EP0257645B1 - Flexible rock anchor - Google Patents

Flexible rock anchor Download PDF

Info

Publication number
EP0257645B1
EP0257645B1 EP87112479A EP87112479A EP0257645B1 EP 0257645 B1 EP0257645 B1 EP 0257645B1 EP 87112479 A EP87112479 A EP 87112479A EP 87112479 A EP87112479 A EP 87112479A EP 0257645 B1 EP0257645 B1 EP 0257645B1
Authority
EP
European Patent Office
Prior art keywords
strips
rock bolt
bolt according
sleeve
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87112479A
Other languages
German (de)
French (fr)
Other versions
EP0257645A1 (en
Inventor
Klaus Prof.Dr.-Ing. Spies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rudolf Hausherr & Sohne & Co KG GmbH
Original Assignee
Rudolf Hausherr & Sohne & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rudolf Hausherr & Sohne & Co KG GmbH filed Critical Rudolf Hausherr & Sohne & Co KG GmbH
Priority to AT87112479T priority Critical patent/ATE59210T1/en
Publication of EP0257645A1 publication Critical patent/EP0257645A1/en
Application granted granted Critical
Publication of EP0257645B1 publication Critical patent/EP0257645B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0006Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by the bolt material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/0033Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts having a jacket or outer tube
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/006Anchoring-bolts made of cables or wires

Definitions

  • the invention relates to a flexible rock anchor, which can be inserted into boreholes of any length and can be connected to the borehole wall at its end facing the deepest hole or over its entire length, preferably via adhesive.
  • Mountain or rock anchors are - depending on the intended use - in different lengths, with different diameters and different load capacities from underground structures in the surrounding rock mantle in order to increase its own load-bearing capacity.
  • the intrinsic load-bearing capacity of the mountain jacket surrounding the tunnels or pits can either be achieved by "hanging up" stratified, less stable rock layers on the firmer and more compact layers above them, or by the frictional connection due to the load-bearing capacity of the anchors (pre-tensioning or rock-load capacity) between adjacent layers and thus the stability of the anchored overall structure is increased, that mountain movements are directly counteracted by the shear resistance of the anchors or that the anchors - comparable to the reinforcement in concrete - increase the solidity of the mountains.
  • the rock anchors are usually equipped at their deepest end in the borehole with special mechanisms that create adhesion in the mountains by spreading, or are preferably attached to the borehole wall with multi-component adhesives.
  • the rock anchors are glued along their entire length in the borehole.
  • the rock anchors are provided with threads and nuts arranged on them, or with screw heads firmly attached to the anchors, via which an abutment is usually formed by means of an anchor plate to support the anchor force on the exposed rock surface.
  • anchor expansion usually serves to keep the mountains around the underground cavities stable until the final expansion (usually single or multi-layer, often reinforced concrete) and to increase the "self-supporting behavior" of the surrounding mountain shell after the final expansion has been introduced .
  • this function can be supported by choosing an optimal cross-sectional shape for the anchor structure to take effect.
  • Anchor expansion has proven extremely useful for securing mine workings in the hard coal mines of the United States, Canada, Australia and South Africa.
  • the anchoring When using anchoring in tunnel structures or mining methods in which pillars of the mineral to be mined remain between the mines in order to support the overlying rock layers in the deposit, the anchoring only needs to absorb relatively small rock movements resulting from the elastic "springback" of the cavities surrounding mountains and from plastic movements, which are due to the redistribution of tension in the vicinity of the mine rooms.
  • the deposit is completely mined, which is the predominant mining method in European coal mining, significantly larger rock movements occur, which result in a much greater destruction of the mountains surrounding the mine areas.
  • the accompanying mining sections In longwall construction, which is the predominant mining process, the accompanying mining sections must also be maintained in zones in which extremely high pressure phenomena occur due to the additional pressure. The additional pressure in these zones is usually a multiple of the overlay pressure.
  • anchor construction in hard coal mining (both when building pillars and when the deposit is completely dismantled) consists of anchor rods, on the surface of which a profile is rolled to improve the effect of the bond. Since the anchors are exposed to the rock movement, only materials can be used that have sufficient elasticity beyond the yield point up to fracture. As a result, the maximum permissible load is limited to a relatively low value for a given anchor cross section.
  • anchors are also used which are made of materials with extremely high elasticity. Abge see that with these anchors the maximum permissible load for a given anchor cross-section is reduced by a considerable amount compared to the most widely used design, these anchors are comparatively very expensive because of the high material price.
  • the object of the invention is to improve the safety and the load-bearing behavior of the anchor fitting and to extend its field of application while avoiding the aforementioned disadvantages, in particular when completely depositing deposits. Since rock anchors are required for coal mining in very large numbers, it is also desirable to produce them with comparatively little effort despite the high technical requirements.
  • the lamella anchor according to the invention combines the advantages of the known designs in their various design variants while avoiding their disadvantages and, moreover, has a considerable excess over these designs in terms of its rock mechanical behavior and cost-effective economical production.
  • a lamellar anchor is shown in a borehole 1, which is glued to the borehole wall only in the area of the borehole 2.
  • the adhesive 3 is constructed in a known manner from several components, which are contained in a cartridge in separate cavities. The cartridge is inserted. The deepest borehole pushed and destroyed by the tracked anchor. Mixing takes place either by turning the anchor or - in newer developments - automatically by penetrating the two adhesive components.
  • the armature itself consists of laminations 4 arranged side by side, which are preferably produced from endless strips of different widths and / or different thicknesses.
  • a shape is selected for the plate pack such that the cross section of the plate anchor comes as close as possible to a circular cross section.
  • the difference between the diameter of this enveloping circle and the borehole diameter results from the size of the annular space which is required for the adhesive.
  • the lamellae of different lengths are fanned out in the manner of a fir tree, in order to provide the largest possible adhesive surface for the adhesive, to glue each individual lamella and to achieve particularly good mixing of the components of the adhesive by rotating the lamella anchor.
  • the slats are positively connected to one another via a ring 6, which can be pressed on or can also allow a certain relative movement of the individual slat.
  • a sleeve 7 is pushed over the free ends of the slats at the track-side end of the lamella anchor, which can protrude into the borehole with one side and carries a component 8 - preferably a screw head - at its free, track-side end, which allows the transmission of a torque by externally acting tools in order to promote the mixing process of the adhesive components.
  • the sleeve can be welded to the slats, it can be pressed on or connected to the anchor in some other way. In the exemplary embodiment according to FIG. 1, the connection is made by weld seams 9, but spot or projection welding can also be used.
  • the collar of the component 8 of the lamellar anchor is supported on the anchor plate 10, which is curved in a known manner in order to enable different angles between the anchor and the anchor plate.
  • Fig. 2 shows a construction variant of the fir tree-shaped fanning out of the anchor end 5 located deepest in the borehole, in which the individual lamellae are mechanically profiled 11 in order to present the adhesive with a larger surface area and to promote adhesion in the event of tensile loads.
  • the mechanical profiling is connected to the cutting process during the continuous production from strips.
  • the individual anchor lamellae are attached to one another by means of an electrical spot weld 12.
  • Anchors are often introduced as "fully bonded anchors", i.e. Several adhesive cartridges are inserted into the borehole in front of the anchor, so that the cavity between the anchor and the borehole wall is filled with adhesive over the entire anchor length.
  • the anchor according to FIG. 3 is covered with a plastic tube 13 in these cases. This ensures that the individual anchor slats can move axially in spite of being fully bonded to the adhesive and also to one another in the event of shear stresses.
  • Fig. 4 shows the lamellar anchor in a form of loading that is particularly common in mining sections that come under high pressure.
  • the strength of the layer packs surrounding the section cavity is exceeded in many places, so that the stresses are relieved by movements on the fracture surfaces which have arisen.
  • the anchors introduced are subjected to a particularly high degree of shear loads. They must be able to follow the movements of the mountain strata over relatively large distances without being destroyed.
  • the rock anchor on which the invention is based is able to absorb these thrust movements without excessive strains occurring in the individual lamellae, which could lead to cracks and thus to breakage.
  • the shear anchor behaves under shear loads, the direction of which lies in the slat plane, similar to the shear forces acting perpendicular to the slat plane as shown in Fig. 4.
  • the individual lamellas give way to the lowest resistance moment when they are loaded in the lamellar plane according to a basic rule of mechanics, so that they twist in the borehole and then behave according to Fig. This means that the advantages of the lamella anchor are fully effective in all directions of possible shear stresses. None of the previously known or used designs of rock anchors even comes close to the shear strength of the lamellar anchor.
  • Fig. 5 shows an embodiment for a resilient lamella anchor.
  • the resilience of the anchor expansion is extremely advantageous in the mining sections, in which relatively large rock movements take place in the area near the section. It also allows the use of anchors of higher material qualities, which usually have lower elongations at break. The higher material qualities significantly increase the load capacity of the anchors, the disadvantage of the low elongation is more than compensated for by the flexibility.
  • the sleeve 7 pushed over the track-side slat ends is pressed on with high pressure, so that the adhesion of the sleeve to the slats is greater than the breaking force of the anchor.
  • the pressed-on sleeve 7 carries at its free end a screw head 19 in order to be able to produce the rotary movements necessary for the mixing process of the adhesive components by tools acting from the outside.
  • Fig. 6 shows a particularly manufacturing and cost-effective design for the end of the lamella anchor protruding into the track.
  • the fins 4 are first firmly connected to one another by electrical spot welding 20. Then, using the strong heating caused by the spot welding by pressing tools acting from the outside, a cylindrical shape 21 is produced, on which the servo ring 16, not shown in FIG. 6, and the clamping ring 17, also not shown, can be arranged.
  • This constructive embodiment results in a particularly inexpensive flexible slat anchor in mass production.
  • Fig. 7 shows a cross section through the plate pack 4.
  • the individual plates which are preferably cut from sheet metal strips in a continuous manufacturing process, can have a rectangular cross section or - as shown in Fig. 7 - have oblique outer edges 22 which come closer to the enveloping circle.
  • the outer edges can be cut at different angles in the manufacturing process described above. In this way, the load-bearing cross section of the anchor is particularly large. It practically reaches the cross-section of comparable anchor rods, but due to its lamellar structure it has the extremely important, previously described advantages of better absorption of shear loads and movements.
  • Fig. 8 shows a form of fastening between the plate pack 4 and the sleeve 7 arranged at the end of the plate anchor on the track side, in which the plate pack is spread open and a wedge 23 is driven into the sleeve.
  • the sleeve 7 is preferably slightly expanded in the region 24, so that there is a perfect shot between the disk pack 4 and the sleeve 7.
  • the same form fit is achieved in that the disk pack and also the sleeve 7 are expanded in the area 24 by a tool mandrel (not shown) and the resulting cavity is then filled with adhesive or poured metal 25.
  • Fig. 10 shows a particularly difficult expansion situation in a longwall, in which the longwall end 26 has run out in front of the cap tip of the extension 27.
  • rock anchors 4a the length of which is greater than the strut opening. This can be done in a particularly simple manner with lamella anchors which are inserted at an angle 28 into the anchor boreholes.
  • Anchor expansion with lamellar anchors as shown in Fig. 12 has a particularly advantageous effect in line drives.
  • the angled insertion 28 of the flexible lamella anchors 4a it is possible to insert the anchor extension over the tunneling machine 29 using suitable auxiliary devices, not shown in FIG. 12, without the tunneling machine having to be stopped - as before - for setting the anchor. Since the time for the removal of the expansion is often longer than the cutting time on average for all mechanical excavation sections, the use of lamella anchors would more than double the tunneling speeds in the excavation sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Piles And Underground Anchors (AREA)
  • Dowels (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The flexible earth anchor useful for reinforcing underground structures such as a traverse is insertable in a hole in the ground to a certain depth and is attachable with the walls of the hole at its end facing the deepest portion of the hole or along its entire length. Advantageously an adhesive means is used for the attachment. The anchor is constructed from a plurality of lamella in close contact with each other and slidable against each other. Advantageously the lamella are made from sheet metal in a continuous manufacturing process and are attached together by welding. They can be spread out at their inserted end in the hole to provide a better bond to the adhesive and held together by a ring. A sleeve can be provided at the chamber end which is attached by welding to the lamella and which can be used to rotate the earth anchor during the adhesion process.

Description

Die Erfindung betrifft einen flexiblen Gebirgsanker, der in beliebiger Länge in Bohrlöcher einführbar ist und an seinem dem Bohrlochtiefsten zugewandten Ende oder auf seiner gesamten Länge, vorzugsweise über Kleber, mit der Bohrlochwandung verbindbar ist.The invention relates to a flexible rock anchor, which can be inserted into boreholes of any length and can be connected to the borehole wall at its end facing the deepest hole or over its entire length, preferably via adhesive.

Gebirgs- oder Felsanker werden - entsprechend dem Verwendungszweck - in unterschiedlicher Länge, mit unterschiedlichem Durchmesser und unterschiedlicher Tragkraft von untertägigen Bauwerken aus in den umgebenden Gebirgsmantel eingebracht, um dessen Eigentragfähigkeit zu erhöhen. Die Erhöhung der Eigentragfähigkeit des die Tunnel oder Grubenbaue umgebenden Gebirgsmantels kann entweder dadurch erfolgen, daß geschichtete, wenig standfeste Gebirgsschichten an darüber befindlichen festeren und kompakteren Schichten "aufgehängt" werden oder daß durch die Tragkraft der Anker (Vorspannung oder durch Gebirgsbewegung aufgebaute Tragkraft) der Reibungsschluß zwischen jeweils benachbarten Schichten und damit die Standfestigkeit des geankerten Gesamtverbandes erhöht wird, daß Gebirgsbewegungen direkt durch den Scherwiderstand der Anker entgegengewirkt wird oder daß die Anker - vergleichbar der Bewehrung im Beton - die Verbandfestigkeit des Gebirges erhöhen.Mountain or rock anchors are - depending on the intended use - in different lengths, with different diameters and different load capacities from underground structures in the surrounding rock mantle in order to increase its own load-bearing capacity. The intrinsic load-bearing capacity of the mountain jacket surrounding the tunnels or pits can either be achieved by "hanging up" stratified, less stable rock layers on the firmer and more compact layers above them, or by the frictional connection due to the load-bearing capacity of the anchors (pre-tensioning or rock-load capacity) between adjacent layers and thus the stability of the anchored overall structure is increased, that mountain movements are directly counteracted by the shear resistance of the anchors or that the anchors - comparable to the reinforcement in concrete - increase the solidity of the mountains.

Um diese Funktionen erfüllen zu können, werden die Gebirgsanker in der Regel an ihrem im Bohrlochtiefsten befindlichen Ende mit besonderen Mechanismen ausgestattet, welche durch Aufspreizen eine Haftung im Gebirge erzeugen, oder mit vorzugsweise Mehrkomponentenklebern an der Bohrlochwandung befestigt. Es gibt auch Einsatzfälle, in denen die Gebirgsanker auf ihrer ganzen Länge im Bohrloch verklebt werden. An ihren freien, aus dem Bohrloch herausragenden Enden werden die Gebirgsanker mit Gewinde und auf diesen angeordneten Muttern oder mit fest an den Ankern angebrachten Schraubenköpfen versehen, über die meist mittels einer Ankerplatte ein Widerlager zur Abstützung der Ankerkraft auf der freiliegenden Gebirgsoberfläche gebildet wird.In order to be able to fulfill these functions, the rock anchors are usually equipped at their deepest end in the borehole with special mechanisms that create adhesion in the mountains by spreading, or are preferably attached to the borehole wall with multi-component adhesives. There are also applications in which the rock anchors are glued along their entire length in the borehole. At their free ends protruding from the borehole, the rock anchors are provided with threads and nuts arranged on them, or with screw heads firmly attached to the anchors, via which an abutment is usually formed by means of an anchor plate to support the anchor force on the exposed rock surface.

Im Tunnelbau dient der Ankerausbau meist dazu, das Gebirge um die unterirdischen Hohlräume herum bis zur Einbringung des endgültigen Ausbaus (meist ein- oder mehrschaliger, häufig bewehrter Beton) standfest zu erhalten und nach Einbringung des endgültigen Ausbaus das "Eigentragverhalten" des umgebenden Gebirgsmantels zu erhöhen. Bei Tunnelbauwerken kann diese Funktion dadurch unterstützt werden, daß eine für das Wirksamwerden des Ankerausbaus optimale Querschnittsform gewählt wird.In tunnel construction, anchor expansion usually serves to keep the mountains around the underground cavities stable until the final expansion (usually single or multi-layer, often reinforced concrete) and to increase the "self-supporting behavior" of the surrounding mountain shell after the final expansion has been introduced . In tunnel structures, this function can be supported by choosing an optimal cross-sectional shape for the anchor structure to take effect.

Bei Abbauverfahren, z.B. beim Örterpfeilerbau, bei denen nur ein Teil des Minerals gewonnen wird und zwischen den durch die Mineralgewinnung entstandenen Hohlräumen Pfeiler zur Abstützung der überlagernden Schichten in der Lagerstätte verbleiben, ergibt sich der Querschnitt der Grubenbaue meist aus der Lagerstätte selbst und aus dem gewählten Abbauverfahren, so daß die Funktion des Ankerausbaus in diesem Falle nicht durch eine optimale Querschnittsform unterstützt werden kann. Ankerausbau hat sich zur Sicherung der Grubenbaue im Steinkohlenbergbau der Vereinigten Staaten, Kanadas, Australiens und Südafrikas außerordentlich gut bewährt.With mining processes, e.g. in the construction of pillars, in which only a part of the mineral is extracted and pillars remain between the cavities created by the extraction of minerals to support the overlying layers in the deposit, the cross section of the mines mostly results from the deposit itself and from the selected mining method, so that in this case, the function of the anchor expansion cannot be supported by an optimal cross-sectional shape. Anchor expansion has proven extremely useful for securing mine workings in the hard coal mines of the United States, Canada, Australia and South Africa.

Bei der Verwendung des Ankerausbaus in Tunnelbauten oder bei Abbauverfahren, bei denen Pfeiler des abzubauenden Minerals zwischen den Grubenbauen zur Abstützung der überlagernden Gebirgsschichten in der Lagerstätte verbleiben, braucht der Ankerausbau nur verhältnismäßig geringe Gebirgsbewegungen aufzunehmen, die sich aus der elastischen "Rückfederung" des die Hohlräume umgebenden Gebirges und aus plastischen Bewegungen ergeben, welche auf die Spannungs-Umverteilung in der Umgebung der Grubenräume zurückzuführen sind. Beim vollständigem Abbau der Lagerstätte, der im europäischen Steinkohlenbergbau die vorherrschende Abbaumethode ist, entstehen erheblich größere Gebirgsbewegungen, welche eine wesentlich stärkere Zerstörung des die Grubenräume umgebenden Gebirges zur Folge haben. Beim Strebbau, welcher das vorherrschende Abbauverfahren ist, müssen die Abbaubegleitstrecken auch in Zonen aufrechterhalten werden, in welchen infolge des Zusatzdruckes außerordentlich hohe Druckerscheinungen auftreten. Der Zusatzdruck beträgt in diesen Zonen meist ein Mehrfaches des Überlagerungsdruckes.When using anchoring in tunnel structures or mining methods in which pillars of the mineral to be mined remain between the mines in order to support the overlying rock layers in the deposit, the anchoring only needs to absorb relatively small rock movements resulting from the elastic "springback" of the cavities surrounding mountains and from plastic movements, which are due to the redistribution of tension in the vicinity of the mine rooms. When the deposit is completely mined, which is the predominant mining method in European coal mining, significantly larger rock movements occur, which result in a much greater destruction of the mountains surrounding the mine areas. In longwall construction, which is the predominant mining process, the accompanying mining sections must also be maintained in zones in which extremely high pressure phenomena occur due to the additional pressure. The additional pressure in these zones is usually a multiple of the overlay pressure.

Diese gegenüber den Tunnelbauten und dem Abbau im Orterpfeilerbau wesentlich erhöhten Druckerscheinungen sind der Grund dafür, daß Ankerausbau im europäischen und insbesondere bundesdeutschen Steinkohlenbergbau nur unter besonders günstigen Nebengesteinsverhältnissen, d.h. bei relativ guter Standfestigkeit des die Grubenbaue umgebenden Gebirges, eingesetzt werden kann. Man hat auch versucht, nachgiebigen Ankerausbau einzusetzen, um den sich beim vollständigen Abbau der Lagerstätte ergebenden höheren Gebirgsbewegungen besser entsprechen zu können. Obwohl diese Versuche seit einer Reihe von Jahren intensiv betrieben wer den, konnte bisher kein durchschlagender Erfolg erzielt werden. Der Anwendungsbereich des Ankerausbaus im deutschen Steinkohlenbergbau ist damit nach wie vor sehr gering.These pressure phenomena, which are significantly higher than those of tunnel construction and mining in the construction of pillars, are the reason why anchor expansion in European and in particular German coal mining is only possible under particularly favorable secondary rock conditions, i.e. can be used with relatively good stability of the mountains surrounding the mine. Attempts have also been made to use resilient anchor expansion in order to better match the higher rock movements resulting from the complete extraction of the deposit. Although these attempts have been carried out intensively for a number of years, no resounding success has been achieved so far. The area of application for anchor expansion in German coal mining is still very small.

Die am weitesten verbreitete Bauform von Ankerausbau im Steinkohlenbergbau (sowohl beim Örterpfeilerbau als auch bei vollständigem Abbau der Lagerstätte) besteht aus Ankerstangen, auf deren Oberfläche eine Profilierung aufgewälzt ist, um die Wirkung der Verklebung zu verbessern. Da die Anker der Gebirgsbewegung ausgesetzt sind, können hier nur Werkstoffe eingesetzt werden, welche jenseits der Streckgrenze bis hin zum Bruch über eine ausreichend große Dehnfähigkeit verfügen. Hierdurch wird bei vorgegebenem Ankerquerschnitt die höchste zulässige Belastung auf einen relativ niedrigen Wert begrenzt.The most widespread form of anchor construction in hard coal mining (both when building pillars and when the deposit is completely dismantled) consists of anchor rods, on the surface of which a profile is rolled to improve the effect of the bond. Since the anchors are exposed to the rock movement, only materials can be used that have sufficient elasticity beyond the yield point up to fracture. As a result, the maximum permissible load is limited to a relatively low value for a given anchor cross section.

Wegen der beim vollständigen Abbau der Lagerstätte gegenüber dem Örterpfeilerbau erheblich höheren Gebirgsbewegungen werden darüber hinaus auch Anker eingesetzt, die aus Werkstoffen mit außerordentlich hoher Dehnfähigkeit bestehen. Abgesehen davon, daß bei diesen Ankern die höchste zulässige Belastung bei vorgegebenem Ankerquerschnitt gegenüber der am stärksten verbreiteten Bauform noch einmal um ein erhebliches Maß herabgesetzt wird, sind diese Anker wegen des hohen Werkstoffpreises vergleichsweise sehr teuer.Because of the significantly higher rock movements compared to the building of the pillars when the deposit is completely mined, anchors are also used which are made of materials with extremely high elasticity. Abge see that with these anchors the maximum permissible load for a given anchor cross-section is reduced by a considerable amount compared to the most widely used design, these anchors are comparatively very expensive because of the high material price.

Versuche unternommen worden, Anker mit zwei Durchmessern einzusetzen, bei denen der größere Durchmesser in einer "Zieh-Düse" auf das Maß des kleineren verringert wird. Hierdurch wollte man eine Nachgiebigkeit unter Last erreichen. Abgesehen davon, daß derartige Anker um ein Mehrfaches teurer als Normalanker sind, haben die untertägigen Versuche bisher zu keinem befriedigenden Ergebnis geführt.Attempts have been made to use anchors with two diameters, in which the larger diameter is reduced to the size of the smaller one in a "pulling nozzle". This was intended to achieve compliance under load. Apart from the fact that such anchors are several times more expensive than normal anchors, the underground trials have so far not led to a satisfactory result.

Weiterhin wurde vorgeschlagen, Spannbetonlitzen zu verwenden, welche bei vorgegebenem Bohrlochdurchmesser infolge der Verwendung von Werkstoffen hoher Festigkeit den Bau von Ankern erheblich höherer Tragkraft gestatten würden. Sie sind mit Nachgiebigkeitselementen ausgestattet, welche nach dem Reibungsprinzip (analog den bekannten Reibungsstempeln) arbeiten. Sie haben gegenüber allen anderen gegenwärtig im Steinkohlenbergbau eingesetzten Bauformen den Vorteil, daß die Ankerstangen flexibel sind und sich "um die Ecke herum" einbringen lassen. Diese Art der Einbringung ist insbesondere in beengten Bogenräumen wichtig, welche mit Ankern gesichert werden sollen, deren Länge die Abmessungen der Grubenbaue überschreitet. Sie bringt darüber hinaus beim Streckenvortrieb ganz erhebliche technische und wirschaftliche Vorteile mit sich, weil die Anker über der Vortriebsmaschine eingebracht werden können und die heute üblichen Stillstandszeiten vermieden werden können, welche gegenwärtig etwa 50 % derFurthermore, it was proposed to use prestressed concrete strands, which would allow the construction of anchors with significantly higher load capacity for a given borehole diameter due to the use of high-strength materials. They are equipped with resilience elements that work according to the principle of friction (analogous to the known friction stamps). They have the advantage over all other designs currently used in coal mining that the anchor rods are flexible and can be inserted "around the corner". This type of installation is particularly important in confined arches, which are to be secured with anchors, the length of which exceeds the dimensions of the pit structure. It also brings considerable technical and economic advantages to track driving, because the anchors can be installed above the tunneling machine and the usual downtime, which is currently around 50% of the time, can be avoided

verfügbaren Laufzeit der Maschinen erreichen. Von diesem Stand der Technik ausgehend liegt der Erfindung die Aufgabe zugrunde, unter Vermeidung vorerwähnter Nachteile, insbesondere beim vollständigen Abbau von Lagerstätten, die Sicherheit und das Tragverhalten des Ankerausbaus zu verbessern und dessen Anwendungsbereich zu erweitern. Da Gebirgsanker für den Steinkohlenbergbau in sehr großen Stückzahlen benötigt werden ist außerdem angestrebt, diese trotz hoher technischer Anforderungen mit vergleichsweise geringem Aufwand herzustellen.reach the available runtime of the machines. On the basis of this prior art, the object of the invention is to improve the safety and the load-bearing behavior of the anchor fitting and to extend its field of application while avoiding the aforementioned disadvantages, in particular when completely depositing deposits. Since rock anchors are required for coal mining in very large numbers, it is also desirable to produce them with comparatively little effort despite the high technical requirements.

Zur Lösung dieser Aufgabe werden erfindungsgemäß die im Kennzeichen des Hauptanspruchs aufgeführten Merkmale vorgeschlagen. Die zur vorteilhaften Ausgestaltung der Erfindung vorgeschlagenen Mittel sind Gegenstand der Unteransprüche.To achieve this object, the features listed in the characterizing part of the main claim are proposed according to the invention. The means proposed for the advantageous embodiment of the invention are the subject of the dependent claims.

Der erfindungsgemäße Lamellenanker verbindet in seinen verschiedenen Ausführungsvarianten die Vorteile der bekannten Bauformen unter Vermeidung ihrer Nachteile und weist darüber hinaus einen erheblichen Überschuß gegenüber diesen Bauformen in Bezug auf sein gebirgsmechanisches Verhalten und eine kostengünstige wirtschaftliche Herstellung auf.The lamella anchor according to the invention combines the advantages of the known designs in their various design variants while avoiding their disadvantages and, moreover, has a considerable excess over these designs in terms of its rock mechanical behavior and cost-effective economical production.

Ein Ausführungsbeispiel der Erfindung ist an Hand der Zeichnung näher beschrieben, und zwar zeigt:

  • Abb. 1 einen Längsschnitt durch ein Ankerbohrloch mit darin befindlichem Lamellenanker,
  • Abb. 2 die tannenbaumförmige Auffächerung des Lamellenankers im Bohrlochtiefsten mit aufgepreßter Profilierung,
  • Abb. 3 einen vollverklebten, mit einem Kunststoffschiauch überzogenen Ankerschaft,
  • Abb. 4 einen durch Schubkräfte beanspruchten Lamellenanker,
  • Abb. 5 eine am streckenseitigen Ende des Lamellenankers aufgesetzte Hülse mit Nachgiebigkeitselementen,
  • Abb. 6 eine Modifikation, bei der das streckenseitige Ende des Lamellenankers durch äußere Preßkräfte zu einem zylinderförmigen Stab umgeformt worden ist,
  • Abb. 7 den Einzelaufbau des Ankers aus Lamellen im Querschnitt,
  • Abb. 8 die Befestigung der Lamellen in der strekkenseitigen Hülse mittels eines Keils,
  • Abb. 9 eine weitere Möglichkeit der Befestigung der Lamellen in der streckenseitigen Hülse,
  • Abb. 10 das Einführen flexibler Lamellenanker in Bohrlöcher im Streb, deren Länge größer ist als die Streböffnung,
  • Abb. 11 das Einbringen von Ankern in einem Aufhauen und
  • Abb. 12 das Ankern mit Lamellenankern über einer Teilschnittmaschine.
An embodiment of the invention is described in more detail with reference to the drawing, which shows:
  • Fig. 1 shows a longitudinal section through an anchor hole with a lamellar anchor therein,
  • Fig. 2 the fir tree-shaped fanning out of the lamella anchor deep down in the borehole with pressed profiling,
  • Fig. 3 a fully glued anchor shaft covered with a plastic hose,
  • Fig. 4 a lamella anchor stressed by shear forces,
  • Fig. 5 a sleeve with resilience elements attached to the track-side end of the lamella anchor,
  • Fig. 6 shows a modification in which the track-side end of the lamella anchor has been formed into a cylindrical rod by external pressing forces,
  • Fig. 7 the individual structure of the anchor made of lamellae in cross section,
  • Fig. 8 the fastening of the slats in the sleeve on the track side using a wedge,
  • Fig. 9 another way of fastening the slats in the track-side sleeve,
  • Fig. 10 the insertion of flexible lamella anchors into drill holes in the longwall, the length of which is greater than the longwall opening,
  • Fig. 11 the insertion of anchors in a roughening and
  • Fig. 12 anchoring with lamellar anchors over a partial cutting machine.

Auf Abb. 1 ist ein Lamellenanker in einem Bohrloch 1 dargestellt, welcher nur im Bereich des Bohrlochtiefsten 2 mit der Bohrlochwandung verklebt ist. Der Kleber 3 ist in bekannter Weise aus mehreren Komponenten aufgebaut, welche in einer Patrone in getrennten Hohlräumen enthalten sind. Die Patrone wird ins. Bohriochtiefste geschoben und durch den nachgeführten Anker zerstört. Hierbei erfolgt die Mischung entweder durch Drehen des Ankers oder - bei neueren Entwicklungen - selbsttätig, indem die beiden Kleberkomponenten ineinander penetrieren.In Fig. 1 a lamellar anchor is shown in a borehole 1, which is glued to the borehole wall only in the area of the borehole 2. The adhesive 3 is constructed in a known manner from several components, which are contained in a cartridge in separate cavities. The cartridge is inserted. The deepest borehole pushed and destroyed by the tracked anchor. Mixing takes place either by turning the anchor or - in newer developments - automatically by penetrating the two adhesive components.

Der Anker selbst besteht aus nebeneinander angeordneten Blechlamellen 4, die vorzugsweise aus endlosen Bändern unterschiedlicher Breite und/oder unterschiedlicher Stärke hergestellt werden. Hierbei wird für das Lamellenpaket eine solche Form gewählt, daß der Querschnitt des Lamellenankers einem Kreisquerschnitt möglichst nahe kommt. Die Differenz zwischen dem Durchmesser dieses Hüllkreises und dem Bohrlochdurchmesser ergibt sich aus der Größe des Ringraumes, welcher für den Kleber benötigt wird.The armature itself consists of laminations 4 arranged side by side, which are preferably produced from endless strips of different widths and / or different thicknesses. In this case, a shape is selected for the plate pack such that the cross section of the plate anchor comes as close as possible to a circular cross section. The difference between the diameter of this enveloping circle and the borehole diameter results from the size of the annular space which is required for the adhesive.

An seiner im Bohrlochtiefsten angeordneten Seite sind die unterschiedlich langen Lamellen tannenbaumförmig aufgefächert 5, um eine möglichst große Haftfläche für den Kleber abzugeben, jede einzelne Lamelle zu verkleben und durch Drehen des Lamellenankers eine besonders gute Vermischung der Komponenten des Klebers zu erreichen. Hinter der tannenbaumförmigen Auffächerung sind die Lamellen über einen Ring 6, welcher aufgepreßt sein oder auch eine gewisse Relativbewegung der Einzellamelle zulassen kann, formschlüssig miteinander verbunden.On its side located in the deepest hole in the borehole, the lamellae of different lengths are fanned out in the manner of a fir tree, in order to provide the largest possible adhesive surface for the adhesive, to glue each individual lamella and to achieve particularly good mixing of the components of the adhesive by rotating the lamella anchor. Behind the fir tree-shaped fanning-out, the slats are positively connected to one another via a ring 6, which can be pressed on or can also allow a certain relative movement of the individual slat.

Am streckenseitigen Ende des Lamellenankers ist im Ausführungsbeispiel gemäß Abb. 1 eine Hülse 7 über die freien Enden der Lamellen geschoben, welche mit ihrer einen Seite in das Bohrloch hineinragen kann und an ihrem freien, streckenseitigen Ende ein Bauelement 8 - vorzugsweise einen Schraubenkopf - trägt, welcher die Ubertragung eines Drehmomentes durch von außen angreifende Werkzeuge erlaubt, um den Mischvorgang der Kleberkomponenten zu begünstigen. Die Hülse kann mit den Lamellen verschweißt sein, sie kann aufgepreßt oder auf andere Weise mit dem Anker verbunden werden. Im Ausführungsbeispiel gemäß Abb. 1 erfolgt die Verbindung durch Schweißnähte 9, es kann jedoch auch eine Punkt- oder Buckelschweißung benutzt werden. Der Kragen des Bauelementes 8 des Lamellenankers stützt sich auf der Ankerplatte 10 ab, die in bekannter Weise ausgewölbt ist, um unterschiedliche Winkel zwischen Anker und Ankerplatte zu ermöglichen.In the exemplary embodiment according to FIG. 1, a sleeve 7 is pushed over the free ends of the slats at the track-side end of the lamella anchor, which can protrude into the borehole with one side and carries a component 8 - preferably a screw head - at its free, track-side end, which allows the transmission of a torque by externally acting tools in order to promote the mixing process of the adhesive components. The sleeve can be welded to the slats, it can be pressed on or connected to the anchor in some other way. In the exemplary embodiment according to FIG. 1, the connection is made by weld seams 9, but spot or projection welding can also be used. The collar of the component 8 of the lamellar anchor is supported on the anchor plate 10, which is curved in a known manner in order to enable different angles between the anchor and the anchor plate.

Auf Abb. 2 ist eine Konstruktionsvariante der tannenbaumförmigen Auffächerung des im Bohrlochtiefsten befindlichen Ankerendes 5 dargestellt, bei der die einzelnen Lamellen maschinell profiliert sind 11, um dem Kleber eine größere Oberfläche darzubieten und bei Zugbeanspruchungen die Haftung zu begünstigen. Im Herstellungsprozeß wird die maschinelle Profilierung während der Fließfertigung aus Bändern mit dem Ablängvorgang verbunden.Fig. 2 shows a construction variant of the fir tree-shaped fanning out of the anchor end 5 located deepest in the borehole, in which the individual lamellae are mechanically profiled 11 in order to present the adhesive with a larger surface area and to promote adhesion in the event of tensile loads. In the manufacturing process, the mechanical profiling is connected to the cutting process during the continuous production from strips.

Die Befestigung der einzelnen Ankerlamellen untereinander erfolgt in diesem Ausführungsbeispiel durch eine elektrische Punktschweißung 12.In this exemplary embodiment, the individual anchor lamellae are attached to one another by means of an electrical spot weld 12.

Anker werden häufig als "vollverklebte Anker" eingebracht, d.h. vor dem Anker werden mehrere Klebepatronen in das Bohrloch eingeführt, so daß der Hohlraum zwischen Anker und Bohrlochwandung auf der gesamten Ankerlänge mit Kleber ausgefüllt wird. Um einen der wesentlichen Vorteile des Lamellenankers, nämlich hohe Schubbewegungen, aufnehmen zu können, dabei nicht einzubüßen, wird der Anker gemäß Abb. 3 in diesen Fällen mit einem Kunststoffschlauch 13 überzogen. Hierdurch wird erreicht, daß sich bei Schubbeanspruchungen die einzelnen Ankerlamellen trotz Vollverklebung gegenüber dem Kleber und auch untereinander axial bewegen können.Anchors are often introduced as "fully bonded anchors", i.e. Several adhesive cartridges are inserted into the borehole in front of the anchor, so that the cavity between the anchor and the borehole wall is filled with adhesive over the entire anchor length. In order to be able to absorb one of the essential advantages of the lamellar anchor, namely high thrust movements, without losing it, the anchor according to FIG. 3 is covered with a plastic tube 13 in these cases. This ensures that the individual anchor slats can move axially in spite of being fully bonded to the adhesive and also to one another in the event of shear stresses.

In Abb. 4 ist der Lamellenanker in einer Belastungsform dargestellt, die in Abbaustrecken, welche unter hohe Druckeinwirkungen geraten, besonders häufig anzutreffen ist. Bei den Druckbeanspruchungen wird die Festigkeit der den Streckenhohlraum umgebenden Schichtenpakete an vielen Stellen überschritten, so daß sich die Spannungen über Bewegungen auf den entstandenen Bruchflächen abbauen. Bei diesen Relativbewegungen zwischen den einzelnen Gebirgsschichten werden eingebrachte Anker in besonders hohem Maße Schubbelastungen unterworfen. Sie müssen den Bewegungen der Gebirgsschichten über relativ große Wege hinweg folgen können, ohne dabei zerstört zu werden. Infolge des Lamellen-Aufbaus ist der der Erfindung zugrundeliegende Gebirgsanker in der Lage, diese Schubbewegungen aufzunehmen, ohne daß allzu große Dehnungen in den Einzellamellen auftreten, welche zu Anrissen und damit zum Bruch führen könnten. Lamellen, die im Bereich 14 "Außenfasern" des Biegevorganges bilden, stellen im Bereich 15 "Innenfasern" dar. Da sich die Einzellamellen im Gegensatz zu einteiligen Gebirgsankern gegeneinander axial verschieben können, treten bei dieser S-förmigen Verbiegung keine allzu hohen Spannungen in den einzelnen Bauelementen auf.Fig. 4 shows the lamellar anchor in a form of loading that is particularly common in mining sections that come under high pressure. In the case of the compressive stresses, the strength of the layer packs surrounding the section cavity is exceeded in many places, so that the stresses are relieved by movements on the fracture surfaces which have arisen. In the case of these relative movements between the individual rock layers, the anchors introduced are subjected to a particularly high degree of shear loads. They must be able to follow the movements of the mountain strata over relatively large distances without being destroyed. As a result of the lamella structure, the rock anchor on which the invention is based is able to absorb these thrust movements without excessive strains occurring in the individual lamellae, which could lead to cracks and thus to breakage. Slats that form "outer fibers" in the area 14 of the bending process represent "inner fibers" in the area 15. Since the individual slats, in contrast to one-piece rock anchors, can move axially against one another, this S-shaped bend does not cause any excessive stresses in the individual Components.

Der Lamellenanker verhält sich bei Schubbeanspruchungen, deren Richtung in der Lamellenebene liegt, ähnlich wie bei den in Abb. 4 dargestellten senkrecht zur Lamellenebene wirkenden Schubkräften. Die Einzellamellen weichen bei der Beanspruchung in Lamellenebene gemäß einer Grundregel der Mechanik in die Ebene des geringsten Widerstandsmomentes aus, so daß sie im Bohrloch tordieren und sich anschließend gemäß Abb. 4 verhalten. Das bedeutet, daß die Vorteile des Lamellenankers in allen Richtungen möglicher Schubbeanspruchungen voll wirksam werden. Keine der bisher bekannt gewordenen eingesetzten bzw. vorgeschlagenen Bauformen von Gebirgsankern erreicht auch nur annähernd die Schubbelastbarkeit des Lamellenankers.The shear anchor behaves under shear loads, the direction of which lies in the slat plane, similar to the shear forces acting perpendicular to the slat plane as shown in Fig. 4. The individual lamellas give way to the lowest resistance moment when they are loaded in the lamellar plane according to a basic rule of mechanics, so that they twist in the borehole and then behave according to Fig. This means that the advantages of the lamella anchor are fully effective in all directions of possible shear stresses. None of the previously known or used designs of rock anchors even comes close to the shear strength of the lamellar anchor.

Auf Abb. 5 ist ein Ausführungsbeispiel für einen nachgiebigen Lamellenanker dargestellt. Die Nachgiebigkeit des Ankerausbaus ist in den Abbaustrecken, in denen im streckennahen Bereich relativ große Gebirgsbewegungen stattfinden, außerordentlich vorteilhaft. Sie gestattet es ferner, Anker höherer Werkstoffqualitäten einzusetzen, die meist über geringere Bruchdehnungen verfügen. Durch die höheren Werkstoffqualitäten wird die Tragkraft der Anker wesentlich erhöht, der Nachteil der geringen Dehnung wird durch die Nachgiebigkeit mehr als ausgeglichen. Im Ausführungsbeispiel.-gemäß Abb. 5 ist die über die streckenseitigen Lamellenenden geschobene Hülse 7 mit hoher Druck kraft aufgepreßt, so daß die Haftung der Hülse an den Lamellen größer ist als die Bruchkraft des Ankers. Maschinen, mit denen Hülsen auf Seile oder Stab- bzw. Blechbündel mit derartig hohen Haftkräften aufgepreßt werden können, sind an sich bekannt. Auf dem Außenmantel der Hülse 7 ist ein konischer Servoring 16 angeordnet, welcher bei Belastung in einen Spannring 17 eintaucht. Hierbei sind die jeweiligen Berührungsflächen so ausgebildet, daß die Reibung zwischen den Ringen 16 und 17 klein, die Reibung zwischen dem Ring 16 und der Oberfläche der Hülse 7 dagegen sehr groß ist. Bei Belastung läuft demzufolge zunächst der Ring 16 in den Ring 17 bis zum Anschlag 18 ein. Hierbei wird der Ring 17 gespannt, so daß eine hohe Normalkraft und damit auch eine hohe Reibkraft entsteht. Der Reibvorgang zwischen der Oberfläche der Hülse 7 und dem Servoring 16 kann ein Mischvorgang zwischen Reibung, Oberflächenverformung und Fressen sein, da der Bewegungshub während der Standzeit des Ankers nur einmal durchfahren wird.Fig. 5 shows an embodiment for a resilient lamella anchor. The resilience of the anchor expansion is extremely advantageous in the mining sections, in which relatively large rock movements take place in the area near the section. It also allows the use of anchors of higher material qualities, which usually have lower elongations at break. The higher material qualities significantly increase the load capacity of the anchors, the disadvantage of the low elongation is more than compensated for by the flexibility. In the exemplary embodiment. According to FIG. 5, the sleeve 7 pushed over the track-side slat ends is pressed on with high pressure, so that the adhesion of the sleeve to the slats is greater than the breaking force of the anchor. Machines with which sleeves can be pressed onto ropes or bundles of rods or sheets with such high adhesive forces are known per se. On the outer shell of the sleeve 7, a conical servo ring 16 is arranged, which is immersed in a clamping ring 17 when loaded. The respective contact surfaces are designed so that the friction between the rings 16 and 17 is small, but the friction between the ring 16 and the surface of the sleeve 7 is very large. When loaded, the ring 16 therefore first runs into the ring 17 up to the stop 18. Here, the ring 17 is tensioned so that a high normal force and thus a high frictional force is generated. The rubbing process between the surface of the sleeve 7 and the servo ring 16 can be a mixing process between friction, surface deformation and seizing, since the movement stroke is passed through only once during the service life of the armature.

Die aufgepreßte Hülse 7 trägt an ihrem freien Ende einen Schraubenkopf 19, um durch von außen angreifende Werkzeuge die für den Mischvorgang der Kleberkomponenten notwendigen Drehbewegungen erzeugen zu können.The pressed-on sleeve 7 carries at its free end a screw head 19 in order to be able to produce the rotary movements necessary for the mixing process of the adhesive components by tools acting from the outside.

Auf Abb. 6 ist eine besonders fertigungs- und kostengünstige Bauform für das in die Strecke hineinragende Ende des Lamellenankers dargestellt. Die Lamellen 4 werden zunächst durch elektrische Punktschweißung 20 fest miteinander verbunden. Anschließend wird unter Ausnutzung der durch die Punktschweißung entstandenen starken Erwärmung durch von außen angreifende Preßwerkzeuge eine Zylinderform 21 hergestellt, auf welcher der in Abb. 6 nicht dargestellte Servoring 16 und der ebenfalls nicht dargestellte Spannring 17 angeordnet werden können. Durch diese konstruktive Ausführungsform ergibt sich bei der Massenherstellung ein besonders kostengünstiger nachgiebiger Lamellenanker.Fig. 6 shows a particularly manufacturing and cost-effective design for the end of the lamella anchor protruding into the track. The fins 4 are first firmly connected to one another by electrical spot welding 20. Then, using the strong heating caused by the spot welding by pressing tools acting from the outside, a cylindrical shape 21 is produced, on which the servo ring 16, not shown in FIG. 6, and the clamping ring 17, also not shown, can be arranged. This constructive embodiment results in a particularly inexpensive flexible slat anchor in mass production.

Abb. 7 zeigt einen Querschnitt durch das Lamellenpaket 4. Die Einzellamellen, die vorzugsweise in einem kontinuierlichen Fertigungsprozeß aus Blechbändern geschnitten werden, können einen Rechteckquerschnitt haben oder - wie in Abb. 7 dargestellt - schräge, sich dem Hüllkreis besser annähernde Außenkanten 22 besitzen. Für die einzelnen Lagen können die Außenkanten bei dem vorbeschriebenen Fertigungsprozeß durchaus in unterschiedlichen Winkeln geschnitten werden. Auf diese Weise wird der tragende Querschnitt des Ankers besonders groß. Er erreicht praktisch den Querschnitt von vergleichbaren Ankerstangen, hat jedoch durch seinen lamellaren Aufbau die außerordentlich wichtigen vorbeschriebenen Vorteile der besseren Aufnahme von Schubbelastungen und -bewegungen.Fig. 7 shows a cross section through the plate pack 4. The individual plates, which are preferably cut from sheet metal strips in a continuous manufacturing process, can have a rectangular cross section or - as shown in Fig. 7 - have oblique outer edges 22 which come closer to the enveloping circle. For the individual layers, the outer edges can be cut at different angles in the manufacturing process described above. In this way, the load-bearing cross section of the anchor is particularly large. It practically reaches the cross-section of comparable anchor rods, but due to its lamellar structure it has the extremely important, previously described advantages of better absorption of shear loads and movements.

Auf Abb. 8 ist eine Befestigungsform zwischen dem Lamellenpaket 4 und der am streckenseitigen Ende des Lamellenankers angeordneten Hülse 7 dargestellt, bei der das Lamellenpaket aufgespreizt und ein Keil 23 in die Hülse eingetrieben wird. Die Hülse 7 ist hierbei im Bereich 24 vorzugsweise leicht aufgeweitet, so daß sich ein einwandfreier Formschuß zwischen dem Lamellenpaket 4 und der Hülse 7 ergibt.Fig. 8 shows a form of fastening between the plate pack 4 and the sleeve 7 arranged at the end of the plate anchor on the track side, in which the plate pack is spread open and a wedge 23 is driven into the sleeve. The sleeve 7 is preferably slightly expanded in the region 24, so that there is a perfect shot between the disk pack 4 and the sleeve 7.

Im Ausführungsbeispiel gemäß Abb. 9 wird der gleiche Formschluß dadurch erreicht, daß das Lamellenpaket und auch die Hülse 7 im Bereich 24 durch einen nicht dargestellten Werkzeugdorn aufgeweitet werden und der sich hierbei ergebende Hohlraum anschließend durch Kleber oder eingegossenes Metall 25 verfüllt wird.In the exemplary embodiment according to FIG. 9, the same form fit is achieved in that the disk pack and also the sleeve 7 are expanded in the area 24 by a tool mandrel (not shown) and the resulting cavity is then filled with adhesive or poured metal 25.

Auf Abb. 10 ist eine besonders schwierige Ausbausituation in einem Streb dargestellt, in der das Strebhangende 26 vor der Kappenspitze des Ausbaus 27 ausgelaufen ist. Insbesondere in geringmächtigen Flözen ist es in derartigen Fällen aus sicherheitlichen Gründen empfehlenswert, Gebirgs anker 4a zu setzen, deren Länge größer als die Streböffnung ist. Dies kann in besonders einfacher Weise mit Lamellenankern geschehen, die abgewinkelt 28 in die Ankerbohrlöcher eingeführt werden.Fig. 10 shows a particularly difficult expansion situation in a longwall, in which the longwall end 26 has run out in front of the cap tip of the extension 27. In such cases, especially in shallow seams, it is advisable for safety reasons to set rock anchors 4a, the length of which is greater than the strut opening. This can be done in a particularly simple manner with lamella anchors which are inserted at an angle 28 into the anchor boreholes.

Aus Abb. 11 ist zu entnehmen, wie durch das abgewinkelte Einführen 28 der Lamellenanker 4a in einem Aufhauhen Anker gesetzt werden können, deren Länge größer ist als die Flözmächtigkeit.From Fig. 11 it can be seen how the angled insertion 28 allows the lamella anchors 4a to be placed in a roughening, the length of which is greater than the seam thickness.

Besonders vorteilhaft wirkt sich Ankerausbau mit Lamellenankern gemäß Abb. 12 in Streckenvortrieben aus. Hier wird es durch das abgewinkelte Einbringen 28 der flexiblen Lamellenanker 4a möglich, den Ankerausbau über der Vortriebsmaschine 29 über geeignete, auf Abb. 12 nicht dargestellte Hilfseinrichtungen einzubringen, ohne daß die Vortriebsmaschine - wie bisher - für das Setzen der Anker stillgesetzt werden müßte. Da die Zeit für das Einbringen des Ausbaus im Mittel aller maschinellen Abbaustreckenvortriebe oftmals größer ist als die Schneidzeit, würden sich durch die Verwendung von Lamellenankern die Vortriebsgeschwindigkeiten in den Abbaustrecken mehr als verdoppeln lassen.Anchor expansion with lamellar anchors as shown in Fig. 12 has a particularly advantageous effect in line drives. Here, through the angled insertion 28 of the flexible lamella anchors 4a, it is possible to insert the anchor extension over the tunneling machine 29 using suitable auxiliary devices, not shown in FIG. 12, without the tunneling machine having to be stopped - as before - for setting the anchor. Since the time for the removal of the expansion is often longer than the cutting time on average for all mechanical excavation sections, the use of lamella anchors would more than double the tunneling speeds in the excavation sections.

Claims (21)

1. A flexible rock bolt adapted to be introduced to any desired length into bore holes and, at its end towards the bottom of the bore hole or over its entire length, to be connected to the bore hole walls preferably via a bonding agent, characterised in tnat the bolt is made up of mutually displaceable closely adjacently disposed strips (4) of preferably different widths.
2. A rock bolt according to claim 1, characterised in that the width and/or the thickness of the strips (4) are such that an optimum envelope curve is approximated.
3. A rock bolt according to claim 1 or 2, characterised in that the lateral edges of the strips (4) are at different angles (22) to the plane of the strip in order to approximate the envelope curve by a particularly favourable chain of polygons.
4. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the strips are cut from sheet metal strips in a continuous production process and are then prepared to length.
5. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the strips are fanned out in a fir tree shape at the end (5) of the bolt which is disposed in the bore hole.
6. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the fanning out is provided with a profiling (11) in order to enlarge the area of adhesion for the bonding agent and to enhance the positive connection between bolt and bonding agent.
7. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the strips (4) are held together by a ring (6) in the vicinity of the fanned out fir tree shape (5).
8. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the strips (4) are connected to one another in the vicinity of the fanned out fir tree shape (5) by a welded joint which is preferably a spot weld (12).
9. A rock bolt according to claim 1 or one of the preceding claims, characterised in that if the bolt is fully bonded the strips (4) are covered by a tube (13) which preferably consists of synthetic plastics material.
10. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the strips (4) are so shaped in their thickness:width ratio that under axial loadings which take effect in a direction parallel with the strip plane, they are able to turn into the plane of lesser section modulus.
11. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the strips consist of high-strength material preferably hardened and tempered within a continuous production process.
12. A rock bolt according to claim 1 or one of the preceding claims, characterised in that a sleeve (7) is disposed on the gallery end of the strips (4).
13. A rock bolt according to claim 1 or one of the preceding claims, characterised in that there is on the sleeve (7) a head (8) which makes it possible with externally applied tools easily to impart a rotary movement to the bolt.
14. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the sleeve (7) is connected to the strips (4) by welding.
15. A rock bolt according to claim 1 or one of the preceding claims, characterised in that at their gallery end the strips (4) are connected to one another by welding, preferably by a spot weld (20).
16. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the welding heat is utilised in order to impart a cylindrical shape (21) to the gallery ends of the strips (4) by externally applied tools.
17. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the sleeve (7) is fixed on the strips (4) by externally applied tools.
18. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the sleeve (7) is widened out slightly in the region (24) and in that by means of a wedge (23) a form-locking joint is established between the strips (4) and the sleeve (7).
19. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the sleeve (7) and the strips (4) are widened out slightly in the region (24) by a tool mandrel, the resultant cavity being filled by a bonding agent or filling metal.
20. A rock bolt according to claim 1 or one of the preceding claims, characterised in that a servo ring (16) and a clamping ring (17) are disposed on the sleeve (7) and are adapted for axial displacement on the sleeve (7) and into each other.
21. A rock bolt according to claim 1 or one of the preceding claims, characterised in that the friction between tlle servo ring (16) and the clamping ring (17) in relatively small compared with the friction between the servo ring (16) and the ring (7).
EP87112479A 1986-08-29 1987-08-27 Flexible rock anchor Expired - Lifetime EP0257645B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87112479T ATE59210T1 (en) 1986-08-29 1987-08-27 FLEXIBLE MOUNTAIN ANCHOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3629365 1986-08-29
DE19863629365 DE3629365A1 (en) 1986-08-29 1986-08-29 FLEXIBLE MOUNTAIN ANCHOR

Publications (2)

Publication Number Publication Date
EP0257645A1 EP0257645A1 (en) 1988-03-02
EP0257645B1 true EP0257645B1 (en) 1990-12-19

Family

ID=6308436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112479A Expired - Lifetime EP0257645B1 (en) 1986-08-29 1987-08-27 Flexible rock anchor

Country Status (4)

Country Link
US (1) US4798501A (en)
EP (1) EP0257645B1 (en)
AT (1) ATE59210T1 (en)
DE (2) DE3629365A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344256A (en) * 1988-11-14 1994-09-06 Garford Pty Ltd Rock anchor and method of manufacture
US5147151A (en) * 1991-08-23 1992-09-15 Hipkins Jr Edward C Washer insert for bearing plate
US5378087A (en) * 1991-09-25 1995-01-03 Locotos; Frank M. Mine roof support apparatus and method
US5375946A (en) * 1992-02-06 1994-12-27 F. M. Locotos Equipment & Design Co. Mine roof support apparatus and method
US5230589A (en) * 1992-03-23 1993-07-27 Gillespie Harvey D Mine roof bolt
US5417521A (en) * 1993-08-16 1995-05-23 Scott Investment Partners Multiple cable rock anchor system
US6039125A (en) * 1994-02-28 2000-03-21 Helifix Limited Wall tie reinforcement and method
US5511909A (en) * 1994-06-07 1996-04-30 Jennmar Corporation Cable bolt and method of use in supporting a rock formation
US5586839A (en) * 1994-09-06 1996-12-24 Gillespie; Harvey D. Yieldable cable bolt
US5699572A (en) * 1994-12-20 1997-12-23 Jennmar Corporation Combination cable spreader and cable driver
US5560740A (en) * 1994-12-20 1996-10-01 Scott Investment Partners Cable attachment device to spin single cables into resinous anchors in boreholes in geologic formation
US5649790A (en) * 1995-06-22 1997-07-22 Mergen; Douglas Matthew Friction rock stabilizer and method for insertion
US5785463A (en) * 1996-01-11 1998-07-28 Jennmar Corporation Combination cable bolt system
US6056482A (en) * 1996-01-11 2000-05-02 Jennmar Corporation Cable bolt head
US5741092A (en) * 1996-02-15 1998-04-21 Jennmar Corporation Cable bolt driver
US5836720A (en) * 1996-06-03 1998-11-17 Jennmar Corporation Mine roof support system
AU723200B2 (en) * 1996-09-09 2000-08-17 Quantax Pty Ltd A cable bolt
AUPO220596A0 (en) * 1996-09-09 1996-10-03 Geosystems Cable bolt
DE19925109C1 (en) * 1999-06-01 2000-06-21 Max Aicher Method for producing point on anchor bar of steel for rock and tunnel structure involves steel bar separated and point formed at dividing point, bar being heated at predetermined point of its length and tractive force applied
AU747261B2 (en) * 1999-09-14 2002-05-09 Fci Holdings Delaware, Inc. Grit surface cable products
US20030143038A1 (en) * 2000-02-22 2003-07-31 Babcock John W. Multiple synthetic deformed bars and retaining walls
AUPS310802A0 (en) * 2002-06-21 2002-07-11 Industrial Rollformers Pty Limited Yielding cable bolt
US6881015B2 (en) 2002-10-16 2005-04-19 Dywidag-Systems International, U.S.A., Inc. Wedge barrel for a mine roof cable bolt
US7690868B2 (en) * 2003-12-02 2010-04-06 Dsi Ground Support Inc. Cable coupler having retained wedges
US7384216B2 (en) * 2004-09-16 2008-06-10 Dywidag-Systems International Usa Cable coupler having retained wedges
US20080253830A1 (en) * 2004-03-31 2008-10-16 Akio Katsuki Method of Installing Anchor Bolt, Method of Drilling Anchor Bolt Hole, and Drilling Device
US7066688B2 (en) * 2004-08-17 2006-06-27 Dywidag-Systems International Usa Wedge barrel for a twin cable mine roof bolt
WO2010072000A1 (en) 2008-12-23 2010-07-01 Hani Sabri Mitri Sleeved cable bolt
CN103485809A (en) * 2012-06-10 2014-01-01 解波 Shoulder protection type steel belt
PL3294991T3 (en) * 2015-05-08 2021-01-11 Normet International Limited Locally anchored self-drilling hollow rock bolt
JP6442104B1 (en) * 2017-07-31 2018-12-19 東京製綱株式会社 Continuous fiber reinforced strand fixing tool
CN111648794B (en) * 2020-06-02 2021-11-12 山东高速科技发展集团有限公司 Support framework for tunnel portal section in cold region and installation method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2078473A (en) * 1936-03-20 1937-04-27 John C Truemper Bushing material
US3301123A (en) * 1966-03-30 1967-01-31 William E Worley Mine roof bolts
US3496754A (en) * 1967-01-20 1970-02-24 William E Worley Mine roof bolts
DE2353652C2 (en) * 1973-10-26 1983-03-24 Karl Bauer Spezialtiefbau GmbH & Co KG, 8898 Schrobenhausen Removable grouted anchor with lost anchor body
FR2261409A1 (en) * 1974-02-18 1975-09-12 Permali Solid rod for securing ground material - using wood strips glued together to form prismatic section
IT1017641B (en) * 1974-05-31 1977-08-10 Meardi P TIE ROD FOR ANCHORING PA RATE AND SIMILAR WALLS WITH AN ACTIVE PART WITH INCREASED ADHESION AGAINST THE GROUND
SU641112A1 (en) * 1976-02-16 1979-01-05 Всесоюзный Институт По Проектированию Организации Энергетического Строительства "Оргэнергострой" Multirod anchor
US4140428A (en) * 1978-03-06 1979-02-20 Shakespeare Company Tie rod support for mine
GB1604613A (en) * 1978-05-31 1981-12-09 Earth Anchors Ltd Apparatus for anchoring
DE2903694A1 (en) * 1979-01-31 1980-08-14 Gebirgssicherung Gmbh MOUNTAIN ANCHOR
SU929864A1 (en) * 1979-12-07 1982-05-23 Всесоюзный научно-исследовательский и проектно-конструкторский институт добычи угля гидравлическим способом Steel-polymer anchor
DE3047709C2 (en) * 1980-12-18 1983-02-24 Bochumer Eisenhütte Heintzmann GmbH & Co, 4630 Bochum Mountain anchor
US4504175A (en) * 1981-08-05 1985-03-12 Owens-Corning Fiberglas Corporation Hollow rod and method of making and using
EP0111512A4 (en) * 1982-06-16 1984-11-05 Gearhart Australia Reinforcing and confining earth formations.
DE3507732A1 (en) * 1985-03-05 1986-09-18 Dyckerhoff & Widmann AG, 8000 München TIE LINK FOR A ROCK BOLT OR THE LIKE
US4650373A (en) * 1985-11-14 1987-03-17 Seegmiller Ben L Rock bolt construction and installation

Also Published As

Publication number Publication date
ATE59210T1 (en) 1991-01-15
DE3629365A1 (en) 1988-03-03
US4798501A (en) 1989-01-17
DE3766777D1 (en) 1991-01-31
EP0257645A1 (en) 1988-03-02

Similar Documents

Publication Publication Date Title
EP0257645B1 (en) Flexible rock anchor
EP0394179B1 (en) Combined rigid profile and extension anchor with expansion element
DE2041526B2 (en) TENSION FOR A COMPRESSION ANCHOR
DE102007014905A1 (en) Double anchor system, as two-phase cartridge mixing anchor, with hollow and solid bar profile
EP0976873B1 (en) Injection- or prestressed ground anchor
AT392517B (en) METHOD AND DEVICE FOR SECURING NON OR. Moderately stable, non-cohesive to slightly cohesive geological formations
DE102010014612A1 (en) Hollow rod shear connector e.g. two-phase anchor, for use in e.g. inclined roadway construction, has armature tube coated with addition mixed filling material, where clamping path is affiliated with anchor member through clamping sleeve
WO1988001677A1 (en) Process and device for producing drilling holes from an angled position in relation to the drilling axes
DE102006046762A1 (en) Hollow bar shear connector e.g. cartridge anchor for use in e.g. mining, has crack valve provided at side of anchor head, plunger positioned at side of anchor base, and outer surface temporarily coated with filled glue e.g. nano adhesive
DE3320460C1 (en) Resilient mountain anchor
DE1232538B (en) Anchor rod, especially for the expansion of pit spaces
DE3032521A1 (en) CLOSED ROUTE EXTENSION, IN PARTICULAR FOR UNDERGROUND PIT ROUTES
DE10234255B4 (en) Use of drilling injection anchors as a surface-supporting reinforcement of a propulsion vaulted screen
CH672814A5 (en)
DE3322346C1 (en) Rock bolt
DE2350298C3 (en) Arrangement for fastening an anchor rod in a borehole by means of a mortar cartridge
DE3633628A1 (en) ANCHORING ELEMENT, IN PARTICULAR DOWEL
DE4011900C2 (en)
DE2707304C3 (en) Multi-part countersunk adhesive banker
DE933323C (en) Anchor support for mining operations
CH606770A5 (en) Mine gallery anchorage rod
DE3922906A1 (en) Flexible rock anchors for cramped conditions in a mine - consists of cone shaped links on cable core
DE3116850A1 (en) SPREADING SLEEVE FOR CONSTRUCTION PARTS
AT366778B (en) POWER TRANSFER ELEMENT
DE29707501U1 (en) Screw injection anchor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19880818

17Q First examination report despatched

Effective date: 19900213

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59210

Country of ref document: AT

Date of ref document: 19910115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3766777

Country of ref document: DE

Date of ref document: 19910131

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960821

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960827

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970926

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971017

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980827

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050827