EP0263522B1 - Process for the hydroconversion of heavy and residual oils - Google Patents

Process for the hydroconversion of heavy and residual oils Download PDF

Info

Publication number
EP0263522B1
EP0263522B1 EP87114725A EP87114725A EP0263522B1 EP 0263522 B1 EP0263522 B1 EP 0263522B1 EP 87114725 A EP87114725 A EP 87114725A EP 87114725 A EP87114725 A EP 87114725A EP 0263522 B1 EP0263522 B1 EP 0263522B1
Authority
EP
European Patent Office
Prior art keywords
particle size
weight
oils
fraction
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87114725A
Other languages
German (de)
French (fr)
Other versions
EP0263522A3 (en
EP0263522A2 (en
Inventor
Klaus Kretschmar
Ludwig Dr. Merz
Klaus Dr. Niemann
José Guitian
Julio Dr. Krasuk
Franzo Dr. Marruffo
Klaus Kurzeja
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel Technologie und Automatisierung GmbH
Intevep SA
Original Assignee
Veba Oel Technologie und Automatisierung GmbH
Intevep SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel Technologie und Automatisierung GmbH, Intevep SA filed Critical Veba Oel Technologie und Automatisierung GmbH
Priority to AT87114725T priority Critical patent/ATE94583T1/en
Priority to EP92112758A priority patent/EP0516187B1/en
Publication of EP0263522A2 publication Critical patent/EP0263522A2/en
Publication of EP0263522A3 publication Critical patent/EP0263522A3/en
Application granted granted Critical
Publication of EP0263522B1 publication Critical patent/EP0263522B1/en
Priority to GR950402920T priority patent/GR3017825T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0025Working-up used lubricants to recover useful products ; Cleaning by thermal processes
    • C10M175/0041Working-up used lubricants to recover useful products ; Cleaning by thermal processes by hydrogenation processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • C10C1/20Refining by chemical means inorganic or organic compounds
    • C10C1/205Refining by chemical means inorganic or organic compounds refining in the presence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/26Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries

Definitions

  • the invention relates to a process for the hydrogenative conversion of heavy and residual oils, waste and waste oils in the sump or combined sump and gas phase with hydrogen-containing gases at a hydrogen partial pressure of 50 to 300 bar, preferably 150 to 200 bar, one Temperature of 250 to 500 ° C, preferably 400 to 490 ° C, a gas-oil ratio of 100 to 10,000 Nm3 / t, preferably 1,000 to 5,000 Nm3 / t liquid and solid feed products with the addition of at least one component from the Group of activated coke from hard coal or lignite, soot, red mud, ferric oxide, blast furnace dust, ash from the gasification process of crude oils, natural inorganic ferrous minerals, laterites and limonites in an amount of 0.5 to 15% by weight based on the total amount liquid and solid feed products.
  • the feedstocks are characterized by a high metal, sulfur and asphalt content as well as a high tendency to form coke.
  • the invention particularly relates to a catalytic process for converting hydrocarbon-containing feedstocks such as Orinoco Belt Crudes, Maracaibo Lake Crudes, tar sands from Athabasca and Canada crude oils such as Gold Lake in the sump phase in the presence of hydrogen.
  • feedstocks have a sulfur content between 2 and 6%, a metal content (vanadium and nickel) of 200 to 1400 ppm and more, a density of less than 20 ° API, a coking residue of more than 2% and a residue content of more than 40 % By weight (500 ° C +).
  • hydrocracking conditions pressure, temperature, gas / oil ratio, etc.
  • a component such as activated coke made from hard coal or lignite, soot, red mud, iron III oxide, blast furnace dust, ash from gasification processes of the aforementioned crude oils , natural, inorganic ferrous minerals such as laterite and limonite, in an amount of 0.5 to 15 wt .-% based on the liquid or liquid and solid use added to the hydrogenation process.
  • Document CA-A-1,117,887 describes a hydrocracking process for converting heavy oil into lighter hydrocarbons under high pressure and high temperature.
  • the heavy oil is mixed with a finely divided brown coal additive with a grain size of less than 149 ⁇ m, which is loaded with at least one metal from element group IVa or VIII of the periodic table.
  • Document US-A-4,591,426 also describes a hydroconversion process for heavy feedstocks with a metal content of at least 200 ppm at temperatures above 400 ° C. and a total hydrogen pressure of 1022 bar using a natural inorganic material such as laterite or limonite.
  • a natural inorganic material such as laterite or limonite.
  • 1 to 15% by weight of particles with particle sizes between 1270 and 12700 ⁇ m, based on the feed are supplied, these making up 20 to 80% by weight of the content of the reaction zone.
  • Document GB-A-2 135 691 describes a process for hydrocracking heavy oils in the presence of an additive made from finely ground coal or another carbon-containing material with the addition of a compound of a catalytically active metal such as iron, cobalt or molybdenum. Particle sizes of the additive of less than 74 ⁇ m are disclosed.
  • the invention has for its object to avoid excessive foam formation in a method of the type mentioned.
  • Another object of the invention is the improved utilization of the reaction zone of the hydrogenation reactor or reactors.
  • the component is added in two different grain size distributions from separate grindings, such that a fine grain fraction with a grain size of 90 ⁇ m or less and a coarse grain fraction with a grain size of 90 to 1,000 ⁇ m, preferably 100 Up to 500 microns is present and the latter makes up a share of 5 - 80 wt .-% of the added component.
  • One embodiment of the method according to the invention is that the proportion of the coarse grain fraction is between 10 and 30 and in particular between 20 and 30% by weight of the added component.
  • a preferred embodiment for the start-up phase of the present method is that the coarse grain fraction is more than 20% by weight of the amount of the component added.
  • the invention can also be used for the hydrogenation of mixtures of heavy or residual oils or waste oils with ground brown coal and / or hard coal, the oil / coal weight ratio being between 5: 1 and 1: 1.5.
  • the coal can be used as a coarse grain fraction with a corresponding proportion of a grain size of 100 ⁇ m and more.
  • the amount of liquid in the hydrocracking zone of the reactor initially increases for a given gas velocity when larger particles are used.
  • the present invention enables improved utilization of the reaction zone by using two metering streams of the catalyst with two different particle size distributions.
  • An embodiment of the present invention discloses a conversion process for heavy crude oils with a density of less than 20 ° API, more than 200 ppm metal content and more than 5% by weight Conradson coal in the presence of hydrogen and a catalyst in a bottom phase reactor in which an upward three-phase flow is formed.
  • the catalyst can comprise metals from element group Va, VIa or VIIIa of the periodic table, with or without a porous support, on which metals also contained in the crude oil are deposited.
  • the present invention discloses that for very high conversion rates (90% and more) of fractions boiling above 500 ° C. at moderately high flow rates (0.5 t / m3h or more), a considerable proportion of small particles (below 50 ⁇ m) are required because this brings significant advantages for the hydrogenation capacity of the catalyst system.
  • thermodynamic, fluid dynamic and kinetic relationships in the bottom phase hydrogenation with the addition of additives or catalysts in a bottom-flow tube reactor have not yet been completely clarified, it is assumed that the coarse grain fraction limits the foam formation or the gas residence time and that the amount of liquid is limited to Cost of the gas portion within the reactor, which is reflected by the differential pressure across the reactor height as well expresses the conversion rate and the preheating temperature. This phenomenon is noticeable at gas velocities in the reactor of more than 3 cm / s, temperatures of more than 250 ° C and pressures between 50 and 300 bar.
  • the highly active fine grain fraction preferably having a grain size of less than 50 ⁇ m by means of a metering system and the coarse grain fraction of a less active catalyst by means of a second metering system or inert material with a grain size of 100 to 1000 microns, preferably 150 to 1000 microns is fed, which serves to adapt the system to the fluid dynamic requirements, the amount of liquid in the bottom phase reactor is maximized.
  • the corresponding catalyst mixture which is formed from components of two different particle size distributions, can also be prepared beforehand in another separate apparatus, in order then to be brought into contact with the oil insert via a single metering system.
  • a remarkable aspect of the present invention is that two separate particle size distributions of the catalyst are used, where both fractions can consist of the same or different materials.
  • FIG. 1 shows the hydroconversion process according to the invention with subsequent distillation and hydrodesulfurization in a flow diagram.
  • the fine-grain fraction is introduced via line 1, from the storage vessel 2 discontinuously via valve 3 into a weighing container 4, from which the desired amount of the added component is fed via line 6 to the mixing container 13 via a continuous screw conveyor 5.
  • the coarse grain fraction of the single-use catalyst or additive fed.
  • the coarse grain fraction is provided via line 7 in the storage vessel 8 and fed discontinuously to the weighing container 10 via valve 9.
  • the desired amount of coarse grain fraction is introduced into the mixing container 13 via a continuous screw conveyor 11 and mixed with the heavy oil and the fine grain fraction supplied via line 16.
  • the invention is not limited to the illustrated embodiment with the two dosing systems described.
  • the different grain fractions of the catalyst can also be supplied in other ways.
  • the heavy oil and the two grain fractions of the catalyst are fed from the mixing tank 13 via line 14 to a high-pressure pump 15 and via line 15 'to the heat exchangers 49 and 50, in which this material flow is preheated using the heat of reaction of the reaction products.
  • the fresh hydrogen is fed via line 61, the hydrogen-containing cycle gas via line 59 to the cycle gas preheater 63, where the gas is heated to 200 to 500 ° C. and is fed to the heater 18 together with the preheated feed stream from line 50 ′.
  • the reactor system consists of one or at least two reactors connected in series. To be favoured three reactors connected in series.
  • the reactors 20, 24 and 27 are vertical tubular reactors with or without internals, which are operated with the flow direction from bottom to top. Here the conversion takes place at temperatures between 400 and 490 ° C, preferably 430 and 480 ° C, a hydrogen partial pressure between 50 and 300 bar and a circulating gas volume of 100 Nm3 / t to 10000 Nm3 / t.
  • a quasi-isothermal mode of operation of the reactors is possible by supplying cold gas via lines 21, 23 and 26.
  • downstream hot separators which are operated at approximately the same temperature level as the reactors, the unconverted portion of the heavy and residual oils used as well as the solids is separated from the gaseous reaction products under process conditions.
  • the bottom product of the hot separator is expanded in a multi-stage flash unit.
  • the top product of the hot separators, the flash stills and any crude oil distillate fractions to be processed are combined and fed to the downstream gas phase reactors. Hydrotreating or mild hydrocracking is carried out on a fixed catalytic bed under trickle-flow conditions under the same total pressure as in the sump phase.
  • the gaseous reaction products (C1 to C4 gases, H2S, NH3) are largely separated from the process gas, the remaining hydrogen is recycled as recycle gas.
  • the amount of liquid in the reactor can be optimized so that the conversion of the heavy crude oil in the reaction system increases while the preheating temperature is reduced, thereby reducing the investment and operating costs of the preheater system.
  • the process according to the invention has particular advantages in the event that the gas velocity in the Reactor under reaction conditions is greater than 3 cm / s based on the reactor cross section, which is normally true for gas velocities in industrial reactors.
  • the same material is added as a fine grain and a coarse grain fraction.
  • material of different compositions for the fine and coarse grain fraction e.g. B. Fe2O3 as a fine grain fraction with a particle size with an upper limit of 30 microns and for the coarse grain fraction activated coke from lignite with a lower grain size of 100 microns.
  • the two catalyst fractions do not necessarily have to be fed to the catalyst-oil mixing container 13 (FIG. 1) via two separate metering systems. but can also be mixed beforehand and added directly as a catalyst mixture.
  • the only decisive factor is the use of two different particle size distributions of the catalyst or additive from the same or different chemical species. The use of these two catalyst fractions leads to the unexpected result described in the invention.
  • the hydrocracking product is fed via line 28 into the first hot separator 29 in order to separate the gas / vapor phase from the heavier liquid products which contain unconverted residues (catalyst).
  • the temperature of the hot separators 29 and 33 is regulated in a range from 300 to 450 ° C. by supplying quench gas via lines 32 and 34, which is fed in at the bottom.
  • the second hot separator 33 mainly serves as a scraper for the gas phase reactors 40 and 46.
  • the top product of the second hot separator 33 is combined via line 36, the flash distillate 77 as well as the crude oil distillate 36 ', which is produced elsewhere, and the gas phase reactors 40 and 46 at the same total pressure and approximately the same or fed to a somewhat reduced temperature as in the bottom phase reactor.
  • the operating conditions of these reactors are according to the invention for the pressure between 50 and 300 bar, for the temperature between 300 and 450 ° C and for the gas / liquid ratio between 50 and 10000 Nm3 / t.
  • Hydrotreating or mild is carried out in this conventional reactor Hydrocracking at fixed bed reaction zones under trickle flow conditions using a conventional hydrodesulfurization catalyst or a mild hydrocracking catalyst from groups VIa or VIIIa of the periodic table on an alumina support.
  • the product is fed via line 47 to intensive cooling and condensation (49, 50).
  • the heat of reaction is used to preheat the fresh insert.
  • the gas / liquid mixture is fed to the high-pressure cold separator 52 via line 51.
  • the liquid product is relaxed and can then be fed to the standard refinery technology.
  • the gaseous reaction product After passing through the cold separator 52, the gaseous reaction product is separated as much as possible from the process gas which is discharged via line 56. The remaining hydrogen is fed to the compressor 58 via line 57 and returned to the process via line 59.
  • the bottom product of the hot separators 29 and 33 is fed via lines 32 and 34 to a multi-stage flash unit 65 and 72, decompressed and the residue of the used catalysts or additives is removed for workup, for example by carbonization, gasification or solids separation, via line 73 in order to be used again later can.
  • a vertical bubble column reactor without internals the temperature of which is controlled via the outlet temperature of a preheater system and via a cold gas quench system, is charged with a specific throughput of 1.5 t / m3h with vacuum residue from a conventional residual oil of Venezuelan origin at a hydrogen partial pressure of 190 bar, whereby 2000 Nm3 of hydrogen can be used per ton of residue.
  • the gas velocity is 6 cm / s. 2% by weight of lignite coke with a sharp upper grain limit at 90 ⁇ m are added to the feed product.
  • a temperature in the reactor of 455 ° C. is reached at a preheater outlet temperature of 447 ° C.
  • the differential pressure across the reactor height is about 100 mbar. A residue conversion of approximately 45% is achieved under these conditions.
  • the system was then operated with two different dosing systems.
  • the total amount of catalyst was again 2% by weight.
  • the differential pressure increased from 100 mbar to approximately 300 mbar, while the preheater outlet temperature decreased from 447 ° C to 438 ° C.
  • the conversion rate (RU) of the residue rose from 45 to 62%.
  • H middle Temperature ° C Conversion% A 100% by weight 30 ⁇ m 0.5 461 90 B 75% by weight 30 ⁇ m 0.5 455 90 25% by weight 90-130 ⁇ m C. like B 0.75 455 78 D like B 0.75 461 90

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Lubricants (AREA)

Abstract

The invention relates to a process for the hydroconversion of heavy and residual oils, spent oils and waste oils, tar sands and the like by contacting with hydrogen at a hydrogen partial pressure between 50 and 300 bar, a temperature between 250 and 500 DEG C, a throughput of 0.1 to 5 tonnes/m<3> and hour, and a gas/liquid ratio between 100 and 10,000 standard m<3>/tonne. The technical object and aim of the invention is to provide a process for processing heavy and residual oils, wherein excessive foam formation is avoided and the reaction space of the hydrogenation reactors is more fully utilised. To achieve the technical object, the catalyst or added additives in the hydrotreatment of the feedstocks has a particle size distribution between 0.1 and 2000 mu m, preferably 0.1 and 1000 mu m, and the fraction of the particles of catalyst or additive having a particle size of 100 mu m or more amount to between 10 and 40% by weight, preferably 10 or 30% by weight, of the total quantity of catalyst or additive added to the reactor system.

Description

Die Erfindung bezieht sich auf ein Verfahren zur hydrierenden Konversion von Schwer- und Rückstandsölen, Alt- und Abfallölen in der Sumpf- bzw. kombinierten Sumpf- und Gasphase mit wasserstoffhaltigen Gasen bei einem Wasserstoffpartialdruck von 50 bis 300 bar, vorzugsweise 150 bis 200 bar, einer Temperatur von 250 bis 500 °C, vorzugsweise 400 bis 490 °C, einem Gas-Öl-Verhältnis von 100 bis 10 000 Nm3/t, vorzugsweise 1 000 bis 5 000 Nm3/t flüssiger und fester Einsatzprodukte unter Zusatz wenigstens einer Komponente aus der Gruppe Aktivkoks aus Steinkohle oder Braunkohle, Ruß, Rotschlamm, Eisen-III-Oxid, Hochofenstaub, Asche aus Vergasungsverfahren von Rohölen, natürliche anorganische eisenhaltige Mineralien, Laterite und Limonite in einer Menge von 0,5 bis 15 Gew.-% bezogen auf die Gesamtmenge flüssiger und fester Einsatzprodukte.The invention relates to a process for the hydrogenative conversion of heavy and residual oils, waste and waste oils in the sump or combined sump and gas phase with hydrogen-containing gases at a hydrogen partial pressure of 50 to 300 bar, preferably 150 to 200 bar, one Temperature of 250 to 500 ° C, preferably 400 to 490 ° C, a gas-oil ratio of 100 to 10,000 Nm3 / t, preferably 1,000 to 5,000 Nm3 / t liquid and solid feed products with the addition of at least one component from the Group of activated coke from hard coal or lignite, soot, red mud, ferric oxide, blast furnace dust, ash from the gasification process of crude oils, natural inorganic ferrous minerals, laterites and limonites in an amount of 0.5 to 15% by weight based on the total amount liquid and solid feed products.

Die Einsatzstoffe sind durch einen hohen Metall-, Schwefel- und Asphaltgehalt sowie eine hohe Koksbildungsneigung charakterisiert.The feedstocks are characterized by a high metal, sulfur and asphalt content as well as a high tendency to form coke.

Die Erfindung betrifft speziell ein katalytisches Verfahren zur Konversion von kohlenwasserstoffhaltigen Einsatzstoffen wie Orinoco Belt Crudes, Maracaibo Lake Crudes, Teersande von Athabasca und Kanada-Rohöle wie Gold Lake in der Sumpfphase in Gegenwart von Wasserstoff. Die Einsatzstoffe haben einen Schwefelgehalt zwischen 2 und 6 %, einen Metallgehalt (Vanadium und Nickel) von 200 bis 1 400 ppm und mehr, eine Dichte von weniger als 20 °API, einen Verkokungsrückstand von mehr als 2 % und einen Rückstandsanteil von mehr als 40 Gew.-% (500 °C+).The invention particularly relates to a catalytic process for converting hydrocarbon-containing feedstocks such as Orinoco Belt Crudes, Maracaibo Lake Crudes, tar sands from Athabasca and Canada crude oils such as Gold Lake in the sump phase in the presence of hydrogen. The feedstocks have a sulfur content between 2 and 6%, a metal content (vanadium and nickel) of 200 to 1400 ppm and more, a density of less than 20 ° API, a coking residue of more than 2% and a residue content of more than 40 % By weight (500 ° C +).

Je nach angestrebter Konversionsrate, Hydrocrackbedingungen (Druck, Temperatur, Gas/Öl-Verhältnis etc.) und Verkokungsneigung wird eine Komponente wie Aktivkoks aus Steinkohle oder Braunkohle, Ruß, Rotschlamm, Eisen-III-Oxid, Hochofenstaub, Asche aus Vergasungsverfahren von zuvor erwähnten Rohölen, natürliche, anorganische eisenhaltige Mineralien wie Laterite und Limonite, in einer Menge von 0,5 bis 15 Gew.-% bezogen auf den flüssigen bzw. flüssigen und festen Einsatz dem Hydrierprozeß zugesetzt.Depending on the desired conversion rate, hydrocracking conditions (pressure, temperature, gas / oil ratio, etc.) and tendency to coke, a component such as activated coke made from hard coal or lignite, soot, red mud, iron III oxide, blast furnace dust, ash from gasification processes of the aforementioned crude oils , natural, inorganic ferrous minerals such as laterite and limonite, in an amount of 0.5 to 15 wt .-% based on the liquid or liquid and solid use added to the hydrogenation process.

Zugrundeliegender Stand der TechnikUnderlying state of the art

Nach dem Stand der Technik (vgl. EP-A-0 073 527) erfolgt die katalytische Behandlung von Schwer- und Rückstandsölen in Gegenwart von Braunkohlenkoks, der mit katalytisch aktiven Metallen vermischt ist, vorzugsweise mit deren Sulfaten, Oxiden oder Sulfiden oder mit Staub aus der Braunkohlenvergasung in einer Konzentration von 0,1 bis 10 Gew.-%, bezogen auf die schweren Rückstandsöle. Diese katalysatoren oder Additive werden in feinster Verteilung mit einer Korngröße von kleiner 90 µm eingesetzt.According to the prior art (cf. EP-A-0 073 527), the catalytic treatment of heavy and residual oils takes place in the presence of brown coal coke, which is mixed with catalytically active metals, preferably with their sulfates, oxides or sulfides or with dust lignite gasification in a concentration of 0.1 to 10% by weight, based on the heavy residual oils. These catalysts or additives are used in a very fine distribution with a grain size of less than 90 µm.

Das Dokument US-A-3,622,498 beschreibt ebenfalls einen Prozeß, in dem asphalthaltige Kohlenwasserstoffeinsätze in Gegenwart von Wasserstoff bei 68 bar und 427 °C mit einer Aufschlämmung kleiner Katalysatorteilchen, die wenigstens ein Metall der Elementengruppe Va, VIa oder VIIIa des Periodensystems enthalten, konvertiert werden.Document US-A-3,622,498 also describes a process in which asphalt-containing hydrocarbon inserts are converted in the presence of hydrogen at 68 bar and 427 ° C with a slurry of small catalyst particles which contain at least one metal from element group Va, VIa or VIIIa of the periodic table .

In dem Dokument US-A-4,396,495 wird ein Prozeß für die Konversion von kohlenwasserstoffhaltigen Dunkelölen in Suspensionsreaktoren unter Einsatz feinverteilter Metallkatalysatoren, wie Vanadiumsulfid, mit einer Partikelgröße von 0,1 bis 2000 µm, vorzugsweise von 0,1 bis 100 µm beschrieben. Außerdem wird ein Antischäumungsmittel auf Silikonbasis zugegeben, um die Schaumbildung in der Hydrocrackingzone, wo die Reaktion bei 510 °C, 204 bar und einer Katalysatorkonzentration von 0,1 bis 10 Gew.-% stattfindet, zu reduzieren. Diese Methode ist bei Temperaturen von über 430 °C nicht anwendbar, da sich die Silikone zersetzen und ihre Aktivität verlieren. Das Silizium verbleibt in der niedrig siedenden Fraktion und führt zu Schwierigkeiten im up-stream-Prozeß.Document US-A-4,396,495 describes a process for the conversion of hydrocarbon-containing dark oils in suspension reactors using finely divided metal catalysts, such as vanadium sulfide, with a particle size of 0.1 to 2000 μm, preferably 0.1 to 100 μm. A silicone based anti-foaming agent is also added to to reduce foam formation in the hydrocracking zone, where the reaction takes place at 510 ° C., 204 bar and a catalyst concentration of 0.1 to 10% by weight. This method cannot be used at temperatures above 430 ° C because the silicones decompose and lose their activity. The silicon remains in the low-boiling fraction and leads to difficulties in the upstream process.

Das Dokument CA-A-1,117,887 beschreibt einen Hydrocrackingprozeß für die Überführung von Schweröl in leichtere Kohlenwasserstoffe unter hohem Druck und hoher Temperatur. Das Schweröl wird mit einem feinteiligen Braunkohlenadditiv mit einer Korngröße von weniger als 149 µm, das mit wenigstens einem Metall der Elementengruppe IVa oder VIII des Periodensystems beladen ist, vermengt.Document CA-A-1,117,887 describes a hydrocracking process for converting heavy oil into lighter hydrocarbons under high pressure and high temperature. The heavy oil is mixed with a finely divided brown coal additive with a grain size of less than 149 μm, which is loaded with at least one metal from element group IVa or VIII of the periodic table.

In dem Dokument US-A-4,591,426 wird ebenfalls ein Hydrokonversionsprozeß von schweren Einsatzstoffen mit einem Metallgehalt von wenigstens 200 ppm bei Temperaturen oberhalb von 400 °C und einem Wasserstoffgesamtdruck von 1022 bar unter Einsatz eines natürlichen anorganischen Materials, wie Laterit oder Limonit, beschrieben. Bei Reaktoren mit bewegten Katalysatorbetten werden 1 bis 15 Gew.-% Partikel mit Korngrößen zwischen 1270 und 12700 µm, bezogen auf den Einsatz, zugeführt, wobei diese 20 bis 80 Gew.-% des Inhaltes der Reaktionszone ausmachen.Document US-A-4,591,426 also describes a hydroconversion process for heavy feedstocks with a metal content of at least 200 ppm at temperatures above 400 ° C. and a total hydrogen pressure of 1022 bar using a natural inorganic material such as laterite or limonite. In the case of reactors with moving catalyst beds, 1 to 15% by weight of particles with particle sizes between 1270 and 12700 µm, based on the feed, are supplied, these making up 20 to 80% by weight of the content of the reaction zone.

In dem Dokument GB-A-2 135 691 wird ein Verfahren zum Hydrocraken von Schwerölen in Gegenwart eines Additivs aus feingemahlener Kohle oder einem anderen kohlenstoffhaltigen Materials unter Zumischung einer Verbindung eines katalytisch aktiven Metalls wie Eisen, Kobalt oder Molybdän beschrieben. Es sind Teilchengrößen des Additivs von kleiner als 74 µm offenbart.Document GB-A-2 135 691 describes a process for hydrocracking heavy oils in the presence of an additive made from finely ground coal or another carbon-containing material with the addition of a compound of a catalytically active metal such as iron, cobalt or molybdenum. Particle sizes of the additive of less than 74 μm are disclosed.

Daraus wird ersichtlich, daß bei der Behandlung von Kohlenwasserstoffen bisher nicht erkannt wurde, daß unter katalytischen Sumpfphasebedingungen bei Verwendung billiger Katalysatoren oder Additive, die zuvor beschrieben wurden, Schaum produziert wird, der bei Gasgeschwindigkeiten von mehr als 3 cm/s die Flüssigkeitsmenge in der Reaktionszone vermindert. Diese hohen Gasgeschwindigkeiten werden in industriellen Reaktoren erreicht.It can be seen from this that, in the treatment of hydrocarbons, it has not hitherto been recognized that under catalytic sump phase conditions using cheap catalysts or additives which have been described above, foam is produced which, at gas velocities of more than 3 cm / s, the amount of liquid in the reaction zone reduced. These high gas velocities are achieved in industrial reactors.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren der eingangs angegebenen Art übermäßige Schaumbildung zu vermeiden.The invention has for its object to avoid excessive foam formation in a method of the type mentioned.

Ein weiteres Ziel der Erfindung ist die verbesserte Ausnutzung der Reaktionszone des bzw. der Hydrierreaktoren.Another object of the invention is the improved utilization of the reaction zone of the hydrogenation reactor or reactors.

Gemäß der Erfindung werden diese Aufgaben dadurch gelöst, daß die Komponente in zwei unterschiedlichen Korngrößenverteilungen aus getrennten Mahlungen zugesetzt wird, derart, daß eine Feinkornfraktion mit einer Korngröße von 90 µm oder weniger und eine Grobkornfraktion mit einer Korngröße von 90 bis 1 000 µm, vorzugsweise 100 bis 500 µm vorliegt und letztere einen Anteil von 5 - 80 Gew.-% der zugesetzten Komponente ausmacht.According to the invention, these objects are achieved in that the component is added in two different grain size distributions from separate grindings, such that a fine grain fraction with a grain size of 90 μm or less and a coarse grain fraction with a grain size of 90 to 1,000 μm, preferably 100 Up to 500 microns is present and the latter makes up a share of 5 - 80 wt .-% of the added component.

Eine Ausgestaltung des erfindungsgemäßen Verfahrens liegt darin, daß der Anteil der Grobkornfraktion zwischen 10 und 30 und insbesondere zwischen 20 und 30 Gew.-% der zugesetzten Komponente beträgt.One embodiment of the method according to the invention is that the proportion of the coarse grain fraction is between 10 and 30 and in particular between 20 and 30% by weight of the added component.

Für die Anfahrphase des vorliegenden Verfahrens besteht eine bevorzugte Ausgestaltung darin, daß der Grobkornanteil mehr als 20 Gew.-% der Menge der zugesetzten Komponente beträgt.A preferred embodiment for the start-up phase of the present method is that the coarse grain fraction is more than 20% by weight of the amount of the component added.

Die Erfindung kann auch für die Hydrierung von Gemischen aus Schwer-, oder Rückstandsölen oder Abfallölen mit gemahlener Braunkohle und/oder Steinkohle angewendet werden, wobei das Öl/Kohle-Gewichtsverhältnis zwischen 5 : 1 und 1 : 1,5 liegt.The invention can also be used for the hydrogenation of mixtures of heavy or residual oils or waste oils with ground brown coal and / or hard coal, the oil / coal weight ratio being between 5: 1 and 1: 1.5.

Die Kohle kann als Grobkornfraktion mit einem entsprechenden Anteil einer Korngröße von 100 µm und mehr eingesetzt werden.The coal can be used as a coarse grain fraction with a corresponding proportion of a grain size of 100 µm and more.

Gemäß der Erfindung wird hiermit erstmals offenbart, daß vom fluiddynamischen Gesichtspunkt aus die Flüssigkeitsmenge in der Hydrocrackingzone des Reaktors für eine gegebene Gasgeschwindigkeit beim Einsatz größerer Partikel zunächst zunimmt.According to the invention, it is hereby disclosed for the first time that, from a fluid dynamic point of view, the amount of liquid in the hydrocracking zone of the reactor initially increases for a given gas velocity when larger particles are used.

Die vorliegende Erfindung ermöglicht eine verbesserte Ausnutzung der Reaktionszone durch Anwendung zweier Dosierströme des Katalysators mit zwei unterschiedlichen Korngrößenverteilungen.The present invention enables improved utilization of the reaction zone by using two metering streams of the catalyst with two different particle size distributions.

Eine Ausführungsform der vorliegenden Erfindung offenbart einen Konversionsprozeß für schwere Rohöle mit einer Dichte von weniger als 20 °API, mehr als 200 ppm Metallgehalt und mehr als 5 Gew.-% Conradson-Kohle in Anwesenheit von Wasserstoff und einem Katalysator in einem Sumpfphasenreaktor, in dem sich eine aufwärtsgerichtete Dreiphasenströmung ausbildet.An embodiment of the present invention discloses a conversion process for heavy crude oils with a density of less than 20 ° API, more than 200 ppm metal content and more than 5% by weight Conradson coal in the presence of hydrogen and a catalyst in a bottom phase reactor in which an upward three-phase flow is formed.

Der Katalysator kann Metalle der Elementengruppe Va, VIa oder VIIIa des Periodensystems umfassen, mit oder ohne porösen Träger, auf dem auch in dem Rohöl enthaltene Metalle abgeschieden werden.The catalyst can comprise metals from element group Va, VIa or VIIIa of the periodic table, with or without a porous support, on which metals also contained in the crude oil are deposited.

Es wurde gefunden, daß größere Partikel mit Korngrößen im Bereich von 100 µm und mehr bei Gasgeschwindigkeiten von 3 cm/s und mehr in der Lage sind, die Schaumbildung im Reaktor zu vermindern, wenn sie in einer Menge von nicht weniger als 0,5 Gew.-% des schweren Öleinsatzes dem Hydrocracker zugeführt werden. Es ist von Bedeutung, darauf hinzuweisen, daß bei Verminderung der Schaumbildung im Reaktor und die dadurch bewirkte Zunahme des Flüssigkeitsvolumens die gewünschte Konversion von über 500 °C siedenden Fraktionen in niedriger siedende Fraktionen bei gemäßigten Temperaturen erreicht werden kann.It has been found that larger particles with grain sizes in the range of 100 microns and more at gas velocities of 3 cm / s and more are able to reduce the foaming in the reactor when they are used in an amount of not less than 0.5 wt .-% of the heavy oil input are fed to the hydrocracker. It is important to point out that if the foam formation in the reactor is reduced and the resulting increase in the liquid volume, the desired conversion of fractions boiling above 500 ° C. into lower boiling fractions can be achieved at moderate temperatures.

Außerdem offenbart die vorliegende Erfindung, daß für sehr hohe Konversionsraten (90 % und mehr) von oberhalb 500 °C siedenden Fraktionen bei mäßig hohen Strömungsgeschwindigkeiten (0,5 t/m³h oder mehr) ein beträchtlicher Anteil von kleinen Partikeln (unter 50 µm) gebraucht wird, da dies bedeutende Vorteile für die Hydrierkapazität des Katalysatorsystems bringt.In addition, the present invention discloses that for very high conversion rates (90% and more) of fractions boiling above 500 ° C. at moderately high flow rates (0.5 t / m³h or more), a considerable proportion of small particles (below 50 μm) are required because this brings significant advantages for the hydrogenation capacity of the catalyst system.

Obwohl die thermodynamischen, fluiddynamischen und kinetischen Zusammenhänge bei der Sumpfphasenhydrierung unter Zugabe von Additiven oder Katalysatoren in einem von unten nach oben durchströmten Rohrreaktor noch nicht vollständig geklärt sind, wird angenommen, daß der Grobkornanteil die Schaumbildung oder auch die Gasverweilzeit beschränkt und daß sich die Flüssigkeitsmenge auf Kosten des Gasanteils innerhalb des Reaktors, was sich durch den Differenzdruck über die Reaktorhöhe sowie die Konversionsrate und die Vorwärmtemperatur ausdrückt, steigert. Dieses Phänomen macht sich bei Gasgeschwindigkeiten im Reaktor von mehr als 3 cm/s, Temperaturen von mehr als 250 °C und Drücken zwischen 50 und 300 bar bemerkbar.Although the thermodynamic, fluid dynamic and kinetic relationships in the bottom phase hydrogenation with the addition of additives or catalysts in a bottom-flow tube reactor have not yet been completely clarified, it is assumed that the coarse grain fraction limits the foam formation or the gas residence time and that the amount of liquid is limited to Cost of the gas portion within the reactor, which is reflected by the differential pressure across the reactor height as well expresses the conversion rate and the preheating temperature. This phenomenon is noticeable at gas velocities in the reactor of more than 3 cm / s, temperatures of more than 250 ° C and pressures between 50 and 300 bar.

Ein Maß für die Hydrierkapazität des eingesetzten Katalysator-Additiv-Systems ist das Verhältnis xA : xR (xA = Asphaltkonversionsrate nach DIN 51 525 und xR = Rückstandskonversion [500 °C⁺]), welches unter günstigsten Voraussetzungen, d. h. bei Vermeidung von Asphalt- und Koksablagerungen, einen Wert nahe 1 ergibt. Es konnte gezeigt werden, daß für eine hohe Rückstandskonversion (xR ≧ 87 %) das Verhältnis xA : xR nahe bei 1 liegt, wenn nicht weniger als 1 Gew.-% einer Feinkornfraktion (kleiner als 50 µm) bezogen auf den Schweröleinsatz eingesetzt wird.A measure of the hydrogenation capacity of the catalyst-additive system used is the ratio x A : x R (x A = asphalt conversion rate according to DIN 51 525 and x R = residue conversion [500 ° C⁺]), which under the most favorable conditions, ie if avoided of asphalt and coke deposits, gives a value close to 1. It could be shown that for a high residue conversion (x R ≧ 87%) the ratio x A : x R is close to 1 if not less than 1% by weight of a fine grain fraction (less than 50 µm) based on the heavy oil input is used.

Diese Fakten haben zu dem vorliegenden Vorschlag des Einsatzes eines doppelten Dosiersystems für den Zusatz einer optimalen gewünschten Korngrößenverteilung zwecks verbesserter Ausnutzung des Sumpfphasenhydrierreaktors vom Blasensäulentyp geführt.These facts have led to the present proposal for the use of a double metering system for the addition of an optimum desired particle size distribution for the purpose of improved utilization of the bottom phase hydrogenation reactor of the bubble column type.

Durch zwei verschiedene und unabhängige Dosiersysteme, wobei mittels eines Dosiersystems die hochaktive Feinkornfraktion vorzugsweise einer Korngröße von unter 50 µm und mittels eines zweiten Dosiersystems die Grobkornfraktion eines weniger aktiven Katalysators oder inerten Materials mit einer Korngröße von 100 bis 1000 µm, vorzugsweise 150 bis 1000 µm eingespeist wird, was der Anpassung des Systems an die fluiddynamischen Erfordernisse dient, wird die Flüssigkeitsmenge im Sumpfphasereaktor maximiert.By means of two different and independent metering systems, the highly active fine grain fraction preferably having a grain size of less than 50 μm by means of a metering system and the coarse grain fraction of a less active catalyst by means of a second metering system or inert material with a grain size of 100 to 1000 microns, preferably 150 to 1000 microns is fed, which serves to adapt the system to the fluid dynamic requirements, the amount of liquid in the bottom phase reactor is maximized.

Die entsprechende Katalysatormischung, die aus Komponenten zweier unterschiedlicher Korngrößenverteilungen gebildet wird, kann auch zuvor in einer anderen separaten Apparatur hergestellt werden, um dann über ein einziges Dosiersystem mit dem Öleinsatz in Kontakt gebracht zu werden.The corresponding catalyst mixture, which is formed from components of two different particle size distributions, can also be prepared beforehand in another separate apparatus, in order then to be brought into contact with the oil insert via a single metering system.

Ein bemerkenswerter Aspekt der vorliegenden Erfindung besteht darin, daß zwei separate Korngrößenverteilungen des Katalysators eingesetzt werden, wobei beide Fraktionen aus dem gleichen oder aus verschiedenen Materialien bestehen können.A remarkable aspect of the present invention is that two separate particle size distributions of the catalyst are used, where both fractions can consist of the same or different materials.

Kurze Beschreibung der Abbildungen der ZeichnungBrief description of the figures in the drawing

Figur 1 stellt den erfindungsgemäßen Hydrokonversionsprozeß mit anschließender Destillation und Hydrodesulfurierung in einem Fließschema dar.FIG. 1 shows the hydroconversion process according to the invention with subsequent distillation and hydrodesulfurization in a flow diagram.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Gemäß Figur 1 wird die Feinkornfraktion über Leitung 1, aus dem Vorratsgefäß 2 diskontinuierlich über Ventil 3 in einen Wägebehälter 4 eingebracht, von dem über einen kontinuierlichen Schraubenförderer 5 die gewünschte Menge der zugesetzten Komponente über Leitung 6 dem Mischbehälter 13 zugeführt wird. Über das zweite Dosiersystem wird die Grobkornfraktion des Einwegkatalysators oder Additivs, zugeführt. Die Grobkornfraktion wird über Leitung 7 im Vorratsgefäß 8 bereitgestellt und diskontinuierlich über Ventil 9 dem Wägebehälter 10 zugeführt. Über einen kontinuierlichen Schraubenförderer 11 wird die gewünschte Menge an Grobkornfraktion in den Mischbehälter 13 eingeführt und mit dem über Leitung 16 zugeführten schweren Öl und der Feinkornfraktion vermischt.According to FIG. 1, the fine-grain fraction is introduced via line 1, from the storage vessel 2 discontinuously via valve 3 into a weighing container 4, from which the desired amount of the added component is fed via line 6 to the mixing container 13 via a continuous screw conveyor 5. The coarse grain fraction of the single-use catalyst or additive, fed. The coarse grain fraction is provided via line 7 in the storage vessel 8 and fed discontinuously to the weighing container 10 via valve 9. The desired amount of coarse grain fraction is introduced into the mixing container 13 via a continuous screw conveyor 11 and mixed with the heavy oil and the fine grain fraction supplied via line 16.

Die Erfindung ist nicht auf die dargestellte Ausführungsform mit den beschriebenen zwei Dosiersystemen beschränkt. Die unterschiedlichen Kornfraktionen des Katalysators können auch auf andere Weise zugeführt werden.The invention is not limited to the illustrated embodiment with the two dosing systems described. The different grain fractions of the catalyst can also be supplied in other ways.

Das Schweröl und die beiden Kornfraktionen des Katalysators werden vom Mischbehälter 13 über Leitung 14 einer Hochdruckpumpe 15 und über Leitung 15' den Wärmetauschern 49 und 50 zugeführt, in denen dieser Stoffstrom unter Ausnutzung der Reaktionswärme der Reaktionsprodukte vorgeheizt wird. Der frische Wasserstoff wird über Leitung 61, das wasserstoffhaltige Kreislaufgas über Leitung 59 dem Kreislaufgasvorheizer 63 zugeleitet, wo das Gas auf 200 bis 500 °C aufgeheizt und zusammen mit dem vorgeheizten Einsatzstrom aus Leitung 50' dem Erhitzer 18 zugeführt wird.The heavy oil and the two grain fractions of the catalyst are fed from the mixing tank 13 via line 14 to a high-pressure pump 15 and via line 15 'to the heat exchangers 49 and 50, in which this material flow is preheated using the heat of reaction of the reaction products. The fresh hydrogen is fed via line 61, the hydrogen-containing cycle gas via line 59 to the cycle gas preheater 63, where the gas is heated to 200 to 500 ° C. and is fed to the heater 18 together with the preheated feed stream from line 50 ′.

Das Reaktorsystem besteht aus einem oder mindestens zwei in Reihe geschalteten Reaktoren. Bevorzugt werden drei hintereinandergeschaltete Reaktoren eingesetzt. Die Reaktoren 20, 24 und 27 sind senkrecht stehende Rohrreaktoren mit oder ohne Einbauten, die mit Flußrichtung von unten nach oben betrieben werden. Hier erfolgt die Konversion bei Temperaturen zwischen 400 und 490 °C, vorzugsweise 430 und 480 °C, einem Wasserstoffpartialdruck zwischen 50 und 300 bar und einer Kreislaufgasmenge von 100 Nm³/t bis 10000 Nm³/t. Durch Kaltgaseinspeisung über die Leitungen 21, 23 und 26 ist eine quasiisotherme Fahrweise der Reaktoren möglich.The reactor system consists of one or at least two reactors connected in series. To be favoured three reactors connected in series. The reactors 20, 24 and 27 are vertical tubular reactors with or without internals, which are operated with the flow direction from bottom to top. Here the conversion takes place at temperatures between 400 and 490 ° C, preferably 430 and 480 ° C, a hydrogen partial pressure between 50 and 300 bar and a circulating gas volume of 100 Nm³ / t to 10000 Nm³ / t. A quasi-isothermal mode of operation of the reactors is possible by supplying cold gas via lines 21, 23 and 26.

In nachgeschalteten Heißabscheidern, die auf annähernd gleichem Temperaturniveau betrieben werden wie die Reaktoren, wird der nichtkonvertierte Anteil der eingesetzten Schwer- und Rückstandsöle sowie der Feststoffe von den unter Prozeßbedingungen gasförmigen Reaktionsprodukten getrennt. Das Sumpfprodukt der Heißabscheider wird in einer mehrstufigen Flasheinheit entspannt. Im Falle des kombinierten Betriebs von Sumpf- und Gasphase werden das Kopfprodukt der Heißabscheider, die Flashgestillate sowie eventuell mitzuverarbeitende Rohöldestillatfraktionen vereinigt und den nachgeschalteten Gasphasereaktoren zugeführt. Unter gleichem Gesamtdruck wie in der Sumpfphase erfolgt ein Hydrotreating oder auch mildes Hydrocracken an einem katalytischen Festbett unter trickle-flow-Bedingungen.In downstream hot separators, which are operated at approximately the same temperature level as the reactors, the unconverted portion of the heavy and residual oils used as well as the solids is separated from the gaseous reaction products under process conditions. The bottom product of the hot separator is expanded in a multi-stage flash unit. In the case of combined operation of the bottom and gas phases, the top product of the hot separators, the flash stills and any crude oil distillate fractions to be processed are combined and fed to the downstream gas phase reactors. Hydrotreating or mild hydrocracking is carried out on a fixed catalytic bed under trickle-flow conditions under the same total pressure as in the sump phase.

Nach intensiver Kühlung und Kondensation werden Gas und Flüssigkeit in einem Hochdruck-Kaltabscheider getrennt. Das Flüssigprodukt wird entspannt und kann in raffinerieüblichen Prozessen weiterverarbeitet werden.After intensive cooling and condensation, gas and liquid are separated in a high-pressure cold separator Cut. The liquid product is relaxed and can be further processed in standard refinery processes.

Aus dem Prozeßgas werden die gasförmigen Reaktionsprodukte (C₁ bis C₄-Gase, H₂S, NH₃) weitgehend abgetrennt, der verbleibende Wasserstoff wird als Kreislaufgas zurückgeführt.The gaseous reaction products (C₁ to C₄ gases, H₂S, NH₃) are largely separated from the process gas, the remaining hydrogen is recycled as recycle gas.

Es wurde festgestellt, daß durch die Kontrolle der Feststoffmenge im Reaktor die Flüssigkeitsmenge im Reaktor optimiert werden kann, so daß die Konversion des schweren Rohöls im Reaktionssystem bei gleichzeitiger Verminderung der Vorheiztemperatur zunimmt, wodurch die Investitions- und Betriebskosten des Vorheizersystems verringert werden.It has been found that by controlling the amount of solids in the reactor, the amount of liquid in the reactor can be optimized so that the conversion of the heavy crude oil in the reaction system increases while the preheating temperature is reduced, thereby reducing the investment and operating costs of the preheater system.

Das erfindungsgemäße Verfahren bringt besondere Vorteile für den Fall, daß die Gasgeschwindigkeit im Reaktor unter Reaktionsbedingungen größer als 3 cm/s bezogen auf den Reaktorquerschnitt beträgt, was für Gasgeschwindigkeiten in industriellen Reaktoren normalerweise zutreffend ist.The process according to the invention has particular advantages in the event that the gas velocity in the Reactor under reaction conditions is greater than 3 cm / s based on the reactor cross section, which is normally true for gas velocities in industrial reactors.

Es wurde festgestellt, daß bei Gasgeschwindigkeiten im Reaktor von mehr als 3 cm/s und ohne Einsatz einer Grobkornfraktion die Flüssigkeitsfüllung sehr niedrig bleibt, was an einem niedrigen Differenzdruck bei geringer Konversionsrate und einer hohen Vorheiztemperatur erkannt werden kann. Andererseits führt ein zu großer Anteil an Grobkornfraktion dazu, daß sich diese Partikel im Laufe der Zeit im Reaktor akkumulieren, so daß die Flüssigkeitsmenge im Reaktor und damit der on-stream-Faktor des Reaktionssystems wieder abnimmt.It was found that at gas velocities in the reactor of more than 3 cm / s and without the use of a coarse grain fraction, the liquid filling remains very low, which can be recognized from a low differential pressure with a low conversion rate and a high preheating temperature. On the other hand, too large a proportion of coarse-grained fraction causes these particles to accumulate in the reactor over time, so that the amount of liquid in the reactor and thus the on-stream factor of the reaction system decreases again.

In der Regel wird das gleiche Material als Feinkorn- und als Grobkornfraktion zugegeben. Es ist jedoch auch möglich und in manchen Fällen sogar vorteilhaft, Material verschiedener Zusammensetzungen für die Fein- und Grobkornfraktion einzusetzen, z. B. Fe₂O₃ als Feinkornfraktion mit einer Partikelgröße mit einer oberen Grenze von 30 µm und für die Grobkornfraktion Aktivkoks aus Braunkohle mit einer unteren Korngröße von 100 µm.As a rule, the same material is added as a fine grain and a coarse grain fraction. However, it is also possible and in some cases even advantageous to use material of different compositions for the fine and coarse grain fraction, e.g. B. Fe₂O₃ as a fine grain fraction with a particle size with an upper limit of 30 microns and for the coarse grain fraction activated coke from lignite with a lower grain size of 100 microns.

Die beiden Katalysatorfraktionen müssen nicht notwendigerweise über zwei getrennte Dosiersysteme dem Katalysator-Öl-Mischbehälter 13 (Figur 1) zugeführt, sondern können auch vorher vermischt und als Katalysatormischung direkt zugegeben werden. Entscheidend ist lediglich die Verwendung zweier unterschiedlicher Korngrößenverteilungen des Katalysators oder Additivs von derselben oder unterschiedlichen chemischen Spezies. Gerade der Einsatz dieser beiden Katalysatorfraktionen führt zu dem in der Erfindung beschriebenen unerwarteten Ergebnis.The two catalyst fractions do not necessarily have to be fed to the catalyst-oil mixing container 13 (FIG. 1) via two separate metering systems. but can also be mixed beforehand and added directly as a catalyst mixture. The only decisive factor is the use of two different particle size distributions of the catalyst or additive from the same or different chemical species. The use of these two catalyst fractions leads to the unexpected result described in the invention.

Das Hydrocrackprodukt wird nach Verlassen des Reaktorsystems 20, 24, 27 über Leitung 28 in den ersten Heißabscheider 29 geführt, um die Gas-/Dampfphase von den schwereren flüssigen Produkten, die nichtkonvertierte Rückstände, (Katalysator) enthalten, zu trennen. Die Temperatur der Heißabscheider 29 und 33 wird durch die Zufuhr von Quenchgas über die Leitungen 32 und 34, das am Boden eingespeist wird, in einem Bereich von 300 bis 450 °C reguliert. Der zweite Heißabscheider 33 dient hauptsächlich als Abstreifer für die Gasphasereaktoren 40 und 46.After leaving the reactor system 20, 24, 27, the hydrocracking product is fed via line 28 into the first hot separator 29 in order to separate the gas / vapor phase from the heavier liquid products which contain unconverted residues (catalyst). The temperature of the hot separators 29 and 33 is regulated in a range from 300 to 450 ° C. by supplying quench gas via lines 32 and 34, which is fed in at the bottom. The second hot separator 33 mainly serves as a scraper for the gas phase reactors 40 and 46.

Für den Fall eines kombinierten Sumpf- und Gasphaseprozesses wird das Kopfprodukt des zweiten Heißabscheiders 33 über Leitung 36, das Flashdestillat 77 ebenso wie das Rohöldestillat 36', das an anderer Stelle erzeugt wird, vereinigt und den Gasphasereaktoren 40 und 46 bei demselben Gesamtdruck und etwa derselben oder einer etwas abgesenkten Temperatur wie im Sumpfphasenreaktor zugeführt. Die Betriebsbedingungen dieser Reaktoren liegen erfindungsgemäß für den Druck zwischen 50 und 300 bar, für die Temperatur zwischen 300 und 450 °C und für das Gas/Flüssigkeitsverhältnis zwischen 50 und 10000 Nm³/t. In diesem konventionellen Reaktor erfolgt ein Hydrotreating oder auch mildes Hydrocracken an Festbettreaktionszonen unter Trickle-Flow-Bedingungen unter Einsatz eines konventionellen Hydrodesulfurisierungskatalysators oder eines milden Hydrocrackingkatalysators aus den Gruppen VIa oder VIIIa des Periodensystems auf einem Aluminiumoxidträger.In the case of a combined bottom and gas phase process, the top product of the second hot separator 33 is combined via line 36, the flash distillate 77 as well as the crude oil distillate 36 ', which is produced elsewhere, and the gas phase reactors 40 and 46 at the same total pressure and approximately the same or fed to a somewhat reduced temperature as in the bottom phase reactor. The operating conditions of these reactors are according to the invention for the pressure between 50 and 300 bar, for the temperature between 300 and 450 ° C and for the gas / liquid ratio between 50 and 10000 Nm³ / t. Hydrotreating or mild is carried out in this conventional reactor Hydrocracking at fixed bed reaction zones under trickle flow conditions using a conventional hydrodesulfurization catalyst or a mild hydrocracking catalyst from groups VIa or VIIIa of the periodic table on an alumina support.

Das Produkt wird über Leitung 47 einer intensiven Kühlung und Kondensation (49, 50) zugeführt. Die Reaktionswärme wird zur Vorheizung des frischen Einsatzes verwendet. Das Gas-/Flüssiggemisch wird über Leitung 51 dem Hochdruckkaltabscheider 52 zugeführt. Das flüssige Produkt wird entspannt und kann anschließend der Standardraffinerietechnik zugeführt werden.The product is fed via line 47 to intensive cooling and condensation (49, 50). The heat of reaction is used to preheat the fresh insert. The gas / liquid mixture is fed to the high-pressure cold separator 52 via line 51. The liquid product is relaxed and can then be fed to the standard refinery technology.

Nach dem Durchlaufen des Kaltabscheiders 52 wird das gasförmige Reaktionsprodukt so weit wie möglich vom Prozeßgas abgetrennt, das über Leitung 56 abgeführt wird. Der verbleibende Wasserstoff wird über Leitung 57 dem Kompressor 58 zugeführt und über Leitung 59 in den Prozeß zurückgeführt. Das Sumpfprodukt der Heißabscheider 29 und 33 wird über Leitungen 32 und 34 einer mehrstufigen Flasheinheit 65 und 72 zugeführt, entspannt und der Rückstand der gebrauchten Katalysatoren oder Additive wird zur Aufarbeitung beispielsweise durch Verschwelung, Vergasung oder Feststofftrennung über Leitung 73 abgeführt, um später weiterverwendet werden zu können.After passing through the cold separator 52, the gaseous reaction product is separated as much as possible from the process gas which is discharged via line 56. The remaining hydrogen is fed to the compressor 58 via line 57 and returned to the process via line 59. The bottom product of the hot separators 29 and 33 is fed via lines 32 and 34 to a multi-stage flash unit 65 and 72, decompressed and the residue of the used catalysts or additives is removed for workup, for example by carbonization, gasification or solids separation, via line 73 in order to be used again later can.

Beispiel 1example 1

Ein vertikaler Blasensäulenreaktor ohne Einbauten, dessen Temperatur über die Austrittstemperatur eines Vorheizersystems sowie über ein Kaltgasquenchsystem gesteuert wird, wird mit einem spezifischen Durchsatz von 1,5 t/m³h mit Vakuumrückstand aus einem konventionellen Rückstandsöl venezolanischer Herkunft bei einem Wasserstoffpartialdruck von 190 bar beaufschlagt, wobei 2000 Nm³ Wasserstoff pro Tonne Rückstand eingesetzt werden. Die Gasgeschwindigkeit beträgt 6 cm/s. Dem Einsatzprodukt werden 2 Gew.-% Braunkohlenkoks mit einer scharfen Kornobergrenze bei 90 µm zugesetzt. Unter diesen Verfahrensbedingungen wird bei einer Vorheizeraustrittstemperatur von 447 °C eine Temperatur im Reaktor von 455 °C erreicht. Der Differenzdruck über die Reaktorhöhe stellt sich auf etwa 100 mbar ein. Unter diesen Bedingungen wird eine Rückstandskonversion von näherungsweise 45 % erreicht.A vertical bubble column reactor without internals, the temperature of which is controlled via the outlet temperature of a preheater system and via a cold gas quench system, is charged with a specific throughput of 1.5 t / m³h with vacuum residue from a conventional residual oil of Venezuelan origin at a hydrogen partial pressure of 190 bar, whereby 2000 Nm³ of hydrogen can be used per ton of residue. The gas velocity is 6 cm / s. 2% by weight of lignite coke with a sharp upper grain limit at 90 μm are added to the feed product. Under these process conditions, a temperature in the reactor of 455 ° C. is reached at a preheater outlet temperature of 447 ° C. The differential pressure across the reactor height is about 100 mbar. A residue conversion of approximately 45% is achieved under these conditions.

Die Anlage wurde anschließend mit zwei verschiedenen Dosiersystemen betrieben. Eines führte 1,4 Gew.-% Braunkohlenkoks bezogen auf den Einsatz mit einer Korngröße unter 90 µm zu, während das zweite 0,6 Gew.-% Braunkohlenkoks bezogen auf den Einsatz mit einer Korngröße von mehr als 150 µm und weniger als 600 µm zuführte. Die gesamte Katalysatormenge betrug somit wiederum 2 Gew.-%. Der Differenzdruck nahm von 100 mbar auf ungefähr 300 mbar zu, während sich die Vorheizerauslaßtemperatur von 447 °C auf 438 °C senkte. Gleichzeitig stieg die Konversionsrate (RU) des Rückstandes von 45 auf 62 %.The system was then operated with two different dosing systems. One supplied 1.4% by weight of lignite coke based on the use with a grain size of less than 90 μm, while the second fed 0.6% by weight of lignite coke based on the use with a grain size of more than 150 μm and less than 600 μm fed. The total amount of catalyst was again 2% by weight. The differential pressure increased from 100 mbar to approximately 300 mbar, while the preheater outlet temperature decreased from 447 ° C to 438 ° C. At the same time, the conversion rate (RU) of the residue rose from 45 to 62%.

Die Konversionsrate berechnet sich wie folgt.

Figure imgb0001

RUEIN/AUS =
Massenstrom Rückstand 500 °C⁺ in den Eingangs-/Ausgangsströmen
The conversion rate is calculated as follows.
Figure imgb0001
RU ON / OFF =
Mass flow residue 500 ° C⁺ in the input / output flows

Beispiel 2Example 2

In einer kontinuierlich betriebenen Hydrieranlage mit drei hintereinandergeschalteten vertikalen Sumpfphasereaktoren ohne Einbauten wurde der Vakuumrückstand eines venezolanischen Schweröls unter Zusatz von 2 Gew.-% Fe₂O₃ mit einer scharfen Kornobergrenze bei 30 µm mit 1,5 m³ Wasserstoff pro kg Rückstand, 6 cm/s Gasgeschwindigkeit und einem Wasserstoffpartialdruck von 150 bar umgesetzt. Zur Erzielung einer Rückstandskonversionsrate (Umsatz) von 90 % wurde eine mittlere Temperatur über die hintereinandergeschalteten Sumpfphasereaktoren von 461 °C eingestellt. Der spezifische Durchsatz betrug 0,5 kg/l . h.In a continuously operated hydrogenation system with three series-connected vertical sump phase reactors without internals, the vacuum residue of a Venezuelan heavy oil with the addition of 2 wt .-% Fe₂O₃ with a sharp grain limit at 30 µm with 1.5 m³ hydrogen per kg residue, 6 cm / s gas velocity and a hydrogen partial pressure of 150 bar. To achieve a residue conversion rate (conversion) of 90%, an average temperature of 461 ° C. was set via the series-connected sump phase reactors. The specific throughput was 0.5 kg / l. H.

Wenn 25 % der eingesetzten Komponente gegen eine Siebfraktion von Fe₂O₃ mit einer Kornverteilung von 90 bis 130 µm ausgetauscht wurden, erhöhte sich der Differenzdruck über die Reaktorhöhe von 70 auf 400 mbar. Bei einer konstant gehaltenen Konversionsrate von 90 % betrug die Reaktortemperatur 455 °C. Bei einer spezifischen Durchsatzleistung von 0,75 kg/h . l wurde bei 455 °C mittlerer Reaktortemperatur eine Konversion von 78 % und bei einer mittleren Reaktortemperatur von 461 °C eine Konversion von 90 % des Rückstandes erreicht. Katalysator 2 Gew.-% Fe₂O₃ spez. Durchsatz kg/l . h mittl. Temperatur °C Konversion % A 100 Gew.-% 30 µm 0,5 461 90 B 75 Gew.-% 30 µm 0,5 455 90 25 Gew.-% 90-130 µm C wie B 0,75 455 78 D wie B 0,75 461 90 If 25% of the component used against a sieve fraction of Fe₂O₃ with a particle size distribution were exchanged from 90 to 130 µm, the differential pressure increased over the reactor height from 70 to 400 mbar. With a constant conversion rate of 90%, the reactor temperature was 455 ° C. With a specific throughput of 0.75 kg / h. l A conversion of 78% was achieved at an average reactor temperature of 455 ° C. and a conversion of 90% of the residue at an average reactor temperature of 461 ° C. Catalyst 2 wt .-% Fe₂O₃ spec. Throughput kg / l. H middle Temperature ° C Conversion% A 100% by weight 30 µm 0.5 461 90 B 75% by weight 30 µm 0.5 455 90 25% by weight 90-130 µm C. like B 0.75 455 78 D like B 0.75 461 90

Mit dem vorgeschlagenen Einsatz zweier hinsichtlich der Korngrößenbereiche unterschiedlicher Mischungen ist eine Leistungssteigerung in den Sumpfphasereaktoren (spezifischer Durchsatz) bei gleichbleibendem Temperaturniveau um 50 % möglich.With the proposed use of two mixtures that differ in grain size range, an increase in performance in the bottom phase reactors (specific throughput) is possible at a constant temperature level of 50%.

Claims (7)

  1. A process for the hydrogenating conversion of heavy and bottom oils, used and waste oils in the liquid phase or combined liquid and gaseous phases by hydrogen-containing gases at a partial pressure of hydrogen of 50 to 300 bar, and preferably 150 to 200 bar, a temperature of 250 to 500°C, and preferably 400 to 490°C, a gas to oil ratio of 100 to 10,000 Nm³/t, and preferably 1000 to 5,000 Nm³/t of liquid and solid starting materials with the addition of at least one component chosen from the group comprising active coke produced from hard coal or brown coal, soot, red mud, iron-III-oxide, blast furnace dust, ash from gasification of crude oils, and natural inorganic iron-containing minerals such as laterite and limonite, in an amount of 0.5 to 1.5 % by weight relative to the total amount of liquid and solid starting materials, characterized in that the components are added in two different particle size distributions from separate milling processes, in such a manner that a fine particle fraction has a particle size of 90 µm or less and a coarse particle fraction has a particle size of 90 to 1000 µm and the latter forms 5 to 80 % by weight of the added components.
  2. A process according to claim 1, characterized in that the coarse particle fraction has a particle size of 100 to 500 µm.
  3. A process according to claim 1 or claim 2, characterized in that the amount of the coarse particle fraction is between 10 and 30, and in particular between 20 and 30 % by weight of the added components.
  4. A process according to claim 1 or claim 2, characterized in that the amount of the coarse particle fraction in the starting phase is more than 20 % by weight of the added components.
  5. A process according to at least one of the preceding claims, characterized in that two separate particle size distributions of the added components are employed, where both fractions can consist of the same or different materials.
  6. A process according to claim 1, characterized in that mixtures of heavy and bottom oils, used and waste oils are used with brown and hard coals in proportions of oil to coal of 5 : 1 to 1 : 1.5 by weight.
  7. A process according to claim 6, characterized in that a fraction of the brown or hard coal having a particle size of 100 um or more is used which corresponds to the coarse particle fraction of the added components.
EP87114725A 1986-10-08 1987-10-08 Process for the hydroconversion of heavy and residual oils Expired - Lifetime EP0263522B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT87114725T ATE94583T1 (en) 1986-10-08 1987-10-08 PROCESS FOR THE HYDRATED CONVERSION OF HEAVY AND RESIDUE OILS.
EP92112758A EP0516187B1 (en) 1986-10-08 1987-10-08 Process for the hydroconversion of heavy and residual oils
GR950402920T GR3017825T3 (en) 1986-10-08 1995-10-20 Process for the hydroconversion of heavy and residual oils.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863634275 DE3634275A1 (en) 1986-10-08 1986-10-08 METHOD FOR HYDROGENATING CONVERSION OF HEAVY AND RESIDUAL OILS
DE3634275 1986-10-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP92112758.5 Division-Into 1987-10-08
EP92112758A Division-Into EP0516187B1 (en) 1986-10-08 1987-10-08 Process for the hydroconversion of heavy and residual oils

Publications (3)

Publication Number Publication Date
EP0263522A2 EP0263522A2 (en) 1988-04-13
EP0263522A3 EP0263522A3 (en) 1989-04-12
EP0263522B1 true EP0263522B1 (en) 1993-09-15

Family

ID=6311311

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92112758A Expired - Lifetime EP0516187B1 (en) 1986-10-08 1987-10-08 Process for the hydroconversion of heavy and residual oils
EP87114725A Expired - Lifetime EP0263522B1 (en) 1986-10-08 1987-10-08 Process for the hydroconversion of heavy and residual oils

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP92112758A Expired - Lifetime EP0516187B1 (en) 1986-10-08 1987-10-08 Process for the hydroconversion of heavy and residual oils

Country Status (8)

Country Link
US (1) US4851107A (en)
EP (2) EP0516187B1 (en)
JP (1) JPH0696710B2 (en)
AT (1) ATE128174T1 (en)
CA (1) CA1302332C (en)
DE (3) DE3634275A1 (en)
ES (2) ES2078610T3 (en)
NO (1) NO171219C (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166118A (en) * 1986-10-08 1992-11-24 Veba Oel Technologie Gmbh Catalyst for the hydrogenation of hydrocarbon material
DE3737370C1 (en) * 1987-11-04 1989-05-18 Veba Oel Entwicklungs Gmbh Process for the hydroconversion of heavy and residual soils, waste and waste allogols mixed with sewage sludge
DE3806365C1 (en) * 1988-02-27 1989-07-20 Veba Oel Entwicklungs-Gesellschaft Mbh, 4650 Gelsenkirchen, De
DE3912807A1 (en) * 1989-04-19 1990-11-08 Gfk Kohleverfluessigung Gmbh Heavy oils hydrogenation in sump-phase process - using carbon black as an additive or catalyst
US5755955A (en) * 1995-12-21 1998-05-26 Petro-Canada Hydrocracking of heavy hydrocarbon oils with conversion facilitated by control of polar aromatics
US5721186A (en) * 1996-09-06 1998-02-24 The United States Of America As Represented By The United States Department Of Energy Method for producing catalysis from coal
US5922190A (en) * 1996-10-04 1999-07-13 Intevep, S.A. Process for suppressing foam formation in a bubble column reactor
US5922191A (en) * 1996-10-04 1999-07-13 Intevep, S.A. Foam control using a fluidized bed of particles
DE19742266A1 (en) * 1997-09-25 1999-05-06 Ludger Dr Steinmann Upgrading of chemical and energy raw materials by reaction with low-value raw materials
US20050133416A1 (en) 2003-12-19 2005-06-23 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US20100098602A1 (en) * 2003-12-19 2010-04-22 Opinder Kishan Bhan Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
EP2272938B9 (en) * 2004-04-28 2015-12-30 Headwaters Heavy Oil, LLC Hydroprocessing method for upgrading heavy hydrocarbon feedstock using a colloidal catalyst
US10941353B2 (en) * 2004-04-28 2021-03-09 Hydrocarbon Technology & Innovation, Llc Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock
CA2564346C (en) * 2004-04-28 2016-03-22 Headwaters Heavy Oil, Llc Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system
CN1950483A (en) * 2004-04-28 2007-04-18 上游重油有限公司 Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
US7422904B2 (en) * 2005-02-04 2008-09-09 Exxonmobil Chemical Patents Inc. Method of operating a fixed bed reactor under predetermined hydraulic conditions
CA2604006A1 (en) 2005-04-11 2006-10-19 Shell International Research Maatschappij B.V. Method and catalyst for producing a crude product having a reduced nitroge content
EP1874897A1 (en) 2005-04-11 2008-01-09 Shell Internationale Research Maatschappij B.V. Method and catalyst for producing a crude product having a reduced mcr content
US20060234876A1 (en) * 2005-04-11 2006-10-19 Bhan Opinder K Systems, methods, and catalysts for producing a crude product
US20090188836A1 (en) 2006-10-06 2009-07-30 Opinder Kishan Bhan Methods for producing a crude product
CA2665792A1 (en) * 2006-10-10 2008-04-17 Bioecon International Holding N.V. Two-stage process for the conversion of tar sand to liquid fuels and specialty chemicals
US8034232B2 (en) 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
US8142645B2 (en) * 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
US8679322B2 (en) 2009-11-24 2014-03-25 Intevep, S.A. Hydroconversion process for heavy and extra heavy oils and residuals
US9168506B2 (en) 2010-01-21 2015-10-27 Intevep, S.A. Additive for hydroconversion process and method for making and using same
US9334452B2 (en) 2010-06-30 2016-05-10 Chevron U.S.A. Inc. Two-stage, close-coupled, dual-catalytic heavy oil hydroconversion process
US9039890B2 (en) 2010-06-30 2015-05-26 Chevron U.S.A. Inc. Two-stage, close-coupled, dual-catalytic heavy oil hydroconversion process
US20120157726A1 (en) * 2010-12-15 2012-06-21 Air Liquide Large Industries U.S. Lp Process For The Production Of Cellulose Based Biofuels
EP2654948A4 (en) 2010-12-20 2015-02-11 Chevron Usa Inc Hydroprocessing catalysts and methods for making thereof
WO2012170167A1 (en) * 2011-06-10 2012-12-13 4Crgroup, Llc Two-stage, close-coupled, dual-catalytic heavy oil hydroconversion process
US9790440B2 (en) 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
WO2013126362A2 (en) 2012-02-21 2013-08-29 4CRGroup LLC Two-zone, close-coupled, heavy oil hydroconversion process utilizing an ebullating bed first zone
WO2013126364A2 (en) 2012-02-21 2013-08-29 4CRGroup LLC Two-zone, close-coupled, dual-catalytic heavy oil hydroconversion process utilizing improved hydrotreating
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
US8999145B2 (en) * 2012-10-15 2015-04-07 Uop Llc Slurry hydrocracking process
US9951282B2 (en) 2013-03-14 2018-04-24 Bp Europa Se Process for introducing fine and coarse additives for hydroconversion of heavy hydrocarbons
RU2707294C2 (en) * 2014-02-12 2019-11-26 Бипи Европа Се Method of heavy oil and oil residue hydrocracking
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
KR102505534B1 (en) 2017-03-02 2023-03-02 하이드로카본 테크놀로지 앤 이노베이션, 엘엘씨 Upgraded ebullated bed reactor with less fouling sediment
CA3057131C (en) 2018-10-17 2024-04-23 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms
FI128237B (en) * 2018-12-21 2020-01-15 Neste Oyj Method for upgrading waste oil
CN114425273B (en) * 2020-10-10 2022-11-18 中国石油化工股份有限公司 Control method and application of carbo-hydrogenation reactor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635943A (en) * 1969-10-16 1972-01-18 Cities Service Res & Dev Co Hydrotreating process with coarse and fine catalysts
CA965767A (en) * 1970-05-18 1975-04-08 Council Of Scientific And Industrial Research Preparation of iron catalysts for hydrogenation of coal
US3844933A (en) * 1972-10-16 1974-10-29 Hydrocarbon Research Inc Hydroconversion of coal-derived oils
US3975259A (en) * 1975-07-10 1976-08-17 Air Products And Chemicals, Inc. Hydrodesulfurization of liquid hydrocarbon utilizing a suspended catalyst particle of less than 10 microns
CA1079663A (en) * 1976-08-13 1980-06-17 Maurice M. Mitchell (Jr.) Process for hydrodesulfurization of carbonaceous stocks using suspended catalyst
CA1094492A (en) * 1977-10-24 1981-01-27 Ramaswami Ranganathan Hydrocracking of heavy oils using iron coal catalyst
JPS54106506A (en) * 1978-02-08 1979-08-21 Yamagata Daigakuchiyou Coal direct liquefication reaction method and apparatus
CA1124194A (en) * 1979-03-05 1982-05-25 Ramaswami Ranganathan Hydrocracking of heavy oils/fly ash slurries
CA1163222A (en) * 1981-02-12 1984-03-06 Her Majesty The Queen, In Right Of Canada As Represented By The Minister Of Natural Resources Canada Simultaneous demetalization and hydrocracking of heavy hydrocarbon oils
US4370221A (en) * 1981-03-03 1983-01-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources Catalytic hydrocracking of heavy oils
JPS57174384A (en) * 1981-04-21 1982-10-27 Canada Majesty In Right Of Hydrogenolysis of bitumen-coal slurry
JPS5832193B2 (en) * 1981-06-17 1983-07-11 工業技術院長 Hydrocracking method for heavy hydrocarbons using reaction by-product coke as a catalyst
FR2511389A1 (en) * 1981-08-11 1983-02-18 Inst Francais Du Petrole PROCESS FOR THE CATALYTIC HYDROCONVERSION OF LIQUID PHASE HEAVY HYDROCARBONS AND THE PRESENCE OF A DISPERSE CATALYST AND CHARCOAL PARTICLES
DD210295A1 (en) * 1981-09-02 1984-06-06 Rheinische Braunkohlenw Ag METHOD FOR HYDROGENATING HEAVY AND RESIDUE OILS AND CATALYSTS THEREOF
CA1151579A (en) * 1981-10-07 1983-08-09 Ramaswami Ranganathan Hydrocracking of heavy hydrocarbon oils with high pitch conversion
US4396495A (en) * 1982-01-25 1983-08-02 Uop Inc. Reduction of foaming in a slurry catalyst hydrocarbon conversion process
JPS58219292A (en) * 1982-06-14 1983-12-20 カナダ国 Heavy hydrocarbon oil hydrogenolysis
CA1202588A (en) * 1983-02-10 1986-04-01 Theodore J.W. Debruijn Hydrocracking of heavy oils in presence of dry mixed additive
US4613427A (en) * 1984-10-03 1986-09-23 Intevep, S.A. Process for the demetallization and hydroconversion of heavy crudes and residues using a natural clay catalyst

Also Published As

Publication number Publication date
NO171219B (en) 1992-11-02
CA1302332C (en) 1992-06-02
ES2078610T3 (en) 1995-12-16
NO171219C (en) 1993-02-10
JPH0696710B2 (en) 1994-11-30
DE3634275A1 (en) 1988-04-28
DE3751534D1 (en) 1995-10-26
EP0263522A3 (en) 1989-04-12
EP0516187B1 (en) 1995-09-20
NO874205L (en) 1988-04-11
DE3787434D1 (en) 1993-10-21
JPS63146989A (en) 1988-06-18
US4851107A (en) 1989-07-25
ES2043629T3 (en) 1994-01-01
EP0263522A2 (en) 1988-04-13
EP0516187A3 (en) 1992-12-09
NO874205D0 (en) 1987-10-07
ATE128174T1 (en) 1995-10-15
EP0516187A2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
EP0263522B1 (en) Process for the hydroconversion of heavy and residual oils
CA2131261C (en) Hydrocracking of heavy hydrocarbon oils with heavy hydrocarbon recycle
DE2932488C2 (en) Process for obtaining a hydrocarbon fraction
US5166118A (en) Catalyst for the hydrogenation of hydrocarbon material
DE3737370C1 (en) Process for the hydroconversion of heavy and residual soils, waste and waste allogols mixed with sewage sludge
DE2215664C3 (en)
DE1645826B1 (en) Process for converting a hydrocarbon feed
DE112007001743T5 (en) Hydrocracked
DE1119438B (en) Process for refining heavy oils containing sulfur
EP0287796A1 (en) Process for the hydroconversion of heavy and residual oils
DE3903144A1 (en) HYDROCRACKS OF HEAVY OILS IN THE PRESENCE OF IRON-CARBON-SEPARATION
DE60115372T2 (en) Process for treating a hydrocarbon feed by a countercurrent hydrotreating in a fixed bed
DE2835123A1 (en) CONVERSION PROCESS FOR SOLID, HYDROCARBON MATERIALS
DE3233344A1 (en) METHOD FOR LIQUIDIZING COAL
DE1770264A1 (en) Process for cleaning petroleum
DE2730159C2 (en)
DE1954004A1 (en) Process for the conversion and desulfurization of a sulfur-containing hydrocarbon feed
DE3111763A1 (en) METHOD FOR HYDROCRACKING HEAVY HYDROCARBONS USING SYNTHESIS GAS
DE3151614A1 (en) METHOD FOR IMPROVING THE QUALITY OF A HYDROCARBONIC OIL
DE3237037A1 (en) METHOD FOR HYDROPROCESSING A HEAVY HYDROCARBON OIL OUTPUT MATERIAL
DE2344251C3 (en) Process for the catalytic hydrocracking of a hydrocarbon feed containing sulfur, ash and asphaltenes
DE2259959C3 (en) Process for the production of heating oils by asphaltene separation and two-stage catalytic hydrogenative desulphurisation
EP0209665B1 (en) Coal hydrogenation process by liquid phase and fixed-bed catalyst hydrogenation
DE3734011A1 (en) Process for hydrogenating conversion of heavy oils and residual oils
DE3321690A1 (en) METHOD FOR HYDROPROCESSING A HEAVY HYDROCARBON OIL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871022

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTEVEP S.A.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTEVEP S.A.

Owner name: VEBA OEL ENTWICKLUNGS-GESELLSCHAFT MBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KURZEJA, KLAUS

Inventor name: MARRUFFO, FRANZO, DR.

Inventor name: KRASUK, JULIO, DR.

Inventor name: GUITIAN, JOSE

Inventor name: NIEMANN, KLAUS, DR.

Inventor name: MERZ, LUDWIG, DR.

Inventor name: KRETSCHMAR, KLAUS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTEVEP S.A.

Owner name: VEBA OEL TECHNOLOGIE GMBH

17Q First examination report despatched

Effective date: 19901005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTEVEP S.A.

Owner name: VEBA OEL TECHNOLOGIE UND AUTOMATISIERUNG GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 94583

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3787434

Country of ref document: DE

Date of ref document: 19931021

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930928

EPTA Lu: last paid annual fee
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2043629

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3010623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87114725.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010926

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20010928

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011003

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011008

Year of fee payment: 15

Ref country code: GB

Payment date: 20011008

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20011011

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011016

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011031

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020104

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021008

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021008

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021009

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021030

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021114

Year of fee payment: 16

BERE Be: lapsed

Owner name: S.A. *INTEVEP

Effective date: 20021031

Owner name: *VEBA OEL TECHNOLOGIE UND AUTOMATISIERUNG G.M.B.H.

Effective date: 20021031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021008

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051008