EP0271595A1 - On-Chip-Spannungsstabilisierungsschaltung - Google Patents

On-Chip-Spannungsstabilisierungsschaltung Download PDF

Info

Publication number
EP0271595A1
EP0271595A1 EP86117494A EP86117494A EP0271595A1 EP 0271595 A1 EP0271595 A1 EP 0271595A1 EP 86117494 A EP86117494 A EP 86117494A EP 86117494 A EP86117494 A EP 86117494A EP 0271595 A1 EP0271595 A1 EP 0271595A1
Authority
EP
European Patent Office
Prior art keywords
transistor
emitter
circuit
constant voltage
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86117494A
Other languages
English (en)
French (fr)
Inventor
Gerhard Dipl.-Ing. Achtstätter (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to EP86117494A priority Critical patent/EP0271595A1/de
Priority to US07/125,900 priority patent/US4775829A/en
Publication of EP0271595A1 publication Critical patent/EP0271595A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only

Definitions

  • the problem on which the invention is based is therefore to largely prevent the noise of the usual constant voltage sources by means of circuit measures so that audio channels are no longer audibly disturbed. Furthermore, it is to be achieved with the invention that several supply voltages and constant currents can be derived from the voltage of the constant voltage source, which serve to operate the individual chip subcircuits. The solution to this problem is given in the claims.
  • the embodiment of the invention represented by its circuit diagram in FIG. 1 relates to the implementation by means of bipolar transistors of one and the same conductivity type, namely by means of npn transistors.
  • npn transistors are used instead of npn transistors.
  • MOS transistors instead of bipolar transistors and then to use either n-channel or p-channel transistors.
  • the constant voltage source already mentioned is not indicated in the figures of the drawing, but only the line to which the constant voltage u of the constant voltage source is connected is shown. From this line, the resistor r belonging to the RC low pass leads to the base of the transistor t. In the manner of the known Darlington circuit, this is connected upstream of the emitter follower transistors te1, tem, the bases of which are common to the emitter of the transistor t and the collectors of which lie together with that of the transistor t to the constant voltage u, and one of the supply voltages v1 ... vm is to be removed; these are decoupled from one another.
  • the base of the transistor t is also connected via the outer chip connection ca to the capacitor c belonging to the RC low-pass filter, the other end of which is at the outer Circuit zero is sn. This is connected via the further outer chip connection ca ⁇ to the inner circuit zero point sn ⁇ .
  • the current mirror circuit s is also provided, with which the constant currents i1, iy are generated.
  • the current mirror circuit s is also provided, with which the constant currents i1, iy are generated.
  • it consists of the first transistor t1, the emitter of which is connected to the internal circuit zero point sn ⁇ via the first resistor r1 and the collector of which is connected to the output of the RC low-pass filter and the second resistor r2 at the base of the transistor t.
  • the second transistor t2 is provided, the base of which is connected to the collector and the emitter of which is connected to the base of the first transistor t1 and the collector of which is connected to a point carrying a suitable voltage.
  • This can be the constant voltage u above, for example, but also the emitter of the transistor t.
  • the bases of the output transistors ta1, tay are the bases of the output transistors ta1, tay, whose emitters are located directly or via an emitter resistor re at the inner circuit zero point sn ⁇ .
  • the circuit part containing the transistors t, te1, tem and the current mirror circuit are provided a second time.
  • the circuit part contains the corresponding transistors t ⁇ , te1 ⁇ , tem ⁇ .
  • the base of the transistor t ⁇ lies on the base of the transistor t.
  • This expansion generates additional supply voltages v1 ⁇ , vm ⁇ , the opposite the supply voltages v1, vm are better decoupled from one another than these.
  • Such an arrangement is particularly advantageous when two audio channels, for example stereo channels, are provided in the integrated circuit which are intended to influence one another as little as possible.
  • the further current mirror circuit s ⁇ consists of the transistors t1 ⁇ , t2 ⁇ , ta1 ⁇ , tay ⁇ and the resistors r1 ⁇ , r2 ⁇ , re ⁇ . If necessary, further such partial and current mirror circuits can be provided. The number of each is freely selectable; that is, FIG. 2 with two subcircuits and two current mirror circuits shows only one possible embodiment.
  • npn transistors In addition to the variants already mentioned above when realizing the invention using different transistor types, it is also possible to implement part of the circuit using npn transistors and the other part using pnp transistors. Likewise, n-channel and p-channel field effect transistors can be used mixed. This will apply in particular if the constant current source is not related to the circuit zero, that is to say acts as a current sink as in the exemplary embodiments in FIGS. 1 and 2, but rather, conversely, constant currents from the constant voltage u should be generated, which flow into further sub-circuits.
  • the capacitance of the capacitor c will generally be between 2 and 20 micro-farads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

Zur weitgehenden Unterdrückung des Rauschens von integrierten Konstantspannungsquellen sieht die Erfindung einen RC-Tiefpaß vor, dessen Kondensator (c) über den äußeren Chipanschluß (ca) mit dem äußeren Schaltungsnullpunkt (sn) verbunden ist, während der Rest der Schaltung auf dem Chip angeordnet ist. Der Widerstand (r) des RC-Tiefpaßes liegt an der Konstantspannung (u) der Konstantspannungsquelle und der Ausgang des RC-Tiefpasses an der Basis eines Darlington-artig Emitterfolgern (te1...tem) vorgeschalteten Transistors (t), deren Emittern die Vorsorgungsspannungen (v1, vm) entnommen werden können. Ferner ist die vom Ausgang des RC-Tiefpasses über den Widerstand (r2) angesteuerte Konstantstromquelle (s) vorgesehen, die als Stromsenke für die Konstantströme (i1, iy) dient.

Description

  • Üblicherweise werden in integrierten Schaltungen intern benötigte Versorgungsspannungen mittels einer mitintegrierten Konstantspannungsquelle gewonnen. Eine häufig verwendete derartige Konstantspannungsquelle ist die sogenannte Bandabstand-Referenzschaltung. Es hat sich jedoch gezeigt, daß in bestimmten Anwendungsfällen, wie z.B. bei Analog-Digital-Wandlern für hochwertige Audioanwendungen, das Rauschen der üblichen Konstantspannungsquellen in den Audiokanal gelangt und somit hörbar wird.
  • Das der Erfindung zugrundeliegende Problem besteht daher darin, mittels Schaltungsmaßnahmen das Rauschen der üblichen Konstantspannungsquellen so weitgehend zu unterbinden, daß Audiokanäle niche mehr hörbar gestört werden. Ferner soll mit der Erfindung erreicht werden, daß aus der Spannung der Konstantspannungsquelle mehrere Versorgungsspannungen und Konstantströme abgeleitet werden können, die zum Betrieb der einzelnen Chip-­Teilschaltungen dienen. Die Lösung dieser Problemstellung ist in den Ansprüchen angegeben.
  • Die Erfindung wird nun anhand der Figuren der Zeichnung näher erläutert.
    • Fig. 1 zeigt das Schaltbild eines Ausführungsbeispiels der Erfindung, und
    • Fig. 2 zeigt eine Weiterbildung und eine Ausgestaltung der Erfindung.
  • Das in Fig. 1 durch sein Schaltbild wiedergegebene Ausführungsbeispiel der Erfindung bezieht sich auf die Realisierung mittels bipolarer Transistoren ein und desselben Leitungstyps, nämlich mittels npn-­Transistoren. Es liegt jedoch im Rahmen fachmännischer Abwandlung der Erfindung, wenn anstatt npn-Transistoren pnp-Transistoren verwendet werden. Es ist jedoch auch möglich, anstatt Bipolartransistoren MOS-Transistoren zu verwenden und dann entweder n-Kanal- oder p-Kanal-­Transistoren einzusetzen.
  • Die bereits erwähnte Konstantspannungsquelle ist in den Figuren der Zeichnung nicht angegeben, sondern es ist lediglich diejenige Leitung gezeichnet, an die die Konstantspannung u der Konstantspannungsquelle gelegt ist. Von dieser Leitung aus führt der zum RC-Tiefpaß gehörende Widerstand r zur Basis des Transistors t. Dieser ist nach Art der bekannten Darlington-Schaltung den Emitterfolgertransistoren te1, tem vorgeschaltet, deren Basen gemeinsam am Emitter des Transistors t und deren Kollektoren zusammen mit dem des Transistors t an der Konstantspannung u liegen und an deren Emittern jeweils eine der Vorsorgungsspannungen v1...vm abzunehmen ist; diese sind untereinander entkoppelt.
  • Die Basis des Transistors t ist ferner über den äußeren Chipanschluß ca mit dem zum RC-Tiefpaß gehörenden Kondensator c verbunden, dessen anderes Ende am äußeren Schaltungsnullpunkt sn liegt. Dieser ist über den weiteren äußeren Chipanschluß caʹ am inneren Schaltungsnullpunkt snʹ angeschlossen.
  • In Fig. 1 ist ferner die Stromspiegelschaltung s vorgesehen, mit der die Konstantströme i1, iy erzeugt werden. Hierzu besteht sie aus dem ersten Transistor t1, dessen Emitter über den ersten Widerstand r1 am inneren Schaltungsnullpunkt snʹ und dessen Kollektor über den zweiten Widerstand r2 am Ausgang des RC-Tiefpasses und somit auch an der Basis des Transistors t liegt.
  • Ferner ist der zweite Transistor t2 vorgesehen, dessen Basis am Kollektor und dessen Emitter an der Basis des ersten Transistors t1 sowie dessen Kollektor an einem eine geeignete Spannung führenden Punkt angeschlossen ist. Dies kann beispielsweise die Konstantspannung u ober aber auch der Emitter des Transistors t sein. Schließlich liegen an der Basis des Transistors t1 die Basen der Ausgangstransistoren ta1, tay, deren Emitter direkt oder über jeweils einen Emitterwiderstand re am inneren Schaltungsnullpunkt snʹ liegen.
  • In der Weiterbildung nach Fig. 2 sind der die Transistoren t, te1, tem enthaltende Schaltungsteil sowie die Stromspiegelschaltung ein zweites Mal vorgesehen. Der Schaltungsteil enthält die entsprechenden Transistoren tʹ, te1ʹ, temʹ. Dabei liegt die Basis des Transistors tʹ an der Basis des Transistors t. Durch diese Erweiterung werden weitere Versorgungsspannungen v1ʹ, vmʹ erzeugt, die gegenüber den Versorgungsspannungen v1, vm besser entkoppelt sind als diese untereinander. Eine derartige Anordnung ist insbesondere dann vorteilhaft, wenn in der integrierten Schaltung zwei Audiokanäle, z.B. Stereokanäle, vorgesehen sind, die sich möglichst wenig gegenseitig beeinflussen sollen. Die weitere Stromspiegelschaltung sʹ besteht aus den Transistoren t1ʹ, t2ʹ, ta1ʹ, tayʹ und den Widerständen r1ʹ, r2ʹ, reʹ. Nach Bedarf können noch weitere derartige Teil- und Stromspiegelschaltungen vorgesehen werden. Dabei ist deren jeweilige Anzahl frei wählbar; d.h. die Fig. 2 mit zwei Teilschaltungen und zwei Stromspiegelschaltungen zeigt lediglich ein mögliches Ausführungsbeispiel.
  • In Fig. 2 ist schließlich die bereits erwähnte Ausgestaltung eingezeichnet, bei der der Kollektor des Transistors t2 der Konstantstromquelle s am Emitter des Transistors t liegt.
  • Zusätzlich zu den bereits oben erwähnten Varianten bei der Realisierung der Erfindung mittels verschiedener Transistortypen ist es auch möglich, einen Teil der Schaltung mittels npn-, den anderen Teil jedoch mittels pnp-Transistoren zu realisieren. Ebenso können n-Kanal- und p-Kanal-Feldeffekttransistoren gemischt verwendet werden. Dies wird insbesondere dann zutreffen, wenn die Konstantstromquelle nicht schaltungsnullpunktbezogen sein, also wie in den Ausführungsbeispielen der Fig. 1 und 2 als Stromsenke wirken soll, sondern gerade umgekehrt aus der Konstantspannung u konstante Ströme erzeugt werden sollen, die in weitere Teilschaltungen fließen.
  • Für die Bemessung des RC-Tiefpasses ist es vorteilhaft, wenn seine Grenzfrequenz unterhalb 50 Hz liegt, was bedeutet, daß die Kapazität des Kondensators c im allgemeinen zwischen 2 und 20 Mikro-Farad liegen wird.

Claims (5)

1. On-Chip-Spannungsstabilisierungsschaltung
- mit einer Konstantspannungsquelle,
- mit nach Art eines Emitterfolgers betriebenen Transistoren (= Emitterfolgertransistoren) (te1, tem), die aus deren Konstantspannung (u) Versorgungsspannungen (v1, vm; v1ʹ, vmʹ) für Chip-Teilschaltungen ableiten,
- mit einer auf die Konstantspannung (u) bezogenen Stromspiegelschaltung (s), die Konstantströme (i1, iy) zur Speisung von Chip-Teilschaltungen abgibt, und
- mit einem RC-Tiefpaß, dessen Widerstand (r) zwischen dem Ausgang der Konstantspannungsquelle (u) und der Steuerelektrode eines den Emitterfolgertransistoren in Darlington-artig vorgeschalteten Transistors (t) liegt und dessen Kondensator (c) von dieser Steuerelektrode über einen äußeren Chip-Anschluß (ca) zum äußeren Schaltungsnullpunkt (sn) führt.
2. Schaltung nach Anspruch 1 mit einer oberen Grenzfrequenz des RC-Tiefpasses, die kleiner als 50 Hz ist.
3. Schaltung nach Anspruch 1 oder 2 mit mindestens einem weiteren, Darlington-artig weiteren Emitterfolgertransistoren (teʹ, temʹ) vorgeschalteten Transistor (tʹ), dessen Steuerelektrode am Ausgang des RC-Tiefpasses liegen.
4. Bipolare Schaltung nach einem der Ansprüche 1 bis 3 mit einer Stromspiegelschaltung (s) aus
- einem ersten Transistor (t1), dessen Emitter über einen ersten Widerstand (r1) am inneren Schaltungsnullpunkt (snʹ) und dessen Kollektor über einen zweiten Widerstand (r2) am Ausgang des RC-­Tiefpasses liegt,
- einem zweiten Transistor (t2), dessen Basis am Kollektor und dessen Emitter an der Basis des ersten Transistors (t1) sowie dessen Kollektor an einem eine geeignete Spannung führenden Punkt, insbesondere am Emitter eines der Emitterfolgertransistoren (t, tʹ), liegt, und
- Ausgangstransistoren (ta1, tay), deren Basen an der Basis des ersten Transistors (t1) sowie deren Emitter direkt oder über jeweils einen Emitterwiderstand (re) am inneren Schaltungsnullpunkt (snʹ) liegen und an deren Kollektoren die Konstantströme (i1, iy) abzugreifen sind.
5. Bipolare Schaltung nach den Ansprüchen 3 und 4 mit mindesten einer weiteren Stromspiegelschaltung (sʹ), bei der der Kollektor von deren zweitem Transistor (t2ʹ) am Emitter des weiteren Transistors (tʹ) liegt.
EP86117494A 1986-12-16 1986-12-16 On-Chip-Spannungsstabilisierungsschaltung Withdrawn EP0271595A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP86117494A EP0271595A1 (de) 1986-12-16 1986-12-16 On-Chip-Spannungsstabilisierungsschaltung
US07/125,900 US4775829A (en) 1986-12-16 1987-11-27 On-chip voltage stabilizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86117494A EP0271595A1 (de) 1986-12-16 1986-12-16 On-Chip-Spannungsstabilisierungsschaltung

Publications (1)

Publication Number Publication Date
EP0271595A1 true EP0271595A1 (de) 1988-06-22

Family

ID=8195650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117494A Withdrawn EP0271595A1 (de) 1986-12-16 1986-12-16 On-Chip-Spannungsstabilisierungsschaltung

Country Status (2)

Country Link
US (1) US4775829A (de)
EP (1) EP0271595A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835378A1 (de) * 1988-10-18 1990-04-19 Telefunken Electronic Gmbh Rc-tiefpassschaltung
JP2894776B2 (ja) * 1990-03-02 1999-05-24 日本電気株式会社 半導体集積回路
US5420499A (en) * 1994-03-02 1995-05-30 Deshazo; Thomas R. Current rise and fall time limited voltage follower
US5999039A (en) * 1996-09-30 1999-12-07 Advanced Micro Devices, Inc. Active power supply filter
CA2303543A1 (en) * 2000-03-30 2001-09-30 Nortel Networks Corporation Voltage reference source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427233A1 (de) * 1973-06-06 1975-05-07 Sanyo Electric Co Rauschunterdrueckungseinrichtung
EP0125646A1 (de) * 1983-05-12 1984-11-21 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Vorspannungsschaltung für bipolare integrierte Vielfachschaltungen
US4565959A (en) * 1981-10-30 1986-01-21 Tokyo Shibaura Denki Kabushiki Kaisha Current supply circuit with redundant back-up current source

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2995697A (en) * 1957-02-18 1961-08-08 Bell Telephone Labor Inc Transistor filter
US4176308A (en) * 1977-09-21 1979-11-27 National Semiconductor Corporation Voltage regulator and current regulator
US4349778A (en) * 1981-05-11 1982-09-14 Motorola, Inc. Band-gap voltage reference having an improved current mirror circuit
DD215190A1 (de) * 1983-04-18 1984-10-31 Halbleiterwerk Frankfurt Oder Integrierte konstantspannungsquelle
JPH112009A (ja) * 1997-04-14 1999-01-06 Sekisui Chem Co Ltd 軒樋継手

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427233A1 (de) * 1973-06-06 1975-05-07 Sanyo Electric Co Rauschunterdrueckungseinrichtung
US4565959A (en) * 1981-10-30 1986-01-21 Tokyo Shibaura Denki Kabushiki Kaisha Current supply circuit with redundant back-up current source
EP0125646A1 (de) * 1983-05-12 1984-11-21 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Vorspannungsschaltung für bipolare integrierte Vielfachschaltungen

Also Published As

Publication number Publication date
US4775829A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
DE2660968C3 (de) Differentialverstärker
DE2647132A1 (de) Halbleiter-bauelement
DE2461089A1 (de) Cmos-operationsverstaerker mit internem emitterfolger
DE69221999T2 (de) Bezugsstromschleife
DE3937501A1 (de) Verfahren und vorrichtung zur erzeugung einer vorspannung
DE2024806B2 (de) Lineare verstaerkerschaltung
DE1955942C3 (de) Bistabile Kippstufe
DE2429310A1 (de) Monolithisch integrierbare serienregelschaltung
EP0271595A1 (de) On-Chip-Spannungsstabilisierungsschaltung
DE4227282C1 (de) Digitaler Stromschalter
DE3615383A1 (de) Eine schaltung zur verschiebung des eingangspegels eines digital-analog-wandlers
DE2506034B2 (de) Schaltungsanordnung zum elektronischen durchschalten einer wechselspannung
DE4321483C2 (de) Leitungstreiberschaltstufe in Stromschaltertechnik
EP0021085A2 (de) Monolithisch integrierbarer Transistorverstärker
EP0115352A2 (de) Integrierbarer Digital/Analog-Wandler
DE2200580A1 (de) Vergleichsverstaerker mit Einzelzufuehrung
DE69326771T2 (de) Ausgangstufe mit Transistoren von unterschiedlichem Typ
DE3309396A1 (de) Schaltungsanordnung zur pegelanpassung
DE69108424T2 (de) Spannungsgesteuerter Widerstand.
DE4304262C1 (de) Multiplexeranordnung in Stromschaltertechnik
EP0013943A1 (de) Monolithisch integrierbare Tiefpass-Filterschaltung
DE3145771C2 (de)
EP0588111B1 (de) Speicherelement
DE4112310C2 (de)
DE3783672T2 (de) Schaltung mit gemeinsamer verbindung und ausschaltfunktion.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR NL

17P Request for examination filed

Effective date: 19881128

17Q First examination report despatched

Effective date: 19900314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19900629

R18W Application withdrawn (corrected)

Effective date: 19900629

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ACHTSTAETTER, GERHARD, DIPL.-ING. (FH)