EP0271774A1 - System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine - Google Patents

System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine Download PDF

Info

Publication number
EP0271774A1
EP0271774A1 EP87117837A EP87117837A EP0271774A1 EP 0271774 A1 EP0271774 A1 EP 0271774A1 EP 87117837 A EP87117837 A EP 87117837A EP 87117837 A EP87117837 A EP 87117837A EP 0271774 A1 EP0271774 A1 EP 0271774A1
Authority
EP
European Patent Office
Prior art keywords
mass flow
air mass
correction
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117837A
Other languages
German (de)
French (fr)
Other versions
EP0271774B1 (en
Inventor
Ludwig Dipl.-Phys. Binnewies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6316655&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0271774(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0271774A1 publication Critical patent/EP0271774A1/en
Application granted granted Critical
Publication of EP0271774B1 publication Critical patent/EP0271774B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2496Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories the memory being part of a closed loop

Definitions

  • the invention relates to an arrangement for determining the air mass flow supplied to the cylinders of an internal combustion engine according to the preamble of claim 1.
  • the quality of the combustion of the fuel supplied to an internal combustion engine depends crucially on how exactly the air mass flow actually supplied to the individual cylinders of an internal combustion engine is determined; for various reasons, this can deviate from the mass air flow measured in the intake system, this deviation can also be a function of operating parameters.
  • a correction memory is therefore provided for an experimentally determined correction variable with which the respective measured value of the air mass flow is corrected.
  • the correction quantity is dependent on the operating parameter "speed of the internal combustion engine” and eliminates errors that arise due to speed-dependent pulsations of the air mass flow in the intake system.
  • the invention is therefore based on the object of determining the air mass flow actually supplied to the internal combustion engine with greater accuracy, even in the dynamic range.
  • the value of the correction quantity stored in a correction memory is determined experimentally for a specific internal combustion engine with a given intake system depending on the previously mentioned operating parameters.
  • the invention is based on the insight that the transient, dynamic behavior of the intake system is in need of correction and can also be corrected.
  • the invention is based on the observation that the delayed reaction of the internal combustion engine to a change in position of the actuator for the air mass flow is also based on the effect of the storage capacity of the intake system between the air mass meter and the supply air valves of the internal combustion engine: after a sudden opening of the actuator, which is designed, for example, as a throttle valve, is used part of the air mass flow detected by the air mass meter for filling the intake system and does not flow into the internal combustion engine.
  • the air mass flow flowing into the internal combustion engine after closing the throttle valve is not reduced to the same extent as is detected by the air mass meter; rather, part of the air mass stored in the intake system still flows into the internal combustion engine.
  • an internal combustion engine 1 with four cylinders and an intake system 10 is shown, which extends between an air filter 100 and the intake openings of the individual cylinders and, accordingly, a central main pipe 101 thereon then has a distributor pipe 103 and branch pipes 102 starting from it and leading to the individual cylinders.
  • a measuring device 11 for the air mass flow - air mass meter - and then an actuator 12 for the air mass flow in the form of a throttle valve, the position of which - position angle - depends on a control unit 2 is arranged in the main pipe 101.
  • Injection valves 13 open into the individual branch pipes 102, which are also controlled by the control unit 2 - preferably sequentially - with an injection time t; can be controlled.
  • the control unit 2 also determines the ignition angle ⁇ with which ignition pulses are delivered to the spark plugs 14 for the individual cylinders. To do this, the control unit Speed and position signals from a pulse generator 15 coupled to the internal combustion engine 1, control values from a pedal value transmitter 4 and the measured values ⁇ M of the air mass meter 11 are supplied.
  • control unit 2 determines the injection time t i of the injection valves, the position of the throttle valve 12 and the ignition angle in a known manner for each control value of the pedal value transmitter 4 in such a way that predetermined ratios of air mass flow to fuel flow rate are maintained in the stationary state that can have different values depending on the operating area. Compliance with a certain ratio can be limited to individual operating areas of the internal combustion engine or can have different values depending on the operating area.
  • control unit 2 determines, for each control value of the pedal value transmitter, an input control value for the setting of the throttle valve 12 and for the duration of the injection pulses t i . These pilot control values are then corrected by means of a subordinate control circuit as a function of the air mass flow detected by the air mass meter 11 so that a predetermined ratio of air mass flow to internal combustion flow is maintained in certain operating states.
  • this goal is only achieved to the extent that the air mass flow detected by the air mass meter is also identical to the air mass flow actually flowing into the internal combustion engine. However, as stated in the introduction, this requirement is not readily met.
  • a map memory 3 is provided according to the present invention, in which correction variables are stored in the form of time constants r depending on the parameters air mass flow ⁇ M p and position change s of the throttle valve angle a.
  • the control is based on an air mass flow ⁇ which takes into account the dynamic behavior of the intake system 10, specifically in the form of the time constants stored in the map memory 3.
  • the control variables are periodically calculated from the measured variables (air mass flow, speed, control value of the pedal value transmitter) and temporarily stored.
  • the partial change Aa of the setting of the throttle valve 12 between two clock pulses is determined by means of a correction unit 20 in the control unit 2.
  • a correction section begins, within which the correction calculation is carried out.
  • the correction variable r is used for this.
  • the map is read out depending on the two parameter values.
  • One parameter value is the last measured value of the air mass flow m Mp before a partial change Aa greater than A is determined for the first time.
  • the associated correction variable T i is read from the characteristic map based on the same parameter value m M p of the air mass flow; the correction unit 20 thus determines the corrected air mass flow to be used as the basis for the control according to the difference equation after each time cycle where ⁇ Mn is the last measured new value and m Ma the previous value of the air mass flow measured in the time cycle before.
  • T i ends as soon as ⁇ n + 1 falls below a minimum value B (preferably equal to ⁇ ). Then the aforementioned correction calculation is carried out after each new measured value of the air mass flow with the same, last T i value until where K is a predeterminable fixed value. As soon as this condition is fulfilled, i.e. the process has largely become stationary, the correction section and with it every further correction calculation ends. The same game repeats itself in a next correction section, which starts again with Aa> A.
  • the determination of a corrected air mass flow is therefore limited in time to correction sections. This limitation of the intervention to relatively large triggering partial changes results in greater stability of the control loop, especially with small air mass flows (idling), and a faster intervention when a partial change is greater than the limit value A.
  • the map memory 3 for positive and negative position Change changes contain different correction variables r.
  • the map memory preferably consists of two partial memories, one of which supplies the correction variables for a positive change in position (acceleration) and the other for a negative change in position (thrust).
  • the operating state must first be determined using the aforementioned parameters. For this purpose, the direction of movement of the actuator - sign of the change in position s - of the throttle valve can be evaluated in a known manner.
  • the invention can be used in the same way if the pedal value transmitter determines the injection time and thus the size of the fuel flow rate via an operating map and the control unit adjusts the associated air mass flow on the basis of the measurement of the air mass meter.
  • the correction according to the invention of the measured value supplied by the air mass meter ensures optimum adaptation of the mass flows even in the dynamic operating range.
  • control of the air mass flow and / or fuel quantity flow will depend on numerous other operating parameters in a known manner, such dependencies also being able to be stored in further correction maps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

In order to control a predetermined ratio of mass flow rate of air to quantity of fuel a control unit (2) is used, a correction variable ( tau ) from a performance characteristic memory (3) being entered as a function of at least one operating parameter. According to the invention this is a correction variable which takes account of the dynamic behaviour of the intake system (10), in particular its storage capacity. Accordingly the control unit (2) determines a corrected mass flow rate of air which is either smaller or larger than the measured mass flow rate of air by an amount corresponding to the partial flow filling the reservoir or flowing out of the reservoir. <IMAGE>

Description

Die Erfindung betrifft eine Anordnung zur Ermittlung des den Zylindern einer Brennkraftmaschine zugeführten Luftmassenstromes gemäß Oberbegriff von Anspruch 1.The invention relates to an arrangement for determining the air mass flow supplied to the cylinders of an internal combustion engine according to the preamble of claim 1.

Die Qualität der Verbrennung des einer Brennkraftmaschine zugeführten Brennstoffes hängt entscheidend davon ab, wie genau die den einzelnen Zylindern einer Brennkraftmaschine tatsächlich zugeführte Luftmassenstrom ermittelt wird; diese kann nämlich aus den verschiedensten Gründen von dem im Ansaugsystem gemessenen Luftmassenstrom abweichen, wobei diese Abweichung noch eine Funktion von Betriebsparametern sein kann.The quality of the combustion of the fuel supplied to an internal combustion engine depends crucially on how exactly the air mass flow actually supplied to the individual cylinders of an internal combustion engine is determined; for various reasons, this can deviate from the mass air flow measured in the intake system, this deviation can also be a function of operating parameters.

Bei der aus der US PS 45 27 530 beschriebenen Anordnung ist daher ein Korrekturspeicher für eine experimentell ermittelte Korrekturgröße vorgesehen, mit der der jeweilige Meßwert des Luftmassenstromes korrigiert wird. Die Korrekturgröße ist dabei abhängig vom Betriebsparameter "Geschwindigkeit der Brennkraftmaschine" und eliminiert Fehler, die aufgrund drehzahlabhängiger Pulsationen des Luftmassenstromes im Ansaugsystem entstehen.In the arrangement described in US Pat. No. 4,527,530, a correction memory is therefore provided for an experimentally determined correction variable with which the respective measured value of the air mass flow is corrected. The correction quantity is dependent on the operating parameter "speed of the internal combustion engine" and eliminates errors that arise due to speed-dependent pulsations of the air mass flow in the intake system.

Diese bekannte Anordnung gemäß Oberbegriff von Anspruch 1 ist jedoch ausdrücklich nur für die Korrektur stationärer Verhältnisse vorgesehen und geeignetHowever, this known arrangement according to the preamble of claim 1 is expressly provided and suitable only for the correction of stationary conditions

Der Erfindung liegt daher die Aufgabe zugrunde, den der Brennkraftmaschine tatsächlich zugeführten Luftmassenstrom auch im dynamischen Bereich mit größerer Genauigkeit zu ermitteln.The invention is therefore based on the object of determining the air mass flow actually supplied to the internal combustion engine with greater accuracy, even in the dynamic range.

Erfindungsgemäß beschreibt daher die Korrekturgröße das dynamische Verhalten des Ansaugsystems zwischen Meßeinrichtung und Brennkraftmaschine und zwar abhängig von den Betriebsparametern

  • -Stellungsänderung des Stellgliedes für den Luftmassenstrom und
  • -Meßwert des Luftmassenstroms vor der Stellungsänderung des Stellgliedes, im Folgenden als Parameterwert bezeichnet.
According to the invention, the correction variable therefore describes the dynamic behavior of the intake system between the measuring device and the internal combustion engine, depending on the operating parameters
  • -Position change of the actuator for the air mass flow and
  • -Measured value of the air mass flow before the position change of the actuator, hereinafter referred to as the parameter value.

Der in einem Korrekturspeicher abgelegte Wert der Korrekturgrösse ist für eine bestimmte Brennkraftmaschine mit gegebenem Ansaugsystem abhängig von den zuvor genannten Betriebsparametern experimentell bestimmt.The value of the correction quantity stored in a correction memory is determined experimentally for a specific internal combustion engine with a given intake system depending on the previously mentioned operating parameters.

Der Erfindung liegt die Einsicht zugrunde, daß gerade das instationäre, dynamische Verhalten des Ansaugsystems korrekturbedürftig und auch korrigierbar ist. Die Erfindung beruht dabei auf der Beobachtung, daß die verzögerte Reaktion der Brennkraftmaschine auf eine Stellungsänderung des Stellgliedes für den Luftmassenstrom auch auf der Wirkung der Speicherkapazität des Ansaugsystems zwischen Luftmassenmesser und den Zuluftventilen der Brennkraftmaschine beruht: Nach einer plötzlichen Öffnung des beispielweise als Drosselklappe ausgebildeten Stellgliedes dient ein Teil des vom Luftmassenmesser erfaßten Luftmassenstromes zur Auffüllung des Ansaugsystems und fließt nicht in die Brennkraftmaschine. Umgekehrt reduziert sich der in die Brennkraftmaschine fließende Luftmassenstrom nach einem Schließen der Drosselklappe nicht in demselben Maße, wie es vom Luftmassenmesser erfaßt wird; vielmehr fließt ein Teil der in dem Ansaugsystem gespeicherten Luftmasse noch in die Brennkraftmaschine ab.The invention is based on the insight that the transient, dynamic behavior of the intake system is in need of correction and can also be corrected. The invention is based on the observation that the delayed reaction of the internal combustion engine to a change in position of the actuator for the air mass flow is also based on the effect of the storage capacity of the intake system between the air mass meter and the supply air valves of the internal combustion engine: after a sudden opening of the actuator, which is designed, for example, as a throttle valve, is used part of the air mass flow detected by the air mass meter for filling the intake system and does not flow into the internal combustion engine. Conversely, the air mass flow flowing into the internal combustion engine after closing the throttle valve is not reduced to the same extent as is detected by the air mass meter; rather, part of the air mass stored in the intake system still flows into the internal combustion engine.

Der für die Steuerung der Brennkraftmaschine maßgebende Luftmassenstrom wird im Betrieb der Brennkraftmaschine periodisch. nach folgender Differenzengleichung ermittelt:
m = m Ma + ( m Mn- m Ma) • 7
Darin bedeuten

  • m der der Brennkraftmaschine zugeführte Luftmassenstrom, m Ma der Altwert des gemessenen Luftmassenstroms,
  • m Mn der Neuwert des gemessenen Luftmassenstroms und
  • 7 die vom Kennfeldspeicher gelieferte Korrekturgröße
  • Physikalisch bedeutet dabei die Korrekturgröße 7 eine Zeitkonstante, die das dynamische Verhalten des "Speichers" des Ansaugsystems abhängig von den Betriebsparametern "Luftmassenstrom" und "Stellungsänderung" des Stellgliedes charakterisiert.
The air mass flow decisive for the control of the internal combustion engine becomes periodic during the operation of the internal combustion engine. determined using the following difference equation:
m = m Ma + (m Mn - m Ma ) • 7
Mean in it
  • m the air mass flow fed to the internal combustion engine, m Ma the old value of the measured air mass flow,
  • m Mn the new value of the measured air mass flow and
  • 7 the correction quantity supplied by the map memory
  • Physically, the correction variable 7 means a time constant that characterizes the dynamic behavior of the "memory" of the intake system depending on the operating parameters "air mass flow" and "change in position" of the actuator.

Die Erfindung wird anhand eines in der Figur - schematisch dargestellten Ausführungsbeispieles erläutert: Dort ist eine Brennkraftmaschine 1 mit vier Zylindern und einem Ansaugsystem 10 dargestellt, das sich zwischen einem Luftfilter 100 und den Ansaugöffnungen der einzelnen Zylinder erstreckt und das dementsprechend ein zentrales Hauptrohr 101, daran anschließend ein Verteilerrohr 103 und von diesem ausgehende und zu den einzelnen Zylindern führende Zweigrohre 102 aufweist. In dem Hauptrohr 101 ist eine Meßeinrichtung 11 für den Luftmassenstrom - Luftmassenmesser - und danach ein Stellglied 12 für den Luftmassenstrom in Form einer Drosselklappe angeordnet, deren Stellung - Stellungswinkel - von einer Steuereinheit 2 abhängt. In die einzelnen Zweigrohre 102 münden Einpritzventile 13, die ebenfalls von der Steuereinheit 2 - vorzugsweise sequentiell - mit einer Einspritzzeit t; angesteuert werden. Die Steuereinheit 2 bestimmt auch die Zündwinkel β mit dem Zündimpulse an Zündkerzen 14 für die einzelnen Zylinder abgegeben werden. Hierzu werden der Steuereinheit Drehzahl-und Stellungssignale von einem mit der Brennkraftmaschine 1 gekuppelten Impulsgeber 15, Steuerwerte von einem Pedalwertgeber 4 und die Meßwerte ṁ M des Luftmassenmessers 11 zugeführt. Als diesen und weiteren, hier nicht angesprochenen Einflußgrößen ermittelt die Steuereinheit 2 zu jedem Steuerwert des Pedalwertgebers 4 die Einspritzzeit ti der Einspritzventile, die Stellung der Drosselklappe 12 sowie den Zündwinkel in bekannter Weise so, daß im stationären Zustand vorgegebene Verhältnisse von Luftmassenstrom zu Brennstoffmengenstrom eingehalten werden, die auch je nach Betriebsbereich unterschiedliche Werte haben können. Die Einhaltung eines bestimmten Verhältnisses kann dabei auf einzelne Betriebsbereiche der Brennkraftmaschine beschränkt sein oder je nach Betriebsbereich unterschiedliche Werte haben.The invention is explained on the basis of an exemplary embodiment shown schematically in the figure: There, an internal combustion engine 1 with four cylinders and an intake system 10 is shown, which extends between an air filter 100 and the intake openings of the individual cylinders and, accordingly, a central main pipe 101 thereon then has a distributor pipe 103 and branch pipes 102 starting from it and leading to the individual cylinders. A measuring device 11 for the air mass flow - air mass meter - and then an actuator 12 for the air mass flow in the form of a throttle valve, the position of which - position angle - depends on a control unit 2 is arranged in the main pipe 101. Injection valves 13 open into the individual branch pipes 102, which are also controlled by the control unit 2 - preferably sequentially - with an injection time t; can be controlled. The control unit 2 also determines the ignition angle β with which ignition pulses are delivered to the spark plugs 14 for the individual cylinders. To do this, the control unit Speed and position signals from a pulse generator 15 coupled to the internal combustion engine 1, control values from a pedal value transmitter 4 and the measured values ṁ M of the air mass meter 11 are supplied. As these and other influencing variables, which are not addressed here, the control unit 2 determines the injection time t i of the injection valves, the position of the throttle valve 12 and the ignition angle in a known manner for each control value of the pedal value transmitter 4 in such a way that predetermined ratios of air mass flow to fuel flow rate are maintained in the stationary state that can have different values depending on the operating area. Compliance with a certain ratio can be limited to individual operating areas of the internal combustion engine or can have different values depending on the operating area.

Bei einem bekannten luftgeführten System dieser Art ermittelt die Steuereinheit 2 zu jedem Steuerwert des Pedalwertgebers über ein Betriebskennfeld einen Vorsteuerwert für die Einstellung der Drosselklappe 12 und für die Dauer der Einspritzimpulse ti. Diese Vorsteuerwerte werden dann mittels eines unterlagerten Regelkreises in Abhängigkeit von den vom Luftmassenmesser 11 er faßten Luftmassenstrom so korrigiert, daß in bestimmten Betriebszuständen ein vorgegebenes Verhältnis von Luftmassenstrom zu Brennkraftstrom beibehalten wird. Dieses Ziel wird bei bekannten Anlagen dieser Art nur in dem Maße erreicht, wie der vom Luftmassenmesser erfaßte Luftmassenstrom auch identisch ist mit dem tatsächlich in die Brennkraftmaschine fließende Luftmassenstrom. Diese Voraussetzung ist jedoch - wie einleitend ausgeführt - nicht ohne weiteres erfüllt.In a known air-guided system of this type, the control unit 2 determines, for each control value of the pedal value transmitter, an input control value for the setting of the throttle valve 12 and for the duration of the injection pulses t i . These pilot control values are then corrected by means of a subordinate control circuit as a function of the air mass flow detected by the air mass meter 11 so that a predetermined ratio of air mass flow to internal combustion flow is maintained in certain operating states. In known systems of this type, this goal is only achieved to the extent that the air mass flow detected by the air mass meter is also identical to the air mass flow actually flowing into the internal combustion engine. However, as stated in the introduction, this requirement is not readily met.

Um das gewünschte Verhältnis der Mengenströme möglichst auch im instationären Bereich einzuhalten, ist gemäß vorliegender Erfindung ein Kennfeldspeicher 3 vorgesehen, in dem Korrekturgrößen in Form von Zeitkonstanten r in Abhängigkeit von den Parametern Luftmassenstrom ṁ Mp und Stellungsänderung s des Drosselklappenwinkels a abgespeichert sind. Der Steuerung wird ein Luftmassenstrom ṁ zugrunde gelegt, der das dynamische Verhalten des Ansaugsystems 10 berücksichtigt, und zwar in Form der in dem Kennfeldspeicher 3 abgelegten Zeitkonstanten. Hierzu werden - wie in rechnergesteuerten Steuereinheiten üblich - die Steuergrößen (Drosselklappenwinkel, Einspritzzeit) periodisch aus den Meßgrössen (Luftmassenstrom, Drehzahl, Steuerwert des Pedalwertgebers) berechnet und zwischengespeichert. Mit demselben oder einem davon abweichenden Zeittakt wird mittels einer Korrektureinheit 20 in der Steuereinheit 2 jeweils die Teiländerung Aa der Einstellung der Drosselklappe 12 zwischen zwei Taktimpulsen ermittelt.In order to maintain the desired ratio of the mass flows as far as possible also in the non-stationary area, a map memory 3 is provided according to the present invention, in which correction variables are stored in the form of time constants r depending on the parameters air mass flow ṁ M p and position change s of the throttle valve angle a. The control is based on an air mass flow ṁ which takes into account the dynamic behavior of the intake system 10, specifically in the form of the time constants stored in the map memory 3. For this purpose - as is usual in computer-controlled control units - the control variables (throttle valve angle, injection time) are periodically calculated from the measured variables (air mass flow, speed, control value of the pedal value transmitter) and temporarily stored. With the same or a different timing, the partial change Aa of the setting of the throttle valve 12 between two clock pulses is determined by means of a correction unit 20 in the control unit 2.

Sobald eine Teiländerungen Aa größer als ein Grenzwerte A ist, beginnt ein Korrekturabschnitt, innerhalb dessen die Korrekturrechnung durchgeführt wird. Die Korrekturgröß r wird dazu aus. dem Kennfeld abhängig von den zwei Parameterwerten ausgelesen. Der eine Parameterwert ist der letzte Meßwert des Luftmassenstromes m Mp bevor erstmals eine Teiländerung Aa größer A festgestellt wird. Der zweite Parameterwert ist die Stellungsänderung s, die sich während des Korrekturabschnitts stufenweise ändert und nach jedem Zeittakt als Summe von aufeinanderfolgenden Teiländerungen

Figure imgb0001
gebildet wird, beginnend mit dem ersten Δα1 größer A (s1=Δα). Zu jeder Stellungsänderung s wird aufbauend auf demselben Parameterwert m Mp des Luftmassenstromes die zugehörige Korrekturgrösse Ti aus dem Kennfeld ausgelesen; damit ermittelt die Korrektureinheit 20 nach jedem Zeittakt den der Steuerung zugrunde zu legenden korrigierten Luftmassenstrom nach der Differenzengleichung
Figure imgb0002

wobei ṁ Mn der zuletzt gemessene Neuwert und m Ma der im Zeittakt davor gemessene Altwert des Luftmassenstroms ist.As soon as a partial change Aa is greater than a limit value A, a correction section begins, within which the correction calculation is carried out. The correction variable r is used for this. the map is read out depending on the two parameter values. One parameter value is the last measured value of the air mass flow m Mp before a partial change Aa greater than A is determined for the first time. The second parameter value is the change in position s, which changes step by step during the correction section and after each time cycle as the sum of successive partial changes
Figure imgb0001
is formed, starting with the first Δα 1 greater than A (s 1 = Δα). For each change in position s, the associated correction variable T i is read from the characteristic map based on the same parameter value m M p of the air mass flow; the correction unit 20 thus determines the corrected air mass flow to be used as the basis for the control according to the difference equation after each time cycle
Figure imgb0002

where ṁ Mn is the last measured new value and m Ma the previous value of the air mass flow measured in the time cycle before.

Die Ermittlung von Ti endet, sobald Δαn+1 unter einen Mindestwert B (vorzugsweise gleich § ) fällt. Danach wird die vorgenannte Korrekturrechnung nach jedem neuen Meßwert des Luftmassenstromes mit demselben, letzten Ti-Wert solange durchgeführt, bis

Figure imgb0003

wobei K ein vorgebbarer Festwert ist. Sobald diese Bedingung erfüllt ist, der Vorgang also schon weitgehend stationär geworden ist, endet der Korrekturabschnitt und mit ihm jede weitere Kor rekturrechnung. Dasselbe Spiel wiederholt sich in einem nächsten Korrekturabschnitt, der wieder mit Aa>A beginnt. Die Ermittlung eines korrigierten Luftmassenstromes ist also zeitlich auf Korrekturabschnitte beschränkt. Diese Begrenzung des Eingriffes auf relativ große auslösende Teiländerungen hat eine größere Stabilität des Regelkreises, vor allem bei kleinen Luftmassenströmen (Leerlauf), und einen schnelleren Eingriff zur Folge, wenn eine Teiländerung größer als der Grenzwert A ist.The determination of T i ends as soon as Δα n + 1 falls below a minimum value B (preferably equal to §). Then the aforementioned correction calculation is carried out after each new measured value of the air mass flow with the same, last T i value until
Figure imgb0003

where K is a predeterminable fixed value. As soon as this condition is fulfilled, i.e. the process has largely become stationary, the correction section and with it every further correction calculation ends. The same game repeats itself in a next correction section, which starts again with Aa> A. The determination of a corrected air mass flow is therefore limited in time to correction sections. This limitation of the intervention to relatively large triggering partial changes results in greater stability of the control loop, especially with small air mass flows (idling), and a faster intervention when a partial change is greater than the limit value A.

Sofern das dynamische Verhalten beim Öffnen der Drosselklappe - Beschleunigung - anders ist als beim Schließen - Schub, muß der Kennfeldspeicher 3 für positive und negative Stellungsänderungen unterschiedliche Korrekturgrößen r enthalten. Vorzugsweise besteht der Kennfeldspeicher in einem solchen Fall aus zwei Teilspeichern, von denen der eine die Korrekturgrössen bei positiver Stellungsänderung (Beschleunigung) und der andere bei negativer Stellungsänderung (Schub) liefert. Hierbei ist vor dem Auslesen eines der beiden Teilspeicher mit den vorgenannten Parametern zuerst der Betriebszustand zu ermitteln. Hierzu kann in bekannter Weise die Bewegungsrichtung des Stellgliedes - Vorzeichen der Stellungsänderung s - der Drosselklappe ausgewertet werden.If the dynamic behavior when opening the throttle valve - acceleration - is different than when closing - thrust, the map memory 3 for positive and negative position Change changes contain different correction variables r. In such a case, the map memory preferably consists of two partial memories, one of which supplies the correction variables for a positive change in position (acceleration) and the other for a negative change in position (thrust). Before reading out one of the two partial memories, the operating state must first be determined using the aforementioned parameters. For this purpose, the direction of movement of the actuator - sign of the change in position s - of the throttle valve can be evaluated in a known manner.

Die Erfindung ist in gleicher Weise anwendbar, wenn der Pedalwertgeber über ein Betriebskennfeld die Einspritzzeit und damit die Größe des Brennstoffmengenstromes bestimmt und die Steuereinheit den dazugehörigen Luftmassenstrom aufgrund der Messung des Luftmassenmessers einstellt. Auch hier gewährleistet die erfindungsgemäße Korrektur des vom Luftmassenmesser gelieferten Meßwertes eine optimale Anpassung der Massenströme auch im dynamischen Betriebsbereich.The invention can be used in the same way if the pedal value transmitter determines the injection time and thus the size of the fuel flow rate via an operating map and the control unit adjusts the associated air mass flow on the basis of the measurement of the air mass meter. Here, too, the correction according to the invention of the measured value supplied by the air mass meter ensures optimum adaptation of the mass flows even in the dynamic operating range.

In den meisten Fällen wird die Steuerung des Luftmassenstromes und/oder Brennstoffmengenstromes noch von zahlreichen weiteren Betriebsparametern in bekannter Weise abhängig sein, wobei solche Abhängigkeiten auch in weiteren Korrekturkennfeldern abgelegt sein können.In most cases, the control of the air mass flow and / or fuel quantity flow will depend on numerous other operating parameters in a known manner, such dependencies also being able to be stored in further correction maps.

Claims (2)

1. Anordnung zur Ermittlung des den Zylindern einer Brennkraftmaschine (1) über ein Ansaugsystem (10) mit Hauptrohr (101), Verteilerrohr (103) und Zweigrohr (102) zugeführten Luftmassenstromes ( m ), mit einer Meßeinrichtung (11) und einem Stellglied (12) für den Luftmassenstrom in dem Hauptrohr (101), mit einem Kennfeldspeicher (3) für ein Korrekturkennfeld, das abhängig von mindestens einem Betriebparameter eine Korrekturgröße (r) liefert, und mit einer Korrektureinheit (20), die den Luftmassenstrom ( m ) abhängig von dem Meßwert ( m M) des Luftmassenstroms und der Korrekturgrösse (T) ermittelt,
dadurch gekennzeichnet, daß die Korrekturgröße (T) das dynamische Verhalten des Ansaugsystems (10) zwischen der Messeinrichtung (11) und der Brennkraftmaschine (1) beschreibt, und zwar abhängig von den Betriebsparametern -Stellungsänderung (ß) des Stellgliedes (12) für den Luftmassenstrom nach Größe und Richtung und -Meßwert des Luftmassenstromes vor der Stel- lungsänder.ung des Stellgliedes - im Folgenden als Parameterwert ( m Mp) bezeichnet.
1. Arrangement for determining the air mass flow (m) supplied to the cylinders of an internal combustion engine (1) via an intake system (10) with main pipe (101), distributor pipe (103) and branch pipe (102), with a measuring device (11) and an actuator (12) for the air mass flow in the main pipe (101), with a map memory (3) for a correction map, which delivers a correction variable (r) depending on at least one operating parameter, and with a correction unit (20), which determines the air mass flow (m) depending on the measured value (m M ) of the air mass flow and the correction quantity ( T ) determined
characterized, that the correction variable ( T ) describes the dynamic behavior of the intake system (10) between the measuring device (11) and the internal combustion engine (1), depending on the operating parameters -Position change (ß) of the actuator (12) for the air mass flow according to size and direction and -Measured value of the air mass flow before the position change of the actuator - hereinafter referred to as parameter value (m M p).
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Korrektureinheit (20) den Luftmassenstrom ( m ) nach der Differenzengleichung
Figure imgb0004

periodisch ermittelt, wobei ṁ der der Brennkraftmaschine zugeführte Luftmassenstrom, Ma der Altwert des gemessenen Luftmassenstromes, Mn der Neuwert des gemessenen Luftmassenstromes und τ die vom Kennfeldspeicher gelieferte Korrekturgröße ist.
2. Arrangement according to claim 1, characterized in that the correction unit (20) the air mass flow (m) after the difference equation
Figure imgb0004

determined periodically, whereby ṁ the air mass flow fed to the internal combustion engine, Ma the old value of the measured air mass flow, Mn the new value of the measured air mass flow and τ is the correction quantity supplied by the map memory.
EP87117837A 1986-12-19 1987-12-02 System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine Expired - Lifetime EP0271774B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3643547 1986-12-19
DE3643547 1986-12-19

Publications (2)

Publication Number Publication Date
EP0271774A1 true EP0271774A1 (en) 1988-06-22
EP0271774B1 EP0271774B1 (en) 1991-03-06

Family

ID=6316655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117837A Expired - Lifetime EP0271774B1 (en) 1986-12-19 1987-12-02 System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine

Country Status (5)

Country Link
US (1) US4846132A (en)
EP (1) EP0271774B1 (en)
JP (1) JPS63183253A (en)
DE (1) DE3768451D1 (en)
ES (1) ES2020546B3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315885C1 (en) * 1993-05-12 1994-11-03 Daimler Benz Ag Torque adjustment procedure
DE4422184A1 (en) * 1994-06-24 1996-01-04 Bayerische Motoren Werke Ag Motor vehicle controller with engine cylinder air-mass flow computer
DE102005007057A1 (en) * 2005-02-15 2006-08-24 Fev Motorentechnik Gmbh Fluid flow control method for e.g. motor vehicle`s internal combustion engine, involves determining average value of characteristics values for dynamic behavior of fluid flow parameter changing with varying load conditions, over time period

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901613B2 (en) * 1988-03-25 1999-06-07 富士重工業株式会社 Fuel injection control device for automotive engine
US4974563A (en) * 1988-05-23 1990-12-04 Toyota Jidosha Kabushiki Kaisha Apparatus for estimating intake air amount
JPH0820292B2 (en) * 1989-04-14 1996-03-04 株式会社日立製作所 Intake air flow rate measuring device for internal combustion engine
JPH02308950A (en) * 1989-05-25 1990-12-21 Japan Electron Control Syst Co Ltd Air leakage self-diagnostic device for control device of internal combustion engine and air leakage learning correcting device
US4958516A (en) * 1989-07-10 1990-09-25 General Motors Corporation Method and means for determining air mass in a crankcase scavenged two-stroke engine
US4987773A (en) * 1990-02-23 1991-01-29 General Motors Corporation Method and means for determining air mass in a crankcase scavenged two-stroke engine
US5029569A (en) * 1990-09-12 1991-07-09 Ford Motor Company Method and apparatus for controlling an internal combustion engine
JP2846518B2 (en) * 1992-03-18 1999-01-13 株式会社日立製作所 Air flow detector and engine control device using the same
DE19825305A1 (en) * 1998-06-05 1999-12-09 Bayerische Motoren Werke Ag Method for correcting the air mass of an internal combustion engine sucked in through an intake manifold and measured in the intake manifold
DE19846311A1 (en) * 1998-10-08 2000-04-13 Dolmar Gmbh Internal combustion engine, especially fast-running 2-stroke engine, has induction pressure sensor for detecting load signal connected to induction path before choke flap in air flow direction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2415725A1 (en) * 1978-01-28 1979-08-24 Bosch Gmbh Robert PROCEDURE AND INSTALLATION FOR METERING THE QUANTITY OF FUEL SUPPLYING AN INTERNAL COMBUSTION ENGINE
US4359993A (en) * 1981-01-26 1982-11-23 General Motors Corporation Internal combustion engine transient fuel control apparatus
EP0087809A2 (en) * 1982-03-03 1983-09-07 Hitachi, Ltd. Electrical fuel injector control
US4424568A (en) * 1980-01-31 1984-01-03 Hitachi, Ltd. Method of controlling internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915656A (en) * 1983-06-22 1984-01-26 Honda Motor Co Ltd Operation state control device of internal-combustion engine
JPS60178952A (en) * 1984-02-27 1985-09-12 Mitsubishi Electric Corp Fuel injection controller for internal-combustion engine
JPH06103003B2 (en) * 1984-12-27 1994-12-14 日産自動車株式会社 Fuel injection amount control device
JPS6278449A (en) * 1985-10-02 1987-04-10 Mitsubishi Electric Corp Fuel injection controller of internal combustion engine
JPH06161010A (en) * 1992-11-16 1994-06-07 Konica Corp Silver halide photographic sensitive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2415725A1 (en) * 1978-01-28 1979-08-24 Bosch Gmbh Robert PROCEDURE AND INSTALLATION FOR METERING THE QUANTITY OF FUEL SUPPLYING AN INTERNAL COMBUSTION ENGINE
US4424568A (en) * 1980-01-31 1984-01-03 Hitachi, Ltd. Method of controlling internal combustion engine
US4359993A (en) * 1981-01-26 1982-11-23 General Motors Corporation Internal combustion engine transient fuel control apparatus
EP0087809A2 (en) * 1982-03-03 1983-09-07 Hitachi, Ltd. Electrical fuel injector control

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 225 (P-484)[2281], 6. August 1986; & JP-A-61 61 010 (TOYOTA MOTOR CORP.) 28-03-1986 *
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 104 (M-296)[1541], 16. Mai 1984; & JP-A-59 15 656 (HONDA GIKEN KOGYO K.K.) 26-01-1984 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4315885C1 (en) * 1993-05-12 1994-11-03 Daimler Benz Ag Torque adjustment procedure
US5467750A (en) * 1993-05-12 1995-11-21 Mercedes-Benz Ag Method of controlling engine output torque
DE4422184A1 (en) * 1994-06-24 1996-01-04 Bayerische Motoren Werke Ag Motor vehicle controller with engine cylinder air-mass flow computer
DE4422184C2 (en) * 1994-06-24 2003-01-30 Bayerische Motoren Werke Ag Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine
DE102005007057A1 (en) * 2005-02-15 2006-08-24 Fev Motorentechnik Gmbh Fluid flow control method for e.g. motor vehicle`s internal combustion engine, involves determining average value of characteristics values for dynamic behavior of fluid flow parameter changing with varying load conditions, over time period
DE102005007057B4 (en) * 2005-02-15 2014-11-27 Fev Gmbh Method for controlling a fluid flow and thus controlled internal combustion engine

Also Published As

Publication number Publication date
US4846132A (en) 1989-07-11
EP0271774B1 (en) 1991-03-06
ES2020546B3 (en) 1991-08-16
JPS63183253A (en) 1988-07-28
DE3768451D1 (en) 1991-04-11

Similar Documents

Publication Publication Date Title
DE2847021C2 (en)
DE3036107C2 (en)
DE3313038C2 (en)
DE2829958C2 (en)
EP0271774B1 (en) System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine
DE3546168C2 (en)
DE3875345T2 (en) MASS FLOW FUEL INJECTION CONTROL SYSTEM.
DE2812442C2 (en)
DE2929516C2 (en) Electrically controlled fuel injection device for a multi-cylinder internal combustion engine
DE3024385A1 (en) FUEL SUPPLY SYSTEM FOR INTERNAL COMBUSTION ENGINES
EP0151768B1 (en) Measuring system for the fuel-air mixture of a combustion engine
DE3918772A1 (en) MOTOR CONTROL UNIT
DE4414727B4 (en) Control method and control unit for multi-cylinder internal combustion engines
DE2448306C2 (en) Fuel injection system
DE4192104C1 (en) Controlling air-fuel ratio in internal combustion engine
EP0054112B1 (en) Control method and electronically controlled metering system for an internal-combustion motor
DE2247656B2 (en) Device for regulating the ratio of the fuel and air components of the operating mixture of an internal combustion engine
EP0375710B1 (en) Adjusting system (control and/or regulating system) for vehicles
DE3545809C2 (en)
EP0185945A2 (en) Moving part extreme position sensing device
DE3871569T2 (en) CONTROL ARRANGEMENT OF THE AIR / FUEL RATIO IN COMBUSTION ENGINES WITH OPTIMAL CORRECTION COEFFICIENT LEARNING CHARACTERISTICS DEPENDENT ON THE OPERATING AREA.
DE4134522A1 (en) DEVICE AND METHOD FOR ELECTRONIC FUEL INJECTION CONTROL FOR COMBUSTION ENGINE
DE102004054321B4 (en) Regulating device for variable valve actuation system
DE3885941T2 (en) Air / fuel ratio control system for internal combustion engines with the ability to learn a correction coefficient.
DE10133555A1 (en) Process for cylinder-specific adjustment of the injection quantity in internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19881221

17Q First examination report despatched

Effective date: 19900115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 3768451

Country of ref document: DE

Date of ref document: 19910411

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ROBERT BOSCH GMBH

Effective date: 19910604

K2C3 Correction of patent specification (complete document) published

Effective date: 19910306

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19930617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19941207

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941215

Year of fee payment: 8

EAL Se: european patent in force in sweden

Ref document number: 87117837.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980220

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19970113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051202