EP0262166B1 - Process for identifying the working cycle of a cylinder in an internal combustion engine - Google Patents

Process for identifying the working cycle of a cylinder in an internal combustion engine Download PDF

Info

Publication number
EP0262166B1
EP0262166B1 EP87901383A EP87901383A EP0262166B1 EP 0262166 B1 EP0262166 B1 EP 0262166B1 EP 87901383 A EP87901383 A EP 87901383A EP 87901383 A EP87901383 A EP 87901383A EP 0262166 B1 EP0262166 B1 EP 0262166B1
Authority
EP
European Patent Office
Prior art keywords
signal
internal combustion
combustion engine
cylinder
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87901383A
Other languages
German (de)
French (fr)
Other versions
EP0262166A1 (en
Inventor
Hans-Ernst Beyer
Jörg BONITZ
Robert Entenmann
Siegmar FÖRSTER
Rochus Knab
Walter KÜNZEL
Wolfgang Kugler
Alfred Mahlberg
Bernhard Miller
Matthias Philipp
Siegfried Rohde
Stefan Unland
Walter Viess
Herbert Winter
Jürgen Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0262166A1 publication Critical patent/EP0262166A1/en
Application granted granted Critical
Publication of EP0262166B1 publication Critical patent/EP0262166B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • F02P7/0675Electromagnetic pick-up devices, e.g. providing induced current in a coil with variable reluctance, e.g. depending on the shape of a tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/077Circuits therefor, e.g. pulse generators
    • F02P7/0775Electronical verniers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start

Definitions

  • the invention relates to a method for recognizing the operating cycle of a cylinder of an internal combustion engine according to the preamble of the main claim.
  • the known ignition system comprises two sensors that are able to express the state parameters of the engine as electrical signals. These sensors are a piston stroke position sensor, with which the stroke of the individual pistons can be determined, and a pressure sensor, which supplies a signal representing the load on the engine. In addition to these two encoders, a speed encoder is also provided. The ignition can be controlled by evaluating the various encoder signals.
  • a device for measuring the angle of rotation of a rotary element in which an encoder disk connected to the crankshaft, which has several markings, is scanned by one or more sensors.
  • the instantaneous rotation angle of the crankshaft can be determined from the sequence of the individual pulses which are generated when the markings pass the sensor or sensors.
  • the present invention is based on the object of finding a method for detecting the operating cycle of a cylinder of an internal combustion engine, which has the high accuracy of the angular resolution of a sensor system and whose sensor wheel is located directly on the crankshaft of the internal combustion engine.
  • the method according to the invention with the characterizing features of the main claim has the particular advantage that it needs only one encoder. This is noticeable on the cost side. Another particular advantage is that the operational reliability of the system is increased, since the number of possible failures is reduced by the reduced number of system components.
  • Figure 1 shows a signal diagram to explain the mode of operation
  • Figure 2 shows a circuit diagram of the embodiment.
  • FIG. 1 In the first line of FIG. 1, an ignition sequence Z of a running five-cylinder internal combustion engine is shown during two crankshaft revolutions above the elapsed crankshaft angle. The firing order 1-2-4-5-3 of the individual cylinders is also given. It can be seen from this that a distance of two crankshaft revolutions is necessary from one working cycle of a cylinder to the next.
  • the illustration in FIG. 1 corresponds almost exactly to the behavior of the internal combustion engine during a quiet idling operation.
  • the second line of FIG. 1 shows a signal SK which originates from an encoder which responds to a label attached to an encoder disk which rotates synchronously with the crankshaft.
  • the signal SK thus corresponds to a pulse sequence which is formed by a sequence of individual pulses which are triggered every full revolution of the encoder disk.
  • the third line in FIG. 1 shows a signal SM which is proportional to the instantaneous speed of the crankshaft.
  • the signal SM is composed of a constant component SN, to which an oscillation resulting from the combustion processes in the internal combustion engine is superimposed.
  • SN constant component
  • the ripple of the signal SM is brought about by the successive change of the individual cylinders in the firing order, which are in a fixed phase relationship to one another via the crankshaft.
  • a signal SD is drawn, which was created by a digital comparison of the signal SM with its own direct component SN. That is, the signal SD changes its state each time the modulated signal SM becomes larger or smaller than its own mean value SN.
  • the detection of the operating cycle of cylinder no. 1 can be recognized in a simple manner from a joint examination of the signals SK and SD.
  • a simple logical combination of the signals SK and SD thus results in a detection signal SE, as is plotted in the fifth and last line of FIG. 1. Since the individual cylinders of the internal combustion engine are in a fixed phase relationship to one another, the work cycles of any cylinder can also be recognized by simple angle addition, but this is not shown further here to simplify the illustration.
  • FIG. 2 shows an encoder disk 1 which corresponds to an encoder disk on the internal combustion engine that actually rotates with the crankshaft.
  • the encoder disc 1 has a reference mark 11 and further angle marks 12.
  • the reference mark 11 simply consists of an angle mark 12 which has been divided for reference recognition.
  • a transmitter 2 is attached, the output signal of which is fed to a converter amplifier 3.
  • the converter amplifier 3 processes the voltage signals induced in the transmitter 2 into signals SM and SK, as shown in FIG. 1.
  • the signal SM appears at an output 31 and the signal SK at an output 32 of the converter amplifier 3.
  • the signal SM is passed on the one hand to a low-pass filter 4 and on the other hand to the inverting input of a comparator 5.
  • the comparator 5 has a low hysteresis, that is to say represents a Schmitt trigger.
  • the low-pass filter 4 forms the direct component SN of the signal SM at its output in accordance with the representations in FIG. 1.
  • the signal SK from the converter amplifier 3 and the output signal of the comparator 5, which corresponds to the signal SD of FIG. 1, is fed to a logic combination stage 6, which is connected such that a signal corresponding to the detection signal SE of FIG. 1 is produced at its output.
  • the logic stage 6 thus represents an AND stage with an inverting input.
  • the signals SE and SN can be tapped at two signal terminals 7, 8 for further processing, which is not shown for reasons of simplification.
  • the circuit shown in FIG. 2 can also be implemented in the software of a microcomputer. Last but not least, this solution is also available This is because the output signals of the encoder 2 are already in a form that is well suited for digital processing.
  • the signals of an increment system are used for cylinder detection according to the invention.
  • other signals are available for the cylinder detection according to the invention, which, like the rotation of the crankshaft, are also modulated by the combustion processes in the internal combustion engine.
  • Pressure signals in the intake tract, in the combustion chamber or in an exhaust pipe are particularly suitable.
  • battery voltage, temperature and mechanical vibrations of the motor are also suitable physical quantities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Fluid Pressure (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Process for identifying the working cycle of an internal combustion engine, in which, by comparing a signal synchronized with the crankshaft angle and a signal modulated by the combustion processes of the internal combustion engine, it is possible to determine whether a cylinder is precisely matched to the working cycle.

Description

Die Erfindung geht aus von einem Verfahren zur Erkennung des Arbeitstaktes eines Zylinders einer Brennkraftmaschine nach der Gattung des Hauptanspruches.The invention relates to a method for recognizing the operating cycle of a cylinder of an internal combustion engine according to the preamble of the main claim.

Bei gewissen Arten von Steuerungen bei Brennkraftmaschinen, insbesondere der Zündung oder Einspritzung, ist eine Erkennung des Arbeitstaktes eines bestimmten Zylinders erforderlich. Üblicherweise ist hierfür ein Geber vorgesehen, der auf eine an der Nockenwelle der Brennkraftmaschine angebrachten Marke anspricht. Da aber hauptsächlich aufgrund des mechanischen Spiels die Winkelgenauigkeit dieses Gebers nicht ausreicht, wird dieses Gebersignal mit einem Signal eines Drehzahlgebers verknüpft, der auf Marken einer sich mit der Kurbelwelle drehenden Geberscheibe anspricht.With certain types of controls in internal combustion engines, in particular the ignition or injection, it is necessary to recognize the working cycle of a specific cylinder. Usually an encoder is provided for this, which responds to a mark attached to the camshaft of the internal combustion engine. However, since the angular accuracy of this encoder is not sufficient, mainly due to the mechanical play, this encoder signal is linked to a signal from a speed encoder which responds to marks on an encoder disk rotating with the crankshaft.

Aus der US-PS 3 592 178 ist ein elektronisches Zündsystem bekannt, bei dem zur Zündwinkelregelung und Zylindererkennung eine sich synchron mit dem Verteilerfinger des Zündverteilers drehende Geberscheibe verwendet wird. Ein Geber ist für eine kontinuierliche Drehwinkelinformation vorgesehen, ein weiterer Geber ist für eine Zylindererkennung vorgesehen.From US-PS 3 592 178 an electronic ignition system is known in which for ignition angle control and cylinder detection an encoder disk rotating synchronously with the distributor finger of the ignition distributor is used. One encoder is provided for continuous rotation angle information, another encoder is provided for cylinder detection.

Eine weitere elektronische Zündanlage für einen Verbrennungsmotor mit mehreren Zylindern, die es gestattet, den Zeitpunkt des Zündens des in den Zylinder eingespritzten Luft-Kraftstoff-Gemisches zu steuern, ist aus der Druckschrift FR-A-2 374 528 bekannt. Die bekannte Zündanlage umfaßt zwei Geber, die in der Lage sind, die Zustandsparameter des Motors als elektrische Signale auszudrücken. Diese Geber sind ein Kolbenhub-Positionsgeber, mit dem der Hub der einzelnen Kolben ermittelt werden kann, sowie ein Druckgeber, der ein die Belastung des Motors darstellendes Signal liefert. Neben diesen beiden Gebern ist auch noch ein Drehzahlgeber vorgesehen. Durch Auswertung der verschiedenen Gebersignale ist eine Steuerung der Zündung möglich.Another electronic ignition system for an internal combustion engine with several cylinders, which makes it possible to control the timing of the ignition of the air-fuel mixture injected into the cylinder, is known from document FR-A-2 374 528. The known ignition system comprises two sensors that are able to express the state parameters of the engine as electrical signals. These sensors are a piston stroke position sensor, with which the stroke of the individual pistons can be determined, and a pressure sensor, which supplies a signal representing the load on the engine. In addition to these two encoders, a speed encoder is also provided. The ignition can be controlled by evaluating the various encoder signals.

Aus der DE-A-2 836 479 ist eine Einrichtung zur Messung des Drehwinkels eines Rotationselementes bekannt, bei der eine mit der Kurbelwelle verbundene Geberscheibe, die mehrere Markierungen aufweist, von einem oder mehreren Sensoren abgetastet wird. Aus der Aufeinanderfolge der einzelnen Impulse, die beim Vorbeilaufen der Markierungen an dem oder den Sensoren erzeugt werden, läßt sich der augenblicklich vorliegende Drehwinkel der Kurbelwelle ermitteln.From DE-A-2 836 479 a device for measuring the angle of rotation of a rotary element is known, in which an encoder disk connected to the crankshaft, which has several markings, is scanned by one or more sensors. The instantaneous rotation angle of the crankshaft can be determined from the sequence of the individual pulses which are generated when the markings pass the sensor or sensors.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zur Erkennung des Arbeitstaktes eines Zylinders einer Brennkraftmaschine zu finden, das die hohe Genauigkeit der Winkelauflösung eines Gebersystems besitzt und dessen Geberrad sich direkt an der Kurbelwelle der Brennkraftmaschine befindet.The present invention is based on the object of finding a method for detecting the operating cycle of a cylinder of an internal combustion engine, which has the high accuracy of the angular resolution of a sensor system and whose sensor wheel is located directly on the crankshaft of the internal combustion engine.

Die gestellte Aufgabe wird durch das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs gelöst.The stated object is achieved by the method according to the invention with the characterizing features of the main claim.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den besonderen Vorteil, daß es mit einem einzigen Geber auskommt. Das macht sich vorteilhaft auf der Kostenseite bemerkbar. Ein weiterer besonderer Vorteil besteht darin, daß die Betriebssicherheit des Systems erhöht wird, da durch die verringerte Anzahl von Systemkomponenten die Anzahl der möglichen Ausfälle verringert wird.The method according to the invention with the characterizing features of the main claim has the particular advantage that it needs only one encoder. This is noticeable on the cost side. Another particular advantage is that the operational reliability of the system is increased, since the number of possible failures is reduced by the reduced number of system components.

Besonders vorteilhafte Ausgestaltungen der erfindungsgemäßen Lösung sind in den Unteransprüchen angegeben. Sie beruhen auf der Verwendung von physikalischen Größen der Brennkraftmaschine, die durch die laufenden Arbeitsprozesse der Brennkraftmaschine eine Veränderung erfahren. Die Signale von möglicherweise bereits für andere Zwecke an der Brennkraftmaschine angebrachten Gebern können bei der erfindungsgemäßen Lösung mitverwandt werden. Durch die damit mögliche Doppelausnutzung von Systemkomponenten ist eine weitere besonders vorteilhafte Kostenreduzierung für das Gesamtsystem möglich.Particularly advantageous refinements of the solution according to the invention are specified in the subclaims. They are based on the use of physical quantities of the internal combustion engine, which undergo a change due to the ongoing work processes of the internal combustion engine. The signals from may already be used for other purposes donors attached to the internal combustion engine can also be used in the solution according to the invention. As a result of the double use of system components, a further particularly advantageous cost reduction for the overall system is possible.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt ein Signaldiagramm zur Erläuterung der Wirkungsweise; Figur 2 zeigt ein Schaltdiagramm des Ausführungsbeispieles.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. Figure 1 shows a signal diagram to explain the mode of operation; Figure 2 shows a circuit diagram of the embodiment.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In der ersten Zeile der Figur 1 ist eine Zündreihenfolge Z einer laufenden Fünfzylinder-Brennkraftmaschine während zwei Kurbelwellenumdrehungen über dem abgelaufenen Kurbelwellenwinkel dargestellt. Weiterhin ist die Zündreihenfolge 1-2-4-5-3 der einzelnen Zylinder angegeben. Es ist daraus ersichtlich, daß von einem Arbeitstakt eines Zylinders bis zum nächsten jeweils ein Abstand von zwei Kurbelwellenumdrehungen notwendig ist. Die Darstellung in der Figur 1 entspricht ziemlich genau dem Verhalten der Brennkraftmaschine während eines ruhigen Leerlaufbetriebes.In the first line of FIG. 1, an ignition sequence Z of a running five-cylinder internal combustion engine is shown during two crankshaft revolutions above the elapsed crankshaft angle. The firing order 1-2-4-5-3 of the individual cylinders is also given. It can be seen from this that a distance of two crankshaft revolutions is necessary from one working cycle of a cylinder to the next. The illustration in FIG. 1 corresponds almost exactly to the behavior of the internal combustion engine during a quiet idling operation.

In der zweiten Zeile der Figur 1 ist ein Signal SK dargestellt, das von einem Geber herrührt, der auf eine an einer sich mit der Kurbelwelle synchron drehenden Geberscheibe angebrachten Marke anspricht. Das Signal SK entspricht also einer Pulsfolge, die durch eine Folge von Einzelimpulsen gebildet wird, welche bei jeder vollen Umdrehung der Geberscheibe ausgelöst werden.The second line of FIG. 1 shows a signal SK which originates from an encoder which responds to a label attached to an encoder disk which rotates synchronously with the crankshaft. The signal SK thus corresponds to a pulse sequence which is formed by a sequence of individual pulses which are triggered every full revolution of the encoder disk.

In der dritten Zeile der Figur 1 ist ein Signal SM dargestellt, das proportional zur augenblicklichen Drehzahl der Kurbelwelle ist. Das Signal SM setzt sich zusammen aus einem Gleichanteil SN, dem eine von den Verbrennungsvorgängen in der Brennkraftmaschine herrührende Schwingung überlegert ist. Wälrend jedes Arbeitstaktes eines Zylinders wird nämlich die Kurbelwelle der Brennkraftmaschine beschleunigt, während sich die anderen Zylinder im Verdichtungs-, Ausstoß- oder Ansaugtakt befinden und dabei Leistung verbrauchen. Durch den in der Zündreihenfolge aufeinanderfolgenden Wechsel der einzelnen Zylinder, die über die Kurbelwelle in einer festen Phasenbeziehung zueinander stehen, kommt dabei die Welligkeit des Signals SM zustande.The third line in FIG. 1 shows a signal SM which is proportional to the instantaneous speed of the crankshaft. The signal SM is composed of a constant component SN, to which an oscillation resulting from the combustion processes in the internal combustion engine is superimposed. During each work cycle of a cylinder, the crankshaft of the internal combustion engine is accelerated, while the other cylinders are in the compression, exhaust or intake cycle and consume power in the process. The ripple of the signal SM is brought about by the successive change of the individual cylinders in the firing order, which are in a fixed phase relationship to one another via the crankshaft.

In der vierten Zeile der Figur 1 ist ein Signal SD eingezeichnet, das durch einen digitalen Vergleich des Signals SM mit seinem eigenen Gleichanteil SN entstanden ist. D.h., das Signal SD wechselt jedesmal dann seinen Zustand, wenn das modulierte Signal SM jeweils größer oder kleiner als sein eigener Mittelwert SN wird.In the fourth line of FIG. 1, a signal SD is drawn, which was created by a digital comparison of the signal SM with its own direct component SN. That is, the signal SD changes its state each time the modulated signal SM becomes larger or smaller than its own mean value SN.

Wie nun leicht ersichtlich ist, läßt sich aus einer gemeinsamen Betrachtung der Signale SK und SD in einfacher Weise die Erkennung des Arbeitstaktes des Zylinders Nr. 1 erkennen. Durch eine einfache logische Verknüpfung der Signale SK und SD ergibt sich also ein Erkennungssignal SE, wie es in der fünften und letzten Zeile der Figur 1 aufgetragen ist. Da die einzelnen Zylinder der Brennkraftmaschine in einer festen Phasenbeziehung zueinander stehen, lassen sich durch einfache Winkeladdition gleichfalls die Arbeitstakte jedes beliebigen Zylinders erkennen, was zur Vereinfachung der Darstellung aber hier nicht weiter gezeigt ist.As can now be easily seen, the detection of the operating cycle of cylinder no. 1 can be recognized in a simple manner from a joint examination of the signals SK and SD. A simple logical combination of the signals SK and SD thus results in a detection signal SE, as is plotted in the fifth and last line of FIG. 1. Since the individual cylinders of the internal combustion engine are in a fixed phase relationship to one another, the work cycles of any cylinder can also be recognized by simple angle addition, but this is not shown further here to simplify the illustration.

In Figur 2 ist eine Geberscheibe 1 dargestellt, die einer in Wirklichkeit sich mit der Kurbelwelle drehenden Geberscheibe an der Brennkraftmaschine entspricht. Die Geberscheibe 1 weist eine Bezugsmarke 11 und weitere Winkelmarken 12 auf. Die Bezugsmarke 11 besteht einfach aus einer Winkelmarke 12, die zur Bezugserkennung geteilt wurde. Gegenüber den Marken der Geberscheibe 1 ist ein Geber 2 angebracht, dessen Ausgangssignal auf einen Wandler-Verstärker 3 geführt wird. Der Wandlerverstärker 3 verarbeitet die in Geber 2 induzierten Spannungssignale zu Signalen SM und SK, wie sie in Figur 1 dargestellt sind. Dabei erscheint das Signal SM an einen Ausgang 31 und das Signal SK an einem Ausgang 32 des Wandlerverstärkers 3. Das Signal SM wird einerseits auf ein Tiefpaßfilter 4 und andererseits auf den invertierenden Eingang eines Vergleichers 5 geführt. Zur Verringerung der Störempfindlichkeit weist der Vergleicher 5 eine geringe Hysterese auf, stellt also einen Schmitt-Trigger dar. Das Triefpaßfilter 4 bildet an seinem Ausgang den Gleichanteil SN des Signales SM entsprechend den Darstellungen in der Figur 1. Das Signal SK aus dem Wandlerverstärker 3 und das Ausgangssignal des Vergleichers 5, das dem Signal SD der Figur 1 entspricht, werden auf eine logische Verknüpfungsstufe 6 geführt, die so geschaltet ist, daß an ihrem Ausgang ein Signal entsprechend dem Erkennungssignal SE der Figur 1 entsteht. Die Verknüpfungsstufe 6 stellt also eine UND-Stufe mit einem invertierenden Eingang dar. An zwei Signalklemmen 7, 8 können für eine aus Gründen der Vereinfachung nicht näher dargestellte Weiterverarbeitung die Signale SE bzw. SN abgegriffen werden.FIG. 2 shows an encoder disk 1 which corresponds to an encoder disk on the internal combustion engine that actually rotates with the crankshaft. The encoder disc 1 has a reference mark 11 and further angle marks 12. The reference mark 11 simply consists of an angle mark 12 which has been divided for reference recognition. Compared to the brands of the encoder disk 1, a transmitter 2 is attached, the output signal of which is fed to a converter amplifier 3. The converter amplifier 3 processes the voltage signals induced in the transmitter 2 into signals SM and SK, as shown in FIG. 1. The signal SM appears at an output 31 and the signal SK at an output 32 of the converter amplifier 3. The signal SM is passed on the one hand to a low-pass filter 4 and on the other hand to the inverting input of a comparator 5. To reduce the sensitivity to interference, the comparator 5 has a low hysteresis, that is to say represents a Schmitt trigger. The low-pass filter 4 forms the direct component SN of the signal SM at its output in accordance with the representations in FIG. 1. The signal SK from the converter amplifier 3 and the output signal of the comparator 5, which corresponds to the signal SD of FIG. 1, is fed to a logic combination stage 6, which is connected such that a signal corresponding to the detection signal SE of FIG. 1 is produced at its output. The logic stage 6 thus represents an AND stage with an inverting input. The signals SE and SN can be tapped at two signal terminals 7, 8 for further processing, which is not shown for reasons of simplification.

In glatt äquivalenter Weise kann die in Figur 2 gezeigte Schaltung auch in der Software eines Mikrorechners realisiert werden. Diese Lösung bietet sich nicht zuletzt auch deswegen an, weil die Ausgangssignale des Gebers 2 bereits in einer für digitale Verarbeitung gut geeignten Form vorliegen.In a smoothly equivalent manner, the circuit shown in FIG. 2 can also be implemented in the software of a microcomputer. Last but not least, this solution is also available This is because the output signals of the encoder 2 are already in a form that is well suited for digital processing.

Im bevorzugten Ausführungsbeispiel werden zur erfindungsgemäßen Zylindererkennung die Signale eines Inkrementsystems verwendet. Bei anderen bekannten Segmentsystemen bieten sich zur erfindungsgemäßen Zylindererkennung andere Signale an, die ebenfalls wie die Rotation der Kurbelwelle durch die Verbrennungsvorgänge in der Brennkraftmaschine moduliert werden. Hierbei sind insbesondere Drucksignale im Ansaugtrakt, im Verbrennungsraum oder in einer abgasführenden Leitung geeignet. Es bieten sich aber auch Batteriespannung, Temperatur und mechanische Schwingungen des Motors als geeignete physikalische Größen an.In the preferred exemplary embodiment, the signals of an increment system are used for cylinder detection according to the invention. In other known segment systems, other signals are available for the cylinder detection according to the invention, which, like the rotation of the crankshaft, are also modulated by the combustion processes in the internal combustion engine. Pressure signals in the intake tract, in the combustion chamber or in an exhaust pipe are particularly suitable. However, battery voltage, temperature and mechanical vibrations of the motor are also suitable physical quantities.

Claims (7)

  1. Process for identifying the working cycle of a cylinder in an internal combustion engine with an uneven number of cylinders, in particular in a four-stroke piston engine, a first signal (SK) being obtained by sensing a signal generating disc with a mark rotating synchronously with the crankshaft, the first signal (SK) being assigned to a fixed crankshaft angle, characterised in that a second signal (SD) is formed which is assigned to the base frequency of the combustion processes in the internal combustion engine and in that a detection signal (SE) is formed by means of a logical connection of the first and second signal if this logical connection shows a predetermined relationship between the first (SK) and second (SD) signal.
  2. Process according to Claim 1, characterised in that the second signal is formed by varying the engine speed or accelerating the crankshaft of the internal combustion engine.
  3. Process according to Claim 1, characterised in that the second signal is formed by a pressure signal of the internal combustion engine.
  4. Process according to Claim 1, characterised in that the second signal is formed by the battery voltage.
  5. Process according to Claim 1, characterised in that the second signal is formed by a temperature signal of the internal combustion engine.
  6. Process according to one of the preceding claims, characterised in that the first and second signal are digital signals, in that the first signal assumes a specific logical state when the working space is increased in a cylinder of the internal combustion engine by the movement of the piston and in that the second signal assumes a specific logical state when a combustion process takes place in the internal combustion engine.
  7. Process according to one of the preceding claims, characterised in that the logical connection is an AND operation.
EP87901383A 1986-04-04 1987-03-06 Process for identifying the working cycle of a cylinder in an internal combustion engine Expired - Lifetime EP0262166B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863611262 DE3611262A1 (en) 1986-04-04 1986-04-04 METHOD FOR DETECTING THE WORKING STATE OF A CYLINDER OF AN INTERNAL COMBUSTION ENGINE
DE3611262 1986-04-04

Publications (2)

Publication Number Publication Date
EP0262166A1 EP0262166A1 (en) 1988-04-06
EP0262166B1 true EP0262166B1 (en) 1992-06-10

Family

ID=6297892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87901383A Expired - Lifetime EP0262166B1 (en) 1986-04-04 1987-03-06 Process for identifying the working cycle of a cylinder in an internal combustion engine

Country Status (5)

Country Link
US (1) US4889094A (en)
EP (1) EP0262166B1 (en)
JP (1) JPH086633B2 (en)
DE (2) DE3611262A1 (en)
WO (1) WO1987005971A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905902B2 (en) 2022-01-31 2024-02-20 Brp-Rotax Gmbh & Co. Kg Method for managing start up of a four-stroke engine

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402675A (en) * 1990-01-26 1995-04-04 Robert Bosch Gmbh Method for recognizing the power stroke of a four-stroke engine
DE4002228C2 (en) * 1990-01-26 1995-07-27 Bosch Gmbh Robert Process for recognizing the working stroke in a four-stroke engine
US5027785A (en) * 1990-04-19 1991-07-02 Motorola, Inc. Simplified ignition system for multi-cylinder engines
US5370099A (en) * 1990-08-24 1994-12-06 Robert Bosch Gmbh Ignition system for internal combustion engines
US5165271A (en) * 1991-03-29 1992-11-24 Cummins Electronics Single sensor apparatus and method for determining engine speed and position
DE4114797C2 (en) * 1991-05-07 2003-08-28 Bosch Gmbh Robert Method and device for working cycle detection in a four-stroke engine
US5174267A (en) * 1991-07-22 1992-12-29 Ford Motor Company Cylinder identification by spark discharge analysis for internal combustion engines
DE4129344C2 (en) * 1991-09-04 2001-08-16 Bosch Gmbh Robert Device for detecting the angle of rotation of two rotating parts
JPH05163997A (en) * 1991-12-10 1993-06-29 Mitsubishi Electric Corp Device and mehtod for controlling internal combustion engine
US5493496A (en) * 1992-12-15 1996-02-20 Ford Motor Company Cylinder number identification on a distributorless ignition system engine lacking CID
US5613473A (en) * 1993-08-26 1997-03-25 Siemens Aktiengesellschaft Method of identifying the stroke positions in an internal combustion engine upon startup
JP3186545B2 (en) * 1995-10-06 2001-07-11 三菱電機株式会社 4-cycle internal combustion engine controller
DE19638010A1 (en) * 1996-09-18 1998-03-19 Bosch Gmbh Robert Method for determining the phase position in a 4-stroke internal combustion engine
DE69626122T2 (en) * 1996-12-03 2003-08-21 C.R.F. S.C.P.A., Orbassano Method for synchronizing an internal combustion engine without a camshaft position sensor
DE19652896B4 (en) * 1996-12-19 2004-01-29 Vogt Electronic Aktiengesellschaft Device and method for cylinder recognition in an internal combustion engine
JP3839119B2 (en) * 1997-02-13 2006-11-01 本田技研工業株式会社 4-cycle engine stroke discrimination device
GB2337123A (en) * 1998-05-09 1999-11-10 Rover Group Calculation of crankshaft angle in a four stroke engine having an odd number of cylinders
EP1050676A3 (en) * 1999-05-05 2002-06-05 Delphi Technologies, Inc. Engine position sensing
JP4093682B2 (en) * 1999-05-28 2008-06-04 本田技研工業株式会社 4-cycle engine stroke discrimination device
DE10015595A1 (en) * 2000-03-29 2001-10-04 Bayerische Motoren Werke Ag Method to recognize combustion stroke in single-cylinder four-stroke engine measures and compares periods of two subsequent crankshaft rotations, with combustion stroke during shorter period
SE518102C2 (en) * 2000-04-14 2002-08-27 Scania Cv Ab Methods and apparatus for determining where in their duty cycles an internal combustion engine cylinders are located
DE10036436C2 (en) * 2000-07-26 2002-06-13 Siemens Ag Method for synchronizing an internal combustion engine
EP1197656B1 (en) * 2000-10-12 2008-02-20 Kabushiki Kaisha Moric Engine control method and apparatus
US6542798B2 (en) * 2000-12-06 2003-04-01 Ford Global Technologies, Inc. Engine ready signal using peak engine cylinder pressure detection
FR2821887B1 (en) * 2001-03-07 2003-08-15 Siemens Automotive Sa METHOD FOR DETECTING THE CYCLE PHASE OF AN INTERNAL COMBUSTION ENGINE WITH NUMBER OF ODD CYLINDERS
DE10113194A1 (en) * 2001-03-19 2002-09-26 Volkswagen Ag Detecting working cycle of internal combustion engine cylinder involves detecting pressure variation in cylinder, differentiating, identifying compression cycle if differential has null crossing
DE10116485B4 (en) * 2001-04-03 2007-01-11 Bayerische Motoren Werke Ag Device and method for determining the engine speed of an internal combustion engine
JP2006037944A (en) * 2004-06-24 2006-02-09 Yamaha Motor Co Ltd Stroke discrimination device of four-stroke cycle engine
JP4420348B2 (en) * 2005-03-29 2010-02-24 本田技研工業株式会社 4-cycle engine stroke discrimination device
JP4825783B2 (en) * 2007-12-07 2011-11-30 本田技研工業株式会社 Engine control method
JP2009236036A (en) * 2008-03-27 2009-10-15 Aisin Seiki Co Ltd Single cylinder four cycle engine
JP5359932B2 (en) 2010-02-26 2013-12-04 日産自動車株式会社 4-stroke cycle internal combustion engine and cylinder discrimination method thereof
DE102011086124B3 (en) * 2011-11-10 2013-01-31 Continental Automotive Gmbh Method for cylinder detection in an internal combustion engine and control unit
CN102678362A (en) * 2012-05-16 2012-09-19 联合汽车电子有限公司 System of phase-free sensor for identifying one cylinder compression TDC (Top Dead Center) of three-cylinder engine
WO2014010164A1 (en) * 2012-07-09 2014-01-16 Yamaha Hatsudoki Kabushiki Kaisha Synchronisation system for an internal combustion engine with a toothed wheel with more than two reference positions
DE102014206182A1 (en) * 2014-04-01 2015-10-01 Robert Bosch Gmbh Method for determining a crankshaft position of an internal combustion engine
US9617935B2 (en) * 2014-06-18 2017-04-11 Startec Ltd. Small engine control system and method for enabling the use of traditional crankshaft
US9500175B2 (en) * 2014-06-18 2016-11-22 Startec Ltd. Motorcycle engine control system and method for enabling the use of traditional crankshaft
DE102018200521A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Method for determining a position of an internal combustion engine
DE102018200527A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Method for determining a position of an internal combustion engine
DE102018200526A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh Method for detecting a starting mode of an internal combustion engine
FR3083572A1 (en) * 2018-07-06 2020-01-10 Continental Automotive France CRANKSHAFT TARGET WITH NUT TOOTH AND METHOD FOR SYNCHRONIZING AN INTERNAL COMBUSTION ENGINE

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7215676A (en) * 1971-12-04 1973-06-06
DE2357061C2 (en) * 1973-11-15 1985-02-14 Robert Bosch Gmbh, 7000 Stuttgart Device for the delivery of uniform pulses at certain angular positions of a rotatable shaft and for the formation of at least one reference signal
FR2374528A1 (en) * 1976-12-17 1978-07-13 Cii ELECTRONIC IGNITION SYSTEM AND INTERNAL COMBUSTION ENGINE EQUIPPED WITH SUCH A SYSTEM
JPS5436961A (en) * 1977-08-29 1979-03-19 Nissan Motor Angleeoffrotation detector
JPS6027363B2 (en) * 1978-03-01 1985-06-28 株式会社日立製作所 Rotation angle detection device
FR2428152B1 (en) * 1978-06-07 1987-04-10 Bosch Gmbh Robert DEVICE FOR CONTROLLING FUNCTIONAL PROCESSES OF REPETITIVE PARAMETERS FOR INTERNAL COMBUSTION ENGINES
DE2842998C2 (en) * 1978-10-03 1986-09-25 Robert Bosch Gmbh, 7000 Stuttgart Device for generating speed-dependent control signals, in particular for ignition systems with a dwell angle control device for internal combustion engines
DE2927538C2 (en) * 1979-07-07 1984-08-23 Audi Nsu Auto Union Ag, 7107 Neckarsulm Device for generating a reference signal corresponding to a specific working state of a four-stroke internal combustion engine
US4429365A (en) * 1981-08-10 1984-01-31 General Motors Corporation Spark timing control system
JPS6073059A (en) * 1983-09-28 1985-04-25 Mitsubishi Electric Corp Igniter for internal-combustion engine
JPS60148909U (en) * 1984-03-14 1985-10-03 日産自動車株式会社 Crank angle detection device
IT8467667A0 (en) * 1984-06-29 1984-06-29 Marelli Autronica SENSOR TO DETECT THE PASSAGE OF A PISTON OR A GROUP OF PISTONS OF AN INTERNAL COMBUSTION ENGINE INTO THE TOP DEAD CENTER POSITION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905902B2 (en) 2022-01-31 2024-02-20 Brp-Rotax Gmbh & Co. Kg Method for managing start up of a four-stroke engine

Also Published As

Publication number Publication date
EP0262166A1 (en) 1988-04-06
US4889094A (en) 1989-12-26
DE3779713D1 (en) 1992-07-16
WO1987005971A1 (en) 1987-10-08
DE3611262A1 (en) 1987-10-08
JPS63502844A (en) 1988-10-20
JPH086633B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
EP0262166B1 (en) Process for identifying the working cycle of a cylinder in an internal combustion engine
EP0643803B1 (en) Sensor arrangement for rapid cylinder identification in a multi-cylinder internal combustion engine
DE4141713C2 (en) Encoder arrangement for cylinder detection and emergency operation in an internal combustion engine with n cylinders
DE69229131T2 (en) Device and method for determining the speed and position of a motor with a single sensor
EP0490088B1 (en) Circuit for the electronic control of an internal combustion engine
EP0862692B1 (en) Methods to determine the phase angle of a four stroke internal combustion engine with an odd number of cylinders
EP0230560B1 (en) Angle sensor arrangement
DE4227104A1 (en) Tracing misfire in internal combustion engine - using non-uniformities in the engine torque detected by measuring crankshaft angular speed and comparing with derived reference value
EP0238889A2 (en) Device for determining the position of a crankshaft relative to the cylinder
EP1114324B1 (en) Device for detecting the reverse rotation of a rotating part of an internal combustion engine
DE69626122T2 (en) Method for synchronizing an internal combustion engine without a camshaft position sensor
EP1070964B1 (en) Device for the detection of the reverse rotation of a rotary part of an internal combustion engine
DE19638338A1 (en) Encoder arrangement for quick cylinder recognition in an internal combustion engine
DE10329586B4 (en) Crank angle detector device for internal combustion engines
DE19737999A1 (en) Device for angle detection and angle assignment
DE2918498A1 (en) SPEED MEASURING DEVICE
DE3238314C2 (en)
EP0898070B1 (en) Method for identifying the combustion stroke of a selected cylinder during the starting phase of a combustion engine
DE4241683A1 (en)
DE4011503A1 (en) IC engine camshaft rotation detection system - uses disc attached to camshaft and cooperating sensor
DE3933147C2 (en)
EP0325587B1 (en) Ignition and injection system for internal combustion engines
DE3323797A1 (en) TIMING SYSTEM FOR EVENTS RELATED TO ENGINE OPERATION
DE4243177C2 (en) Device for rapid cylinder recognition in an internal combustion engine
DE2940086A1 (en) IC engine ignition system - uses sensing of marks on rotating part synchronised to cam shaft to derive speed signals using triggering counter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 19900409

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 3779713

Country of ref document: DE

Date of ref document: 19920716

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030319

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030425

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050306