EP0274927B1 - Block containing wastes to store them, and process for manufacturing such a block - Google Patents

Block containing wastes to store them, and process for manufacturing such a block Download PDF

Info

Publication number
EP0274927B1
EP0274927B1 EP87402698A EP87402698A EP0274927B1 EP 0274927 B1 EP0274927 B1 EP 0274927B1 EP 87402698 A EP87402698 A EP 87402698A EP 87402698 A EP87402698 A EP 87402698A EP 0274927 B1 EP0274927 B1 EP 0274927B1
Authority
EP
European Patent Office
Prior art keywords
waste
cement
stage
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87402698A
Other languages
German (de)
French (fr)
Other versions
EP0274927A1 (en
Inventor
Claude Kertesz
Gérard Koehly
Frank Josso
André Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0274927A1 publication Critical patent/EP0274927A1/en
Application granted granted Critical
Publication of EP0274927B1 publication Critical patent/EP0274927B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • G21F9/165Cement or cement-like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/167Processing by fixation in stable solid media in polymeric matrix, e.g. resins, tars
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/307Processing by fixation in stable solid media in polymeric matrix, e.g. resins, tars

Definitions

  • the subject of the present invention is a block containing waste as well as a process for producing such a block which can be used in particular in the field of storage of low and medium activity radioactive waste.
  • Waste from the nuclear industry can take three main forms. It can firstly be wet waste such as liquid effluent co-precipitation sludge whose water content is of the order of 20 to 40%.
  • a second category of waste is that of pulverulent dry waste constituted for example by the incineration ashes of combustible materials such as cellulose, polyvinyl chloride, rubber, neoprene, polyethylene, etc.
  • the third category is that of solid waste called "technological waste". This designation includes the waste mentioned above as well as non-combustible waste such as glass and metals.
  • Cement coating is a method whose implementation is simple and inexpensive. However, the quality of containment is unsatisfactory when the mix contains radioelements such as cesium or strontium. The tests for resistance to leaching by industrial water show that the leaching speed of these radioelements presents high values.
  • document DE-A-2 717 656 describes a process for coating waste in cement, according to which the waste is mixed with cement and water and an organic or inorganic substance is used to produce the waste. make the mixture hydrophobic, for example 3% by weight of latex.
  • Bitumen coating is mainly applied to waste such as sludge and concentrates of liquid effluents. This process makes it possible to obtain a stable product, but the mechanical strength of the coated materials is unsatisfactory.
  • the product may be subject to the emission of radiolysis gas, which may cause swelling of the mix.
  • the coating in polymers consists in coating the waste in resins, for example polyester or epoxy thermosetting resins.
  • the physical and mechanical properties of the product obtained as well as the containment are better than with the methods of coating in cement or bitumen.
  • problems of compatibility between the resin matrix and the waste may be encountered, in particular in the case where it is desired to coat waste with a high water content. In particular, if radiolysis gases are released, this leads to the production of pores during polymerization.
  • the object of the present invention is to remedy these drawbacks by proposing a block containing radioactive waste as well as a method for preparing this block applicable to all types of waste and which makes it possible to obtain effective and safe containment of the latter. .
  • the waste is coated in a composite matrix consisting of epoxy resin and hardened cement.
  • the proportion of waste is between 35 and 45% by weight, the proportion of cement between 25 and 35% by weight and the proportion of resin between 20 and 40% by weight.
  • waste it can consist of all types of waste and in particular that mentioned above, namely wet waste, pulverulent waste and non-combustible solids.
  • An additional step (5) can be provided, carried out after step (2) and before step (3), consisting in transforming the product obtained in step (2) into granules.
  • an additional step (6) can also be carried out after step (5) and before step (3), consisting in drying the granules.
  • an additional step can be carried out consisting in subjecting the product obtained to a degassing treatment and / or another step consisting in subjecting the product obtained to a vibration.
  • this product was subjected to granulation by pressing through a grid and the granules obtained were then immersed in a mixture consisting of an epoxy resin and its hardener.
  • the mixture comprised 100 parts by weight of resin per 60 parts by weight of hardener.
  • the quantities of granules and resin / hardener mixture are calculated so that the apparent volume of the granules is substantially equal to the volume of the resin and hardener mixture.
  • the hardening time of the resin is 48 hours and the setting time of the cement is 28 days. It therefore takes 28 days for the block obtained to be perfectly hardened, but it can be handled as soon as the resin is polymerized, that is to say after 48 hours, because the polymerization of the resin constitutes a first hardening.
  • the probability of cracking of the cement granules is reduced thanks to the high adhesiveness of the resin which constitutes the second barrier.
  • the radiolytic degradation of the resin by the radioelements is reduced because the ⁇ particles are absorbed, in large part, in the granules.
  • Example 1 the granules were introduced into the mixture of resin and hardener practically immediately after their production, that is to say the state still wet. Optionally, they can be subjected to hot drying in order to harden them before pouring them into the mixture of resin and hardener.
  • incinerator ash from the incineration of combustible waste contaminated with ⁇ emitters or ⁇ ⁇ emitters.
  • These ashes consist essentially of a mixture of metal oxides (silica, iron oxide, alumina, etc.).
  • the ash treated in this example had an activity ⁇ of the order of 50 Ci per tonne and their weight composition was as follows: - SiO2 32 to 40% - Al2O3 18 to 19% - Fe2O3 4% - TiO2 1 to 3% - CaO 19% - MgO 3.7% - Na2O + K2O 5% - SO3 1 to 2% - Cl ⁇ 2.4 to 5.1%
  • Example 2 The same waste as in Example 2 was first mixed with dry cement in the proportion of 40 parts of ash for approximately 20 parts of cement.
  • Example 2 In parallel, a mixture containing water, epoxy resin and a hardener containing 7 to 10 parts by weight of water was prepared for 30 parts by weight of the resin / hardener mixture. In the latter, the proportion by weight of hardener is of the order of 0.6.
  • the two products are mixed and vigorously stirred in order to obtain a soft dough similar to that which was obtained in Example 2.
  • it is possible to brew in a mixer equipped with a turbine. homogenization and, if desired, carry out the mixing under vacuum or under reduced pressure in order to degas and / or subject this product to vibration. In both cases, the hardening of the final block is obtained in 48 hours.
  • the process which is the subject of the invention has particularly advantageous advantages since it applies to all types of waste and a block is obtained which has good mechanical properties and resistance to leaching and which ensures efficient confinement and sustainable waste.
  • the coating of certain qualities of ash proves difficult in epoxy resins.
  • gases such as hydrogen or ammonia.
  • the quantities of gas collected show that it is a partial neutralization reaction on the amine constituting the hardener. This results in a swelling phenomenon and a polymerization, therefore a slowed down curing, or even inhibited.
  • the use of the cement / resin composite according to the invention overcomes these drawbacks. Indeed, the alkalinity of the cement allows a quick neutralization of the acidity of the ashes and suppresses the consumption reaction of the hardener.
  • curves 1 and 2 present a peak at values of the order of 170 ° C. while curve 3 presents, at after 10 hours, a peak which is only around 90 ° C.

Description

La présente invention a pour objet un bloc contenant des déchets ainsi qu'un procédé de réalisation d'un tel bloc utilisable notamment dans le domaine du stockage des déchets radioactifs de faible et moyenne activité.The subject of the present invention is a block containing waste as well as a process for producing such a block which can be used in particular in the field of storage of low and medium activity radioactive waste.

Les déchets de l'industrie nucléaire peuvent se présenter sous trois aspects principaux. Il peut s'agir d'abord de déchets humides tels que les boues de coprécipitation d'effluents liquides dont la teneur en eau est de l'ordre de 20 à 40%. Une deuxième catégorie de déchets est celle des déchets secs pulvérulents constitués par exemple par les cendres d'incinération de matières combustibles comme la cellulose, le polychlorure de vinyle, le caoutchouc, le néoprène, le polyéthylène, etc. Enfin, la troisième catégorie est celle des déchets solides appelés "déchets technologiques". Cette appellation regroupe les déchets mentionnés ci-dessus ainsi que des déchets incombustibles tels que le verre et les métaux.Waste from the nuclear industry can take three main forms. It can firstly be wet waste such as liquid effluent co-precipitation sludge whose water content is of the order of 20 to 40%. A second category of waste is that of pulverulent dry waste constituted for example by the incineration ashes of combustible materials such as cellulose, polyvinyl chloride, rubber, neoprene, polyethylene, etc. Finally, the third category is that of solid waste called "technological waste". This designation includes the waste mentioned above as well as non-combustible waste such as glass and metals.

A l'heure actuelle, il existe trois méthodes principales pour enrober les déchets radioactifs de faible et moyenne activité en vue de leur stockage. Ces procédés sont l'enrobage par un liant hydraulique (essentiellement du ciment), l'enrobage par le bitume et l'enrobage par les polymères. Chacune de ces méthodes est en principe applicable à un type de déchets bien déterminé et n'est pas applicable à la totalité des déchets à traiter.Currently, there are three main methods for coating low and intermediate level radioactive waste for storage. These processes are coating with a hydraulic binder (essentially cement), coating with bitumen and coating with polymers. Each of these methods is in principle applicable to a specific type of waste and is not applicable to all of the waste to be treated.

L'enrobage par le ciment est une méthode dont la mise en oeuvre est simple et peu coûteuse. Cependant, la qualité du confinement est peu satisfaisante lorsque l'enrobé contient des radioéléments tels que le césium ou le strontium. Les essais de résistance à la lixiviation par l'eau industrielle montrent que la vitesse de lixiviation de ces radioéléments présente des valeurs élevées.Cement coating is a method whose implementation is simple and inexpensive. However, the quality of containment is unsatisfactory when the mix contains radioelements such as cesium or strontium. The tests for resistance to leaching by industrial water show that the leaching speed of these radioelements presents high values.

Ainsi, le document DE-A-2 717 656 décrit un procédé d'enrobage de déchets dans du ciment, selon lequel on mélange les déchets avec du ciment et de l'eau et on ajoute au produit obtenu une substance organique ou inorganique servant à rendre le mélange hydrophobe par exemple 3% en poids de latex.Thus, document DE-A-2 717 656 describes a process for coating waste in cement, according to which the waste is mixed with cement and water and an organic or inorganic substance is used to produce the waste. make the mixture hydrophobic, for example 3% by weight of latex.

L'enrobage par le bitume s'applique surtout aux déchets tels que les boues et les concentrats d'effluents liquides. Ce procédé permet d'obtenir un produit stable, mais la tenue mécanique des enrobés est peu satisfaisante. De plus, suivant la concentration en radioisotopes, le produit peut être sujet à l'émission de gaz de radiolyse, ce qui risque de provoquer un gonflement de l'enrobé.Bitumen coating is mainly applied to waste such as sludge and concentrates of liquid effluents. This process makes it possible to obtain a stable product, but the mechanical strength of the coated materials is unsatisfactory. In addition, depending on the concentration of radioisotopes, the product may be subject to the emission of radiolysis gas, which may cause swelling of the mix.

L'enrobage dans les polymères consiste à enrober les déchets dans des résines, par exemple des résines thermodurcissables polyesters ou époxydes. Les propriétés physiques et mécaniques du produit obtenu ainsi que le confinement sont meilleurs qu'avec les méthodes d'enrobage dans le ciment ou le bitume. Cependant, dans certains cas, on peut rencontrer des problèmes de compatibilité entre la matrice de résine et les déchets, notamment dans le cas où l'on désire enrober des déchets à forte teneur en eau. En particulier, s'il se dégage des gaz de radiolyse, ceci entraîne la production de pores lors de la polymérisation. D'autre part, dans le cas de cendres d'incinérateur acides comme, par exemple, celles provenant de l'incinération du polychlorure de vinyle, on observe une inhibition de la polymérisation qui s'explique par le fait que le durcisseur de la résine risque d'être "consommé" par les cendres : en effet, dans le cas de la résine époxyde, le durcisseur est basique et il est attaqué par les cendres qui sont acides, ce qui empêche le durcissement de la résine.The coating in polymers consists in coating the waste in resins, for example polyester or epoxy thermosetting resins. The physical and mechanical properties of the product obtained as well as the containment are better than with the methods of coating in cement or bitumen. However, in certain cases, problems of compatibility between the resin matrix and the waste may be encountered, in particular in the case where it is desired to coat waste with a high water content. In particular, if radiolysis gases are released, this leads to the production of pores during polymerization. On the other hand, in the case of ash from incinerator acids such as, for example, those from the incineration of polyvinyl chloride, there is an inhibition of polymerization which is explained by the fact that the hardener of the resin risk of being "consumed" by the ash: in fact, in the case of epoxy resin, the hardener is basic and it is attacked by the ash which is acid, which prevents hardening of the resin.

La présente invention a pour but de remédier à ces inconvénients en proposant un bloc contenant des déchets radioactifs ainsi qu'un procédé de préparation de ce bloc applicable à tous les types de déchets et qui permet d'obtenir un confinement efficace et sûr de ces derniers.The object of the present invention is to remedy these drawbacks by proposing a block containing radioactive waste as well as a method for preparing this block applicable to all types of waste and which makes it possible to obtain effective and safe containment of the latter. .

Dans le bloc objet de l'invention, les déchets sont enrobés dans une matrice composite constituée de résine époxyde et de ciment durcis.In the object block of the invention, the waste is coated in a composite matrix consisting of epoxy resin and hardened cement.

Selon l'invention, la proportion de déchets est comprise entre 35 et 45% en poids, la proportion de ciment entre 25 et 35% en poids et la proportion de résine entre 20 et 40% en poids.According to the invention, the proportion of waste is between 35 and 45% by weight, the proportion of cement between 25 and 35% by weight and the proportion of resin between 20 and 40% by weight.

Quant aux déchets, ils peuvent être constitués par tous les types de déchets et notamment ceux cités plus haut, à savoir les déchets humides, les déchets pulvérulents et les solides incombustibles.As for waste, it can consist of all types of waste and in particular that mentioned above, namely wet waste, pulverulent waste and non-combustible solids.

L'invention a également pour objet un procédé de réalisation d'un tel bloc. Selon la principale caractéristique de ce procédé, celui-ci comporte les étapes suivantes consistant à :

  • (1) - mélanger les déchets avec au moins un ciment,
  • (2) - ajouter, au mélange obtenu à l'étape (1), de l'eau en quantité suffisante pour obtenir l'hydratation du ou des ciment(s),
  • (3) - mélanger le produit obtenu à l'étape (2) avec la résine époxyde, et
  • (4) - laisser durcir le(s) ciment(s) et la résine,

les quantités de déchets, de ciment et de résine utilisées étant telles que les déchets représentent de 35 à 45% en poids de l'ensemble constitué par les déchets, le ciment et la résine, le ciment représente de 25 à 35% en poids de cet ensemble et la résine représente de 20 à 40% en poids de cet ensemble.The invention also relates to a method for producing such a block. According to the main characteristic of this process, it comprises the following steps consisting in:
  • (1) - mix the waste with at least one cement,
  • (2) - add, to the mixture obtained in step (1), water in sufficient quantity to obtain the hydration of the cement (s),
  • (3) - mix the product obtained in step (2) with the epoxy resin, and
  • (4) - allow the cement (s) and resin to harden,

the quantities of waste, cement and resin used being such that the waste represents from 35 to 45% by weight of the assembly constituted by the waste, the cement and the resin, the cement represents from 25 to 35% by weight of this set and the resin represents from 20 to 40% by weight of this set.

On peut prévoir une étape supplémentaire (5), effectuée après l'étape (2) et avant l'étape (3), consistant à transformer le produit obtenu à l'étape (2) en granulés. Eventuellement, on peut encore prévoir une étape supplémentaire (6) effectuée après l'étape (5) et avant l'étape (3), consistant à sécher les granulés.An additional step (5) can be provided, carried out after step (2) and before step (3), consisting in transforming the product obtained in step (2) into granules. Optionally, an additional step (6) can also be carried out after step (5) and before step (3), consisting in drying the granules.

Eventuellement, avant de procéder à l'étape (4), on peut effectuer une étape supplémentaire consistant à soumettre le produit obtenu à un traitement de dégazage et/ou une autre étape consistant à soumettre le produit obtenu à un vibrage.Optionally, before proceeding to step (4), an additional step can be carried out consisting in subjecting the product obtained to a degassing treatment and / or another step consisting in subjecting the product obtained to a vibration.

L'invention apparaîtra mieux à la lecture de la description qui va suivre de quelques exemples de réalisation, description donnée à titre purement illustratif et nullement limitatif, en référence au dessin annexé, lequel comporte une figure unique qui est un graphe donnant, en fonction du temps, la température au coeur d'un fût de stockage pour des déchets enrobés selon des méthodes de l'art antérieur et selon la présente invention.The invention will appear more clearly on reading the description which follows of some exemplary embodiments, description given purely by way of illustration and in no way limiting, with reference to the appended drawing, which comprises a single figure which is a graph giving, depending on the time, the temperature at the heart of a storage barrel for waste coated according to methods of the prior art and according to the present invention.

EXEMPLEEXAMPLE 1 1

Les déchets traités dans cet exemple étaient constitués par des boues de coprécipitation d'effluents liquides de faible et moyenne activité. L'industrie nucléaire produit de grandes quantités de boues de ce type. Celles-ci sont constituées par un mélange de différents sels tels que nitrate de sodium, sulfate de baryum, ferrocyanure double de nickel et de potassium, sulfure de cobalt notamment. Ces boues ont d'abord subi un lavage l'eau servant à éliminer les sels solubles, tels que le nitrate de sodium. Après lavage, ces boues avaient la composition pondérale suivante :

  • sulfate de baryum BaSO₄: 50 à 60%,
  • ferrocyanure double de nickel et de potassium Fe (CN)₆KmNin= 5 à 10%,
  • sulfure de cobalt Co S = 5 à 10%,
  • eau H₂O = 20 à 40%.
The waste treated in this example consisted of low and medium activity liquid effluent co-precipitation sludge. The nuclear industry produces large quantities of such sludge. These consist of a mixture of different salts such as sodium nitrate, barium sulphate, double ferrocyanide of nickel and potassium, especially cobalt sulphide. This sludge was first washed with water used to remove soluble salts, such as sodium nitrate. After washing, this sludge had the following weight composition:
  • barium sulfate BaSO₄: 50 to 60%,
  • double nickel and potassium ferrocyanide Fe (CN) ₆K m Ni n = 5 to 10%,
  • cobalt sulfide Co S = 5 to 10%,
  • H₂O water = 20 to 40%.

Ces boues, après lavage, avaient une activité α ≦ 1 Ci.m⁻³ et une activité β γ de l'ordre de 70 à 850 Ci.m⁻³.These sludges, after washing, had an α ≦ 1 Ci.m⁻³ activity and a β γ activity of the order of 70 to 850 Ci.m⁻³.

Il est à remarquer que les constituants de ces boues et leurs proportions relatives correspondent une composition spéciale de ciment dite "ciment anti-acide". Il suffit en effet d'ajouter à ces boues du silicate de sodium, tel qu'on en trouve dans le commerce, pour obtenir un produit qui durcit spontanément à l'air. En effet, par addition de silicate de sodium, on obtient un produit qui a la composition d'un ciment, compte non tenu de la présence d'eau. Si on ajoute de l'eau à un ciment, celui-ci durcit à l'air : comme l'eau est déjà présente dans les boues, l'addition de silicate de sodium fait qu'on obtient un produit qui n'est autre qu'un mélange d'eau et de ciment, donc un produit qui durcit seul à l'air. Cette réaction est permise par la présence d'un sulfure hydrolysable comme le sulfure de cobalt. Eventuellement, afin d'améliorer la résistance mécanique du produit obtenu, on peut ajouter un ou plusieurs ciment(s) du commerce. Dans l'exemple qui a été réalisé, on a ajouté, en plus du silicate de sodium, un ciment hyperalumineux et un ciment de type Portland. La composition pondérale du produit obtenu était la suivante : - Ba SO₄ 20% en poids, - Fe (CN)₆KmNin  2%    " - Co S  2%    " - H₂O 17%    " - Si O₂ 20%    " - Silicate de sodium (d=1,33)  6%    " - Ciment hyperalumineux 22%    " - Ciment type Portland 11%    " It should be noted that the constituents of these sludges and their relative proportions correspond to a special cement composition called "anti-acid cement". It suffices to add sodium silicate, such as is commercially available, to these sludges to obtain a product which spontaneously hardens in air. Indeed, by adding sodium silicate, a product is obtained which has the composition of a cement, without taking into account the presence of water. If we add water to a cement, it hardens in air: as the water is already present in the sludge, the addition of sodium silicate results in a product which is none other than a mixture of water and cement, so a product that hardens alone in air This reaction is enabled by the presence of a hydrolyzable sulfide such as cobalt sulfide. Optionally, in order to improve the mechanical strength of the product obtained, one or more commercial cement (s) can be added. In the example which was carried out, in addition to sodium silicate, a hyperaluminous cement and a cement of Portland type. The weight composition of the product obtained was as follows: - Ba SO₄ 20% by weight, - Fe (CN) ₆K m Ni n 2% " - Co S 2% " - H₂O 17% " - If WHERE 20% " - Sodium silicate (d = 1.33) 6% " - Hyperaluminous cement 22% " - Portland type cement 11% "

Dès sa fabrication, ce produit a été soumis à une granulation par pressage à travers une grille et les granulés obtenus ont été alors immergés dans un mélange constitué d'une résine époxyde et de son durcisseur. Le mélange comportait 100 parties pondérales de résine pour 60 parties pondérales de durcisseur. Les granulés, immédiatement après leur obtention, ont été immergés dans le mélange de résine et de durcisseur. Les quantités de granulés et de mélange résine/durcisseur sont calculées de telle sorte que le volume apparent des granulés soit sensiblement égal au volume du mélange de résine et de durcisseur. La durée de durcissement de la résine est de 48 heures et la durée de prise du ciment est de 28 jours. Il faut donc 28 jours pour que le bloc obtenu soit parfaitement durci, mais on peut le manipuler dès que la résine est polymérisée, c'est-à-dire au bout de 48 heures, car la polymérisation de la résine constitue un premier durcissement.From its manufacture, this product was subjected to granulation by pressing through a grid and the granules obtained were then immersed in a mixture consisting of an epoxy resin and its hardener. The mixture comprised 100 parts by weight of resin per 60 parts by weight of hardener. The granules, immediately after obtaining them, were immersed in the mixture of resin and hardener. The quantities of granules and resin / hardener mixture are calculated so that the apparent volume of the granules is substantially equal to the volume of the resin and hardener mixture. The hardening time of the resin is 48 hours and the setting time of the cement is 28 days. It therefore takes 28 days for the block obtained to be perfectly hardened, but it can be handled as soon as the resin is polymerized, that is to say after 48 hours, because the polymerization of the resin constitutes a first hardening.

L'observation des blocs a montré que ceux-ci se présentaient sous la forme d'une matrice de résine à l'intérieur de laquelle étaient emprisonnés des granulés de ciment. On a pu constater que l'enrobé obtenu présentait des propriétés mécaniques supérieures à celles d'un enrobé obtenu avec un liant hydraulique, c'est-à-dire un ciment seul, tout en présentant une bonne résistance à la lixiviation. De plus, ce procédé permet la réalisation d'une double barrière de confinement : en effet, les radioéléments sont d'abord enfermés dans les granulés de ciment et ces derniers sont ensuite enrobés dans le polymère organique. Ceci permet un confinement très efficace des éléments solubles dans l'eau tels que le césium et, à un degré moindre, le strontium. Les vitesses de lixiviation de ces éléments sont donc notablement diminuées.Observation of the blocks has shown that they are in the form of a resin matrix inside which cement granules are trapped. It has been observed that the mix obtained has mechanical properties superior to those of a mix obtained with a hydraulic binder, that is to say a cement alone, while exhibiting good resistance to leaching. In addition, this process allows the creation of a double containment barrier: in fact, the radioelements are first enclosed in the cement granules and these are then coated in the organic polymer. This allows very efficient containment of water-soluble elements such as cesium and, to a lesser degree, strontium. The leaching rates of these elements are therefore significantly reduced.

De plus, dans le cas d'une concentration en émetteurs supérieure à la teneur nominale, c'est-à-dire à 1 Ci.m⁻³, la probabilité de fissuration des granulés de ciment est diminuée grâce à la forte adhésivité de la résine qui constitue la deuxième barrière. De même, la dégradation radiolytique de la résine par les radioéléments est diminuée du fait que les particules α sont absorbées, en grande partie, dans les granulés.In addition, in the case of an emitter concentration higher than the nominal content, that is to say at 1 Ci.m⁻³, the probability of cracking of the cement granules is reduced thanks to the high adhesiveness of the resin which constitutes the second barrier. Likewise, the radiolytic degradation of the resin by the radioelements is reduced because the α particles are absorbed, in large part, in the granules.

Dans l'exemple 1, les granulés ont été introduits dans le mélange de résine et de durcisseur pratiquement immédiatement après leur obtention, c'est-à-dire l'état encore humide. Eventuellement, on peut leur faire subir un séchage à chaud afin de les durcir avant de les verser dans le mélange de résine et durcisseur.In Example 1, the granules were introduced into the mixture of resin and hardener practically immediately after their production, that is to say the state still wet. Optionally, they can be subjected to hot drying in order to harden them before pouring them into the mixture of resin and hardener.

EXEMPLEEXAMPLE 22

Dans cet exemple, on a pratiqué plusieurs essais d'enrobage de cendres d'incinérateur provenant de l'incinération de déchets combustibles contaminés en émetteurs α ou en émetteurs β γ. Ces cendres sont constituées essentiellement par un mélange d'oxydes métalliques (silice, oxyde de fer, alumine, etc...). Les cendres traitées dans cet exemple avaient une activité α de l'ordre de 50 Ci par tonne et leur composition pondérale était la suivante : - SiO₂ 32 à 40% - Al₂O₃ 18 à 19% - Fe₂O₃ 4% - TiO₂ 1 à 3% - CaO 19% - MgO 3,7% - Na₂O+K₂O 5% - SO₃ 1 à 2% - Cl⁻ 2,4 à 5,1% In this example, several attempts were made to coat incinerator ash from the incineration of combustible waste contaminated with α emitters or β γ emitters. These ashes consist essentially of a mixture of metal oxides (silica, iron oxide, alumina, etc.). The ash treated in this example had an activity α of the order of 50 Ci per tonne and their weight composition was as follows: - SiO₂ 32 to 40% - Al₂O₃ 18 to 19% - Fe₂O₃ 4% - TiO₂ 1 to 3% - CaO 19% - MgO 3.7% - Na₂O + K₂O 5% - SO₃ 1 to 2% - Cl⁻ 2.4 to 5.1%

Après broyage de ces cendres, la poudre obtenue se mélange très bien à des ciments tels que les ciments secs du commerce, notamment les ciments de type Portland. Celles-ci ont été mélangées à un produit contenant du ciment et de l'eau dans la proportion de 40 parties pondérales de cendres pour 30 parties pondérales du mélange d'eau et de ciment. Dans ce dernier, la proportion pondérale de l'eau par rapport au ciment était comprise entre 0,30 et 0,36. On a ensuite pratiqué un brassage du mélange cendres, ciment et eau et on y a ajouté un mélange de résine époxyde et de durcisseur dans la proportion de 30 parties pondérales du mélange résine/durcisseur, pour 40 parties pondérales du mélange cendres, ciment, eau. Dans le mélange résine/durcisseur, la proportion de durcisseur par rapport à la résine était de 0,6. Le produit a été brassé énergiquement au fur et à mesure de l'ajout du polymère organique dans un mélangeur équipé d'une turbine d'homogénéisation. La pâte obtenue est facile à mettre en oeuvre, et elle est apte à être moulée ou conditionnée en fûts pour le stockage. Eventuellement, on peut réaliser un brassage sous vide afin de dégazer le produit final et, éventuellement, soumettre celui-ci à un vibrage afin d'en améliorer l'homogénéité. Le bloc final obtenu avait les caractéristiques suivantes :

  • densité : 1,75,
  • résistance à la compression : de 65 à 80 MPa.
After grinding these ashes, the powder obtained mixes very well with cements such as dry commercial cements, in particular Portland type cements. These were mixed with a product containing cement and water in the proportion of 40 parts by weight of ash per 30 parts by weight of the mixture of water and cement. In the latter, the weight proportion of water relative to the cement was between 0.30 and 0.36. The ash, cement and water mixture was then mixed and a mixture of epoxy resin and hardener was added in the proportion of 30 parts by weight of the resin / hardener mixture, for 40 parts by weight of the mixture of ash, cement, water . In the resin / hardener mixture, the proportion of hardener relative to the resin was 0.6. The product was stirred vigorously as the organic polymer was added to a mixer equipped with a homogenization turbine. The paste obtained is easy to use, and it is suitable for being molded or packaged in barrels for storage. Optionally, vacuum mixing can be carried out in order to degas the final product and, optionally, subject it to vibration in order to improve its homogeneity. The final block obtained had the following characteristics:
  • density: 1.75,
  • compressive strength: from 65 to 80 MPa.

On peut remarquer que ces valeurs sont très supérieures à la résistance à la compression d'un enrobé pour lequel les déchets sont enrobés dans du ciment seul (résistance de l'ordre de 30 MPa) et on a pu constater sur le produit obtenu une résistance à la lixiviation du césium par l'eau très supérieure à celle qu'on aurait obtenue en enrobant les déchets dans un ciment seul.It can be noted that these values are much higher than the compressive strength of a mix for which the waste is coated in cement alone (strength of the order of 30 MPa) and it has been observed on the product obtained a strength to the leaching of cesium by water much higher than that which would have been obtained by coating the waste in a cement alone.

EXEMPLEEXAMPLE 33

Les mêmes déchets qu'à l'exemple 2 ont d'abord été mélangés à du ciment sec dans la proportion de 40 parties de cendres pour 20 parties de ciment environ.The same waste as in Example 2 was first mixed with dry cement in the proportion of 40 parts of ash for approximately 20 parts of cement.

Parallèlement, on a préparé un mélange contenant de l'eau, de la résine époxyde et un durcisseur contenant 7 à 10 parties pondérales d'eau pour 30 parties pondérales du mélange résine/durcisseur. Dans ce dernier, la proportion pondérale de durcisseur est de l'ordre de 0,6. On mélange les deux produits et on les brasse énergiquement afin d'obtenir une pâte meuble semblable à celle qui a été obtenue à l'exemple 2. Comme dans l'exemple 2, on peut réaliser le brassage dans un mélangeur équipé d'une turbine d'homogénéisation et, si on le désire, effectuer le brassage sous vide ou sous une pression réduite afin d'effectuer un dégazage et/ou soumettre ce produit à un vibrage. Dans les deux cas, le durcissement du bloc final est obtenu en 48 heures.In parallel, a mixture containing water, epoxy resin and a hardener containing 7 to 10 parts by weight of water was prepared for 30 parts by weight of the resin / hardener mixture. In the latter, the proportion by weight of hardener is of the order of 0.6. The two products are mixed and vigorously stirred in order to obtain a soft dough similar to that which was obtained in Example 2. As in Example 2, it is possible to brew in a mixer equipped with a turbine. homogenization and, if desired, carry out the mixing under vacuum or under reduced pressure in order to degas and / or subject this product to vibration. In both cases, the hardening of the final block is obtained in 48 hours.

Ainsi, le procédé objet de l'invention présente des avantages particulièrement intéressants puisqu'il s'applique à tous types de déchets et qu'on obtient un bloc présentant de bonnes propriétés mécaniques et de résistance à la lixiviation et qui assure un confinement efficace et durable des déchets. Des essais comparatifs de résistance à la lixiviation par l'eau sur des éprouvettes contaminées en plutonium et autres émetteurs α, dont l'activité massique était d'environ 2.10⁴ Curies/Tonne, ont permis de constater les résultats suivants :
   Sur les enrobés ne contenant que du ciment, on a constaté des cassures au bout de 27 jours, provoquant dans un laps de temps relativement court la destruction complète de l'échantillon. Au contraire, les mêmes déchets enrobés dans un composite de ciment et de résine selon l'invention ont montré que l'éprouvette était intacte au bout d'une durée d'immersion dans l'eau de 18 mois. Il s'agit de déchets qui ont été préparés comme dans l'exemple 1 mais qui n'ont pas été transformés en granulés avant d'être mélangés avec la résine.
Thus, the process which is the subject of the invention has particularly advantageous advantages since it applies to all types of waste and a block is obtained which has good mechanical properties and resistance to leaching and which ensures efficient confinement and sustainable waste. Comparative tests of resistance to leaching by water on test specimens contaminated with plutonium and other α emitters, the mass activity of which was about 2.10ies Curies / Ton, made it possible to note the following results:
On asphalt containing only cement, breaks were observed after 27 days, causing the complete destruction of the sample in a relatively short period of time. On the contrary, the same waste coated in a cement and resin composite according to the invention showed that the test piece was intact after a period of immersion in water of 18 months. These are wastes which have been prepared as in Example 1 but which have not been transformed into granules before being mixed with the resin.

Par rapport à l'enrobage dans la résine seule, les avantages sont les suivants :
   Comme indiqué ci-dessus, l'enrobage de certaines qualités de cendres se révèle difficile dans les résines époxydes. C'est ainsi que certaines cendres acides, telles que celles qui proviennent de déchets à forte teneur en PVC, réagissent lors de l'enrobage avec production de gaz tels que l'hydrogène ou l'ammoniac. Les quantités de gaz recueillies montrent qu'il s'agit d'une réaction de neutralisation partielle sur l'amine constituant le durcisseur. Il en résulte un phénomène de gonflement et une polymérisation, donc un durcissement ralenti, voire inhibé. L'emploi du composite ciment/résine selon l'invention permet de pallier ces inconvénients. En effet, l'alcalinité du ciment permet une neutralisation rapide de l'acidité des cendres et supprime la réaction de consommation du durcisseur.
Compared to the coating in the resin alone, the advantages are:
As indicated above, the coating of certain qualities of ash proves difficult in epoxy resins. This is how certain acid ash, such as that which comes from waste with a high PVC content, react during coating with the production of gases such as hydrogen or ammonia. The quantities of gas collected show that it is a partial neutralization reaction on the amine constituting the hardener. This results in a swelling phenomenon and a polymerization, therefore a slowed down curing, or even inhibited. The use of the cement / resin composite according to the invention overcomes these drawbacks. Indeed, the alkalinity of the cement allows a quick neutralization of the acidity of the ashes and suppresses the consumption reaction of the hardener.

D'autre part, la polymérisation des résines époxydes présente un pic exothermique. En effet, au bout de quelques heures, la température des enrobés présente un pic à des valeurs voisines de 170°C, ce qui est la principale cause du retrait et de la formation de fissures dans l'enrobé. Ce phénomène est nettement ralenti dans le composite ciment/résine comme le montre la figure ci-jointe. Cette figure donne, en fonction du temps t en heures, la température T en °C pour différents types d'enrobés. La courbe 1 correspond à un fût de 200 litres dans lequel les déchets sont enrobés dans un polymère seul, les déchets se présentant sous forme de cendres dont la proportion dans l'enrobé est de 40%. La courbe 2 correspond au même produit que la courbe 1, mais pour un fût de 100 litres seulement. Enfin, la courbe 3 correspond à un fût de 100 litres, mais dans lequel les déchets ont été enrobés par le procédé selon l'invention conformément l'exemple 2 ci-dessus. Les déchets étaient constitués de cendres représentant 40% en poids du bloc final.On the other hand, the polymerization of epoxy resins has an exothermic peak. In fact, after a few hours, the temperature of the asphalt mix peaks at values close to 170 ° C., which is the main cause of shrinkage and of the formation of cracks in the asphalt mix. This phenomenon is clearly slowed down in the cement / resin composite as shown in the attached figure. This figure gives, as a function of time t in hours, the temperature T in ° C for different types of asphalt. Curve 1 corresponds to a 200 liter drum in which the waste is coated in a single polymer, the waste being in the form of ash, the proportion of which in the coated material is 40%. Curve 2 corresponds to the same product as curve 1, but for a barrel of only 100 liters. Finally, curve 3 corresponds to a 100 liter drum, but in which the waste has been coated by the process according to the invention in accordance with Example 2 above. The waste consisted of ash representing 40% by weight of the final block.

On voit qu'au bout d'un temps compris entre 5 et 10 heures environ, les courbes 1 et 2 présentent un pic à des valeurs de l'ordre de 170°C alors que la courbe 3 présente, au bout de 10 heures, un pic qui n'est qu'à 90°C environ.We see that after a time of between 5 and 10 hours approximately, curves 1 and 2 present a peak at values of the order of 170 ° C. while curve 3 presents, at after 10 hours, a peak which is only around 90 ° C.

Enfin, il est bien entendu que l'invention ne se limite pas aux seuls modes de réalisation qui viennent d'être décrits, mais qu'on peut envisager des variantes sans sortir pour autant du cadre de l'invention. C'est ainsi que l'homme du métier choisira, en fonction de chaque cas particulier, le ciment si on utilise un ciment du commerce, ou la nature et la qualité de la substance à ajouter dans le cas où les déchets peuvent être transformés en ciment. Il pourra faire varier les proportions relatives de ciment, de résine et de déchets dans le bloc final et, suivant la nature de la résine utilisée, ajouter à celle-ci une charge inerte, un catalyseur, ou des produits accélérateurs ou ralentisseurs de durcissement.Finally, it is understood that the invention is not limited to the single embodiments which have just been described, but that variants can be envisaged without departing from the scope of the invention. This is how the person skilled in the art will choose, depending on each particular case, the cement if a commercial cement is used, or the nature and quality of the substance to be added in the case where the waste can be transformed into cement. It may vary the relative proportions of cement, resin and waste in the final block and, depending on the nature of the resin used, add to it an inert filler, a catalyst, or curing accelerators or retarders.

Claims (7)

  1. Block containing waste with a view to the storage thereof, in which the waste is coated in a composite matrix constituted by hardened cement and epoxy resin, characterized in that the proportion of waste is between 35 and 45% by weight, the proportion of cement between 25 and 35% by weight and the proportion of resin between 20 and 40% by weight.
  2. Block according to claim 1, characterized in that the waste belong to the group constituted by wet waste, pulverulent waste and incombustible solids.
  3. Process for producing a block according to claim 1, characterized in that it comprises the following stages:
    (1) mixing the waste with at least one cement,
    (2) adding to the mixture obtained in stage (1) water in a quantity adequate for obtaining the hydration of the cement or cements,
    (3) mixing the product obtained in stage (2) with epoxy resin, and
    (4) allowing the cement or cements and resin to harden,
    the quantities of waste, cement and resin used being such that the waste represents 35 to 45% by weight of the mixture constituted by the waste, the cement and the resin, the cement represents 25 to 35% by weight thereof and the resin 20 to 40% by weight thereof.
  4. Process according to claim 3, characterized in that it comprises a supplementary stage (5), performed after stage (2) and before stage (3), consisting of converting the product obtained in stage (2) into granules.
  5. Process according to claim 4, characterized in that it comprises a supplementary stage (6) performed after stage (5) and before stage (3) comprising drying the granules.
  6. Process according to claim 3, characterized in that it comprises a supplementary stage (7), performed immediately before stage (4) and consisting of subjecting the product obtained to a degassing treatment.
  7. Process according to claim 1, characterized in that it comprises a supplementary stage (8), performed immediately before stage (4) and comprising subjecting the product obtained to vibration.
EP87402698A 1986-12-05 1987-11-30 Block containing wastes to store them, and process for manufacturing such a block Expired - Lifetime EP0274927B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8617081 1986-12-05
FR8617081A FR2607957A1 (en) 1986-12-05 1986-12-05 BLOCK CONTAINING WASTE FOR THEIR STORAGE AND METHOD OF MAKING SUCH A BLOCK

Publications (2)

Publication Number Publication Date
EP0274927A1 EP0274927A1 (en) 1988-07-20
EP0274927B1 true EP0274927B1 (en) 1992-07-15

Family

ID=9341629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87402698A Expired - Lifetime EP0274927B1 (en) 1986-12-05 1987-11-30 Block containing wastes to store them, and process for manufacturing such a block

Country Status (7)

Country Link
US (1) US4839102A (en)
EP (1) EP0274927B1 (en)
JP (1) JPS63150696A (en)
CA (1) CA1282503C (en)
DE (1) DE3780436T2 (en)
ES (1) ES2033908T3 (en)
FR (1) FR2607957A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623655B1 (en) * 1987-11-23 1990-03-02 Commissariat Energie Atomique PROCESS FOR CONDITIONING RADIOACTIVE OR TOXIC WASTE IN THERMOSETTING RESINS
FR2678761B1 (en) * 1991-07-03 1994-07-01 Commissariat Energie Atomique BLOCK CONTAINING CONTAMINATED ION EXCHANGE RESINS AND PROCESS FOR PREPARING THE SAME.
US5414197A (en) * 1994-06-03 1995-05-09 The United States Of America As Represented By The Secretary Of The Army Method of containing and isolating toxic or hazardous wastes
FR2724757B1 (en) * 1994-09-21 1996-12-06 Commissariat Energie Atomique POWDERED WASTE PACKAGING BLOCK AND METHOD FOR MANUFACTURING SUCH A BLOCK
US5595561A (en) * 1995-08-29 1997-01-21 The United States Of America As Represented By The Secretary Of The Army Low-temperature method for containing thermally degradable hazardous wastes
DE19832668A1 (en) * 1998-07-21 2000-01-27 Hilti Ag Organic-inorganic mortar
US6743963B2 (en) * 1998-12-21 2004-06-01 Perma-Fix Environmental Services, Inc. Methods for the prevention of radon emissions
US6537350B2 (en) * 2001-02-13 2003-03-25 The Regents Of The University Of California HEPA filter encapsulation
FR2825182B1 (en) * 2001-05-23 2004-09-10 Qualia MATRIX SYSTEM FOR COATING AND STORING A DANGEROUS PRODUCT, PREPARATION METHOD AND USE IN PARTICULAR FOR LOW RADIOACTIVE ION EXCHANGE RESINS
GB0215341D0 (en) * 2002-07-03 2002-08-14 British Nuclear Fuels Plc Storage of hazardous materials
RU2613161C1 (en) * 2015-12-29 2017-03-15 Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской революции Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН) Method for vitrifying radioactive slag

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB159683A (en) * 1919-12-17 1921-03-10 James Robinson Improvements in or relating to wireless reception apparatus
NL235423A (en) * 1959-01-19
FR1246848A (en) * 1959-10-13 1960-11-25 Commissariat Energie Atomique Process for the disposal of radioactive waste and products obtained by this process
US4119560A (en) * 1977-03-28 1978-10-10 United Technologies Corporation Method of treating radioactive waste
DE2717656A1 (en) * 1977-04-21 1978-10-26 Nukem Gmbh PROCESS FOR THE PRODUCTION OF LEAK-RESISTANT AND SALINE-RESISTANT BLOCKS FROM CEMENT AND RADIOACTIVE WASTE
DE2741661C2 (en) * 1977-09-16 1986-12-11 Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München Process for lining waste drums with a leak-proof, closed casing
US4174293A (en) * 1977-10-12 1979-11-13 The United States Of America As Represented By The United States Department Of Energy Process for disposal of aqueous solutions containing radioactive isotopes
GB1603729A (en) * 1978-05-23 1981-11-25 B & R Eng Ltd Apparatus and method for treating waste material
ES481367A1 (en) * 1978-06-08 1980-02-01 Bp Chem Int Ltd Encapsulating wastes.
DE2945007A1 (en) * 1979-11-08 1981-05-21 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe METHOD FOR REPOSITION TIRE, ENVIRONMENTALLY FRIENDLY FASTENING OF RADIOACTIVE ION EXCHANGE RESINS
GB2107917A (en) * 1981-10-20 1983-05-05 Chapman Brian Cope Immobilisation of hazardous waste
JPS58213300A (en) * 1982-06-04 1983-12-12 株式会社日立製作所 Method of processing radioactive waste
CH654436A5 (en) * 1983-04-29 1986-02-14 Syncrete Sa PROCESS FOR COATING RADIOACTIVE WASTE.
ES2001160A4 (en) * 1985-10-04 1988-05-01 Somafer Sa REACTIVE LIQUID TREATMENT

Also Published As

Publication number Publication date
JPS63150696A (en) 1988-06-23
FR2607957A1 (en) 1988-06-10
US4839102A (en) 1989-06-13
ES2033908T3 (en) 1993-04-01
DE3780436T2 (en) 1993-01-21
EP0274927A1 (en) 1988-07-20
DE3780436D1 (en) 1992-08-20
CA1282503C (en) 1991-04-02

Similar Documents

Publication Publication Date Title
EP0274927B1 (en) Block containing wastes to store them, and process for manufacturing such a block
CH602997A5 (en) Liq. radioactive waste disposal
FR2472818A1 (en) PROCESS FOR SOLIDIFICATION FOR ENVIRONMENTALLY FIXED END STORAGE OF RADIOACTIVE ION EXCHANGE RESINS IN CEMENT BLOCKS
JPH0634097B2 (en) Solidifying agent for radioactive waste
FR2463787A1 (en) Polymer article with areas of differing firmness - by pre-stiffening compsn. contg. crosslinkable cpd., followed by selected irradiation
EP0522931B1 (en) Block containing contaminated ion-exchange resins and process for its preparation
EP0192543B1 (en) Process for conditioning radioactive or toxic waste in epoxyde resins, and polymerisable mixture with two liquid constituents for use in this process
FR2507928A1 (en) PROCESS FOR THE PREPARATION OF POLLUTION-FREE DISPOSABLE WASTE
FR2501218A1 (en) COMPOSITION FOR USE IN SOLIDIFYING RADIOACTIVE WASTE, PRODUCTS BASED ON SUCH A COMPOSITION IN WHICH RADIOACTIVE WASTE IS SOLIDIFIED, AND METHOD FOR OBTAINING SAME
FR2505539A1 (en) METHOD OF SOLIDIFYING RADIO-ACTIVE WASTE CONTAINED IN ION-EXCHANGING RESINS, SOLID ARTICLES THUS OBTAINED, AND COMPOSITION CONTAINING RADIOACTIVE MATERIAL BASED ON ION-EXCHANGE RESINS
JPH09101398A (en) Method and device for treating radioactive waste
FR2502381A1 (en) METHOD FOR COATING SOLID MATERIALS CONTAINING RADIO-ACTIVATED OR RADIO-ACTIVATED CONTAMINATED MATERIAL FROM NUCLEAR FACILITIES IN A MATRIX FOR DEFINITIVE STORAGE
EP0703586B1 (en) Block for conditioning poudery waste and process for manufacturing such a block
JPH05309356A (en) Treatment of heavymetal-containing incineration ash
CN87105717A (en) Chemical reactor and method for treatment of waste material
JP2523891B2 (en) Method for solidifying radioactive waste
JP2000509435A (en) Refractory materials
JPS5838240B2 (en) Cement solidification method for waste sludge from municipal waste incinerators
EP0571292A1 (en) Process for reducing the nocuosness of particulate wastes
EP2476122B1 (en) Process for safe storage of long living radioactive waste
EP0124825A2 (en) Encapsulation of radioactive wastes
FR2714316A1 (en) Safe disposal of ash from the incineration of toxic waste
BE842206R (en) PROCESS FOR TREATMENT OF WASTE AND PRODUCTS OBTAINED
FR2527376A1 (en) PROCESS FOR IMPROVING THE PROPERTIES OF RADIOACTIVE SOLID WASTE INCORPORATED IN A MATRIX AND SOLIDIFIED
JPS58114908A (en) Manufacture of product using inorganic-organic composite material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB LI

17P Request for examination filed

Effective date: 19881227

17Q First examination report despatched

Effective date: 19910111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB LI

REF Corresponds to:

Ref document number: 3780436

Country of ref document: DE

Date of ref document: 19920820

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2033908

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19981126

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021125

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021127

Year of fee payment: 16

Ref country code: FR

Payment date: 20021127

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030117

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001214

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE *ATOMIQUE ETABLISSEMENT D

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST