track corrections to the horizontal and vertical planes at point B of the machine are actuated by positioning motors for leveling and shifting, controlled according to the deviations x B , respectively y B determined by the bases of relative measurements as shown in Figures 1 and 2.

Selon une variante, les lignes de référence Ln et Lr formant la base de mesure relative peuvent aussi être disposées sur les chariots de mesure d'une manière fixe et donc indépendamment des récepteurs Rn et Rr, par exemple à la hauteur de l'axe central longitudinal des chariots de mesure avant (point A) et arrière (point C) ou à la hauteur du rail directeur. Dans ce cas, les écarts xB, respectivement yB qui déterminent les corrections de la voie sont déterminés, à partir des écarts xA et yA, par les rapports xA/xB et ya/yB qui ne dépendent que des distances connues AC et AB. Ces écarts xA et YA sont donnés par la position des récepteurs Rn et Rr sur la base de mesure relative au point A.According to a variant, the reference lines Ln and Lr forming the relative measurement base can also be arranged on the measurement carriages in a fixed manner and therefore independently of the receivers Rn and Rr, for example at the height of the central axis longitudinal of the front (point A) and rear (point C) measuring carriages or at the level of the guide rail. In this case, the deviations x B , respectively y B which determine the corrections of the channel are determined, from the deviations x A and y A , by the ratios x A / x B and y a / y B which only depend known distances AC and AB . These deviations x A and Y A are given by the position of the receivers Rn and Rr on the basis of measurement relative to point A.

La figure 4 représente schématiquement une section de la voie et du chariot de mesure avant au niveau des récepteurs de nivellement Rn et de ripage Rr montrant leur position relative, et dans ce cas précis on a supposé que le récepteur de ripage Rr se trouve situé sur l'axe central de la voie tandis que le récepteur de nivellement Rn se trouve sur le rail directeur qui est généralement la voie la plus basse dans une courbe.FIG. 4 schematically represents a section of the track and of the front measuring carriage at the level of the leveling receivers Rn and of shifting Rr showing their relative position, and in this precise case it has been assumed that the shifting receiver Rr is located on the central axis of the track while the leveling receiver Rn is located on the director rail which is generally the lowest track in a curve.

Sur la figure 5 on a représenté simultanément, en perspective, les deux systèmes et l'on voit le faisceau horizontal Fn et vertical Fr ainsi que les deux récepteurs de nivellement Rn qui peut se déplacer verticalement et de ripage Rr qui peut se déplacer horizontalement. L'émetteur laser 1 se trouve sur l'axe de la voie.In Figure 5 there is shown simultaneously, in perspective, the two systems and we see the horizontal beam Fn and vertical Fr and the two leveling receivers Rn which can move vertically and shifting Rr which can move horizontally. The laser transmitter 1 is located on the axis of the track.

La figure 6 montre le système de ripage dans une section courbée de la voie 3 avant la correction et, en traits mixtes, la courbe théorique 4′, connue, ayant le rayon R et définissant la position dans laquelle la voie 3 devrait être corrigée. Pour des raisons de simplification on a montré figure 6 seulement le rail directeur de la voie ou l'axe central de la voie, et l'on a indiqué seulement le point A de la base de mesure relative A, B, C (figure 2) en désignant les points A₀, A₁, A₂, A₃, A₄ aux différents points de mesure où la machine s'arrête. Les écarts entre la voie 3 et la courbe théorique 4′ sont bien sûr largement exagérés sur la figure 6. L'émetteur 1 placé sur la voie au devant de la machine, émet un faisceau vertical Fr qui sectionne la courbe de la voie et forme donc une sécante.Figure 6 shows the shifting system in a curved section of track 3 before the correction and, in dashed lines, the theoretical curve 4 ′, known, having the radius R and defining the position in which the track 3 should be corrected. For reasons of simplification, we have shown in Figure 6 only the guide rail of the track or the central axis of the track, and we have indicated only point A of the relative measurement base A, B, C (Figure 2 ) by designating points A₀, A₁, A₂, A₃, A₄ at the different measurement points where the machine stops. The differences between track 3 and the theoretical curve 4 ′ are of course largely exaggerated in FIG. 6. The transmitter 1 placed on the track in front of the machine, emits a vertical beam Fr which cuts the curve of the track and forms therefore a secant.

Jusqu'ici, selon le procédé conventionnel, pour le ripage dans une courbe on choisissait la corde comme intervalle de mesure dans lequel la machine se déplace pas à pas vers l'émetteur sans avoir à changer la position de celui-ci, et la mesure initiale était effectuée à l'intersection du faisceau avec le rail directeur ou axe de la voie, de cette façon il y avait seulement les flèches de la corde situées sur le même côté du rail. La corde maximale était bien entendu limitée par la condition que la flèche maximale ne dépasse pas la course possible du récepteur sur la machine.Up to now, according to the conventional method, for the shifting in a curve the rope was chosen as the measurement interval in which the machine moves step by step towards the transmitter without having to change the position of the latter, and the measurement initial was carried out at the intersection of the beam with the guide rail or track axis, in this way there were only the arrows of the rope located on the same side of the rail. The maximum rope was of course limited by the condition that the maximum deflection did not exceed the possible travel of the receiver on the machine.

Selon l'invention, on choisit, comme illustré figure 6, un intervalle de mesure G′ plus grand, qui dépasse la corde au delà du point d'intersection du faisceau avec le rail directeur ou axe de la voie, jusqu'au point A₀ qui représente, dans l'exemple choisi, l'endroit de mesure et correction initiales. Sur la figure 6 on a indiqué les valeurs de consigne des flèches f₀, f₁,...f₄ (distance entre la courbe théorique 4′ et le faisceau Fr), qui sont calculées par un calculateur UC (figure 8), les valeurs actuelles des flèches fm₀, fm₁,...fm₄, (distance entre le rail directeur ou axe de la voie actuelle et Fr) qui sont mesurées, ainsi que les écarts y₀, y₁,...y₄, définis par les différences fm₀ - f₀ = y₀, fm₁ - f₁ = y₁, etc.According to the invention, as shown in FIG. 6, a larger measurement interval G ′ is chosen, which exceeds the chord beyond the point of intersection of the beam with the director rail or axis of the track, up to point A₀ which represents, in the example chosen, the place of initial measurement and correction. In figure 6 we have indicated the set values of the arrows f₀, f₁, ... f₄ (distance between the theoretical curve 4 ′ and the beam Fr), which are calculated by a calculator UC (FIG. 8), the current values of the arrows fm₀, fm₁, ... fm₄, (distance between the director rail or axis of the current track and Fr) which are measured, as well as the deviations y₀, y₁, ... y₄, defined by the differences fm₀ - f₀ = y₀, fm₁ - f₁ = y₁, etc.

L'intervalle de mesure maximum G′ doit bien entendu être choisi de telle manière que la somme des flèches maximum gauche et droite qui sont, dans l'exemple considéré, les flèches fm₀ + fm₄, soit compatible avec la course du récepteur Rr qui s'ajuste toujours au faisceau Fr.The maximum measurement interval G ′ must of course be chosen so that the sum of the maximum left and right arrows which are, in the example considered, the arrows fm₀ + fm₄, is compatible with the travel of the receiver Rr which s 'always adjusts to the beam Fr.

Dans la pratique, si l'on se trouve sur un tronçon de voie ne présentant pas trop de courbures, on peut positionner au départ le chariot 5 portant l'émetteur laser 1 à une distance d'environ 350 à 400 mètres de la machine, donc plus grande que jusqu'ici, et une fois que celle-ci s'est avancée en cours de travail trop près de l'émetteur, on redéplace de nouveau le chariot 5 d'une distance d'environ 350 à 400 mètres de la machine.In practice, if you are on a section of track that does not have too much curvature, you can position the carriage 5 carrying the laser transmitter 1 at a distance of approximately 350 to 400 meters from the machine, therefore larger than so far, and once it has advanced during work too close to the transmitter, the carriage 5 is again moved a distance of about 350 to 400 meters from the machine.

Au début du travail, dans l'intervalle de mesure G′, la machine avec le récepteur de ripage Rr se trouve donc au point A₀. Plus exactement, c'est le chariot de mesure avant qui se trouve au point A₀. Dans cette position initiale, ou bien la valeur actuelle de la flèche fm₀ et donc l'écart fm₀ - f₀ = y₀ sont connues de la dernière mesure dans l'intervalle de mesure précédent et peuvent servir pour ajuster le faisceau Fr du laser; ou bien, si la réfection commence, l'écart y₀ est mesuré directement comme différence de la position actuelle de la voie et sa position voulue, définie, par exemple par un repère ou piquet fixe.At the start of work, in the measurement interval G ′, the machine with the shifting receiver Rr is therefore at point A₀. More precisely, it is the front measuring carriage which is at point A₀. In this initial position, either the current value of the arrow fm₀ and therefore the difference fm₀ - f₀ = y₀ are known from the last measurement in the previous measurement interval and can be used to adjust the laser beam Fr; or, if the repair begins, the difference y₀ is measured directly as the difference of the position current track and its desired position, defined, for example by a fix or fixed stake.

Pendant la travail, la machine suit la courbe de la voie 3 et arrive successivement après une distance parcourue S1, S2, S3, S4 etc, aux points A₁, A₂, A₃, A₄ etc, tandis que le récepteur de ripage Rr suit le faisceau vertical Fr du laser et se déplace donc toujours automatiquement sur son chariot jusqu'au point d'impact avec le faisceau Fr. Cette position du récepteur détermine chaque fois la valeur actuelle de la flèche fm₁, fm₂, etc.During work, the machine follows the curve of track 3 and arrives successively after a distance traveled S1, S2, S3, S4 etc, at points A₁, A₂, A₃, A₄ etc, while the shift receiver Rr follows the beam vertical Fr of the laser and therefore always moves automatically on its carriage to the point of impact with the beam Fr. This position of the receiver each time determines the current value of the arrow fm₁, fm₂, etc.

Au fur et à mesure de l'avance de la machine, à chaque point de mesure A₁, A₂, etc, la valeur de consigne de la flèche f₁, f₂, etc qui correspond à la courbe théorique 4′ est calculée. Pour cela on utilise, comme cela est encore expliqué en relation avec la figure 8, un calculateur de flèche UC et une unité de mesure du chemin parcouru UM. Le calculateur UC calcule la valeur de consigne de la flèche d'une manière connue pour les courbes et toutes les courbes de raccordement, en fonction des données géométriques, comme du rayon R de la courbe, de la longueur G′ de l'intervalle de mesure choisi, des données pour le rayon variable d'une courbe de raccordement qui comprennent la longueur L de cette courbe, etc, et du chemin parcouru S, et la compare avec la flèche mesurée, donc la valeur actuelle de cette flèche. A partir de la différence des deux valeurs sont calculés les écarts correspondants y₁, y₂ etc.As the machine advances, at each measurement point A₁, A₂, etc., the setpoint value of the arrow f₁, f₂, etc. which corresponds to the theoretical curve 4 ′ is calculated. For this, we use, as is still explained in relation to FIG. 8, a deflection calculator UC and a unit for measuring the distance traveled UM. The calculator UC calculates the setpoint value of the deflection in a known manner for the curves and all the connection curves, as a function of the geometric data, such as the radius R of the curve, the length G ′ of the interval of chosen measurement, data for the variable radius of a connection curve which includes the length L of this curve, etc., and of the path traveled S, and compares it with the arrow measured, therefore the current value of this arrow. From the difference of the two values, the corresponding deviations y₁, y₂ etc. are calculated.

Bien sûr, si la différence fm - f donne un écart y positif, le déplacement des rails a lieu en direction du faisceau Fr, comme c'est le cas aux points A₀, A₁, A₂, A₄. Si l'écart y est négatif, les rails sont déplacés dans l'autre direction, comme c'est le cas au point A₃.Of course, if the difference fm - f gives a positive difference y, the displacement of the rails takes place in the direction of the beam Fr, as is the case at the points A₀, A₁, A₂, A₄. If the deviation there is negative, the rails are moved in the other direction, as is the case at point A₃.

Au point A₂, dans l'exemple représenté figure 6, la valeur de consigne de la flèche f₂ est nulle, car le récepteur se trouve justement au point d'intersection entre la courbe théorique 4′ et le faisceau Fr. La valeur actuelle de la flèche fm₂ est égale à l'écart y₂.At point A₂, in the example shown in FIG. 6, the setpoint value of the arrow f₂ is zero, because the receiver is precisely at the point of intersection between the theoretical curve 4 ′ and the beam Fr. The current value of the arrow fm₂ is equal to the deviation y₂.

Pour effectuer le ripage dans une courbe il faut encore tenir compte de la flèche fB de la base de mesure relative, comme cela est illustré schématiquement sur la figure 7 pour une position de travail de la machine. On a indiqué la base de mesure relative avec le point A (sur la voie 3 non corrigée), le point B de travail et le point C (sur la voie 4 corrigée), la ligne de référence L′r avant et Lr après le correction, le récepteur Rr centré sur le faisceau Fr, ce qui détermine la flèche actuelle fm de la base de mesure absolue, ainsi que la différence fm - f = - yA (f est la valeur de consigne de la flèche). La flèche fB est la distance entre la courbe théorique et la ligne de référence formant une corde de cette courbe. Sur la figure 7 on a indiqué la courbe théorique 4ʼʼ par rapport à la base de mesure relative avec la ligne de référence Lʼr pas encore corrigée; la flèche fB montrée se rapporte donc à cette courbe théorique.To carry out the shifting in a curve, the arrow f B of the relative measurement base must also be taken into account, as illustrated diagrammatically in FIG. 7 for a working position of the machine. The relative measurement base was indicated with point A (on track 3 not corrected), working point B and point C (on track 4 corrected), the reference line L′r before and Lr after correction, the receiver Rr centered on the beam Fr, which determines the current deflection fm of the absolute measurement base, as well as the difference fm - f = - y A (f is the reference value of the deflection). The arrow f B is the distance between the theoretical curve and the reference line forming a chord of this curve. In FIG. 7, the theoretical curve 4ʼʼ is indicated relative to the relative measurement base with the reference line Lʼr not yet corrected; the arrow f B shown therefore relates to this theoretical curve.

La valeur de cette flèche fB est toujours connue; elle est constante dans une courbe à rayon constant, et varible dans une courbe de raccordement et calculée par un calculateur UR (figure 8) en fonction du chemin parcouru.The value of this arrow f B is always known; it is constant in a curve with constant radius, and variable in a connection curve and calculated by a UR computer (figure 8) as a function of the path traveled.

La procédure de correction de ripage est décrite en détail au moyen de la figure 7 et de la figure 8 qui montre le schéma-bloc de contrôle et de commande dans une courbe.The procedure for correction of shifting is described in detail by means of FIG. 7 and of FIG. 8 which shows the block diagram of control and command in a curve.

Le calculateur UC des flèches dans la base de mesure absolue est disposé pour calculer à chaque endroit de travail les valeurs de consigne des flèches f et pour créer à sa sortie un signal correspondant à l'écart yA au point A ou yB au point B. Pour cela, on introduit tout d'abord, avant le commencement des travaux dans un intervalle de mesure G′, les données suivantes : Rayon R de la courbe de la voie concernée, respectivement les données pour le rayon variable d'une courbe de raccordement; l'écart initial y₀ au point A₀ mesuré dans la voie, par exemple, par rapport à un repère ou piquet fixe, et la longueur de l'intervalle G′.The arrows calculator UC in the absolute measurement base is arranged to calculate the setpoint values of the arrows f at each working place and to generate at its output a signal corresponding to the difference y A at point A or y B at point B. For this, we first introduce, before the start of work in a measurement interval G ′, the following data: Radius R of the curve of the concerned track, respectively the data for the variable radius of a curve connection; the initial deviation y₀ at the point A₀ measured in the track, for example, with respect to a fixed reference frame or stake, and the length of the interval G ′.

Au cours de l'avance de la machine, les données variables sont introduites : le chemin parcouru S, mesuré par une unité de mesure UM; la valeur actuelle de la flèche fm mesurée par le récepteur Rr ainsi que l'angle α de dévers mesuré d'une manière connue par un pendule Pe. En effet, les voies à régler sont toujours soumises à des défauts de dévers et, de ce fait, il est indispensable de corriger l'écart yA, respectivement yB, en fonction du dévers aux points de mesure. Ceci est effectué à l'aide d'un pendule Pe, installé sur la base de mesure relative.During the advance of the machine, the variable data are introduced: the path traveled S, measured by a unit of measurement UM; the current value of the deflection fm measured by the receiver Rr as well as the tilt angle α measured in a known manner by a pendulum Pe. In fact, the channels to be adjusted are always subject to superelevation faults and, therefore, it is essential to correct the deviation y A , respectively y B , as a function of the superelevation at the measurement points. This is done using a Pe pendulum, installed on the relative measurement base.

Pour effectuer un ripage correct au point B on a deux méthodes principales en utilisant une ligne de référence Lr soit déplaçable, soit immobile, sur la machine.To carry out a correct shifting at point B, there are two main methods using a reference line Lr, either movable or stationary, on the machine.

Selon la première méthode, on prévoit, comme illustré figure 7, une ligne de référence Lr ajustable indépendamment de la position du récepteur Rr transversalement par un moteur Mf (figures 8 et 9). Dans ce cas à la sortie du calculateur UC apparait l'écart yA au point A correspondant à la différence fm - f₀, corrigée le cas échéant d'un correctif dépendant de l'angle α. Cet écart yA commande le moteur Mf qui déplace la ligne de référence Lr au point A de cet écart yA. Cela correspond à un écart yB au point de travail B, où une butée, ou un élément de référence, est déplacée avec la ligne de référence Lr définissant la position voulue ou position de consigne des pinces qui corrigent les rails.According to the first method, there is provided, as illustrated in FIG. 7, a reference line Lr adjustable independently of the position of the receiver Rr transversely by a motor Mf (FIGS. 8 and 9). In this case at the output of the calculator UC, the difference y A appears at point A corresponding to the difference fm - f₀, corrected if necessary by a correction depending on the angle α. This difference y A controls the motor Mf which moves the reference line Lr to point A of this difference y A. This corresponds to a gap y B at the working point B, where a stop, or a reference element, is moved with the reference line Lr defining the desired position or set position of the clamps which correct the rails.

En outre, le calculateur UR calcule la flèche fB de la base de mesure relative à partir des données S et R, respectivement L et des autres données pour le rayon variable d'une courbe de raccordement. Le calculateur UR émet un signal de sortie correspondant à cette flèche fB qui commande un deuxième moteur Mb (figure 8). Ce moteur corrige la position de la butée mentionnée par rapport à la ligne de référence Lr d'une distance égale à fB, telle que la butée se trouve maintenant exactement sur la courbe théorique 4′.In addition, the computer UR calculates the deflection f B of the relative measurement base from data S and R, respectively L and from the other data for the variable radius of a connection curve. The calculator UR emits an output signal corresponding to this arrow f B which controls a second motor Mb (FIG. 8). This motor corrects the position of the mentioned stop relative to the reference line Lr by a distance equal to f B , such that the stop is now exactly on the theoretical curve 4 ′.

Maintenant les pinces qui engagent les rails sont déplacées de la correction de ripage ΔB par un entraînement hydraulique enclenché jusqu'à ce que la voie se trouve à la position de consigne définie par la butée, donc sur la ligne théorique 4′. Comme montré figure 7 la valeur ΔB est égale à l'addition des écarts yB et yfB, yfB représentant la distance entre la position actuelle de la voie non corrigée 3 et la ligne de référence non corrigée L′r.Now the clamps which engage the rails are moved from the shift correction ΔB by a hydraulic drive engaged until the track is at the set position defined by the stop, therefore on the theoretical line 4 ′. As shown in FIG. 7, the value ΔB is equal to the addition of the deviations y B and yf B , yf B representing the distance between the current position of the uncorrected channel 3 and the uncorrected reference line L′r.

Selon l'autre méthode de ripage (figure 8a), on travaille avec une ligne de référence Lr immobile, le moteur Mf est supprimé, et le calculateur UC calcule l'écart yB au point B et envoie un signal de sortie correspondant à cet écart yB au moteur Mb lequel reçoit en outre le signal correspondant à la flèche fB calculée par le calculateur UR. Ce moteur Mb est donc commandé par les deux signaux yB et fB et fait déplacer la butée de cette distance yB et fB dans la position de consigne.According to the other shifting method (FIG. 8a), we work with a stationary reference line Lr, the motor Mf is eliminated, and the computer UC calculates the difference y B at point B and sends an output signal corresponding to this difference y B to the motor Mb which also receives the signal corresponding to the arrow f B calculated by the computer UR. This motor Mb is therefore controlled by the two signals y B and f B and causes the stop of this distance y B and f B to move in the set position.

Comme variante, (figure 8b), le signal de sortie yB du calculateur UC peut être introduit dans le calculateur UR qui calcule directement le déplacement total yB + fB et donne un signal correspondant au moteur Mb.As a variant, (FIG. 8b), the output signal y B of the computer UC can be introduced into the computer UR which directly calculates the total displacement y B + f B and gives a signal corresponding to the motor Mb.

Selon une autre variante, il est aussi possible que le calculateur UC envoie un signal correspondant à l'écart yA au calculateur UR qui le transforme en un signal correspondant à l'écart yB au point B. Dans ce cas, le calculateur UC ne doit pas émettre un signal yB.According to another variant, it is also possible for the calculator UC to send a signal corresponding to the difference y A to the calculator UR which transforms it into a signal corresponding to the difference y B at point B. In this case, the calculator UC must not emit a signal y B.

Comme alternative, le calculateur UR donne un signal correspondant à fB au calculateur UC qui émet un signal correspondant à la somme yB + fB comme signal de commande au moteur Mb.As an alternative, the calculator UR gives a signal corresponding to f B to the calculator UC which emits a signal corresponding to the sum y B + f B as a control signal to the motor Mb.

Dans tout les cas décrits auparavant, pour effectuer le ripage, l'entraînement hydraulique des pinces qui saisissent les rails est commandé par un signal correspondant à la correction de ripage ΔB = yB + yfB (figure 7) pour que les rails soient ripés dans la position de consigne qui est définie par la butée ou l'élément de référence dans la base de mesure relative. L'entraînement hydraulique des pinces est donc commandé indirectement par les calculateurs UC et UR.In all the cases described above, to carry out the shifting, the hydraulic drive of the clamps which grip the rails is controlled by a signal corresponding to the shifting correction ΔB = y B + yf B (FIG. 7) so that the rails are shifted in the setpoint position which is defined by the stop or the reference element in the relative measurement base. The hydraulic drive of the grippers is therefore indirectly controlled by the UC and UR computers.

Alternativement, on peut procéder aussi de la manière suivante : on prévoit un détecteur de position qui détermine à chaque instant la position actuelle des pinces et donc de la voie 3 et émet un signal y relatif pour le calculateur UR. Ce calculateur UR calcule non seulement la flèche fB, mais aussi à partir de cette flèche fB et à partir du signal qui représente la position actuelle de la voie 3, directement l'écart yfB (figure 7). Dans ce cas, en renonçant au moteur Mb, les pinces sont commandées directement au moyen du signal de sortie yB du calculateur UC et du signal de sortie yfB du calculateur UR, ou bien à partir du signal correspondant à la somme yB + yfB du calculateur UR sans qu'il soit nécessaire d'utiliser une butée ou un élément de référence déplaçable qui détermine la position de consigne. Les schéma-blocs correspondant à cette manière de commander l'entraînement hydraulique des pinces correspondraient aux figures 8, 8a et 8b avec les seules modifications que le moteur Mb montré représenterait l'entraînement hydraulique des pinces et que le signal de sortie correspondant à la flèche fB devrait être remplacé par le signal correspondant à l'écart yfB.Alternatively, it is also possible to proceed in the following manner: a position detector is provided which at all times determines the current position of the clamps and therefore of channel 3 and sends a signal relating thereto for the computer UR. This UR computer calculates not only the arrow f B , but also from this arrow f B and from the signal which represents the current position of channel 3, directly the difference yf B (Figure 7). In this case, by renouncing the motor Mb, the clamps are controlled directly by means of the output signal y B of the calculator UC and the output signal yf B of the calculator UR, or else from the signal corresponding to the sum y B + yf B of the UR computer without the need to use a stop or a movable reference element which determines the set position. The block diagrams corresponding to this way of controlling the hydraulic drive of the grippers would correspond to Figures 8, 8a and 8b with the only modifications that the motor Mb shown would represent the hydraulic drive of the grippers and that the output signal corresponding to the arrow f B should be replaced by the signal corresponding to the deviation yf B.

L'unité EC montrée figure 8, 8a et 8b, qui reçoit le signal yA, sera expliquée lors de la description de la figure 10.The unit EC shown in FIG. 8, 8a and 8b, which receives the signal y A , will be explained during the description of FIG. 10.

Sur la figure 9 est illustrée une vue en coupe de la voie et du chariot de mesure avant - vu de l'avant - au niveau du point A₀ (figure 6) et, en traits mixtes, au niveau du point A₃, et ceci avant la correction. Au point A₀ de départ pour le ripage d'un secteur de voie, dans l'intervalle de mesure G′, le récepteur de ripage Rr est déplacé à l'extrémité avant de la base de mesure relative sur le support 6 du chariot de mesure, à une distance de l'axe central La du dispositif de mesure (donc l'axe longitudinal central des chariots de mesure) égale à la valeur de la flèche actuelle fm₀, par exemple au moyen d'une vis, entraînée par le moteur Mr. Le faisceau vertical Fr est centré au récepteur Rr. Le point avant AL₀ de la ligne de référence est déplacé sur le support 7 du chariot de mesure par le moteur Mf de l'écart y₀, donc de la différence fm₀ - f₀ au centre de la voie théorique 4′₀.FIG. 9 shows a sectional view of the track and the front measuring carriage - seen from the front - at point A niveau (FIG. 6) and, in phantom, at level of point A₃, and this before correction. At the starting point A₀ for the shifting of a track sector, in the measurement interval G ′, the shifting receiver Rr is moved to the front end of the relative measurement base on the support 6 of the measurement carriage , at a distance from the central axis La of the measuring device (therefore the central longitudinal axis of the measuring carriages) equal to the value of the current deflection fm₀, for example by means of a screw, driven by the motor Mr The vertical beam Fr is centered at the receiver Rr. The front point AL₀ of the reference line is moved on the support 7 of the measuring carriage by the motor Mf of the difference y₀, therefore of the difference fm₀ - f₀ at the center of the theoretical way 4′₀.

Au point de mesure A₃, le récepteur Rr s'est déplacé sur le support 6 de la valeur de la flèche mesurée fm₃ plus petite que la flèche théorique f₃, permettant de calculer l'écart y₃. Dans ce cas, l'extrémité avant AL₃ de la base relative est déplacée sur le support 7 du chariot de mesure au centre de la voie théorique 4′₃.At the measurement point A₃, the receiver Rr has moved on the support 6 by the value of the measured arrow fm₃ smaller than the theoretical arrow f₃, making it possible to calculate the difference y₃. In this case, the front end AL₃ of the relative base is moved on the support 7 of the measuring carriage at the center of the theoretical path 4′₃.

En dessous de la figure 9 on a représenté le trajet du récepteur Rr sur son support 6 lors des mesures aux points A₀ et A₄. En principe, la largeur maximale que peut occuper le support transversal 6 est généralement de 3 mètres.Below FIG. 9, the path of the receiver Rr has been shown on its support 6 during the measurements at points A₀ and A₄. In principle, the maximum width that the transverse support 6 can occupy is generally 3 meters.

Dans les systèmes de mesure décrits, les récepteurs Rr et Rn pour le ripage et le nivellement sont placés directement sur le chariot de mesure 9 (figure 10) qui définit le point A de la base de mesure relative, c'est-à-dire les valeurs de correction y sont calculées et utilisées directement pour la correction de la voie au point B. Ce système a le désavantage que l'opérateur de la machine connaît les valeurs de correction seulement au moment du déplacement de la voie et il se peut qu'un obstacle interdise tout déplacement ou prescrive un déplacement déterminé de la voie sur la hauteur B. Pour éliminer cet inconvénient, comme illustré figure 10, les récepteurs de ripage et de nivellement Rr et Rn sont placés sur un chariot de mesure spécial 10 à une distance b de 6 à 12 mètres devant le chariot de mesure 9 définissant le point A. Ce chariot 10 est, par exemple, connecté à l'extrémité antérieure de la machine par un bras de couplage. Dans ce cas, le valeur de ripage effective, donc l'écart yA′ mesuré au point A′ (et de même la valeur de nivellement effective), est mémorisée dans l'unité de calcul UC jusqu'à ce que le chariot de mesure 9 arrive à la hauteur du point de mesure A′. Ces valeurs de ripage (et les valeurs de nivellement) mémorisées sont dans l'exemple visualisées sur un affichage EC, indiqué sur les figures 8, 8a et 8b, tel qu'un écran, un enregistreur ou autre moyen. Cela permet à l'opérateur de la machine d'intervenir 10 à 20 traverses avant l'exécution du travail pour effectuer d'éventuelles corrections. Il est évident que le système de nivellement sera conçu de la même manière.In the measurement systems described, the receivers Rr and Rn for shifting and leveling are placed directly on the measurement carriage 9 (FIG. 10) which defines point A of the relative measurement base, that is to say the correction values are calculated there and used directly for the channel correction at point B. This system has the disadvantage that the operator of the machine knows the correction values only when the track is moving and an obstacle may prohibit any movement or require a determined movement of the track over height B. To eliminate this drawback, as illustrated in FIG. 10, the shifting and leveling receivers Rr and Rn are placed on a special measuring carriage 10 at a distance b from 6 to 12 meters in front of the measuring carriage 9 defining point A. This carriage 10 is, for example, connected to the front end of the machine by a coupling arm. In this case, the effective shift value, therefore the difference y A ′ measured at point A ′ (and likewise the effective leveling value), is stored in the calculation unit UC until the carriage measure 9 arrives at the measurement point A ′. These shifted values (and the leveling values) stored are in the example displayed on an EC display, indicated in FIGS. 8, 8a and 8b, such as a screen, a recorder or other means. This allows the machine operator to intervene 10 to 20 sleepers before the job is done to make any corrections. It is obvious that the leveling system will be designed in the same way.

En ce qui concerne la disposition des récepteurs Rn et Rr, jusqu'ici toujours installés indépendamment l'un de l'autre, il est nécessaire que le récepteur de ripage Rr soit placé toujours en dehors de la zone de réglage du récepteur de nivellement Rn, afin que l'un ne dérange pas la fonction de l'autre. Ce récepteur Rr est donc installé soit au dessus, soit au dessous de la zone de réglage du récepteur Rn. Cette disposition connue présente l'inconvénient que l'intervalle de travail effectif est raccourci par rapport à l'intervalle de mesure G′ comme défini sur la figure 6. En effet, lorsque la machine s'approche de l'émetteur, la largeur des faisceaux diminuant, leur champ d'opération se concentre dans le milieu, ce qui a pour conséquence que le récepteur Rr se trouve bientôt au dessus ou au dessous du faisceau Fr, qu'on ne peut plus mesurer et que la machine devrait s'arrêter à une distance relativement grande de l'émetteur.As regards the arrangement of the receivers Rn and Rr, hitherto always installed independently of one another, it is necessary that the shift receiver Rr is always placed outside the adjustment zone of the leveling receiver Rn , so that one does not disturb the function of the other. This receiver Rr is therefore installed either above or below the adjustment area of the receiver Rn. This known arrangement has the disadvantage that the effective working interval is shortened compared to the interval G ′ as defined in Figure 6. Indeed, when the machine approaches the transmitter, the width of the beams decreasing, their field of operation is concentrated in the medium, which has the consequence that the receiver Rr is soon above or below the beam Fr, which can no longer be measured and which the machine should stop at a relatively great distance from the transmitter.

Pour éviter cet inconvénient, une disposition comme illustrée sur la figure 11 est proposée. Selon cette disposition, on voit que le récepteur Rn pour le faisceau horizontal est monté sur la face inférieure d'un support 6 transversal le long duquel le récepteur Rr pour le faisceau vertical peut se déplacer, par exemple sur une vis entraînée par le moteur Mr, pour effectuer la mesure de ripage. L'ensemble de ce support 6 avec le récepteur Rr et le récepteur Rn est monté de son côté sur un support vertical 8 le long duquel ledit ensemble peut se déplacer verticalement, par exemple sur des vis, entraîné par le moteur Mn, pour que le récepteur Rn puisse effectuer la mesure de nivellement. Ceci permet d'utiliser presque la totalité de la distance jusqu'à l'émetteur, comme illustré sur la figure 11a, et donc d'augmenter l'intervalle G′ effectif.To avoid this drawback, an arrangement as illustrated in FIG. 11 is proposed. According to this arrangement, it can be seen that the receiver Rn for the horizontal beam is mounted on the underside of a transverse support 6 along which the receiver Rr for the vertical beam can move, for example on a screw driven by the motor Mr , to perform the shift measurement. The assembly of this support 6 with the receiver Rr and the receiver Rn is mounted on its side on a vertical support 8 along which said assembly can move vertically, for example on screws, driven by the motor Mn, so that the receiver Rn can perform leveling measurement. This makes it possible to use almost the entire distance to the transmitter, as illustrated in FIG. 11a, and therefore to increase the effective interval G ′.

En Effet, par cette construction le récepteur Rr qui peut naturellement être aussi fixé à la face supérieure du support 6, se déplace toujours verticalement avec le récepteur Rn et n'est qu'à une petite distance verticale constante de celui-ci.Indeed, by this construction the receiver Rr which can naturally also be fixed to the upper face of the support 6, always moves vertically with the receiver Rn and is only at a small constant vertical distance from it.

L'invention n'est, bien entendu, pas limitée aux formes d'exécution décrites et de nombreuses autres variantes pourraient être envisagées. Le fait que l'intervalle de mesure G′ puisse être choisi plus large que jusqu'ici signifie aussi que les distances entre les repères ou piquets fixes installés le long de la voie et définissant le tracé théorique peuvent être plus grandes et donc que le nombre de ces repères est réduit.The invention is, of course, not limited to the embodiments described and many other variants could be envisaged. The fact that the interval of measure G ′ can be chosen wider than hitherto also means that the distances between the fixed markers or stakes installed along the track and defining the theoretical route can be greater and therefore that the number of these markers is reduced.

Claims (2)

  1. A device for controlling a machine (2) for levelling and shifting a railroad track (3), comprising, on the one hand, a system (1) for transmitting electromagnetic beams, in particular laser beams, installed on a carriage (5) parked on the track (3) or the layout in front of the machine (2) and designed to transmit a first spreading or sweeping beam (Fn) in a horizontal plane for levelling and a second spreading or sweeping beam (Fr) in a vertical plane for shifting, and, on the other hand, installed on a measuring carriage of the machine (2), two receivers (Rn, Rr) for the horizontal beam (Fn) and for the vertical beam (Fr), these receivers (Rn, Rr) being designed for automatic self-centering relative to the line of incidence of one of the said beams or the other during each measurement, these adjusted positions serving to determine the track correction to be made, and the machine (2) having reference lines (Lr, Ln) of a relative measuring base (A, B, C), the front point (A) of which is defined by a measuring carriage (9), where in the receivers (Rn, Rr) are arranged on a special measuring carriage (10) at a fixed distance (b) in front of the front measuring carriage (9) of the relative measuring base, making it possible to store a specific number of shifting and levelling values, and wherein a display means (EC), such as a screen, a recorder or any other means, is provided for displaying these values.
  2. The device as claimed in claim 1, wherein the shifting receiver (Rr) is transversely displaceable along a horizontal support (6), wherein this horizontal support (6) is itself displaceable along a vertical support (8), and where in the levelling receiver (Rn) is fastened to the support (6) on which the receiver (Rr) is displaceable.
EP88108740A 1985-07-02 1985-07-02 Device for the command of a railway track levelling and aligning machine Expired - Lifetime EP0293015B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8888108740T DE3584294D1 (en) 1985-07-02 1985-07-02 CONTROL DEVICE FOR A RAILWAY TRACK LEVELING AND LEVELING MACHINE.
EP88108740A EP0293015B1 (en) 1985-07-02 1985-07-02 Device for the command of a railway track levelling and aligning machine
AT88108740T ATE68027T1 (en) 1985-07-02 1988-06-01 CONTROL DEVICE FOR A RAILWAY TRACK LEVELING AND STRAIGHTENING MACHINE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP85201055A EP0207197B1 (en) 1985-07-02 1985-07-02 Method for the renewing or laying of a railway track
EP88108740A EP0293015B1 (en) 1985-07-02 1985-07-02 Device for the command of a railway track levelling and aligning machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP85201055.2 Division 1985-07-02

Publications (2)

Publication Number Publication Date
EP0293015A1 EP0293015A1 (en) 1988-11-30
EP0293015B1 true EP0293015B1 (en) 1991-10-02

Family

ID=26097783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108740A Expired - Lifetime EP0293015B1 (en) 1985-07-02 1985-07-02 Device for the command of a railway track levelling and aligning machine

Country Status (2)

Country Link
EP (1) EP0293015B1 (en)
AT (1) ATE68027T1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846979B1 (en) * 2002-11-07 2005-01-28 Sud Ouest Travaux METHOD OF JAMMING RAILWAYS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT314579B (en) * 1969-01-22 1974-04-10 Plasser Bahnbaumasch Franz Mobile device for recording and / or correcting the position of a track
AT324391B (en) * 1971-10-08 1975-08-25 Plasser Bahnbaumasch Franz DEVICE FOR DETERMINING THE DEVIATION OF THE POSITION OF A TRACK FROM ITS TARGET POSITION
ATE17138T1 (en) * 1982-03-31 1986-01-15 Scheuchzer Fils Auguste DEVICE FOR CONTROLLING A MACHINE FOR BUILDING OR REPAIRING A RAILWAY TRACK.

Also Published As

Publication number Publication date
EP0293015A1 (en) 1988-11-30
ATE68027T1 (en) 1991-10-15

Similar Documents

Publication Publication Date Title
EP0090098B1 (en) Control device for a railway track construction or maintenance machine
EP0207197B1 (en) Method for the renewing or laying of a railway track
EP0235602B1 (en) Process for measuring and grinding a rail head profile
FR2554839A1 (en) SYSTEM FOR CORRECTING THE LEVEL AND CROSS-LINE INCLINATION OF A RAILWAY
FR2475721A1 (en) MEASURING VEHICLE AND METHOD FOR MEASURING THE TRACE OF THE LONGITUDINAL PROFILE OF TUNNELS
FR2678962A1 (en) METHOD FOR DETERMINING THE DISTANCES OF THE ACTUAL POSITION OF A TRUNK OF RAILWAY.
EP0160591A1 (en) Method and apparatus for the non-destructive testing of railway rails
EP1178153B1 (en) Guiding process and apparatus for inserting elements in the ground
EP0356311B1 (en) Process and apparatus for working a ground surface, especially for covering a road
FR2642095A1 (en) MOBILE INTERVENTION MACHINE ON RAILWAYS, EQUIPPED WITH A DEVICE FOR CONTROLLING THE WORKING POSITION OF ITS WORKING GROUPS OR TOOLS
FR2692607A1 (en) Railway construction machine comprising a laser reference system and method of guiding apparatus according to said system.
FR2518603A1 (en) MOBILE TRACK CORRECTION MACHINE WITH MEASUREMENT REFERENCE SYSTEM
EP0417452B1 (en) Process for programming railway rails reshaping work and/or reshaping of said rails and apparatus for performing said process
FR2770858A1 (en) RAILWAY CONSTRUCTION AND REPAIRING MACHINE WITH A LASER REFERENCE SYSTEM AND METHOD FOR IMPLEMENTING SAME
EP0293015B1 (en) Device for the command of a railway track levelling and aligning machine
EP1418273B1 (en) Method of tamping railway tracks
FR2530114A1 (en) AUTOMATIC WORKING WHEEL WORKING VEHICLE IN PARTICULAR A MOWER OR THE LIKE
FR2500863A1 (en) MOBILE INSTALLATION FOR IMPROVING, AND PARTICULARLY CORRECTING THE PLATE OF A RAILWAY
FR2770859A1 (en) RAILWAY CONSTRUCTION MACHINE WITH A REFERENCE SYSTEM FOR CONTROLLING A WORKING APPARATUS AND METHOD FOR DETECTING TRACK MEASUREMENT VALUES
EP0329918B1 (en) Method for the restoration of a railroad track
FR2692606A1 (en) Machine for the treatment of the ballast bed.
EP0051338B1 (en) Method and means for measuring the position of a railway rail
FR2635544A1 (en) Methods and machine for working a ground surface, in particular for covering a roadway
EP0089702B1 (en) Method of guiding a track-positioning device, and apparatus for that purpose
FR2677679A1 (en) METHOD AND MACHINE FOR POSITION CORRECTION OF A RAILWAY POSITION ON A SUPPORT LAYER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 207197

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890505

17Q First examination report despatched

Effective date: 19900927

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 207197

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 68027

Country of ref document: AT

Date of ref document: 19911015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3584294

Country of ref document: DE

Date of ref document: 19911107

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920525

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920702

Ref country code: AT

Effective date: 19920702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920729

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920731

Ref country code: BE

Effective date: 19920731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: S.A. LES FILS D'AUGUSTE SCHEUCHZER

Effective date: 19920731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920702

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 88108740.7

Effective date: 19930204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030808

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL