EP0209665B1 - Coal hydrogenation process by liquid phase and fixed-bed catalyst hydrogenation - Google Patents

Coal hydrogenation process by liquid phase and fixed-bed catalyst hydrogenation Download PDF

Info

Publication number
EP0209665B1
EP0209665B1 EP86106751A EP86106751A EP0209665B1 EP 0209665 B1 EP0209665 B1 EP 0209665B1 EP 86106751 A EP86106751 A EP 86106751A EP 86106751 A EP86106751 A EP 86106751A EP 0209665 B1 EP0209665 B1 EP 0209665B1
Authority
EP
European Patent Office
Prior art keywords
oil
separator
coal
hydrogenation
hot separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86106751A
Other languages
German (de)
French (fr)
Other versions
EP0209665A1 (en
Inventor
Bernd Strobel
Frank Dr. Dipl.-Chem. Friedrich
Eckhard Wolowski
Rainer Löring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of EP0209665A1 publication Critical patent/EP0209665A1/en
Application granted granted Critical
Publication of EP0209665B1 publication Critical patent/EP0209665B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes

Definitions

  • the invention relates to a process for coal hydrogenation by means of bottom phase and catalyst fixed bed hydrogenation according to the preamble of claim 1.
  • the coal When extracting oils from coal by pressure hydrogenation, the coal is mixed with a distillate-like solvent (grinding oil, mashing oil, return oil) that is continuously recovered in the process and mixed into a pumpable mixture and, after adding hydrogen-containing gas, at pressures above 100 bar and temperatures between 450 and 500 ° C in one or more reactors in the liquid phase (bottom phase) converted.
  • a finely divided catalyst is used and continuously passed through the reaction space as part of the coal suspension, or a flowing catalyst bed in which the catalyst material is in the form of a piece in the reaction space.
  • the reaction products are first separated into two partial streams, the bottom and the top product, in a hot separator a little below the reaction temperature.
  • the sump contains the solid and non-liquefiable constituents of the coal and, if appropriate, the catalyst, also the asphalt-containing, non-distillable products of the coal hydrogenation and small to medium amounts of distillable oil.
  • This oil is obtained by distillation or by other measures, such as. B. smoldering or solvent extraction, recovered from the sludge and used to produce the return oil.
  • the low oil residue is commonly used as a feedstock to generate hydrogen in suitable gasification processes.
  • the top product of the hot separator can be passed over a second hot separator in order to separate any entrained solids and asphalt parts.
  • the sump of the second hot separator is then processed together with the sludge from the first hot separator or used directly to produce the return oil.
  • the top product of the hot separator (s) which is free of solids and asphaltene, consists of vaporous oils: heavy oil, boiling above 325 ° C at normal pressure; Medium oil, boiling at 200 - 325 ° C; Light oil, boiling up to 200 ° C.
  • the top product also contains hydrogen and hydrocarbon gases, as well as small amounts of other products such as water vapor and inorganic gases.
  • the subset of the vapors and gases from the hot separator is chosen to be substantially larger than corresponds to the newly formed oil; A large part of the oil returned to the production of coal pulp is thus also hydrogenated refined on the fixed bed catalyst. Unless additional reaction space with catalyst is provided for this, the degree of refining of the product oil is reduced even further. By replacing light and medium oil with heavy oil, the boiling point of the product oil can be reduced with this mode of operation; however, this requires a significant increase in equipment and energy for the distillation steps and still does not improve the degree of refining of the oil fractions.
  • Both embodiments of the process according to DE-A-2 654 635 also have the disadvantage that oils from all boiling positions are only treated together on the same catalyst and therefore with moderate refining performance.
  • a particularly intensive refining and hydrogenation, especially of the lighter fractions, is usually desirable, e.g. B. to be able to use them in reforming processes without further hydrogenation stage; at the same time, it is usually sufficient to hydrogenate the return oil for the pulp production and possibly also the medium oil content of the product only moderately intensively, so that hydrogen can be saved.
  • the object of the invention is to avoid the disadvantages inherent in the generic method and to obtain a hydrocarbon oil which is essentially free of oxygen, nitrogen and sulfur compounds in high yield.
  • a return oil is obtained which is lighter in terms of density and boiling point than unrefined return oil. Only a small proportion of the total evaporable oil remains in the sludge and is extracted from it.
  • the temperature at the head of the hot separator is at least 440 ° C; less than 25% of the return oil is obtained from the sludge, which is less than 20% of the total vaporizable oil (product oil plus return oil).
  • the oil obtained from the blowdown is pumped back directly into the high-pressure system, whereby both the injection into the hot top products of the hot separator can be useful to control the inlet temperature of the first fixed bed reactor and the injection before the (first) hot separator, the sensible heat of the products from the bottom phase reactor is sufficient to evaporate the blowdown oil.
  • the oil from the sludge can be hydrogenated in a separate reactor outside the gas cycle if a particularly gentle procedure is desired for the first fixed bed reactor system; the pre-refined oil can then either be injected into the top product of the optionally second hot separator and thus further refined on the first fixed bed reactor system, or it is used directly as a return oil fraction.
  • the pre-refined oil is advantageously passed immediately after leaving the separate reactor and together with the accompanying gases and vapors before the preheater of the sump phase.
  • the sensible heat and the excess hydrogen are used, and the coal pulp can be made available in a correspondingly higher concentration.
  • a selective refining for producing a light oil which is suitable directly as a reformer and with a relatively low hydrogen consumption will be achieved according to a further development of the method if a second intermediate separation is carried out at a further reduced temperature after the return oil has been extracted from the intermediate separator.
  • a high-pressure fractionation column can be attached to the second intermediate separator to improve the selectivity.
  • the separating cut is placed at about 185 ° C, so that a moderately refined, but storage-stable medium oil is produced, which, for. B. can be used as heating oil.
  • the mixture of vapors and gases leaving the fractionation column overhead is finely cleaned in the second fixed bed reactor system after appropriate preheating. After cooling, a light oil which is practically completely free of heteroatoms (boiling up to 185 ° C.) is obtained from the cold separator.
  • the reactor for the return oil hydrogenation and the reactor for the fine refining of the product oil in a common high-pressure gas circuit saves a considerable number of apparatus and machines and a lot of energy compared to the operation of separate high-pressure systems. Since the oils are relaxed less often, the solubility losses in pressurized hydrogen less. The high molecular weight compounds formed during the intermediate condensation of low-refined oils have a severe damaging effect on fixed bed catalysts, which is why such oils generally require an additional intermediate treatment, e.g. B. by distillation. In contrast, intermediate condensation is avoided in the process according to the invention; the oils get mainly in vapor form and under hydrogen pressure directly onto the refining catalysts, which therefore have a long service life. As catalysts, the compounds of Fe, Co, Ni, W, Mo, Zn or Sn with oxygen or sulfur that are customary in the hydrogenation of carbon are mostly used on a support and also in combinations of several of these compounds.
  • FIG. 1 shows the operation of the method according to the invention with an intermediate separator arranged between two fixed bed reactors.
  • ground coal and optionally catalyst mass are mixed with the oil from an intermediate separator 14 to form a slurry.
  • the ratio of coal (anhydrous) to oil can be about 1: 0.8 to 1: 3, ratios between 1: 1 and 1: 1.5 are advantageous.
  • the coal pulp is conveyed with a pump 2 against the operating pressure of the hydrogenation system, which is more than 100 bar, preferably 150 to 400 bar.
  • hydrogenation gas is supplied, which consists of recycle gas (line 21) and hydrogen (line 22).
  • the hydrogen content in the cycle gas (hydrogenation gas) should be more than 50% by volume.
  • - Recycle gas is also blown into the hydrogenation reactors 5, 12 and 16 in the required amount for temperature control at different heights.
  • the total amount of circulating gas, measured on the compressor 20, is between 1 and 8 normal cubic meters per kg of coal (water and ash free); 3 to 5 cubic meters per kg of pure coal are preferred.
  • the amount of fresh hydrogen is, depending on the hydrogen consumption, 700 to 1500 normal cubic meters per kg of coal used.
  • Coal slurry and hydrogenation gas are heated in a preheater 4 and reacted in a bottom phase reactor 5 at temperatures between 450 and 500 ° C.
  • the reactor 5 can consist of a single or of several vessels. If it is equipped with a flowing catalyst bed, the coal slurry need not contain any catalyst mass.
  • a hot separator 6 vapors and gases are separated from the liquid and solid substances (sludge) at 440 to 480 ° C and passed on overhead of the separator 6. The blowdown is decompressed and flashed to extract the oils it contains. The flash residue is used in the usual way to generate hydrogen.
  • the vapors from the flash process are condensed in a heat exchanger 8 and passed into a receiver 9 as flash oil.
  • the flash oil is either used directly via a line 10 A for slurry production, or a high pressure pump 10 delivers the flash oil into the vapors / gases from the hot separator 6.
  • the temperature of the mixture is regulated by a heat exchanger 11 so that the inlet temperature in the reactor 12 den desired value (between 350 and 420 ° C).
  • Hydrogenation and refining catalysts of the type which are customary in the processing of coal oils and petroleum are used as catalysts in the reactors 12 and 16; the same or different catalysts can be used in the reactors 12 and 16, respectively, in order to improve the degree of refinement, saturation, cleavage and hydrogen consumption. B. to achieve the most favorable results for any coal or the respective end product.
  • the vapors / gases from the reactor 12 are cooled in a heat exchanger 13 to such an extent that an amount of oil is continuously condensed as is consumed in the production of the pulp.
  • This return oil is expanded from an intermediate separator 14 and returned to the mixing plant 1.
  • the temperatures required before the intermediate separator 14 are between 250 and 350 ° C.
  • the vapors and gases that leave the intermediate separator 14 are raised to the inlet temperature of the fixed bed reactor 16 (350 to 420 ° C.) by heat exchange and possibly additional temperature control (cooler / heater 15). By cooling to temperatures below 50'C in a heat exchanger 17, the product oil is separated from the mixture of vapors and gases; In addition, hydrogenation water, which contains ammonia and hydrogen sulfide, condenses at this point. These liquids are expanded from a cold separator 18 and fed to further processing or use.
  • a gas mixture is drawn off, which essentially consists of hydrogen and hydrocarbon gases, but also contains hydrogen sulfide, ammonia and small amounts of carbon oxides.
  • this gas is cleaned to the required extent and enriched with hydrogen.
  • a cycle gas compressor 20 conveys the cycle gas back to the hydrogenation reactors.
  • Fig. 2 shows an embodiment of the method according to the invention with two intermediate separators 14 and 15 A between the two fixed bed reactors 12 and 16.
  • This method of operation is advantageous if only the light oil content of the product oil is very high must be largely refined, but the middle oil content can still be used as a storage-stable, moderately refined product.
  • the return oil is obtained from the vapors / gases mixture after the reactor 12.
  • the top product from the intermediate separator 14 is cooled in the heat exchanger 15 to such an extent that essentially middle oil (boiling at 185 to 325 ° C.) can be removed from the second separator 15 A.
  • This intermediate separator 15 A can be equipped in the manner of a distillation column with packing or other internals to improve the selectivity.
  • the vapors and gases withdrawing from the top of the separator or the column are brought to the inlet temperature of the fixed bed reactor (350 to 420 ° C.) in a heat exchanger 15 B.
  • an oil is obtained from the cold separator 13, which mainly consists of light oil (boiling end 185 ° C.) and has the reformer use quality.
  • the distillate from the flash system 7 is injected with the aid of the pump 10 via a line 26 into the hot products of the bottom phase reactor 5, before they enter the hot separator 6.
  • the heat required to evaporate the flash oil is removed from the products of the bottom phase reactor 5.
  • FIG. 4 shows an embodiment of the method according to the invention, in which an additional reactor 25 is arranged outside the common gas circuit.
  • the flash oil is heated via a line 23 in a heat exchanger / preheater 24 after the addition of hydrogen or hydrogen-containing gas and hydrogenated in the fixed bed reactor 25 at 350 to 420 ° C. under approximately the same pressure as in the other reactors.
  • the addition of hydrogen to flash oil is in the range from 0.5 to 5 m 3 / kg.
  • the entire outlet products of the reactor 25 are fed through line 26 to the pulp which is already under pressure upstream of the preheater 4.
  • the solids content of the coal pulp produced in the mixing plant 1 is accordingly set higher than in the other working methods.
  • the hydrogen not consumed in the reactor 25 is completely available for the bottom phase hydrogenation; the fresh hydrogen supply via line 22 can therefore be reduced accordingly.
  • Example 1 In a plant according to Example 1, 126 kg of water-free gas flame coal (120 kg / h free of water and ash) are mixed with 5 kg of dried red mass and 134 kg / h of return oil to form a slurry and together with 650 m 3 / h of hydrogenation gas (gas quantities below Normal conditions) consisting of 150 m 3 / h of fresh hydrogen and 500 m 3 / h of cycle gas (contains 60% by vote hydrogen) passed through a bottom phase reactor 5.
  • the pressure in reactor 5 is 400 bar, the temperature 470 ° C.
  • the temperature in the vapor space of the hot separator 6 is kept at 440 ° C.
  • the sludge from the hot separator 6 is subjected to flash evaporation (flashing); this results in 24 kg / h of flash oil, which is used without further treatment to produce the return oil.
  • the entire top products of the hot separator 6 are passed through the fixed bed reactor 12, which contains 80 kg of a commercially available catalyst made of sulfidic nickel and molybdenum on Al3O3-Si0 2 carrier.
  • the average catalyst temperature is 380 ° C, the pressure 400 bar.
  • the emerging products are cooled to 275 ° C. 110 kg / h of oil are obtained in liquid form, which are removed from the intermediate separator 14 and combined with the flash oil from the line 10 A.
  • the return oil produced in this way contains 38% heavy oil (boiling above 325 ° C) and 62% medium oil.
  • the top products of the intermediate separator 14 are passed through the fixed bed reactor 16, which is filled with 80 kg of a commercially available catalyst consisting of molybdenum sulfide and nickel sulfide on alumina carrier.
  • the mean catalyst temperature is 390 ° C, the pressure 400 bar.
  • 65 kg / h (54% of the waf coal) of water-clear product oil are condensed from the reaction products and are discharged from the cold separator 18.
  • the product oil contains 20 mg / kg basic nitrogen and 50 mg / kg phenolic oxygen. After storage for 1 month under the exclusion of air and light, the oil is slightly yellowish.
  • the oil yield is higher and at the same time the oil quality is considerably better than with coal hydrogenation without integrated refining stages.
  • 105 kg of dry gas coal (corresponding to 100 kg / h, free of water and ash) are mixed with 4 kg / h of dried red mass and 154 kg / h of return oil to form a coal paste and together with 625 m 3 / h hydrogenation gas, consisting of 125 m 3 / h fresh hydrogen and 500 m 3 / h cycle gas (contains 80 vol .-% hydrogen), passed through the bottom phase reactor 5 of 200 l content.
  • the pressure in the reactor 5 is 300 bar, the temperature 470 ° C.
  • the temperature in the hot separator 6 is kept at 440 ° C.
  • the blowdown from the hot separator 6 is subjected to flash evaporation; 21 kg / h of distillate are obtained, which are pumped in front of the inlet of the fixed bed reactor 12.
  • the entire top product of the hot separator 6 is also passed through this reactor 12.
  • the reactor 12 contains 80 kg of a commercially available refining catalyst based on nickel, molybdenum and alumina; the average catalyst temperature is 390 ° C.
  • the return oil consists of 30% heavy oil boiling above 325 ° C and 70% medium oil boiling up to 325 ° C.
  • the vapors and gases that are drawn off at the top of the intermediate separator 14 are passed over the fixed bed reactor 16, which also contains 80 kg of a commercially available refining catalyst based on Ni, Mo and A1 2 0 3 .
  • the average catalyst temperature is 390 ° C.
  • 18 55 kg of water-light product oil are obtained in the cold separator, which consists of 40% light oil ( ⁇ 185 ° C) and 60% medium oil (185 - 325 ° C). After a month, the oil is still colorless.
  • the oil contains only 6 mg / kg basic nitrogen and less than 15 mg / kg phenolic oxygen.
  • the light oil alone contains less than 2 mg / kg nitrogen. So the oil gain is 55% and the oil quality is good.
  • Example 2 An experiment is carried out under the same conditions as in Example 2, but the vapors and gases carried at 290 ° C overhead of the intermediate separator 14 are cooled to 170 ° C and in the stripping section of a high pressure-resistant packed column 15 A with about 25 theoretical plates ( at 20 I / h liquid load) initiated. 33 kg / h of medium oil with a boiling range of 175-325 ° C. are released from the bottom of the column. The vapors and gases withdrawing at the top of the column at 160 ° C. are heated and passed over the fixed bed reactor 16.
  • the reactor 16 contains 50 kg of a commercially available Ni-Mo-Al 2 0 3 refining catalyst. The average temperature of the catalyst bed is kept at 375 ° C.
  • the reactor outlet products are cooled to 20 ° C; 22 kg of light oil per hour with a boiling end of 185 ° C are obtained from the cold separator.
  • the medium oil contains 0.06% basic nitrogen and ⁇ 0.1% oxygen. After 1 month of storage in the air and in the dark, the oil is straw yellow; it has not formed any sediments.
  • the light oil contains ⁇ 1 mg / kg titratable nitrogen and oxygen. After 1 month of storage, it remains water-light.
  • Flash oil is distilled off from the sludge of the hot separator 6 in a system 7 for flash evaporation in a vacuum. This is combined with the sludge (2 kg / h) of the second hot separator 9, which consists mainly of oil, and is pumped via line 26 into the reactor outlet products before they reach the hot separator 6.
  • the top products of the second hot separator 9 are passed at 380 ° C. over 80 l of a Ni-Mo alumina catalyst in the reactor 12. After cooling to 280 ° C 14 154 kg / h of oil are obtained in the intermediate separator, which are used for the production of slurry.
  • the overhead product stream from the intermediate separator 14 is heated to 390 ° C. and passed at 400 ° C. over 80 l of a Co-Mo-Al 2 O 3 catalyst in the reactor 16.
  • the products of the Reactor 16 is obtained from the cold separator 18 54 kg / h product oil with a basic nitrogen content of 10 mg / kg and phenolic oxygen of 15 mg / kg.
  • the oil consists of 45% light oil; the rest is medium oil. After 1 month of storage there was a slight yellow discolouration of the originally water-light oil.
  • a hydrogenation test is carried out with a sub-bituminous coal.
  • 109 kg / h of the anhydrous coal (corresponding to 100 kg / h coal, free of water and ash) are mixed with 4 kg / h red mass and 87 kg / h return oil to a suspension, which is continuously pumped to the preheater 4 using the high-pressure pump 2. is promoted.
  • recycle gas containing 85% by volume of hydrogen is supplied in an amount of 150 m 3 / h.
  • the entire flash oil (25 kg / h) is treated with 125 m 3 / h of fresh hydrogen at a temperature of 385 ° C. and at 152 bar pressure.
  • the bottom phase reactor 5 has a volume of 200 l; it is operated at a temperature of 458 ° C and a pressure of 150 bar.
  • the products are broken down in the hot separator 6 at 450 ° C.
  • the catalyst is a commercially available hydrogenation catalyst which consists of tungsten and nickel sulfide on alumina support; the pressure in the reactor is 150 bar, the temperature is 390 ° C.
  • the products of the reactor 12 are cooled to 330 ° C.; can be removed from the subsequent intermediate separator 14, 87 kg / h of a medium oil / heavy oil mixture, which are used entirely as return oil.
  • the sludge from the hot separator 6 supplies 25 kg / h of flash oil when treated in a flash evaporator, which is sulfurized by saturation with hydrogen sulfide gas and is then hydrogenated and used as described.
  • the vapor and gaseous top product of the intermediate separator is heated from 330 ° C to 370 ° C and passed through a reactor with 80 kg of solid Ni-Mo-A1 2 0 3 catalyst, the pressure still being 150 bar and the temperature at 375 ° C is set.
  • 56.5 kg / h of product oil are obtained from the cold separator, which consists of 40% light oil and 60% middle oil; the basic nitrogen content is 8 mg / kg, the phenolic oxygen content is approximately 15 mg / kg. After 1 month in the absence of air and light, the oil remains water-white.
  • Example 2 A test as in Example 2 is carried out, but the system does not contain a fixed bed reactor 12 after the hot separator 6 or a fixed bed reactor 16 after the intermediate separator 14.
  • the amount of fish hydrogen is 100 m 3 / h.
  • the hourly amount of distillate oil from the flash evaporation of the sludge is 30 kg.
  • 124 kg / h of oil are obtained per hour from the intermediate separator 14, combined with the blowdown distillate and continuously returned to the production of pulp.
  • the return oil contains 45% medium oil, the rest is heavy oil.
  • An hourly product oil quantity of 49.5 kg is obtained at the cold separator 18, which consists of 23% light oil and 77% medium oil.
  • the basic nitrogen content of the oil is 0.76% and the phenolic oxygen content is 2.7%. After a month, the initially yellowish oil is colored black. Without refining return oil and product oil, a lower yield is obtained with a much poorer oil quality.
  • Example 6 A test is carried out as in Example 6, but a fixed bed reactor 16 with 160 kg of catalyst charge is operated after the intermediate separator 14. The amount of fresh hydrogen is 125 m 3 / h.
  • the product oil in the cold separator is 48.5 kg of water-bright and storage-stable oil per hour. It consists of 42% light oil and 58% medium oil. The basic nitrogen content is 12 mg / kg. The oil quality is therefore similar, but the yield is significantly lower than in the process according to the invention.
  • the first fixed bed reactor 12 contains 160 kg of catalyst; the second fixed bed reactor 16 is not operated.
  • the amount of fresh hydrogen is 125 m 3 / h; the hourly amount of sludge distillate is 20 kg.
  • the oil gain from the cold separator 18 is 55 kg per hour.
  • the oil consists of 36% light oil and 64% medium oil.
  • the nitrogen content is 100 mg / kg. After a month, the originally colorless oil turned yellow. The yield is good in this mode of operation according to the prior art; however, the oil quality is insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Kohlehydrierung mittels Sumpfphase- und Katalysator-Festbetthydrierung gemäß dem Oberbegriff des Anspruches 1.The invention relates to a process for coal hydrogenation by means of bottom phase and catalyst fixed bed hydrogenation according to the preamble of claim 1.

Bei der Gewinnung von Ölen aus Kohle durch Druckhydrierung wird die Kohle mit einem im Verfahren fortlaufend zurückgewonnenen destillatartigen Lösungsmittel (Anreibeöl, Anmaischöl, Rückführöl) zu einer pumpfähigen Mischung verrührt und nach Zugabe von Wasserstoff enthaltendem Gas bei Drücken oberhalb 100 bar und Temperaturen zwischen 450 und 500° C in einem oder mehreren Reaktoren in flüssiger Phase (Sumpfphase) umgewandelt. Dabei wird entweder ein feinteiliger Katalysator verwendet und als Bestandteil der Kohlesuspension stetig durch den Reaktionsraum geführt oder ein wallendes Katalysatorbett benutzt, bei dem sich das Katalysatormaterial in stückiger Form im Reaktionsraum befindet. Die Reaktionsprodukte werden zunächst in einem Heißabscheider wenig unterhalb der Reaktionstemperatur in zwei Teilströme, den Sumpf und das Kopfprodukt, aufgetrennt.When extracting oils from coal by pressure hydrogenation, the coal is mixed with a distillate-like solvent (grinding oil, mashing oil, return oil) that is continuously recovered in the process and mixed into a pumpable mixture and, after adding hydrogen-containing gas, at pressures above 100 bar and temperatures between 450 and 500 ° C in one or more reactors in the liquid phase (bottom phase) converted. Either a finely divided catalyst is used and continuously passed through the reaction space as part of the coal suspension, or a flowing catalyst bed in which the catalyst material is in the form of a piece in the reaction space. The reaction products are first separated into two partial streams, the bottom and the top product, in a hot separator a little below the reaction temperature.

Der Sumpf (Abschlamm) enthält die festen und nicht verflüssigbaren Bestandteile der Kohle und gegebenenfalls den Katalysator, außerdem die asphalthaltigen, nicht destillierbaren Produkte der Kohlehydrierung sowie kleine bis mittlere Mengen an destillierbarem Öl. Dieses Öl wird durch Destillation oder durch andere Maßnahmen, wie z. B. Schwelung oder Lösungsmittelextraktion, aus dem Abschlamm zurückgewonnen und zur Herstellung des Rückführöls verwendet. Der Ölarme Rückstand wird gewöhnlich als Einsatzstoff zur Erzeugung von Wasserstoff in geeigneten Vergasungsverfahren verwendet.The sump (sludge) contains the solid and non-liquefiable constituents of the coal and, if appropriate, the catalyst, also the asphalt-containing, non-distillable products of the coal hydrogenation and small to medium amounts of distillable oil. This oil is obtained by distillation or by other measures, such as. B. smoldering or solvent extraction, recovered from the sludge and used to produce the return oil. The low oil residue is commonly used as a feedstock to generate hydrogen in suitable gasification processes.

Das Kopfprodukt des Heißabscheiders kann, falls erforderlich, über einen zweiten Heißabscheider geführt werden, um etwa mitgerissene Feststoffe und Asphaltanteile abzuscheiden. Der Sumpf des zweiten Heißabscheiders wird dann gemeinsam mit dem Abschlamm des ersten Heißabscheiders verarbeitet oder unmittelbar zur Herstellung des Rückführöls benutzt. Das von Feststoffen und Asphalten freie Kopfprodukt des oder der Heißabscheider besteht aus dampfförmigen Ölen: Schweröl, bei Normaldruck oberhalb 325°C siedend; Mittelöl, bei 200 - 325°C siedend; Leichtöl, bis 200° C siedend. Außerdem sind im Kopfprodukt Wasserstoff und Kohlenwasserstoffgase, sowie geringe Mengen weiterer Produkte, wie Wasserdampf und anorganische Gase, enthalten.If necessary, the top product of the hot separator can be passed over a second hot separator in order to separate any entrained solids and asphalt parts. The sump of the second hot separator is then processed together with the sludge from the first hot separator or used directly to produce the return oil. The top product of the hot separator (s), which is free of solids and asphaltene, consists of vaporous oils: heavy oil, boiling above 325 ° C at normal pressure; Medium oil, boiling at 200 - 325 ° C; Light oil, boiling up to 200 ° C. The top product also contains hydrogen and hydrocarbon gases, as well as small amounts of other products such as water vapor and inorganic gases.

Aus der DE-A-2 654 635 ist es bekannt, eine Teilmenge derjenigen Kohlehydrierprodukte, die den Heißabscheider als Dämpfe und Gase verlassen, über einen oder mehrere Reaktoren mit fest angeordnetem Katalysator zu leiten, um raffinierte Produktöle zu erzielen. Ein Nachteil dieser Arbeitsweise besteht darin, daß am Festbettkatalysator ein Einsatzprodukt verarbeitet werden muß, das aus Leichtöl, Mittelöl und Schweröl besteht. Da höhersiedende Kohleölfraktionen in aller Regel erheblich schwieriger zu raffinieren sind als niedrigsiedende, weist das so erzeugte Produktöl bei wirtschaftlich noch tragbarer Katalysatorbelastung relativ hohe Restgehalte an Schwefel-, Sauerstoff- und Stickstoffverbindungen auf. Ein weiterer Nachteil liegt darin, daß dieses Produktöl zu einem Teil aus Schweröl besteht, während für die Verwendung oder Weiterverarbeitung bevorzugt Leicht- und Mittelöle gewünscht werden.From DE-A-2 654 635 it is known to pass a subset of those carbohydrate products which leave the hot separator as vapors and gases over one or more reactors with a fixed catalyst in order to obtain refined product oils. A disadvantage of this procedure is that an insert product consisting of light oil, medium oil and heavy oil has to be processed on the fixed bed catalyst. Since higher-boiling coal oil fractions are generally much more difficult to refine than low-boiling ones, the product oil produced in this way has relatively high residual levels of sulfur, oxygen and nitrogen compounds with an economically viable catalyst load. Another disadvantage is that some of this product oil consists of heavy oil, while light and medium oils are preferred for use or further processing.

In einer anderen Ausführungsform des Verfahrens nach DE-OS-2 654 635 wird die Teilmenge der Dämpfe und Gase aus dem Heißabscheider wesentlich größer gewählt als es dem neugebildeten Öl entspricht; ein großer Teil des zur Kohlebreiherstellung rückgeführten Öls wird also gleichfalls am Festbettkatalysator hydrierend raffiniert. Sofern hierzu nicht entsprechend zusätzlicher Reaktionsraum mit Katalysator vorgesehen wird, verringert sich der Raffinationsgrad des Produktöls noch weiter. Durch Austausch von Leicht- und Mittelöl gegen Schweröl kann bei dieser Fahrweise zwar die Siedelage des Produktöls erniedrigt werden; dies erfordert jedoch einen beträchtlichen Mehrbedarf an Apparaten und an Energie für die Destillationsschritte und verbessert dennoch nicht den Raffinationsgrad der Ölfraktionen.In another embodiment of the method according to DE-OS-2 654 635, the subset of the vapors and gases from the hot separator is chosen to be substantially larger than corresponds to the newly formed oil; A large part of the oil returned to the production of coal pulp is thus also hydrogenated refined on the fixed bed catalyst. Unless additional reaction space with catalyst is provided for this, the degree of refining of the product oil is reduced even further. By replacing light and medium oil with heavy oil, the boiling point of the product oil can be reduced with this mode of operation; however, this requires a significant increase in equipment and energy for the distillation steps and still does not improve the degree of refining of the oil fractions.

Beide Ausführungsformen des Verfahrens nach DE-A-2 654 635 haben überdies den Nachteil, daß Öle aller Siedelagen nur gemeinsam am gleichen Katalysator und deshalb mit mäßiger Raffinationsleistung behandelt werden. Eine besonders intensive Raffination und Hydrierung speziell der leichteren Fraktionen ist aber in der Regel erwünscht, z. B. um sie ohne weitere Hydrierstufe in Reformierverfahren einsetzen zu können; gleichzeitig reicht es gewöhnlich aus, das Rückführöl für die Kohlebreiherstellung und eventuell auch den Mittelölanteil des Produktes nur mäßig intensiv zu hydrieren, so daß hierbei Wasserstoff eingespart werden kann.Both embodiments of the process according to DE-A-2 654 635 also have the disadvantage that oils from all boiling positions are only treated together on the same catalyst and therefore with moderate refining performance. A particularly intensive refining and hydrogenation, especially of the lighter fractions, is usually desirable, e.g. B. to be able to use them in reforming processes without further hydrogenation stage; at the same time, it is usually sufficient to hydrogenate the return oil for the pulp production and possibly also the medium oil content of the product only moderately intensively, so that hydrogen can be saved.

Aus der EP-A-132 526 ist eine Arbeitsweise bekannt, bei der unmittelbar im Anschluß an den Heißabscheider ein Zwischenabscheider betrieben wird, aus dem man den wesentlichen Teil des benötigten Rückführöls entnimmt; ein weiterer, kleinerer Teil wird auch bei diesem Verfahren durch Behandlung des Abschlamms in einer Anlage zur Entspannungsverdampfung (Flashen) gewonnen. Die hinter dem Zwischenabscheider vorhandenen Dämpfe und Gase werden über einen Festbettkatalysator geführt. Deshalb besteht das Produktöl der Kohlehydrierung hierbei aus den jeweils niedrigstsiedenden Ölfraktionen. Auch bei diesem Verfahren ist jedoch eine selektive Behandlung von leichten und mittleren Ölfraktionen nicht möglich. Vor allem aber wird bei diesem Verfahren, ebenso wie bei der ersten Ausführungsform des Verfahrens nach DE-A-2 654 635, das zur Kohlebreiherstellung verwendete Rückführöl nicht hydrierend raffiniert.From EP-A-132 526 a method is known in which an intermediate separator is operated immediately after the hot separator, from which the essential part of the required return oil is removed; a further, smaller part is also obtained in this process by treating the blowdown in a flash evaporation plant. The vapors and gases behind the intermediate separator are passed over a fixed bed catalytic converter. For this reason, the product oil from coal hydrogenation consists of the lowest-boiling oil fractions. However, even with this method, selective treatment of light and medium oil fractions is not possible. Above all, however, this method, like the first embodiment of the method according to DE-A-2 654 635, the return oil used for the production of coal pulp is not hydrogenated refined.

Der Erfindung liegt die Aufgabe zugrunde, die dem gattungsgemäßen Verfahren anhaftenden Nachteile zu vermeiden und ein von Sauerstoff-, Stickstoff- und Schwefelverbindungen im wesentlichen freies Kohlenwasserstofföl in hoher Ausbeute zu erhalten.The object of the invention is to avoid the disadvantages inherent in the generic method and to obtain a hydrocarbon oil which is essentially free of oxygen, nitrogen and sulfur compounds in high yield.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Gattung durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weiterbildungen des Verfahrens sind in den Unteransprüchen niedergelegt.This object is achieved in a method of the type mentioned by the characterizing features of claim 1. Further developments of the method are laid down in the subclaims.

Es wurde überraschenderweise gefunden, daß bereits eine mäßig intensive hydrierende Raffination des gesamten Rückführöls oder des überwiegenden Teils des Rückführöls zu einer ganz erheblichen Steigerung derÖlausbeute im Kohlehydrierreaktor führt und daß dabei gleichzeitig eine besonders weitgehende Raffination des Produktöls erreicht werden kann, wenn die dampf- und gasförmigen Produkte des Reaktors ganz oder zum überwiegenden Teil in einer ersten Hydrierstufe an einem ersten Festbettkatalysator mäßig raffiniert werden und nach dem Auskondensieren des als Rückführöl benötigten höhersiedenden Teils in einem Zwischenabscheider der noch dampf- und gasförmig gebliebene Teil einer zweiten Hydrierung an einem zweiten Festbettkatalysator unterworfen wird.It has surprisingly been found that even a moderately intensive hydrogenating refining of the entire return oil or the major part of the return oil leads to a very considerable increase in the oil yield in the coal hydrogenation reactor and that at the same time a particularly extensive refining of the product oil can be achieved if the vaporous and gaseous ones Products of the reactor are wholly or for the most part moderately refined in a first hydrogenation stage on a first fixed bed catalyst and, after the higher-boiling part required as return oil has been condensed out in an intermediate separator, the still vapor and gaseous part is subjected to a second hydrogenation on a second fixed bed catalyst.

Bei dem erfindungsgemäßen Verfahren wird ein Rückführöl erhalten, das hinsichtlich Dichte und Siedelage leichter ist als nicht raffiniertes Rückführöl. Nur ein geringer Anteil des gesamten verdampfbaren Öls verbleibt im Abschlamm und wird aus diesem gewonnen. In aller Regel beträgt die Temperatur am Kopf des Heißabscheiders mindestens 440°C; dabei werden weniger als 25 % des Rückführöls aus dem Abschlamm erhalten, das sind weniger als 20 % des gesamten verdampfbaren Öls (Produktöl plus Rückführöl).In the process according to the invention, a return oil is obtained which is lighter in terms of density and boiling point than unrefined return oil. Only a small proportion of the total evaporable oil remains in the sludge and is extracted from it. As a rule, the temperature at the head of the hot separator is at least 440 ° C; less than 25% of the return oil is obtained from the sludge, which is less than 20% of the total vaporizable oil (product oil plus return oil).

Bevorzugt wird das aus dem Abschlamm gewonnene Öl unmittelbar in die Hochdruckanlage zurückgepumpt, wobei sowohl die Einspritzung in die heißen Kopfprodukte des Heißabscheiders nützlich sein kann, um die Eintrittstemperatur des ersten Festbettreaktors zu steuern, als auch die Einspritzung vor dem (ersten) Heißabscheider, wobei die fühlbare Wärme der Produkte aus dem Sumpfphasenreaktor zur Verdampfung des Abschlammöls ausreicht.Preferably, the oil obtained from the blowdown is pumped back directly into the high-pressure system, whereby both the injection into the hot top products of the hot separator can be useful to control the inlet temperature of the first fixed bed reactor and the injection before the (first) hot separator, the sensible heat of the products from the bottom phase reactor is sufficient to evaporate the blowdown oil.

Es ist möglich, das Öl aus dem Abschlamm unmittelbar als Rückführöl zur Breiherstellung zu verwenden, jedoch wird die raffinierende Hydrierung auch dieses Bestandteils des Rückführöls bevorzugt, weil auf diese Weise die höchste Ölausbeute und der beste Raffinationsgrad des Produktöls zu erhalten ist. Dadurch kann gemäß einer weiteren Ausbildung des erfindungsgemäßen Verfahrens das Öl aus dem Abschlamm in einem gesonderten Reaktor außerhalb des Gaskreislaufs hydrierend raffiniert werden, wenn eine besonders schonende Fahrweise für das erste Festbettreaktorsystem gewünscht wird; das vorraffinierte Öl kann anschließend entweder in das Kopfprodukt des gegebenenfalls zweiten Heißabscheiders eingespritzt und so am ersten Festbettreaktorsystem weitergehend raffiniert werden, oder es wird unmittelbar als Rückführölfraktion verwendet. In diesem Fall wird das vorraffinierte Öl vorteilhaft unmittelbar nach dem Verlassen des gesonderten Reaktors und mitsamt den begleitenden Gasen und Dämpfen vor den Vorheizer der Sumpfphase geleitet. Die fühlbare Wärme und der überschüssige Wasserstoff werden dabei genutzt, und der Kohlebrei kann entsprechend höherkonzentriert bereitgestellt werden.It is possible to use the oil from the sludge directly as a return oil for the preparation of the slurry, but refining hydrogenation of this component of the return oil is also preferred because the highest oil yield and the best degree of refining of the product oil can be obtained in this way. As a result, according to a further embodiment of the process according to the invention, the oil from the sludge can be hydrogenated in a separate reactor outside the gas cycle if a particularly gentle procedure is desired for the first fixed bed reactor system; the pre-refined oil can then either be injected into the top product of the optionally second hot separator and thus further refined on the first fixed bed reactor system, or it is used directly as a return oil fraction. In this case, the pre-refined oil is advantageously passed immediately after leaving the separate reactor and together with the accompanying gases and vapors before the preheater of the sump phase. The sensible heat and the excess hydrogen are used, and the coal pulp can be made available in a correspondingly higher concentration.

Eine selektive Raffination zur Erzeugung eines unmittelbar als Reformereinsatz geeigneten Leichtöls bei relativ geringem Wasserstoffverbrauch wird gemäß einer Weiterbildung des Verfahrens erreicht werden, wenn nach dem Herausziehen des Rückführöls aus dem Zwischenabscheider eine zweite Zwischenabscheidung bei weiter verringerter Temperatur vorgenommen wird. Zur Verbesserung der Trennschärfe kann eine Hochdruck-Fraktionierkolonne auf dem zweiten Zwischenabscheider angebracht sein. Der Trennschnitt wird bei etwa 185°C gelegt, so daß ein mäßig raffiniertes, jedoch lagerstabiles Mittelöl erzeugt wird, das z. B. als Heizöl verwendet werden kann. Das die Fraktionierkolonne über Kopf verlassende Gemisch aus Dämpfen und Gasen wird nach entsprechender Vorwärmung in dem zweiten Festbettreaktorsystem feingereinigt. Nach Abkühlung wird aus dem Kalt abscheider ein praktisch vollständig von Heteroatomen befreites Leichtöl (bis 185°C siedend) erhalten.A selective refining for producing a light oil which is suitable directly as a reformer and with a relatively low hydrogen consumption will be achieved according to a further development of the method if a second intermediate separation is carried out at a further reduced temperature after the return oil has been extracted from the intermediate separator. A high-pressure fractionation column can be attached to the second intermediate separator to improve the selectivity. The separating cut is placed at about 185 ° C, so that a moderately refined, but storage-stable medium oil is produced, which, for. B. can be used as heating oil. The mixture of vapors and gases leaving the fractionation column overhead is finely cleaned in the second fixed bed reactor system after appropriate preheating. After cooling, a light oil which is practically completely free of heteroatoms (boiling up to 185 ° C.) is obtained from the cold separator.

Das erfindungsgemäße Verfahren besitzt gegenüber den bekannten Verfahren folgende Vorteile:The method according to the invention has the following advantages over the known methods:

Trotz der Entfernung von Sauerstoff und von Stickstoff aus dem Produktöl tritt infolge der gleichzeitig bewirkten hydrierenden Raffination des Rückführöls keine Ausbeuteminderung, sondern im Gegenteil überraschenderweise eine wesentliche Ausbeutezunahme ein.Despite the removal of oxygen and nitrogen from the product oil, due to the simultaneously hydrogenating refining of the return oil, there is no reduction in yield, but, on the contrary, a surprising increase in yield.

Durch die zusätzliche hydrierende Behandlung ausschließlich des Produktöls in dem auf den Zwischenabscheider folgenden Festbettreaktorsystem gelingt die sehr weitgehende Entfernung der Heteroatome aus dem bereits im ersten Festbettreaktorsystem vorraffinierten Öl.The additional hydrogenating treatment exclusively of the product oil in the fixed bed reactor system following the intermediate separator enables the heteroatoms to be very largely removed from the oil which has already been refined in the first fixed bed reactor system.

Das Betreiben des Sumpfphasenreaktors, des Reaktors zur Rückführölhydrierung und des Reaktors zur Feinraffination des Produktöls in einem gemeinsamen Hochdruck-Gaskreislauf erspart gegenüber dem Betrieb getrennter Hochdruckanlagen eine erhebliche Anzahl von Apparaten und Maschinen sowie viel Energie. Da die Öle weniger häufig entspannt werden, sind die Löslichkeitsverluste an Druckwasserstoff geringer. Die bei der Zwischenkondensation geringraffinierter Öle entstehenden höhermolekularen Verbinungen wirken stark schädigend auf Festbettkatalysatoren, weshalb solche Öle in der Regel eine zusätzliche Zwischenbehandlung erfordern, z. B. durch Destillation. Im erfindungsgemäßen Verfahren wird dagegen eine Zwischenkondensation vermieden; die Öle gelangen überwiegend dampfförmig und unter Wasserstoffdruck unmittelbar auf die Raffinationskatalysatoren, die deshalb eine lange Lebensdauer haben. Als Katalysatoren werden die bei der Kohlehydrierung üblichen Verbindungen von Fe, Co, Ni, W, Mo, Zn oder Sn mit Sauerstoff oder Schwefel meist auf einem Träger und auch in Kombinationen mehrerer dieser Verbindungen verwendet.Operating the bottom phase reactor, the reactor for the return oil hydrogenation and the reactor for the fine refining of the product oil in a common high-pressure gas circuit saves a considerable number of apparatus and machines and a lot of energy compared to the operation of separate high-pressure systems. Since the oils are relaxed less often, the solubility losses in pressurized hydrogen less. The high molecular weight compounds formed during the intermediate condensation of low-refined oils have a severe damaging effect on fixed bed catalysts, which is why such oils generally require an additional intermediate treatment, e.g. B. by distillation. In contrast, intermediate condensation is avoided in the process according to the invention; the oils get mainly in vapor form and under hydrogen pressure directly onto the refining catalysts, which therefore have a long service life. As catalysts, the compounds of Fe, Co, Ni, W, Mo, Zn or Sn with oxygen or sulfur that are customary in the hydrogenation of carbon are mostly used on a support and also in combinations of several of these compounds.

Weitere Einzelheiten des erfindungsgemäßen Verfahrens werden anhand der Zeichnungen und von Beispielen näher beschrieben. Die Fig. 1 bis 4 zeigen Fließbilder des erfindungsgemäßen Verfahrens und einiger Modifikationen. Fig. 1 gibt die Arbeitsweise des erfindungsgemäßen Verfahrens mit einem zwischen zwei Festbettreaktoren angeordneten Zwischenabscheider wieder.Further details of the method according to the invention are described in more detail with reference to the drawings and examples. 1 to 4 show flow diagrams of the method according to the invention and some modifications. Fig. 1 shows the operation of the method according to the invention with an intermediate separator arranged between two fixed bed reactors.

In einer Mischanlage 1 wird gemahlene Kohle und gegebenenfalls Katalysatormasse mit dem Öl aus einem Zwischenabscheider 14 zu einem Brei verrührt. Das Verhältnis von Kohle (wasserfrei) zu Öl kann etwa 1 : 0,8 bis 1 : 3 betragen, vorteilhaft sind Verhältnisse zwischen 1 : 1 und 1 : 1,5. Der Kohlebrei wird mit einer Pumpe 2 gegen den Betriebsdruck der Hydrieranlage gefördert, der mehr als 100 bar beträgt, vorzugsweise 150 bis 400 bar. Aus einer Leitung 3 wird Hydriergas zugeführt, das aus Kreislaufgas (Leitung 21) und Wasserstoff (Leitung 22) besteht. Der Wasserstoffgehalt im Kreislaufgas (Hydriergas) soll mehr als 50 Vol.-% betragen. - Kreislaufgas wird außerdem in der hierzu erforderlichen Menge zur Temperaturregelung in verschiedenen Höhen in die Hydrierreaktoren 5, 12 und 16 eingeblasen. - Die Gesamtmenge an Kreislaufgas, gemessen am Verdichter 20, liegt zwischen 1 und 8 Normalkubikmeter je kg Kohle (wasser- und aschefrei); bevorzugt werden 3 bis 5 Kubikmeter je kg Reinkohle. Die Frischwasserstoffmenge beträgt, dem Wasserstoffverbrauch entsprechend, 700 bis 1500 Normalkubikmeter je kg Kohleeinsatz.In a mixing plant 1, ground coal and optionally catalyst mass are mixed with the oil from an intermediate separator 14 to form a slurry. The ratio of coal (anhydrous) to oil can be about 1: 0.8 to 1: 3, ratios between 1: 1 and 1: 1.5 are advantageous. The coal pulp is conveyed with a pump 2 against the operating pressure of the hydrogenation system, which is more than 100 bar, preferably 150 to 400 bar. From a line 3 hydrogenation gas is supplied, which consists of recycle gas (line 21) and hydrogen (line 22). The hydrogen content in the cycle gas (hydrogenation gas) should be more than 50% by volume. - Recycle gas is also blown into the hydrogenation reactors 5, 12 and 16 in the required amount for temperature control at different heights. - The total amount of circulating gas, measured on the compressor 20, is between 1 and 8 normal cubic meters per kg of coal (water and ash free); 3 to 5 cubic meters per kg of pure coal are preferred. The amount of fresh hydrogen is, depending on the hydrogen consumption, 700 to 1500 normal cubic meters per kg of coal used.

Kohlebrei und Hydriergas werden in einem Vorheizer 4 erhitzt und in einem Sumpfphasereaktor 5 bei Temperaturen zwischen 450 und 500° C umgesetzt. Der Reaktor 5 kann aus einem einzigen oder aus mehreren Gefäßen bestehen. Wenn er mit einem wallenden Katalysatorbett ausgestattet ist, braucht der Kohlebrei keine Katalysatormasse zu enthalten. In einem Heißabscheider 6 werden bei 440 bis 480°C Dämpfe und Gase von den flüssigen und festen Stoffen (Abschlamm) getrennt und über Kopf des Abscheiders 6 weitergeleitet. Der Abschlamm wird entspannt und zur Gewinnung von darin enthaltenden Ölen geflasht. Der Flashrückstand dient in üblicher Weise der Erzeugung von Wasserstoff. Die Dämpfe aus dem Flashprozeß werden in einem Wärmetauscher 8 kondensiert und als Flashöl in eine Vorlage 9 geleitet. Das Flashöl wird entweder unmittelbar über eine Leitung 10 A zur Breiherstellung herangezogen, oder eine Hochdruckpumpe 10 fördert das Flashöl in die Dämpfe/Gase aus dem Heißabscheider 6. Die Temperatur des Gemisches wird durch einen Wärmetauscher 11 so reguliert, daß die Eintrittstemperatur im Reaktor 12 den gewünschten Wert (zwischen 350 und 420° C) erhält.Coal slurry and hydrogenation gas are heated in a preheater 4 and reacted in a bottom phase reactor 5 at temperatures between 450 and 500 ° C. The reactor 5 can consist of a single or of several vessels. If it is equipped with a flowing catalyst bed, the coal slurry need not contain any catalyst mass. In a hot separator 6, vapors and gases are separated from the liquid and solid substances (sludge) at 440 to 480 ° C and passed on overhead of the separator 6. The blowdown is decompressed and flashed to extract the oils it contains. The flash residue is used in the usual way to generate hydrogen. The vapors from the flash process are condensed in a heat exchanger 8 and passed into a receiver 9 as flash oil. The flash oil is either used directly via a line 10 A for slurry production, or a high pressure pump 10 delivers the flash oil into the vapors / gases from the hot separator 6. The temperature of the mixture is regulated by a heat exchanger 11 so that the inlet temperature in the reactor 12 den desired value (between 350 and 420 ° C).

Als Katalysatoren in den Reaktoren 12 und 16 werden Hydrier- und Raffinationskatalysatoren der Art verwendet, wie sie bei der Verarbeitung von Kohleölen und von Erdöl üblich sind; dabei können in den Reaktoren 12 bzw. 16 die gleichen oder unterschiedliche Katalysatoren eingesetzt werden, um hinsichtlich Raffinationsgrad, Sättigung, Spaltung und Wasserstoffverbrauch die z. B. für die jegeilige Einsatzkohle oder das jeweilige Endprodukt günstigsten Ergebnisse zu erzielen.Hydrogenation and refining catalysts of the type which are customary in the processing of coal oils and petroleum are used as catalysts in the reactors 12 and 16; the same or different catalysts can be used in the reactors 12 and 16, respectively, in order to improve the degree of refinement, saturation, cleavage and hydrogen consumption. B. to achieve the most favorable results for any coal or the respective end product.

Die Dämpfe/Gase aus dem Reaktor 12 werden in einem Wärmetauscher 13 so weit gekühlt, daß, fortlaufend eine solche Menge an Öl kondensiert wird, wie bei der Herstellung des Kohlebreis verbraucht wird. Dieses Rückführöl wird aus einem Zwischenabscheider 14 entspannt und zur Mischanlage 1 zurückgeführt. Die erforderlichen Temperaturen vor dem Zwischenabscheider 14 liegen zwischen 250 und 350°C.The vapors / gases from the reactor 12 are cooled in a heat exchanger 13 to such an extent that an amount of oil is continuously condensed as is consumed in the production of the pulp. This return oil is expanded from an intermediate separator 14 and returned to the mixing plant 1. The temperatures required before the intermediate separator 14 are between 250 and 350 ° C.

Die Dämpfe und Gase, die den Zwischenabscheider 14 verlassen, werden durch Wärmetausch und ggf. zusätzliche Temperaturregelung (Kühler/Erhitzer 15) auf die Eintrittstemperatur des Festbettreaktors 16 (350 bis 420° C) angehoben. Durch Abkühlen auf Temperaturen unter 50'C in einem Wärmetauscher 17 wird aus dem Gemisch von Dämpfen und Gasen das Produktöl abgeschieden; außerdem kondensiert an dieser Stelle Hydrierwasser, das Ammoniak und Schwefelwasserstoff enthält. Diese Flüssigkeiten werden aus einem Kaltabscheider 18 entspannt und der weiteren Verarbeitung oder Verwendung zugeführt.The vapors and gases that leave the intermediate separator 14 are raised to the inlet temperature of the fixed bed reactor 16 (350 to 420 ° C.) by heat exchange and possibly additional temperature control (cooler / heater 15). By cooling to temperatures below 50'C in a heat exchanger 17, the product oil is separated from the mixture of vapors and gases; In addition, hydrogenation water, which contains ammonia and hydrogen sulfide, condenses at this point. These liquids are expanded from a cold separator 18 and fed to further processing or use.

Am Kopf des Kaltabscheiders 18 wird ein Gasgemisch abgezogen, das im wesentlichen aus Wasserstoff und Kohlenwasserstoffgasen besteht, jedoch auch Schwefelwasserstoff, Ammoniak und geringe Anteile an Kohlenoxiden enthält. In einer Hochdruckgaswäsche 19 wird dieses Gas im erforderlichen Umfang gereinigt und an Wasserstoff angereichert. Ein Kreislaufgasverdichter 20 fördert das Kreislaufgas vor die Hydrierreaktoren zurück.At the top of the cold separator 18, a gas mixture is drawn off, which essentially consists of hydrogen and hydrocarbon gases, but also contains hydrogen sulfide, ammonia and small amounts of carbon oxides. In a high-pressure gas scrubber 19, this gas is cleaned to the required extent and enriched with hydrogen. A cycle gas compressor 20 conveys the cycle gas back to the hydrogenation reactors.

Die Fig. 2 zeigt eine Ausgestaltung des erfindungsgemäßen Verfahrens mit zwei Zwischenabscheidern 14 und 15 A zwischen den beiden Festbettreaktoren 12 und 16. Diese Arbeitsweise ist dann von Vorteil, wenn lediglich der Leichtölanteil des Produktöls sehr weitgehend raffiniert werden muß, der Mittelölanteil jedoch als lagerstabiles, mäßig raffiniertes Produkt weiterverwendet werden kann. Aus dem Dämpfe/Gase-Gemisch nach dem Reaktor 12 wird, wie bereits beschrieben, das Rückführöl gewonnen. Das Kopfprodukt aus dem Zwischenabscheider 14 wird im Wärmetauscher 15 so weit abgekühlt, daß aus dem zweiten Abscheider 15 A im wesentlichen Mittelöl (185 bis 325° C siedend) entnommen werden kann. Dieser Zwischenabscheider 15 A kann nach Art einer Destillationskolonne mit Füllkörpern oder anderen Einbauten zur Verbesserung der Trennschärfe ausgerüstet sein. Die am Kopf des Abscheiders bzw. der Kolonne abziehenden Dämpfe und Gase werden in einem Wärmetauscher 15 B auf die Eintrittstemperatur des Festbettreaktors (350 bis 420° C) gebracht. Aus den Kaltabscheider 13 wird bei dieser Fahrweise ein Öl erhalten, das hauptsächlich aus Leichtöl (Siedeende 185°C) besteht und das Reformereinsatzqualiät aufweist.Fig. 2 shows an embodiment of the method according to the invention with two intermediate separators 14 and 15 A between the two fixed bed reactors 12 and 16. This method of operation is advantageous if only the light oil content of the product oil is very high must be largely refined, but the middle oil content can still be used as a storage-stable, moderately refined product. As already described, the return oil is obtained from the vapors / gases mixture after the reactor 12. The top product from the intermediate separator 14 is cooled in the heat exchanger 15 to such an extent that essentially middle oil (boiling at 185 to 325 ° C.) can be removed from the second separator 15 A. This intermediate separator 15 A can be equipped in the manner of a distillation column with packing or other internals to improve the selectivity. The vapors and gases withdrawing from the top of the separator or the column are brought to the inlet temperature of the fixed bed reactor (350 to 420 ° C.) in a heat exchanger 15 B. In this mode of operation, an oil is obtained from the cold separator 13, which mainly consists of light oil (boiling end 185 ° C.) and has the reformer use quality.

Die Fig. 3 zeigt eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens. Bei dieser Arbeitsweise wird das Destillat aus der Flashanlage 7 mit Hilfe der Pumpe 10 über eine Leitung 26 in die heißen Produkte des Sumpfphasereaktors 5, vor deren Eintritt in den Heißabscheider 6, eingespritzt. Die zur Verdampfung des Flashöls erforderliche Wärme wird dabei den Produkten des Sumpfphasereaktors 5 entnommen.3 shows a further embodiment of the method according to the invention. In this mode of operation, the distillate from the flash system 7 is injected with the aid of the pump 10 via a line 26 into the hot products of the bottom phase reactor 5, before they enter the hot separator 6. The heat required to evaporate the flash oil is removed from the products of the bottom phase reactor 5.

Fig. 4 gibt eine Ausgestaltung des erfindungsgemäßen Verfahrens wieder, bei der ein zusätzlicher Reaktor 25 außerhalb des geneinsamen Gaskreislaufes angeordnet ist. Gemäß dieser Fahrweise wird das Flashöl nach dem Zufügen von Wasserstoff oder wasserstoffhaltigem Gas über eine Leitung 23 in einem Wärmetauscher/ Vorheizer 24 erhitzt und in dem Festbettreaktor 25 bei 350 bis 420° C unter etwa gleichem Druck wie in den anderen Reaktoren hydriert. Die Zugabe von Wasserstoff zu Flashöl liegt dabei im Bereich von 0,5 bis 5 m3/kg. Die gesamten Austrittsprodukte des Reaktors 25 werden durch Leitung 26 dem bereits unter Druck befindlichen Kohlebrei vor dem Vorheizer 4 zugeführt. Der Feststoffgehalt des in der Mischanlage 1 hergestellten Kohlebreis wird dementsprechend höher eingestellt als bei den übrigen Arbeitsweisen. Der im Reaktor 25 nicht verbrauchte Wasserstoff steht für die Sumpfphasehydrierung vollständig zur Verfügung; die Frischwasserstoffzufuhr über Leitung 22 kann daher entsprechend verringert werden.4 shows an embodiment of the method according to the invention, in which an additional reactor 25 is arranged outside the common gas circuit. According to this procedure, the flash oil is heated via a line 23 in a heat exchanger / preheater 24 after the addition of hydrogen or hydrogen-containing gas and hydrogenated in the fixed bed reactor 25 at 350 to 420 ° C. under approximately the same pressure as in the other reactors. The addition of hydrogen to flash oil is in the range from 0.5 to 5 m 3 / kg. The entire outlet products of the reactor 25 are fed through line 26 to the pulp which is already under pressure upstream of the preheater 4. The solids content of the coal pulp produced in the mixing plant 1 is accordingly set higher than in the other working methods. The hydrogen not consumed in the reactor 25 is completely available for the bottom phase hydrogenation; the fresh hydrogen supply via line 22 can therefore be reduced accordingly.

Im Rahmen des erfindungsgemäßen Verfahrens sind auch Kombinationen der beschriebenen Ausgestaltung möglich. So kann z. B. die Arbeitsweise nach Fig. 2 in entsprechender Weise ausgestaltet werden wie die nach Fig. 1. Außerdem sind weitere Ausgestaltungen möglich; z. B. können die Produkte des Festbettreaktors 25 (Fahrweise nach Fig. 4) auch an anderer Stelle der Hydrieranlage, z. B. nach dem Heißabscheider 6 oder nach dem Festbettreaktor 12, zugegeben werden.Combinations of the described configuration are also possible within the scope of the method according to the invention. So z. B. the mode of operation according to FIG. 2 can be designed in a manner corresponding to that according to FIG. 1. In addition, further configurations are possible; e.g. B. the products of the fixed bed reactor 25 (operation according to FIG. 4) also elsewhere in the hydrogenation system, for. B. after the hot separator 6 or after the fixed bed reactor 12.

Durch die folgenden Beispiele werden die Arbeitsweise und die damit verbundenen wesentlichen Vorzüge des erfindungsgemäßen Verfahrens weiter erläutert.The following examples further explain the mode of operation and the associated essential advantages of the method according to the invention.

Beispiel 1example 1

(Arbeitsweise nach Anspruch 1 des erfindungsgemäßen Verfahrens.)(Operation according to claim 1 of the method according to the invention.)

In einer Anlage nach Beispiel 1 werden stündlich 126 kg wasserfreie Gasflammkohle (120 kg/h wasser- und aschefrei gerechnet) mit 5 kg getrockneter Rotmasse und 134 kg/h Rückführöl zu einem Brei vermischt und zusammen mit 650 m3/h Hydriergas (Gasmengen unter Normalbedingungen) bestehend aus 150 m3/h Frischwasserstoff und 500 m3/h Kreislaufgas (enthält 60 Vot.-% Wasserstoff) durch einen Sumpfphasereaktor 5 geleitet. Der Druck in Reaktor 5 beträgt 400 bar, die Temperatur 470° C. Die Temperatur im Dampfraum des Heißabscheiders 6 wird bei 440°C gehalten. Der Abschlamm aus dem Heißabscheider 6 wird einer Entspannungsverdampfung (Flashen) im Vakuum unterzogen; dabei fallen 24 kg/h Flashöl an, das ohne weitere Behandlung zur Herstellung des Rückführöls verwendet wird. Die gesamten Kopfprodukte des Heißabscheiders 6 werden durch den Festbettreaktor 12 geleitet, der 80 kg eines handelsüblichen Katalysators aus sulfidischem Nickel und Molybdän auf Al3O3-Si02-Träger enthält. Die mittlere Katalysatortemperatur beträgt 380° C, der Druck 400 bar. Die austretenden Produkte werden auf 275°C gekühlt. Dabei fallen 110 kg/h Öl flüssig an, die aus dem Zwischenabscheider 14 entnommen und mit dem Flashöl aus der Leitung 10 A vereinigt werden. Das so erzeugte Rückführöl enthält 38 % Schweröl (über 325°C siedend) und 62 % Mittelöl. Die Kopfprodukte des Zwischenabscheiders 14 werden durch den Festbettreaktor 16 geleitet, der mit 80 kg eines handelsüblichen Katalysators, bestehend aus Molybdänsulfid und Nickelsulfid auf Tonerdeträger, gefüllt ist. Die mittlere Katalysatortemperatur beträgt 390°C, der Druck 400 bar. Durch Abkühlen auf 20°C werden aus den Reaktionsprodukten 65 kg/h (54 % der waf-Kohle) wasserklares Produktöl kondensiert, die aus dem Kaltabscheider 18 abgelassen werden. Das Produktöl enthält 20 mg/kg basischen Stickstoff und 50 mg/kg phenolischen Sauerstoff. Nach 1 Monat Lagerung unter Luft- und Lichtabschluß ist das Öl schwach gelblich. Die Ölausbeute ist höher und gleichzeitig ist die Ölqualität erheblich besser als bei der Kohlehydrierung ohne integrierte Raffinationsstufen.In a plant according to Example 1, 126 kg of water-free gas flame coal (120 kg / h free of water and ash) are mixed with 5 kg of dried red mass and 134 kg / h of return oil to form a slurry and together with 650 m 3 / h of hydrogenation gas (gas quantities below Normal conditions) consisting of 150 m 3 / h of fresh hydrogen and 500 m 3 / h of cycle gas (contains 60% by vote hydrogen) passed through a bottom phase reactor 5. The pressure in reactor 5 is 400 bar, the temperature 470 ° C. The temperature in the vapor space of the hot separator 6 is kept at 440 ° C. The sludge from the hot separator 6 is subjected to flash evaporation (flashing); this results in 24 kg / h of flash oil, which is used without further treatment to produce the return oil. The entire top products of the hot separator 6 are passed through the fixed bed reactor 12, which contains 80 kg of a commercially available catalyst made of sulfidic nickel and molybdenum on Al3O3-Si0 2 carrier. The average catalyst temperature is 380 ° C, the pressure 400 bar. The emerging products are cooled to 275 ° C. 110 kg / h of oil are obtained in liquid form, which are removed from the intermediate separator 14 and combined with the flash oil from the line 10 A. The return oil produced in this way contains 38% heavy oil (boiling above 325 ° C) and 62% medium oil. The top products of the intermediate separator 14 are passed through the fixed bed reactor 16, which is filled with 80 kg of a commercially available catalyst consisting of molybdenum sulfide and nickel sulfide on alumina carrier. The mean catalyst temperature is 390 ° C, the pressure 400 bar. By cooling to 20 ° C., 65 kg / h (54% of the waf coal) of water-clear product oil are condensed from the reaction products and are discharged from the cold separator 18. The product oil contains 20 mg / kg basic nitrogen and 50 mg / kg phenolic oxygen. After storage for 1 month under the exclusion of air and light, the oil is slightly yellowish. The oil yield is higher and at the same time the oil quality is considerably better than with coal hydrogenation without integrated refining stages.

Beispiel 2Example 2

(Arbeitsweise nach Anspruch 1 des erfindungsgemäßen Verfahrens, bei der das Rückführöl vollständig aus dem Zwischenabscheider gewonnen wird.)(Operation according to claim 1 of the method according to the invention, in which the return oil is obtained entirely from the intermediate separator.)

In einer Anlage nach der Fig. 1 werden stündlich 105 kg trockene Gasflammkohle (entsprechend 100 kg/h, wasser- und aschefrei gerechnet) mit 4 kg/h getrockneter Rotmasse und 154 kg/h Rückführöl zu einem Kohlebrei vermischt und zusammen mit 625 m3/h Hydriergas, bestehend aus 125 m3/h Frischwasserstoff und 500 m3/h Kreislaufgas (enthält 80 Vol.-% Wasserstoff), durch den Sumpfphasereaktor 5 von 200 I Inhalt geleitet. Der Druck im Reaktor 5 beträgt 300 bar, die Temperatur 470° C. Die Temperatur im Heißabscheider 6 wird bei 440° C gehalten. Der Abschlamm aus dem Heißabscheider 6 wird einer Entspannungsverdampfung im Vakuum unterworfen; dabei werden 21 kg/h Destillat erhalten, die vor den Eingang des Festbettreaktors 12 gepumpt werden. Durch diesen Reaktor 12 wird außerdem das gesamte Kopfprodukt des Heißabscheiders 6 geleitet. Der Reaktor 12 enthält 80 kg eines handelsüblichen Raffinationskatalysators auf Basis Nickel, Molybdän und Tonerde; die mittlere Katalysatortemperatur beträgt 390°C. Durch Abkühlen der Produkte, die den Reaktor 12 verlassen, auf 290° C, werden 154 kg/h Öl erhalten und aus dem Zwischenabscheider 14 entnommen; das Öl wird fortlaufend zur Kohlebreiherstellung zurückgeführt.In an installation according to FIG. 1, 105 kg of dry gas coal (corresponding to 100 kg / h, free of water and ash) are mixed with 4 kg / h of dried red mass and 154 kg / h of return oil to form a coal paste and together with 625 m 3 / h hydrogenation gas, consisting of 125 m 3 / h fresh hydrogen and 500 m 3 / h cycle gas (contains 80 vol .-% hydrogen), passed through the bottom phase reactor 5 of 200 l content. The pressure in the reactor 5 is 300 bar, the temperature 470 ° C. The temperature in the hot separator 6 is kept at 440 ° C. The blowdown from the hot separator 6 is subjected to flash evaporation; 21 kg / h of distillate are obtained, which are pumped in front of the inlet of the fixed bed reactor 12. The entire top product of the hot separator 6 is also passed through this reactor 12. The reactor 12 contains 80 kg of a commercially available refining catalyst based on nickel, molybdenum and alumina; the average catalyst temperature is 390 ° C. By cooling the products leaving the reactor 12 to 290 ° C., 154 kg / h of oil are obtained and removed from the intermediate separator 14; the oil is continuously returned to the production of pulp.

Das Rückführöl besteht zu 30 % aus Schweröl über 325° C siedend und zu 70 % aus Mittelöl bis 325°C siedend. Die Dämpfe und Gase, die am Kopf des Zwischenabscheiders 14 abziehen, werden über den Festbettreaktor 16 geleitet, der gleichfalls 80 kg eines handelsüblichen Raffinationskatalysators auf Basis Ni, Mo und A1203 enthält. Die Katalysatortemperatur beträgt im Mittel 390°C. Durch Abkühlen der Reaktoraustrittsprodukte auf 20°C fallen im Kaltabscheider 18 55 kg wasserhelles Produktöl an, das zu 40 % aus Leichtöl (< 185°C) und zu 60 % aus Mittelöl (185 - 325° C) besteht. Nach einem Monat ist das Öl noch immer farblos. Das Öl enthält nur 6 mg/kg basischen Stickstoff und weniger als 15 mg/kg phenolischen Sauerstoff. Das Leichtöl allein enthält weniger als 2 mg/kg Stickstoff. Der Ölgewinn beträgt also 55 % und die Ölqualität ist gut.The return oil consists of 30% heavy oil boiling above 325 ° C and 70% medium oil boiling up to 325 ° C. The vapors and gases that are drawn off at the top of the intermediate separator 14 are passed over the fixed bed reactor 16, which also contains 80 kg of a commercially available refining catalyst based on Ni, Mo and A1 2 0 3 . The average catalyst temperature is 390 ° C. By cooling the reactor outlet products to 20 ° C, 18 55 kg of water-light product oil are obtained in the cold separator, which consists of 40% light oil (<185 ° C) and 60% medium oil (185 - 325 ° C). After a month, the oil is still colorless. The oil contains only 6 mg / kg basic nitrogen and less than 15 mg / kg phenolic oxygen. The light oil alone contains less than 2 mg / kg nitrogen. So the oil gain is 55% and the oil quality is good.

Beispiel 3Example 3

(Arbeitsweise nach Anspruch 2 des erfindungsgemäßen Verfahrens mit zusätzlichem Zwischenabscheider.)(Operation according to claim 2 of the method according to the invention with an additional intermediate separator.)

Ein Versuch wird unter den gleichen Bedingungen wie im Beispiel 2 durchgeführt, jedoch werden die bei 290° C über Kopf des Zwischenabscheiders 14 geführten Dämpfe und Gase auf 170°C gekühlt und in den Abtriebsteil einer hochdruckfest ausgeführten Füllkörperkolonne 15 A mit etwa 25 theoretischen Böden (bei 20 I/h Flüssigkeitsbelastung) eingeleitet. Aus dem Sumpf der Kolonne werden 33 kg/h Mittelöl vom Siedebereich 175 - 325° C entspannt. Die am Kolonnenkopf bei 160°C abziehenden Dämpfe und Gase werden erwärmt und über den Festbettreaktor 16 geleitet. Der Reaktor 16 enthält 50 kg eines handelsüblichen Ni-Mo-AI203 Raffinationskatalysators. Die mittlere Temperatur des Katalysatorbettes wird bei 375°C gehalten. Die Reaktoraustrittsprodukte werden auf 20°C gekühlt; aus dem Kaltabscheider erhält man stündlich 22 kg Leichtöl mit einem Siedeende von 185°C.An experiment is carried out under the same conditions as in Example 2, but the vapors and gases carried at 290 ° C overhead of the intermediate separator 14 are cooled to 170 ° C and in the stripping section of a high pressure-resistant packed column 15 A with about 25 theoretical plates ( at 20 I / h liquid load) initiated. 33 kg / h of medium oil with a boiling range of 175-325 ° C. are released from the bottom of the column. The vapors and gases withdrawing at the top of the column at 160 ° C. are heated and passed over the fixed bed reactor 16. The reactor 16 contains 50 kg of a commercially available Ni-Mo-Al 2 0 3 refining catalyst. The average temperature of the catalyst bed is kept at 375 ° C. The reactor outlet products are cooled to 20 ° C; 22 kg of light oil per hour with a boiling end of 185 ° C are obtained from the cold separator.

Das Mittelöl enthält 0,06 % basischen Stickstoff und <0,1 % Sauerstoff. Nach 1 Monat Lagerung unter Luft und Lichtabschluß ist das Öl strohgelb; es hat keine Sedimente gebildet. Das Leichtöl enthält je < 1 mg/kg titrierbaren Stickstoff und Sauerstoff. Es ist nach 1-monatiger Lagerung unverändert wasserhell.The medium oil contains 0.06% basic nitrogen and <0.1% oxygen. After 1 month of storage in the air and in the dark, the oil is straw yellow; it has not formed any sediments. The light oil contains <1 mg / kg titratable nitrogen and oxygen. After 1 month of storage, it remains water-light.

Beispiel 4Example 4

(Arbeitsweise nach Anspruch 3 des erfindungsgemäßen Verfahrens.)(Operation according to claim 3 of the method according to the invention.)

In einer Hydrieranlage ähnlich Fig. 3 werden stündlich 100 kg einer Flammkohle (wasser- und aschefrei gerechnet) zusammen mit 4 kg/h getrockneter Rotmasse und 154 kg/h Rückführöl bei 468° C Reaktionstemperatur und 280 bar Druck durch den Sumpfphasereaktor 5 von 200 I Volumen geleitet. Außerdem werden 550 m3/h Kreislaufgas (80 % Wasserstoff) und 125 m3/h Frischwasserstoff eingeleitet. Die Reaktoraustrittsprodukte werden in dem Heißabscheider 6 bei 450 °C in flüssigen Abschlamm und in einen über Kopf abziehenden Dämpfe/Gase-Strom zerlegt. Dieser wird über einen unmittelbar folgenden kleineren zweiten Heißabscheider 9 bei 445 ° C geführt.In a hydrogenation plant similar to FIG. 3, 100 kg of flame coal (calculated free of water and ash) per hour together with 4 kg / h of dried red mass and 154 kg / h of return oil at a reaction temperature of 468 ° C. and 280 bar pressure through the bottom phase reactor 5 of 200 l Volume directed. In addition, 550 m 3 / h of cycle gas (80% hydrogen) and 125 m 3 / h of fresh hydrogen are introduced. The reactor outlet products are broken down in the hot separator 6 at 450 ° C. into liquid sludge and into an overhead vapor / gas stream. This is passed over an immediately following smaller second hot separator 9 at 445 ° C.

Aus dem Abschlamm des Heißabscheiders 6 werden in einer Anlage 7 zur Entspannungsverdampfung im Vakuum 18 kg/h Flashöl abdestilliert. Dieses wird mit dem hauptsächlich aus Öl bestehenden Abschlamm (2 kg/h) des zweiten Heißabscheiders 9 vereinigt und über die Leitung 26 in die Reaktoraustrittsprodukte eingepumpt, bevor diese den Heißabscheider 6 erreichen.Flash oil is distilled off from the sludge of the hot separator 6 in a system 7 for flash evaporation in a vacuum. This is combined with the sludge (2 kg / h) of the second hot separator 9, which consists mainly of oil, and is pumped via line 26 into the reactor outlet products before they reach the hot separator 6.

Die Kopfprodukte des zweiten Heißabscheiders 9 werden bei 380° C über 80 I eines Ni-Mo-Tonerde-Katalysators im Reaktor 12 geleitet. Nach Abkühlen auf 280°C fallen im Zwischenabscheider 14 154 kg/h Öl an, die zur Breiherstellung verwendet werden. Der Kopfproduktstrom aus dem Zwischenabscheider 14 wird auf 390° C erwärmt und bei 400° C über 80 I eines Co-Mo-Al2O3-Katalysators im Reaktor 16 geleitet. Nach dem Abkühlen der Produkte des Reaktors 16 erhält man aus dem Kaltabscheider 18 54 kg/h Produktöl mit einem Gehalt an basischem Stickstoff von 10 mg/kg und an phenolischem Sauerstoff von 15 mg/kg. Das Öl besteht zu 45 % aus Leichtöl; der Rest ist Mittelöl Nach 1 Monat Lagerung ist eine schwach gelbe Verfärbung des ursprünglich wasserhellen Ölseingetreten.The top products of the second hot separator 9 are passed at 380 ° C. over 80 l of a Ni-Mo alumina catalyst in the reactor 12. After cooling to 280 ° C 14 154 kg / h of oil are obtained in the intermediate separator, which are used for the production of slurry. The overhead product stream from the intermediate separator 14 is heated to 390 ° C. and passed at 400 ° C. over 80 l of a Co-Mo-Al 2 O 3 catalyst in the reactor 16. After cooling the products of the Reactor 16 is obtained from the cold separator 18 54 kg / h product oil with a basic nitrogen content of 10 mg / kg and phenolic oxygen of 15 mg / kg. The oil consists of 45% light oil; the rest is medium oil. After 1 month of storage there was a slight yellow discolouration of the originally water-light oil.

Beispiel 5Example 5

(Arbeitsweise nach Anspruch 4 des erfindungsgemäßen Verfahrens.)(Operation according to claim 4 of the method according to the invention.)

In einer entsprechend Fig. 4 ausgerüsteten Hydrieranlage wird ein Hydrierversuch mit einer subbituminösen Kohle vorgenommen. Dabei werden 109 kg/h der wasserfreien Kohle (entsprechend 100 kg/h Kohle, wasser- und aschefrei gerechnet) mit 4 kg/h Rotmasse und 87 kg/h Rückführöl zu einer Suspension verrührt, die kontinuierlich mit der Hochdruckpumpe 2 zum Vorheizer 4. gefördert wird. Vor dem Vorheizer 4 wird Kreislaufgas, das 85 Vol.-% Wasserstoff enthält, in einer Menge von 150 m3/h zugeführt. Außerdem werden dem Kohlebrei vor dem Vorheizer 4 die heißen flüssigen und gasförmigen Produkte aus dem Festbettreaktor 25 zugemischt, der mit 25 kg eines Ni-Mo-Katalysators auf Tonerdeträger gefüllt ist. In dem Reaktor 25 wird das gesamte Flashöl (25 kg/h) mit 125 m3/h Frischwasserstoff bei einer Temperatur von 385°C und bei 152 bar Druck behandelt. Der Sumpfphasereaktor 5 hat ein Volumen von 200 I; er wird bei einer Temperatur von 458° C und einem Druck von 150 bar betrieben. Die Produkte werden im Heißabscheider 6 bei 450° C in den flüssigen Abschlamm und in einen Strom aus Dämpfen und Gasen zerlegt, der nach Abkühlung aus 370°C durch den Reaktor 12 mit 80 kg Katalysatorfestbett geleitet wird. Der Katalysator ist ein handelsüblicher Hydrierkatalysator, der aus Wolfram- und Nickelsulfid auf Tonerdeträger besteht; der Druck im Reaktor beträgt 150 bar, die Temperatur 390° C. Die Produkte des Reaktors 12 werden auf 330° C gekühlt; aus dem nachfolgenden Zwischenabscheider 14 lassen, sich 87 kg/h eines Mittelöl/Schwerölgemisches entnehmen, die vollständig als Rückführöl verwendet werden.In a hydrogenation system equipped according to FIG. 4, a hydrogenation test is carried out with a sub-bituminous coal. 109 kg / h of the anhydrous coal (corresponding to 100 kg / h coal, free of water and ash) are mixed with 4 kg / h red mass and 87 kg / h return oil to a suspension, which is continuously pumped to the preheater 4 using the high-pressure pump 2. is promoted. In front of the preheater 4, recycle gas containing 85% by volume of hydrogen is supplied in an amount of 150 m 3 / h. In addition, the hot liquid and gaseous products from the fixed-bed reactor 25, which is filled with 25 kg of a Ni-Mo catalyst on an alumina carrier, are mixed into the coal slurry before the preheater 4. In the reactor 25, the entire flash oil (25 kg / h) is treated with 125 m 3 / h of fresh hydrogen at a temperature of 385 ° C. and at 152 bar pressure. The bottom phase reactor 5 has a volume of 200 l; it is operated at a temperature of 458 ° C and a pressure of 150 bar. The products are broken down in the hot separator 6 at 450 ° C. into the liquid sludge and into a stream of vapors and gases which, after cooling from 370 ° C., is passed through the reactor 12 with a fixed bed of catalyst of 80 kg. The catalyst is a commercially available hydrogenation catalyst which consists of tungsten and nickel sulfide on alumina support; the pressure in the reactor is 150 bar, the temperature is 390 ° C. The products of the reactor 12 are cooled to 330 ° C.; can be removed from the subsequent intermediate separator 14, 87 kg / h of a medium oil / heavy oil mixture, which are used entirely as return oil.

Der Abschlamm aus dem Heißabscheider 6 liefert beim Behandeln im Flash-Verdampfer 25 kg/h Flashöl, das durch Sättigen mit Schwefelwasserstoffgas geschwefelt und danach wie beschrieben hydriert und weiterverwendet wird.The sludge from the hot separator 6 supplies 25 kg / h of flash oil when treated in a flash evaporator, which is sulfurized by saturation with hydrogen sulfide gas and is then hydrogenated and used as described.

Das dampf- und gasförmige Kopfprodukt des Zwischenabscheiders wird von 330°C auf 370° C erwärmt und durch einen Reaktor mit 80 kg festem Ni-Mo-A1203-Katalysator geführt, wobei der Druck weiterhin 150 bar beträgt und die Temperatur bei 375°C eingestellt wird. Nach dem Abkühlen der Reaktionsprodukte auf 20°C werden aus dem Kaltabscheider 56,5 kg/h Produktöl erhalten, das zu 40 % aus Leichtöl und zu 60 % aus Mittelöl besteht; der Gehalt an basischem Stickstoff beträgt 8 mg/kg, der Gehalt an phenolischem Sauerstoff etwa 15 mg/kg. Nach 1 Monat unter Luft- und Lichtausschluß ist das Öl unverändert wasserhell.The vapor and gaseous top product of the intermediate separator is heated from 330 ° C to 370 ° C and passed through a reactor with 80 kg of solid Ni-Mo-A1 2 0 3 catalyst, the pressure still being 150 bar and the temperature at 375 ° C is set. After the reaction products have cooled to 20 ° C., 56.5 kg / h of product oil are obtained from the cold separator, which consists of 40% light oil and 60% middle oil; the basic nitrogen content is 8 mg / kg, the phenolic oxygen content is approximately 15 mg / kg. After 1 month in the absence of air and light, the oil remains water-white.

Beispiel 6Example 6

(Vergleichsbeispiel ohne Raffination des Rückführöls und des Produktöls.)(Comparative example without refining the return oil and the product oil.)

Ein Versuch wie im Beispiel 2 wird durchgeführt, jedoch enhält die Anlage weder einen Festbettreaktor 12 nach dem Heißabscheider 6 noch einen Festbettreaktor 16 nach dem Zwischenabscheider 14. Die Fischwasserstoffmenge beträgt 100 m3/h. Die stündliche Menge an Destillatöl aus der Entspannungsverdampfung des Abschlamms liegt bei 30 kg. Durch Abkühlen der Dämpfe aus dem Heißabscheider 6 auf 300° C werden aus dem Zwischenabscheider 14 stündlich 124 kg/h Öl erhalten, mit dem Abschlammdestillat vereinigt und fortlaufend zur Kohlebreiherstellung zurückgeführt. Das Rückführöl enthält 45 % Mittelöl, der Rest ist Schweröl. Am Kaltabscheider 18 wird stündlich eine Produktölmenge von 49,5 kg erhalten, die zu 23 % aus Leichtöl und zu 77 % aus Mittelöl besteht. Der Gehalt des Öls an basischem Stickstoff beträgt 0,76 %, der Gehalt an phenolischem Sauerstoff 2,7 %. Nach einem Monat ist das anfangs gelbliche Öl schwarz gefärbt. Ohne Raffination von Rückführöl und Produktöl wird also eine geringere Ausbeute bei wesentlich schlechterer Ölqualität erhalten.A test as in Example 2 is carried out, but the system does not contain a fixed bed reactor 12 after the hot separator 6 or a fixed bed reactor 16 after the intermediate separator 14. The amount of fish hydrogen is 100 m 3 / h. The hourly amount of distillate oil from the flash evaporation of the sludge is 30 kg. By cooling the vapors from the hot separator 6 to 300 ° C., 124 kg / h of oil are obtained per hour from the intermediate separator 14, combined with the blowdown distillate and continuously returned to the production of pulp. The return oil contains 45% medium oil, the rest is heavy oil. An hourly product oil quantity of 49.5 kg is obtained at the cold separator 18, which consists of 23% light oil and 77% medium oil. The basic nitrogen content of the oil is 0.76% and the phenolic oxygen content is 2.7%. After a month, the initially yellowish oil is colored black. Without refining return oil and product oil, a lower yield is obtained with a much poorer oil quality.

Beispiel 7Example 7

(Vergleichsbeispiel - Raffination nur des Produktöls):(Comparative example - refining only the product oil):

Ein Versuch wie bei Beispiel 6 wird vorgenommen, jedoch wird nach dem Zwischenabscheider 14 ein Festbettreaktor 16 mit 160 kg Katalysatorfüllung betrieben. Die Frischwasserstoffmenge beträgt 125 m3/h.A test is carried out as in Example 6, but a fixed bed reactor 16 with 160 kg of catalyst charge is operated after the intermediate separator 14. The amount of fresh hydrogen is 125 m 3 / h.

Als Produktöl fallen im Kaltabscheider 18 stündlich 48,5 kg wasserhelles und lagerstabiles Öl an. Es besteht zu 42 % aus Leichtöl und zu 58 % aus Mittelöl. Der Gehalt an basischem Stickstoff liegt bei 12 mg/kg. Die Ölqualität ist also ähnlich, die Ausbeute jedoch wesentlich geringer als beim erfindungsgemäßen Verfahren.The product oil in the cold separator is 48.5 kg of water-bright and storage-stable oil per hour. It consists of 42% light oil and 58% medium oil. The basic nitrogen content is 12 mg / kg. The oil quality is therefore similar, but the yield is significantly lower than in the process according to the invention.

Beispiel 8Example 8

(Vergleichsbeispiel; Raffination des Gesamtöls.)(Comparative example; refining the total oil.)

In einem ähnlichen Versuch wie in Beispiel 2 enthält der erste Festbettreaktor 12 160 kg Katalysator; der zweite Festbettreaktor 16 wird nicht betrieben. Die Frischwasserstoffmenge beträgt 125 m3/h; die stündliche Menge an Abschlammdestillat liegt bei 20 kg. Der Ölgewinn aus dem Kaltabscheider 18 beträgt stündlich 55 kg. Das Öl besteht zu 36 % aus Leichtöl und zu 64 % aus Mittelöl. Der Stickstoffgehalt liegt bei 100 mg/kg. Nach einem Monat ist das ursprünglich farblose Öl gelb gefärbt. Die Ausbeute ist bei dieser Fahrweise nach dem Stand der Technik gut; die Ölqualität ist jedoch ungenügend.In a similar experiment as in Example 2 the first fixed bed reactor 12 contains 160 kg of catalyst; the second fixed bed reactor 16 is not operated. The amount of fresh hydrogen is 125 m 3 / h; the hourly amount of sludge distillate is 20 kg. The oil gain from the cold separator 18 is 55 kg per hour. The oil consists of 36% light oil and 64% medium oil. The nitrogen content is 100 mg / kg. After a month, the originally colorless oil turned yellow. The yield is good in this mode of operation according to the prior art; however, the oil quality is insufficient.

Claims (4)

1. Process for coal hydrogenation by means of liquidphase and fixed-bed catalytic hydrogenation, in which an asphalt-free pasting oil (recycle oil) originating from the process and hydrogen-containing circulating gas are added to the feed coal in the liquid phase under pressures of more than 100 bar and at temperatures from 450 to 500° C in the presence of a catalyst, the gaseous and vaporous hydrogenation products of the liquid phase are separated in at least one hot separator from the solid-containing sludge, the total top product from the hot separator is subjected to a hydro- treatment in at least two downstream fixed-bed reactors under the same pressure as that in the liquid phase and the product oil is taken off in a cold separator with simultaneous separation of the circulating gas after condensation of the vaporous reaction products from the second fixed-bed reactor, characterized in that
- 75 to 100 % of the recycle oil required for preparing the coal paste is obtained from an intermediate separator arranged downstream of a first fixed-bed reactor system,
- up to 25 % of the recycle oil is obtained from the sludge of the hot separator or separators, and
- the top product from the intermediate separator is subjected to hydrogenating, refining and, as appropriate, cracking treatment in a second fixed-bed reactor system consisting of one or more reactors.
2. Process according to claim 1, characterized in that, downstream of the intermediate separator, a second intermediate separator is provided from which a storage-stable but not fully refined middle oil is obtained by partial condensation of the top products, and substantially light oil of reformer feed quality is obtained from the cold separator.
3. Process according to claim 1 or 2, characterized in that the recycle oil obtained from the sludge of the hot separator and a second hot separator which may be present is recycled to a point upstream of the first hot separator.
4. Process according to claim 1 or 2, characterized in that the oil obtained from the sludge of the hot separator and a second hot separator which may be present is hydro- pretreated in an additional fixed-bed reactor outside the gas circulation and the total top products from this reactor are fed as recycle oil to the coal paste before or during heating-up.
EP86106751A 1985-06-03 1986-05-16 Coal hydrogenation process by liquid phase and fixed-bed catalyst hydrogenation Expired EP0209665B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3519830 1985-06-03
DE19853519830 DE3519830A1 (en) 1985-06-03 1985-06-03 METAL OF COAL HYDRATION WITH INTEGRATED REFINING STAGES

Publications (2)

Publication Number Publication Date
EP0209665A1 EP0209665A1 (en) 1987-01-28
EP0209665B1 true EP0209665B1 (en) 1988-10-12

Family

ID=6272296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86106751A Expired EP0209665B1 (en) 1985-06-03 1986-05-16 Coal hydrogenation process by liquid phase and fixed-bed catalyst hydrogenation

Country Status (7)

Country Link
US (1) US4741822A (en)
EP (1) EP0209665B1 (en)
JP (1) JPH0784597B2 (en)
AU (2) AU8658089A (en)
DE (2) DE3519830A1 (en)
SU (1) SU1468427A3 (en)
ZA (1) ZA864365B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106757A (en) * 1997-10-08 1999-04-20 Nippon Brown Coal Liquefaction Corp Method for stabilizing liquefied coal
US7720677B2 (en) * 2005-11-03 2010-05-18 Coding Technologies Ab Time warped modified transform coding of audio signals
WO2008036637A1 (en) * 2006-09-18 2008-03-27 Newton Jeffrey P Production of lower molecular weight hydrocarbons
CN103384713B (en) * 2011-01-05 2015-08-19 莱斯拉有限公司 Organic processing
CN106957681A (en) * 2017-03-31 2017-07-18 北京中科诚毅科技发展有限公司 A kind of method and its method for designing and purposes for improving hydrogenation reaction system hydrogen dividing potential drop

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726784A (en) * 1971-02-18 1973-04-10 Exxon Research Engineering Co Integrated coal liquefaction and hydrotreating process
DE2654635B2 (en) * 1976-12-02 1979-07-12 Ludwig Dr. 6703 Limburgerhof Raichle Process for the continuous production of hydrocarbon oils from coal by cracking pressure hydrogenation
US4330391A (en) * 1976-12-27 1982-05-18 Chevron Research Company Coal liquefaction process
US4338182A (en) * 1978-10-13 1982-07-06 Exxon Research & Engineering Co. Multiple-stage hydrogen-donor coal liquefaction
DE3105030A1 (en) * 1981-02-12 1982-09-02 Basf Ag, 6700 Ludwigshafen METHOD FOR THE CONTINUOUS PRODUCTION OF HYDROCARBON OILS FROM COAL BY PRESSURE HYDROGENATION IN TWO STAGES
ZA822056B (en) * 1981-08-05 1983-02-23 Lummus Co Coal liquefaction
US4400261A (en) * 1981-10-05 1983-08-23 International Coal Refining Company Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers
DE3209143A1 (en) * 1982-03-13 1983-09-22 Veba Oel Entwicklungsgesellschaft mbH, 4660 Gelsenkirchen-Buer Process for the multistep hydrogenation of coal
DE3311552A1 (en) * 1983-03-30 1984-10-04 Veba Oel Entwicklungsgesellschaft mbH, 4660 Gelsenkirchen-Buer METHOD FOR HYDROGENATING COAL
DE3311356A1 (en) * 1983-03-29 1984-10-11 GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken Process for the hydrogenation of coal
DE3322730A1 (en) * 1983-06-24 1985-01-10 Ruhrkohle Ag, 4300 Essen METHOD FOR CARBOHYDRATION WITH INTEGRATED REFINING STAGE
EP0151399B1 (en) * 1984-01-19 1989-08-02 Ruhrkohle Aktiengesellschaft Hydrogen gas distribution in coal liquefaction plants
DE3402264A1 (en) * 1984-01-24 1985-08-01 Basf Ag, 6700 Ludwigshafen METHOD FOR THE CONTINUOUS PRODUCTION OF HYDROCARBON OILS BY SPLITTING PRESSURE HYDROGENATION
US4596650A (en) * 1984-03-16 1986-06-24 Lummus Crest, Inc. Liquefaction of sub-bituminous coal
DE3420197A1 (en) * 1984-05-30 1985-12-12 Ruhrkohle Ag, 4300 Essen METHOD FOR PRODUCING A DIESEL FUEL FROM CARBON OIL

Also Published As

Publication number Publication date
ZA864365B (en) 1986-12-09
US4741822A (en) 1988-05-03
AU581990B2 (en) 1989-03-09
DE3660919D1 (en) 1988-11-17
DE3519830A1 (en) 1986-12-18
DE3519830C2 (en) 1993-07-22
AU8658089A (en) 1987-12-03
JPH0784597B2 (en) 1995-09-13
JPS62285983A (en) 1987-12-11
SU1468427A3 (en) 1989-03-23
EP0209665A1 (en) 1987-01-28

Similar Documents

Publication Publication Date Title
EP0073355B1 (en) Production of liquid hydrocarbons
DE2654635B2 (en) Process for the continuous production of hydrocarbon oils from coal by cracking pressure hydrogenation
DE1768566A1 (en) Carbohydrate Process
DE2909103A1 (en) PROCESS FOR LIQUID COALING
DE1119438B (en) Process for refining heavy oils containing sulfur
DD147851A5 (en) INTEGRATED COAL LIQUIDATION GASIFICATION PROCESS
DE2733186A1 (en) COAL LIQUIDATION PROCEDURE
DE2622426C2 (en)
DD251781A5 (en) METHOD FOR THE TREATMENT OF REFUELS FROM HEAVY-OIL ON GROUND-BASED BASE
DE2635388A1 (en) COAL LIQUIDATION PROCESS
CH542276A (en) Process for the separation of a hot mixed-phase conversion product
DE3033259A1 (en) METHOD FOR SOLVENT REFINING OF COAL
DE1770575A1 (en) Process for the hydrogenation of hydrocarbons
DE3022581A1 (en) PROCESS FOR LIQUID COALING
EP0209665B1 (en) Coal hydrogenation process by liquid phase and fixed-bed catalyst hydrogenation
DE2824062A1 (en) COAL LIQUIDATION PROCEDURE
DE3529795A1 (en) METHOD FOR LIQUIDIZING COAL
DE2834712C2 (en) Process for recycling the soot produced in aqueous suspension during the production of synthesis gas into the gas generator
DD147679A5 (en) COAL LIQUIDATION METHOD WITH IMPROVED SLUDGE RECYCLING SYSTEM
DD147676A5 (en) COAL LIQUIDATION PROCESS WITH ADDITIONAL FOREIGN MINERALS
DE3236504C2 (en)
DD158794A5 (en) METHOD FOR PRODUCING A NORMALLY SOLID SOLUBLE COAL
EP0027962B1 (en) Process for the production of liquid hydrocarbons from coal
DE3022158C2 (en) Process for hydrogenating coal liquefaction
EP0166858B1 (en) Process for the production of diesel fuel from coal middle oil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17Q First examination report despatched

Effective date: 19880308

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3660919

Country of ref document: DE

Date of ref document: 19881117

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930413

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950531

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960515

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960531

BERE Be: lapsed

Owner name: RUHRKOHLE A.G.

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020521

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202