EP0237008B1 - Device for the continuous casting of quickly solidifying materials - Google Patents

Device for the continuous casting of quickly solidifying materials Download PDF

Info

Publication number
EP0237008B1
EP0237008B1 EP87103349A EP87103349A EP0237008B1 EP 0237008 B1 EP0237008 B1 EP 0237008B1 EP 87103349 A EP87103349 A EP 87103349A EP 87103349 A EP87103349 A EP 87103349A EP 0237008 B1 EP0237008 B1 EP 0237008B1
Authority
EP
European Patent Office
Prior art keywords
cooling
wall
nozzle
supporting elements
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87103349A
Other languages
German (de)
French (fr)
Other versions
EP0237008A1 (en
Inventor
Alfred Christ
Rolf Lehmann
Hans-Walter Schlaepfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Escher Wyss AG
Original Assignee
Sulzer Escher Wyss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Escher Wyss AG filed Critical Sulzer Escher Wyss AG
Publication of EP0237008A1 publication Critical patent/EP0237008A1/en
Application granted granted Critical
Publication of EP0237008B1 publication Critical patent/EP0237008B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0677Accessories therefor for guiding, supporting or tensioning the casting belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel

Definitions

  • the invention relates to a device for the continuous casting of rapidly solidifying material, the liquid, hot material flowing through a slot-like nozzle onto a cooled wall of good heat-conducting material that is moving close to the nozzle, solidifying on this wall, and after a certain distance from it Wall is detached, the wall being designed to a certain degree elastically compliant.
  • the first known melt spinning devices were only suitable for discontinuous operation, in which the heat capacity of the wall is sufficient to absorb the amount of heat of a batch produced. So that the heat generated can be easily absorbed by the wall, it was made of a good heat-conducting material, preferably copper or an alloy, e.g. Beryllium / copper made.
  • US Pat. No. 3,712,366 describes a metal casting method in which the melt solidifies from the outer surface of a cylinder, which is cooled by water which is evenly thrown onto the entire inside by means of centrifugal force.
  • the cooling rate that can be achieved in this way is also insufficient for the formation of amorphous metal structures.
  • No thickness control is disclosed here either.
  • the invention sets itself the task of eliminating the above-mentioned disadvantages of the prior art and, in particular, to further develop a device for the continuous casting of rapidly solidifying material on a moving wall during continuous operation in such a way that the cooling is intensive and sufficiently large for casting amorphous metal foils and the film speed can be increased so that the cooling can be adjusted across the width of the material web and at the same time film thickness deviations can be compensated for from a target value.
  • this object is achieved in that the wall directly opposite the nozzle on the side facing away from the nozzle is cooled by means of at least one cooling support element which is movable in a support direction perpendicular to the wall and which is provided with at least one bearing surface supplied with a pressure medium which cools the wall a fixed crossbeam is supported.
  • the cooling support element arrangement directly on the opposite side of the wall at the same place where the melt is applied results in particularly intensive cooling and an extremely high cooling rate.
  • the cooling support elements are advantageously supported on the crossmember by means of a pressure chamber supplied with cooling pressure medium and have pressure pockets on their bearing surface which are connected to the pressure chamber via bores, as a result of which coolant is concentrated directly at the point where the melt is applied.
  • cooling support elements are individually movable in the support direction perpendicular to the wall.
  • These side-by-side cooling support elements can be supplied separately from one another with a pressure which can be controlled by a cooling pressure medium, or via a common pressure line and a controllable throttle valve associated with each element.
  • a pressure which can be controlled by a cooling pressure medium, or via a common pressure line and a controllable throttle valve associated with each element.
  • an elastically resilient wall not only is the cooling effect on the individual cooling support elements variable, but because of the slight deformation of the wall also the distance to the nozzle and thus also the outflowing mass and the local film thickness, or the thickness profile of the film.
  • a preferred embodiment is particularly advantageous in terms of construction, in which the elastically flexible wall is designed as a relatively thin-walled cylinder shell which is held on both sides by end disks and is rotatably mounted on the fixed crossmember.
  • seals are also provided which seal the inside of the cylinder shell from the bearing and the bearing from the outside world, as well as a suitable drive for the cylinder shell. Since the end disks cause a certain local stiffening of the cylinder shell, the usable working width, i.e. the film width is slightly less than the total roll width.
  • the arrangement of several cooling support elements transversely to the material web movement next to one another with separate control allows the cooling and the distance from the nozzle to be regulated by controlling the coolant pressure in the individual elements by means of suitable thickness sensors which continuously record the film thickness profile at the film outlet and via a suitable control device or a computer Deliver control signals for the coolant pressure.
  • suitable thickness sensors which continuously record the film thickness profile at the film outlet and via a suitable control device or a computer Deliver control signals for the coolant pressure.
  • temperature sensors can be provided transversely to the web, which control another row of cooling support elements, so that a desired temperature profile is created.
  • molten metal is fed to a container 1, in which it is heated by means of a high-frequency induction coil 2 approximately 100 ° above the melting temperature of the metal.
  • the hot, liquid metal flows, possibly under a certain pressure, through a slit-shaped nozzle 3 onto a cooled wall 4 which is rapidly moved transversely to the slit direction a certain cooling distance is removed from the wall 4.
  • the nozzle 3 is to be designed in a known manner, for example with a slot width of a few tenths of a millimeter and at a distance of a few tenths of a millimeter from the wall 4.
  • foils with a thickness in the range of about 20 - 50 micrometers can be produced in a width from the decimeter to the meter range.
  • the wall 4 as an endless, guided over two rollers 61 and 6 2 band is carried out.
  • This band 4 is made of a material and with such a wall thickness that it is deformed in the elastic region during circulation. In addition, it is selected so that it has the best possible thermal conductivity.
  • aluminum or alloys with a melting point in the range of 1100 ° C. for example, copper or a copper-beryllium alloy in particular has proven to be a suitable material for the strip 4.
  • a suitable, different material must be selected for the material of the band 4.
  • the quenching or cooling rate of the melt is decisive for the production of an amorphous structure in the metal phase or even an extremely fine crystalline structure.
  • An amorphous structure can usually only be achieved if this cooling rate is at least 10 6 ° C / sec.
  • a hydrostatic cooling support element 7 1 is provided directly opposite the nozzle on the side of the belt 4 facing away from the nozzle 3, and a further cooling support element 72 behind this to improve the cooling effect in the running direction of the belt 4.
  • cooling support elements 7 1 and 7 2 are supported on pressure chambers 8 1 and 8 2 , which are supplied via lines 91 and 9 2 with a coolant under pressure, for example water, optionally with suitable additives, in a cross-piece 10 projecting transversely through the band 4.
  • a coolant under pressure for example water
  • suitable additives for example water
  • the cooling support elements 7 1 and 7 2 are provided with hydrostatic bearing surfaces which are connected to the pressure chambers 8 1 and 8 2 by bores and pass cooling pressure medium to the underside of the band 4 via these. It is expedient to keep the escaping coolant away from the top of the belt by taking suitable precautions.
  • the device described is a con continuous melt spinning process with significantly increased cooling speed with a value above 106 ° C / sec has become possible.
  • a series of alloys of the elements iron, nickel, cobalt, aluminum, molybdenum, chromium, vanadium, boron, phosphorus, silicon and other foils up to approx. 20 - 50 micrometers thick with a completely amorphous structure and unusual properties could be produced, in a continuous process.
  • the film thickness can be controlled by the coolant pressure and the variable distance of the band 4 from the nozzle 3.
  • FIGS. 2 and 3 show a particularly advantageous, preferred embodiment of a melt spinning device in which the wall rapidly moving past the slot-like nozzle 13 of the container containing the molten metal is designed as a rapidly rotating cylinder tube 14.
  • the diameter of the cylinder tube 14 can be selected in the order of a few decimeters and its rotational speed in the order of up to approximately 50 revolutions per second, so that a movement speed of up to approximately 30 m / sec results.
  • a particularly good heat-conducting metal is again selected as the material of the cylinder shell 14, for example copper or a copper alloy, and its thickness is for example in the range of a few millimeters, so that a certain elastic deformability is given.
  • a fixed crossmember 20 Provided in the interior of the cylinder shell 14 is a fixed crossmember 20, on which a plurality of rows of cooling support elements 171-178 are supported on corresponding pressure chambers 18 in the direction of rotation.
  • the cooling support elements as shown in the example of the first element 17 1 , are provided with hydrostatic bearing pockets 16, which are connected to the pressure chamber 18 by means of throttle bores 12, which in turn are connected to a cooling pressure fluid via coolant lines 19 are supplied from the traverse 20.
  • the coolant reaches the inside of the cylinder shell 14 and ensures constant cooling and heat dissipation, so that an extraordinarily high quenching and cooling rate also occurs here in a continuous process of the metal layer 15 applied to the surface of the cylinder shell 14. Since the entire inner circumference of the cylinder shell 4 can be provided with cooling support elements, the cooling effect is even more intensive here, so that the desired amorphous structure of the metal foil formed can be achieved with even greater certainty.
  • controllable valves 211-218 are provided for the individual cooling support elements 17 1 - 178, with which the quantity of the coolant supplied to the individual cooling support elements or its pressure can be regulated.
  • the individual rows of cooling support elements 17 1 - 17 8 can be formed from a plurality of individually controllable support elements lying closely next to one another in the axial direction, as is the case for example with the aid of the upper support element row 1711, 1712, 1713 ... and the opposite one Row 1751, 1752, 1753 ... is shown.
  • the ends of the cylinder shell are provided with end disks 22 which seal the inside of the cylinder from the outside world and are rotatably supported on the ends of the cross member 20 by means of suitable roller bearings 23 and are provided with a drive (not shown).
  • the end disks 22 prevent coolant from escaping from the interior of the cylinder shell, so that the coolant cannot get to the outside and the metal foil formed, where it could give rise to undesirable reactions. Instead, the excess coolant is drained off safely through suitable holes in the crossmember. Otherwise, the solidification process can take place on the outside of the cylinder shell in an inert gas atmosphere.
  • thickness sensors 25 are provided distributed over the width of the film produced. These thickness sensors 25 are connected to a control device 26 which, for example with the aid of a suitably programmed microprocessor, controls the valves 211, 213, 215 and 21 7 with corresponding control signals.
  • the control device 26 or its program is set up so that when the film thickness measured by the thickness sensors 25 increases, the valves 21 1 and 215 of the corresponding cooling support elements 17 1 and 17 5 are opened somewhat at the corresponding point on the axis, so that a larger one Amount of pressure medium is supplied to the two cooling support elements 171 and 175.
  • the valves 213 and 217 of the cooling support elements 17 3 and 17 7 arranged perpendicular thereto are throttled somewhat, so that the pressure of the coolant in these support elements decreases somewhat.
  • the cylinder shell 14 is deformed a little bit elliptically, so that the gap between the cylinder shell 14 and the slit-like nozzle 13 is reduced somewhat at the point in question and less metal melt escapes at this point, so that the film thickness is automatically regulated to the predetermined desired value .
  • the fact that two opposing cooling support elements are influenced in the same way eliminates the integral bending stresses of the cylinder shell, so that no forces are released that would have to be directed through the side bearings.
  • the design effort can be reduced by always supplying two opposing cooling support elements via a common valve.
  • a temperature sensor system 27 detects the temperature profile across the film width, it feeds it to a second control device 28, which in turn can be equipped with a suitable microprocessor, which in turn directs control impulses to the throttle valves 212, 214, 216 and 21 of the corresponding cooling support elements, in the sense that e.g. more cooling liquid is supplied to the cooling support elements at the point of an elevated temperature and correspondingly less at points with a low temperature.
  • the structurally simplified circuit can be selected to control these cooling support elements in each longitudinal plane via a common valve.
  • further elements can be provided in the circumferential direction, in the gaps between said cooling support elements 171 - 178, which are controlled with a suitable coolant pressure.
  • a further temperature profile sensor system 29 can be provided, which also supplies corresponding signals to the second control device 28.
  • the program of the control device 28 is expediently selected such that a signal which is suitably weighted from the two measurement information items, depending on the product, serves as an actuating signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zum kontinuierlichen Giessen schnell erstarrenden Materials, wobei das flüssige, heisse Material durch eine schlitzartige Düse auf eine nahe an der Düse vorbeibewegte, gekühlte Wand aus gut wärmeleitendem Material fliesst, auf dieser Wand erstarrt, und nach einer bestimmten Strecke von der Wand abgelöst wird, wobei die Wand in bestimmtem Grade elastisch nachgiebig ausgebildet ist.The invention relates to a device for the continuous casting of rapidly solidifying material, the liquid, hot material flowing through a slot-like nozzle onto a cooled wall of good heat-conducting material that is moving close to the nozzle, solidifying on this wall, and after a certain distance from it Wall is detached, the wall being designed to a certain degree elastically compliant.

Solche Vorrichtungen sind beispielsweise aus der EP-A 0 041 277 bekannt. Andererseits sind z.B. aus der "Zeitschrift für Metallkunde" Band 64 (1973), Seiten 835-843 Verfahren zur Herstellung von Folien aus Metallen oder Legierungen, gegebenenfalls mit Zusätzen feiner, nicht-metallischer Partikel, mit extrem feinkörniger oder amorpher, glasartiger Struktur bekannt, welche mit konventionellen Giessverfahren fahren nicht erreichbar ist. Um diese Struktur und die damit verbundenen neuen Materialeigenschaften zu erreichen, ist es erforderlich, dass die Schmelze auf der bewegten kalten Wand äusserst schnell, d.h. mit einer extrem grossen Abkühlungsgeschwindigkeit von wenigstens 104, vorzugsweise in der Grössenordnung von 106°C/sec erstarrt, bevor die erstarrte Folie mit einer geeigneten Vorrichtung oder durch Zentrifugalkraft von der gekühlten Fläche abgelöst und zur weiteren Verwendung weggeleitet wird.Such devices are known for example from EP-A 0 041 277. On the other hand, for example, from "Zeitschrift für Metallkunde" Volume 64 (1973), pages 835-843, processes for the production of foils from metals or alloys, optionally with additions of fine, non-metallic particles, with extremely fine-grained or amorphous, glass-like structure are known, which cannot be reached with conventional casting processes. In order to achieve this structure and the associated new material properties, it is necessary that the melt solidifies on the moving cold wall extremely quickly, ie with an extremely high cooling rate of at least 104, preferably in the order of 106 ° C / sec, before the solidified film is detached from the cooled surface with a suitable device or by centrifugal force and is guided away for further use.

Wegen des hohen Wärmeeinfalles auf die bewegte Wand eigneten sich die ersten bekannt gewordenen Schmelzspinn-Vorrichtungen nur zum diskontinuierlichen Betrieb, bei dem die Wärmekapazität der Wand genügt, um die Wärmemenge einer erzeugten Charge aufzunehmen. Damit die anfallende Wärme gut von der Wand aufgenommen werden kann, wurde diese aus gut wärmeleitendem Material, vorzugsweise aus Kupfer oder einer Legierung, z.B. Beryllium/Kupfer hergestellt.Because of the high heat incidence on the moving wall, the first known melt spinning devices were only suitable for discontinuous operation, in which the heat capacity of the wall is sufficient to absorb the amount of heat of a batch produced. So that the heat generated can be easily absorbed by the wall, it was made of a good heat-conducting material, preferably copper or an alloy, e.g. Beryllium / copper made.

Um einen kontinuierlichen Betrieb aufrecht zu erhalten, wäre es dagegen notwendig, die bewegte Wand möglichst gut zu kühlen. Bei einer Kühlung mittels auf die Wandoberfläche aufgeblasenen Gasströmen lässt sich jedoch nur eine geringe Wärmemenge abtransportieren. Eine Kühlung mittels Wasser oder anderen Flüssigkeiten auf der Wandoberfläche, auf welcher die Schmelze erstarrt, führt jedoch leicht zu Verunreinigungen der Oberfläche, welche den Giessvorgang behindert oder gar verunmöglicht. Ausserdem war hierbei eine Einstellbarkeit oder Variationsmöglichkeit der Kühlung über die Breite der bewegten Wand weder möglich, noch als wünschenswert erkannt worden.In order to maintain continuous operation, however, it would be necessary to cool the moving wall as well as possible. When cooling by means of gas streams blown onto the wall surface, however, only a small amount of heat can be removed. Cooling by means of water or other liquids on the wall surface on which the melt solidifies, however, easily leads to contamination of the surface, which impedes the casting process or even makes it impossible. In addition, the possibility of adjusting or varying the cooling across the width of the moving wall was neither possible nor recognized as desirable.

Ein weiteres Problem, das sich beim Herstellen, insbesondere von breiten Folien ergibt, ist die Dickenkonstanz der hergestellten Folien. Schon bei schmäleren Folien neigen erfahrungsgemäss die Ränder dazu, sich zu verdicken. Bei vorbekannten Vorrichtungen wurde versucht, eine gleichförmige Dicke durch Einhaltung bestimmter Spaltdimensionen und Abstände des Spaltes von der bewegten Wand zu erreichen. Eine Korrekturmöglichkeit von Foliendickenabweichungen und die Einhaltung vorgeschriebener Sollwerte in einem kontinuierlich arbeitenden Prozess war damit jedoch nicht zu erreichen.Another problem that arises during the production, in particular of wide films, is the constant thickness of the films produced. Experience has shown that the edges of thinner foils tend to thicken. In the case of previously known devices, attempts have been made to achieve a uniform thickness by adhering to certain gap dimensions and distances of the gap from the moving wall. However, it was not possible to correct deviations in film thickness and to comply with prescribed target values in a continuously working process.

Bei dem aus der EP-A 0 041 277 bekannten Giessverfahren wird geschmolzenes Metall gegen die Fläche eines umlaufenden Giessbandes gegossen, das von zwei parallelen, rotierenden Scheiben getragen wird, zwischen denen eine schlitzartige Düse angeordnet ist, wobei das Giessband erst in bestimmter Entfernung nach der Zugabestelle von aussen mittels Kühlwasserdüsen abgekühlt wird. Hierbei ist die Abkühlungsgeschwindigkeit nicht zur Erzeugung einer amorphen Struktur ausreichend. Eine Dickenregulierung ist überhaupt nicht vorgesehen.In the casting process known from EP-A 0 041 277, molten metal is poured against the surface of a rotating casting belt which is supported by two parallel, rotating disks, between which a slot-like nozzle is arranged, the casting belt only at a certain distance after Addition point is cooled from the outside by means of cooling water nozzles. The cooling rate is not sufficient to produce an amorphous structure. Thickness regulation is not provided at all.

In US-A 3 712 366 ist schliesslich ein Metallgiessverfahren beschrieben, bei dem die Schmelze aus der Aussenfläche eines Zylinders erstarrt, der durch gleichmässig auf die gesamte Innenseite mittels Zentrifugalkraft geschleuderten Wassers gekühlt wird. Die damit erzielbare Abkühlungsgeschwindigkeit ist hierbei ebenfalls ungenügend für Bildung amorpher Metallstrukturen. Auch hier ist keine Dickenregelung offenbart.Finally, US Pat. No. 3,712,366 describes a metal casting method in which the melt solidifies from the outer surface of a cylinder, which is cooled by water which is evenly thrown onto the entire inside by means of centrifugal force. The cooling rate that can be achieved in this way is also insufficient for the formation of amorphous metal structures. No thickness control is disclosed here either.

Bei dem in FR-A 2 347 999 beschriebenen Stranggiessverfahren wird die Metallschmelze zwischen jeweils zwei Führungsplatten geleitet, die von aussen mit Kühlstützelementen gekühlt werden. Auch bei diesem Verfahren ist die Erstarrungsgeschwindigkeit nicht ausreichend.In the continuous casting process described in FR-A 2 347 999, the molten metal is passed between two guide plates, which are cooled from the outside with cooling support elements. The rate of solidification is not sufficient in this process either.

Die Erfindung setzt sich die Aufgabe, die vorstehend genannten Nachteile des Standes der Technik zu beseitigen und insbesondere eine Vorrichtung zum kontinuierlichen Giessen schnell erstarrenden Materials auf einer bewegten Wand bei kontinuierlichem Betrieb derart weiterzubilden, dass die Kühlung intensiver und ausreichend gross zum Giessen amorpher Metallfolien ist und die Foliengeschwindigkeit vergrössert werden kann, dass die Kühlung über die Breite der Materialbahn einstellbar ist und gleichzeitig Foliendickenabweichungen von einem Sollwert ausgeglichen werden können.The invention sets itself the task of eliminating the above-mentioned disadvantages of the prior art and, in particular, to further develop a device for the continuous casting of rapidly solidifying material on a moving wall during continuous operation in such a way that the cooling is intensive and sufficiently large for casting amorphous metal foils and the film speed can be increased so that the cooling can be adjusted across the width of the material web and at the same time film thickness deviations can be compensated for from a target value.

Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die Wand direkt gegenüber der Düse auf der von der Düse abgewandten Seite mittels wenigstens eines in einer Stützrichtung senkrecht zur Wand beweglichen Kühlstützelementes gekühlt ist, welches mit wenigstens einer mit einem die Wand kühlenden Druckmittel versorgten Lagerfläche versehen und auf einer feststehenden Traverse abgestützt ist.According to the invention, this object is achieved in that the wall directly opposite the nozzle on the side facing away from the nozzle is cooled by means of at least one cooling support element which is movable in a support direction perpendicular to the wall and which is provided with at least one bearing surface supplied with a pressure medium which cools the wall a fixed crossbeam is supported.

Die Kühlstützelement-Anordnung direkt auf der Gegenseite der Wand am gleichen Ort, wo die Schmelze aufgebracht wird, bewirkt dabei eine besonders intensive Kühlung und eine extrem grosse Abkühlungsgeschwindigkeit.The cooling support element arrangement directly on the opposite side of the wall at the same place where the melt is applied, results in particularly intensive cooling and an extremely high cooling rate.

Mit Vorteil sind die Kühlstützelemente auf der Traverse mittels eines mit kühlendem Druckmittel versorgten Druckraumes abgestützt und weisen auf ihrer Lagerfläche Drucktaschen auf, die mit dem Druckraum über Bohrungen in Verbindung stehen, wodurch Kühlmittel direkt auf die Stelle konzentriert wird, wo die Schmelze aufgebracht wird.The cooling support elements are advantageously supported on the crossmember by means of a pressure chamber supplied with cooling pressure medium and have pressure pockets on their bearing surface which are connected to the pressure chamber via bores, as a result of which coolant is concentrated directly at the point where the melt is applied.

Vorteilhaft ist es, quer zur Bewegungsrichtung der Wand auf deren von der Düse abgewandten Seite mehrere Kühlstützelemente nebeneinander anzuordnen, welche einzeln in Stützrichtung senkrecht zur Wand beweglich sind. Diese nebeneinander liegenden Kühlstützelemente können getrennt voneinander mit kühlendem Druckmittel steuerbaren Druckes versorgt sein, oder über eine gemeinsame Druckleitung und je ein zu jedem Element gehöriges steuerbares Drosselventil. Bei elastisch nachgiebig ausgebildeter Wand wird dadurch nicht nur die Kühlwirkung an den einzelnen Kühlstützelementen variierbar, sondern zufolge der leichten Deformation der Wand auch der Abstand zur Düse und damit auch die ausströmende Masse und die örtliche Foliendicke, oder das Dickenprofil der Folie.It is advantageous to move transversely to the direction of movement of the wall on the wall facing away from the nozzle Side to arrange several cooling support elements side by side, which are individually movable in the support direction perpendicular to the wall. These side-by-side cooling support elements can be supplied separately from one another with a pressure which can be controlled by a cooling pressure medium, or via a common pressure line and a controllable throttle valve associated with each element. In the case of an elastically resilient wall, not only is the cooling effect on the individual cooling support elements variable, but because of the slight deformation of the wall also the distance to the nozzle and thus also the outflowing mass and the local film thickness, or the thickness profile of the film.

Konstruktiv besonders vorteilhaft ist eine bevorzugte Ausführung, bei der die elastisch nachgiebige Wand als relativ dünnwandige Zylinderschale ausgebildet ist, welche auf beiden Seiten durch Endscheiben gehalten und auf der feststehenden Traverse drehbar gelagert ist. Dazu sind ausserdem Dichtungen vorgesehen, die das Innere der Zylinderschale vom Lager und das Lager von der Aussenwelt abdichten, sowie ein geeigneter Antrieb der Zylinderschale. Da die Endscheiben eine gewissen örtliche Versteifung der Zylinderschale bewirken, ist die ausnutzbare Arbeitsbreite, d.h. die Folienbreite etwas geringer als die gesamte Walzenbreite.A preferred embodiment is particularly advantageous in terms of construction, in which the elastically flexible wall is designed as a relatively thin-walled cylinder shell which is held on both sides by end disks and is rotatably mounted on the fixed crossmember. For this purpose, seals are also provided which seal the inside of the cylinder shell from the bearing and the bearing from the outside world, as well as a suitable drive for the cylinder shell. Since the end disks cause a certain local stiffening of the cylinder shell, the usable working width, i.e. the film width is slightly less than the total roll width.

Um eine besonders intensive Kühlung zu erreichen, ist es vorteilhaft im Inneren der Zylinderschale mehrere in Achsenrichtung ausgerichtete Reihen von Kühlstützelementen vorzusehen. Eine bestmögliche Kühlung wird erreicht, wenn die Reihen von Kühlstützelementen über den gesamten Innenumfang der Zylinderschale verteilt vorgesehen sind.In order to achieve particularly intensive cooling, it is advantageous to provide a plurality of rows of cooling support elements in the interior of the cylinder shell which are oriented in the axial direction. The best possible cooling is achieved if the rows of cooling support elements are provided distributed over the entire inner circumference of the cylinder shell.

Die Anordnung mehrerer Kühlstützelemente quer zur Materialbahnbewegung nebeneinander mit getrennter Ansteuerung erlaubt eine Regelung der Kühlung und des Abstandes von der Düse mittels Steuerung des Kühlmitteldruckes in den einzelnen Elementen durch geeignete Dickensensoren, die das Foliendickenprofil am Folienablauf kontinuierlich erfassen und über eine geeignete Regeleinrichtung oder einen Rechner entsprechende Stellsignale für den Kühlmitteldruck liefern. Zusätzlich können quer zur Bahn Temperaturfühler vorgesehen sein, welche eine andere Reihe von Kühlstützelementen ansteuert, so dass ein gewünschtes Temperaturprofil entsteht.The arrangement of several cooling support elements transversely to the material web movement next to one another with separate control allows the cooling and the distance from the nozzle to be regulated by controlling the coolant pressure in the individual elements by means of suitable thickness sensors which continuously record the film thickness profile at the film outlet and via a suitable control device or a computer Deliver control signals for the coolant pressure. In addition, temperature sensors can be provided transversely to the web, which control another row of cooling support elements, so that a desired temperature profile is created.

Die Erfindung wird anhand der in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

  • Figur 1 eine Vorrichtung in Perspektive,
  • Figur 2 einen Querschnitt durch eine andere Vorrichtung, und
  • Figur 3 einen Längsschnitt durch die Vorrichtung nachFigur 2.
The invention is explained in more detail using the exemplary embodiments shown in the figures. Show it:
  • 1 shows a device in perspective,
  • Figure 2 shows a cross section through another device, and
  • FIG. 3 shows a longitudinal section through the device according to FIG. 2.

Bei der in Figur 1 wiedergegebenen Vorrichtung wird geschmolzenes Metall einem Behälter 1 zugeführt, in welchem es mittels einer Hochfrequenz-Induktionsspule 2 etwa 100° über die Schmelztemperatur des Metalles erhitzt wird. Das heisse, flüssige Metall strömt, gegebenenfalls unter einem gewissen Druck, durch eine schlitzförmige Düse 3 auf eine quer zur Schlitzrichtung schnell bewegte, gekühlte Wand 4. Auf der Oberseite dieser Wand 4 wird die Metallschmelze abgeschreckt und erstarrt zu einem dünnen Band 5, welches nach einer bestimmten Abkühlungsstrecke von der Wand 4 abgenommen wird. Um eine amorphe oder extrem feinkörnige Metallfolie 5 zu erzeugen, ist die Düse 3 in bekannter Weise auszubilden, z.B. mit einer Schlitzbreite von einigen Zehntelmillimetern und in einem Abstand von einigen Zehntelmillimetern von der Wand 4 anzuordnen. Bei einer Bewegungsgeschwindigkeit der Wand im Bereich von 2 - 50 m/sec, beispielsweise von 10 - 20 m/sec lassen sich damit Folien mit einer Dicke im Bereich von etwa 20 - 50 Mikrometer in einer Breite vom Dezimeter bis hin zum Meterbereich erzeugen.In the device shown in FIG. 1, molten metal is fed to a container 1, in which it is heated by means of a high-frequency induction coil 2 approximately 100 ° above the melting temperature of the metal. The hot, liquid metal flows, possibly under a certain pressure, through a slit-shaped nozzle 3 onto a cooled wall 4 which is rapidly moved transversely to the slit direction a certain cooling distance is removed from the wall 4. In order to produce an amorphous or extremely fine-grained metal foil 5, the nozzle 3 is to be designed in a known manner, for example with a slot width of a few tenths of a millimeter and at a distance of a few tenths of a millimeter from the wall 4. With a movement speed of the wall in the range of 2 - 50 m / sec, for example of 10 - 20 m / sec, foils with a thickness in the range of about 20 - 50 micrometers can be produced in a width from the decimeter to the meter range.

Im dargestellten Ausführungsbeispiel ist die Wand 4 als endloses, über zwei Walzen 61 und 62 geführtes Band ausgeführt. Dieses Band 4 ist aus einem Material und mit einer solchen Wandstärke ausgeführt, dass es beim Umlauf im elastischen Bereich verformt wird. Ausserdem ist es so gewählt, dass es eine möglichst gute Wärmeleitfähigkeit besitzt. Bei der Verarbeitung beispielsweise von Aluminium oder Legierungen mit einem Schmelzpunkt im Bereich von 1100°C hat sich insbesondere Kupfer oder eine Kupfer-Beryllium-Legierung als geeignetes Material für das Band 4 erwiesen. Bei der Verarbeitung von Materialien mit höheren Schmelzpunkten ist für das Material des Bandes 4 ein geeignetes, anderes Material auszuwählen.In the illustrated embodiment the wall 4 as an endless, guided over two rollers 61 and 6 2 band is carried out. This band 4 is made of a material and with such a wall thickness that it is deformed in the elastic region during circulation. In addition, it is selected so that it has the best possible thermal conductivity. When processing aluminum or alloys with a melting point in the range of 1100 ° C., for example, copper or a copper-beryllium alloy in particular has proven to be a suitable material for the strip 4. When processing materials with higher melting points, a suitable, different material must be selected for the material of the band 4.

Für die Erzeugung einer amorphen Struktur in der Metallphase oder auch nur einer extrem feinkristallinen Struktur ist die Abschreckungs- oder Abkühlungsgeschwindigkeit der Schmelze entscheidend. Eine amorphe Struktur lässt sich in der Regel nur erzielen, wenn diese Abkühlungsgeschwindigkeit zumindest 106 °C/sec beträgt. Um diese extrem hohe Abkühlungsgeschwindigkeit zu erreichen, ist direkt gegenüber der Düse auf der der Düse 3 abgewandten Seite des Bandes 4 ein hydrostatisches Kühlstützelement 71 vorgesehen, und zur Verbesserung der Kühlwirkung in Laufrichtung des Bandes 4 hinter diesem ein weiteres Kühlstützelement 72. Diese Kühlstützelemente 71 und 72 sind auf Druckräumen 81 und 82, welche über Leitungen 91 und 92 mit einem Kühlmittel unter Druck, z.B. Wasser, gegebenenfalls mit geeigneten Zusätzen, versorgt werden, in einer quer durch das Band 4 hindurchragenden Traverse 10 abgestützt. Auf ihrer der Unterseite des Bandes 4 zugewandten Seite sind die Kühlstützelemente 71 und 72 mit hydrostatischen Lagerflächen versehen, welche mit Bohrungen mit den Druckräumen 81 und 82 verbunden sind und über diese kühlendes Druckmittel auf die Unterseite des Bandes 4 leiten. Zweckmässig ist es dabei, das austretende Kühlmittel durch geeignete Vorkehrungen von der Band-Oberseite fernzuhalten.The quenching or cooling rate of the melt is decisive for the production of an amorphous structure in the metal phase or even an extremely fine crystalline structure. An amorphous structure can usually only be achieved if this cooling rate is at least 10 6 ° C / sec. In order to achieve this extremely high cooling rate, a hydrostatic cooling support element 7 1 is provided directly opposite the nozzle on the side of the belt 4 facing away from the nozzle 3, and a further cooling support element 72 behind this to improve the cooling effect in the running direction of the belt 4. These cooling support elements 7 1 and 7 2 are supported on pressure chambers 8 1 and 8 2 , which are supplied via lines 91 and 9 2 with a coolant under pressure, for example water, optionally with suitable additives, in a cross-piece 10 projecting transversely through the band 4. On their underside of the band 4, the cooling support elements 7 1 and 7 2 are provided with hydrostatic bearing surfaces which are connected to the pressure chambers 8 1 and 8 2 by bores and pass cooling pressure medium to the underside of the band 4 via these. It is expedient to keep the escaping coolant away from the top of the belt by taking suitable precautions.

Da das Kühlmittel auf das Band 4 aus gut wärmeleitendem Material unmittelbar an der Stelle einwirkt, an welcher die heisse Metallschmelze auf das Band 4 aufgebracht wird und die Kühlwirkung in Laufrichtung des Bandes 4 laufend fortgesetzt wird, ist mit der beschriebenen Vorrichtung ein kontinuierlicher Schmelzspinnprozess mit deutlich vergrösserter Abkühlungsgeschwindigkeit mit einem Wert über 106°C/sec möglich geworden . Mit dieser Vorrichtung liessen sich eine Reihe von Legierungen der Elemente Eisen, Nickel, Kobalt, Aluminium, Molybdän, Chrom, Vanadium, Bor, Phosphor, Silicium und anderen zu ca. 20 - 50 Mikrometer dicken Folien mit völlig amorpher Struktur und ungewöhnlichen Eigenschaften herstellen, und zwar in einem kontinuierlichen Verfahren. Die Foliendicke lässt sich dabei durch den Kühlmitteldruck und den dadurch variierbaren Abstand des Bandes 4 von der Düse 3 steuern.Since the coolant acts on the belt 4 made of a good heat-conducting material directly at the point at which the hot molten metal is applied to the belt 4 and the cooling effect is continuously continued in the running direction of the belt 4, the device described is a con continuous melt spinning process with significantly increased cooling speed with a value above 106 ° C / sec has become possible. With this device, a series of alloys of the elements iron, nickel, cobalt, aluminum, molybdenum, chromium, vanadium, boron, phosphorus, silicon and other foils up to approx. 20 - 50 micrometers thick with a completely amorphous structure and unusual properties could be produced, in a continuous process. The film thickness can be controlled by the coolant pressure and the variable distance of the band 4 from the nozzle 3.

Die Figuren 2 und 3 zeigen eine besonders vorteilhafte, bevorzugte Ausführungsform einer Schmelzspinnvorrichtung, bei der die an der schlitzartigen Düse 13 des die Metallschmelze enthaltenden Behälters 11 schnell vorbeibewegte Wand als schnell rotierendes Zylinderrohr 14 ausgebildet ist. Der Durchmesser des Zylinderrohres 14 kann in der Grössenordnung von einigen Dezimetern gewählt sein und dessen Rotationsgeschwindigkeit in der Grössenordnung bis etwa 50 Umdrehungen pro Sekunde, so dass sich eine Bewegungsgeschwindigkeit bis etwa 30 m/sec ergibt. Als Material der Zylinderschale 14 ist wiederum ein besonders gut wärmeleitendes Metall gewählt, beispielsweise Kupfer oder eine Kupferlegierung und deren Dicke liegt beispielsweise im Bereich von einigen Millimetern, so dass eine gewisse elastische Verformbarkeit gegeben ist.FIGS. 2 and 3 show a particularly advantageous, preferred embodiment of a melt spinning device in which the wall rapidly moving past the slot-like nozzle 13 of the container containing the molten metal is designed as a rapidly rotating cylinder tube 14. The diameter of the cylinder tube 14 can be selected in the order of a few decimeters and its rotational speed in the order of up to approximately 50 revolutions per second, so that a movement speed of up to approximately 30 m / sec results. A particularly good heat-conducting metal is again selected as the material of the cylinder shell 14, for example copper or a copper alloy, and its thickness is for example in the range of a few millimeters, so that a certain elastic deformability is given.

Im Inneren der Zylinderschale 14 ist eine feststehende Traverse 20 vorgesehen, auf welcher in Rotationsrichtung mehrere Reihen von Kühlstützelementen 171 - 178 auf entsprechenden Druckräumen 18 abgestützt sind. Auf der der Innenseite der Zylinderschale 14 zugewandten Seite sind die Kühlstützelemente, wie am Beispiel des ersten Elementes 171 gezeigt, mit hydrostatischen Lagertaschen 16 versehen, welche mit Drosselbohrungen 12 mit dem Druckraum 18 in Verbindung stehen, welcher wiederum über Kühlmittelleitungen 19 mit einer kühlenden Druckflüssigkeit von der Traverse 20 aus versorgt werden. Ueber diese Kühlmittelleitungen 19, die Druckräume 18, die Drosselbohrungen 12 und die Lagertaschen 16 gelangt die Kühlflüssigkeit auf die Innenseite der Zylinderschale 14 und sorgt für eine beständige Kühlung und Wärmeabfuhr, so dass sich auch hier in einem kontinuierlichen Prozess eine ausserordentlich hohe Abschreckungs-und Abkühlungsgeschwindigkeit der auf die Oberfläche der Zylinderschale 14 aufgebrachten Metallschicht 15 ergibt. Da der gesamte Innenumfang der Zylinderschale 4 mit Kühlstützelementen versehen sein kann, ist hier die Kühlwirkung noch intensiver, so dass sich die gewünschte amorphe Struktur der gebildeten Metallfolie mit noch grösserer Sicherheit erreichen lässt.Provided in the interior of the cylinder shell 14 is a fixed crossmember 20, on which a plurality of rows of cooling support elements 171-178 are supported on corresponding pressure chambers 18 in the direction of rotation. On the inside of the cylinder shell 14, the cooling support elements, as shown in the example of the first element 17 1 , are provided with hydrostatic bearing pockets 16, which are connected to the pressure chamber 18 by means of throttle bores 12, which in turn are connected to a cooling pressure fluid via coolant lines 19 are supplied from the traverse 20. Via these coolant lines 19, the pressure chambers 18, the throttle bores 12 and the bearing pockets 16, the coolant reaches the inside of the cylinder shell 14 and ensures constant cooling and heat dissipation, so that an extraordinarily high quenching and cooling rate also occurs here in a continuous process of the metal layer 15 applied to the surface of the cylinder shell 14. Since the entire inner circumference of the cylinder shell 4 can be provided with cooling support elements, the cooling effect is even more intensive here, so that the desired amorphous structure of the metal foil formed can be achieved with even greater certainty.

In den Kühlmittelzuleitungen 19 sind für die einzelnen Kühlstützelemente 171 - 178 steuerbare Ventile 211 - 218 vorgesehen, mit welchen die Menge des den einzelnen Kühlstützelementen zugeführten Kühlmittels, bzw. dessen Druck reguliert werden kann.In the coolant supply lines 19, controllable valves 211-218 are provided for the individual cooling support elements 17 1 - 178, with which the quantity of the coolant supplied to the individual cooling support elements or its pressure can be regulated.

Wie insbesondere in Figure 3 dargestellt, können die einzelnen Reihen von Kühlstützelementen 171 - 178 aus mehreren in Achsenrichtung dicht nebeneinander liegenden, einzeln steuerbaren Stützelementen gebildet sein, wie es beispielsweise anhand der oberen Stützelementreihe 1711, 1712, 1713... und der entgegengesetzten Reihe 1751, 1752, 1753... dargestellt ist.As shown in particular in Figure 3, the individual rows of cooling support elements 17 1 - 17 8 can be formed from a plurality of individually controllable support elements lying closely next to one another in the axial direction, as is the case for example with the aid of the upper support element row 1711, 1712, 1713 ... and the opposite one Row 1751, 1752, 1753 ... is shown.

Die Enden der Zylinderschale sind mit Endscheiben 22 versehen, welche das Innere des Zylinders von der Aussenwelt abdichten und auf den Enden der Traverse 20 mittels geeigneter Wälzlager 23 rotierbar gelagert, sowie mit einem nicht dargestellten Antrieb versehen sind. Mittels der Endscheiben 22 wird der Austritt von Kühlflüssigkeit aus dem Inneren der Zylinderschale verhindert, so dass die Kühlflüssigkeit nicht auf die Aussenseite und die gebildete Metallfolie gelangen kann, wo sie zu unerwünschten Reaktionen anlass geben könnte. Das überschüssige Kühlmittel wird stattdessen über geeignete Bohrungen in der Traverse auf sichere Weise abgeleitet. Im übrigen kann der Erstarrungsprozess auf der Aussenseite der Zylinderschale in einer Inertgas-Atmosphäre erfolgen.The ends of the cylinder shell are provided with end disks 22 which seal the inside of the cylinder from the outside world and are rotatably supported on the ends of the cross member 20 by means of suitable roller bearings 23 and are provided with a drive (not shown). The end disks 22 prevent coolant from escaping from the interior of the cylinder shell, so that the coolant cannot get to the outside and the metal foil formed, where it could give rise to undesirable reactions. Instead, the excess coolant is drained off safely through suitable holes in the crossmember. Otherwise, the solidification process can take place on the outside of the cylinder shell in an inert gas atmosphere.

Das Vorsehen mehrerer Kühlstützelemente 1711, 1712, 1713... in Achsenrichtung nebeneinander auf der zur schlitzartigen Düse 13 gegenüberliegenden Seite der Zylinderschale 14 erlaubt bei einem besonders günstig weitergebildeten Ausführungsbeispiel zusätzlich eine automatische Regelung der Dicke der erzeugten Metallfolie über die gesamte Breite, was besonders bei der Herstellung breiter Metallfolien wichtig ist.The provision of a plurality of cooling support elements 17 11 , 1712, 1713 ... in the axial direction next to one another on the side of the cylinder shell 14 opposite the slot-like nozzle 13 also permits automatic control of the thickness of the metal foil produced over the entire width in a particularly favorable further developed embodiment, which is particularly important is important in the production of wide metal foils.

Wie in Figur 2 dargestellt, sind zu diesem Zweck nach dem Folienablauf, welcher beispielsweise mittels eines Schabers 24 oder einer Luftdüse erfolgen kann, Dickensensoren 25 über die Breite der erzeugten Folie verteilt vorgesehen. Diese Dickensensoren 25 sind mit einer Regeleinrichtung 26 verbunden, welche beispielsweise mit Hilfe eines geeignet programmierten Mikroprozessors die Ventile 211, 213, 215 und 217 mit entsprechenden Stellsignalen ansteuert. Dabei ist die Regeleinrichtung 26 bzw. deren Programm so eingerichtet, dass bei Zunahme der von den Dickensensoren 25 gemessenen Foliendicke die Ventile 211 und 215 der entsprechenden Kühlstützelemente 171 und 175 an der entsprechenden Stelle der Achse etwas geöffnet werden, so dass eine grössere Menge von Druckmittel zu den beiden Kühlstützelementen 171 und 175 geliefert wird. Gleichzeitig werden die Ventile 213 und 217 der senkrecht dazu angeordneten Kühlstützelemente 173 und 177 etwas gedrosselt, so dass der Druck des Kühlmittels in diesen Stützelementen etwas abnimmt. Dadurch wird die Zylinderschale 14 ein klein wenig elliptisch verformt, so dass der Spalt zwischen der Zylinderschale 14 und der schlitzartigen Düse 13 an der betreffenden Stelle etwas verkleinert wird und weniger Metallschmelze an diesem Punkt austritt, so dass die Foliendicke automatisch auf den vorgegebenen Sollwert geregelt wird. Dadurch, dass jeweils zwei gegenüber liegende Kühlstützelemente in gleicher Weise beeinflusst werden, entfallen die integralen Biegebeanspruchungen der Zylinderschale, so dass dabei keine Kräfte frei werden, die über die seitlichen Lager geleitet werden müssten. Der konstruktive Aufwand lässt sich dabei dadurch vermindern, dass immer zwei einander gegenüber liegende Kühlstützelemente über ein gemeinsames Ventil angespeist werden.For this purpose, as shown in FIG. 2, after the film run-off, which can be done, for example, by means of a scraper 24 or an air nozzle, thickness sensors 25 are provided distributed over the width of the film produced. These thickness sensors 25 are connected to a control device 26 which, for example with the aid of a suitably programmed microprocessor, controls the valves 211, 213, 215 and 21 7 with corresponding control signals. The control device 26 or its program is set up so that when the film thickness measured by the thickness sensors 25 increases, the valves 21 1 and 215 of the corresponding cooling support elements 17 1 and 17 5 are opened somewhat at the corresponding point on the axis, so that a larger one Amount of pressure medium is supplied to the two cooling support elements 171 and 175. At the same time, the valves 213 and 217 of the cooling support elements 17 3 and 17 7 arranged perpendicular thereto are throttled somewhat, so that the pressure of the coolant in these support elements decreases somewhat. As a result, the cylinder shell 14 is deformed a little bit elliptically, so that the gap between the cylinder shell 14 and the slit-like nozzle 13 is reduced somewhat at the point in question and less metal melt escapes at this point, so that the film thickness is automatically regulated to the predetermined desired value . The fact that two opposing cooling support elements are influenced in the same way eliminates the integral bending stresses of the cylinder shell, so that no forces are released that would have to be directed through the side bearings. The design effort can be reduced by always supplying two opposing cooling support elements via a common valve.

Da zur Erreichung einer sehr intensiven Kühlung ausser den genannten vier Reihen von Kühlstützelementen weitere Reihen 172, 174, 176 und178 beispielsweise im Bereich der Winkelhalbierenden zum oben beschriebenen Achsenkreuz empfehlenswert sind, können diese zusätzlichen Reihen von Kühlstützelementen dazu herangezogen werden, eine Temperatur-Regulierung zu bewirken, indem ein Temperaturfühlersystem 27 über die Folienbreite das Temperaturprofil erfasst, es einer zweiten Regeleinrichtung 28 zuleitet, die wiederum mit einem geeigneten Mikroprozessor ausgerüstet sein kann, der seinerseits Stellimpulse auf die Drosselventile 212, 214, 216 und 21 der entsprechenden Kühlstützelemente leitet, in dem Sinne dass z.B. zu den Kühlstützelementen an der Stelle einer erhöten Temperatur mehr Kühlflüssigkeit zugeleitet wird und an Stellen mit geringer Temperatur entsprechend weniger. Auch hier kann die konstruktiv vereinfachende Schaltung gewählt werden, diese Kühlstützelemente in jeder Längsebene über ein gemeinsames Ventil anzusteuern. Darüberhinaus können in Umfangsrichtung, in den Lücken zwischen den genannten Kühlstützelementen171 - 178 noch weitere Elemente vorgesehen sein, die mit einem geeigneten Kühlmitteldruck angesteuert werden.Since further rows 172, 174, 176 and 178 are recommended to achieve very intensive cooling in addition to the four rows of cooling support elements mentioned, for example in the region of the bisector to the axis cross described above, these additional rows of cooling support elements can be used to effect temperature regulation By a temperature sensor system 27 detects the temperature profile across the film width, it feeds it to a second control device 28, which in turn can be equipped with a suitable microprocessor, which in turn directs control impulses to the throttle valves 212, 214, 216 and 21 of the corresponding cooling support elements, in the sense that e.g. more cooling liquid is supplied to the cooling support elements at the point of an elevated temperature and correspondingly less at points with a low temperature. Here, too, the structurally simplified circuit can be selected to control these cooling support elements in each longitudinal plane via a common valve. In addition, further elements can be provided in the circumferential direction, in the gaps between said cooling support elements 171 - 178, which are controlled with a suitable coolant pressure.

Je nach Art der herzustellenden Folie ist es von Bedeutung, dass das Temperaturprofil der bewegten Wand vor Eintritt in den Bereich der schlitzartigen Düse 13 genügend ausgeglichen ist. An dieser Stelle kann daher ein weiteres Temperaturprofil-Sensorsystem 29 vorgesehen sein, das der zweiten Regeleinrichtung 28 ebenfalls entsprechende Signale zuleitet. Das Programm der Regeleinrichtung 28 wird in diesem Fall zweckmässigerweise so gewählt, dass ein je nach Produkt aus beiden Messinformationen geeignet gewichtetes Signal als Stellsignal dient.Depending on the type of film to be produced, it is important that the temperature profile of the moving wall is sufficiently balanced before entering the area of the slot-like nozzle 13. At this point, therefore, a further temperature profile sensor system 29 can be provided, which also supplies corresponding signals to the second control device 28. In this case, the program of the control device 28 is expediently selected such that a signal which is suitably weighted from the two measurement information items, depending on the product, serves as an actuating signal.

Claims (12)

1. Device for the continuous casting of rapidly solidifying materials to produce sheets with an extremely fine-grained or amorphous structure, the hot, liquid material flowing through a slot-like nozzle (3, 13) onto a cooled wall (4, 14) which is made of good heat-conductive material and is moved closely past the nozzle, said liquid material solidifying on said wall (4, 14) and being separated from the wall after a given distance, said wall (4, 14) being constructed to be elastically resilient to a certain extent, characterised in that said wall (4, 14) is cooled on the side remote from the nozzle (3, 13) directly opposite said nozzle (3, 13) by means of at least one cooling supporting element (71, 72; 171_178) which is movable in a support direction at right-angles to the wall (4, 14), which element is provided with at least one bearing surface (16) which is supplied with a pressure medium cooling the wall and is supported on a fixed cross-arm (10, 20).
2. Device according to Claim 1, characterised in that apart from the cooling supporting elements (71, 171) disposed on the side of the wall (4, 14) opposite the nozzle (3, 13) at least one other cooling supporting element (72, 172 - 178) is disposed in the direction of movement of the wall (4, 14) adjacent to said element.
3. Device according to Claim 1 or 2, characterised in that in each case a plurality of cooling supporting elements (1711, 1712 ..., 1751, 1752 ...) are arranged at right-angles to the direction of movement of the wall (4, 14), which elements are supplied with cooling pressure medium independently of each other.
4. Device according to one of Claims 1 - 3, characterised in that the cooling supporting elements (71, 72; 171 - 178) are each supported on a pressure chamber (81, 82; 18) supplied with cooling pressure medium on the fixed cross-arm (10, 20) and each have on their bearing surfaces at least one pressure pocket (16) which is connected to the pressure chamber (18) by a bore (12).
5. Device according to Claim 4, characterised in that one controllable valve (211 - 218) in each case is provided in the pressure medium feed lines (19) for the pressure chambers (18).
6. Device according to one of Claims 1 - 5, characterised in that thickness sensors (25) for detecting the local value of the thickness of the sheet (5, 15) produced are provided across the width of said device, and an automatic control apparatus (26) which is controlled by the thickness sensors (25) and which is equipped to control the pressure of the cooling pressure medium for the cooling supporting elements (71, 171) which are disposed on the side of the wall (4, 14) opposite the slot (3, 13), and thus to cause a deformation of the elastically resilient wall (4, 14) and hence a change in the rate of the flow of material flowing out of the nozzle (3, 13).
7. Device according to Claim 6, characterised in that temperature sensors (27) are provided for detecting the temperature profile across the width of the web produced, and also an additional automatic control apparatus (28) which controls the supply of cooling pressure medium to other cooling supporting elements (172, 174, 176, 178).
8. Device according to Claim 7, characterised in that an additional temperature profile sensor system (29) is provided which detects the temperature profile of the moving wall (4, 14) across the width thereof before the region of the nozzle (3, 13) and emits signals to the additional control device (28), which forms a weighted signal for the supply of cooling pressure medium from the signals of both temperature sensor systems.
9. Device according to one of Claims 1 - 8, characterised in that the wall (14) is constructed as a thin-walled cylindrical shell which has in its interior a plurality of series of cooling supporting elements (171 - 178) distributed across the periphery and supported on a central cross-bar (20).
10. Device according to Claim 9, characterised in that the cylindrical shell (14) is sealed against the external atmosphere at both ends by end discs (22), said end discs (22) being rotatably mounted on the cross-bar (20) by means of bearings (23).
11. Device according to Claims 8 and 9, characterised in that the thickness sensors (25) control the pressure of the cooling pressure medium in opposing series of cooling supporting elements (171, 175; 173, 177) in the same way, but control the pressure in the opposite direction in cooling supporting elements which are rotated by ninety degrees, so that the cylindrical shell (14) is elliptically deformed.
12. Device according to Claims 7 and 11, characterised in that the cooling supporting elements (172, 174, 176, 178) which are controlled by the temperature profile sensors (27) are disposed in the region of the median lines of the intersection of axes formed by the cooling supporting elements (171, 173, 175, 177) which are controlled by the thickness sensors (25).
EP87103349A 1986-03-14 1987-03-09 Device for the continuous casting of quickly solidifying materials Expired EP0237008B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1052/86 1986-03-14
CH1052/86A CH671534A5 (en) 1986-03-14 1986-03-14

Publications (2)

Publication Number Publication Date
EP0237008A1 EP0237008A1 (en) 1987-09-16
EP0237008B1 true EP0237008B1 (en) 1989-12-27

Family

ID=4201328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87103349A Expired EP0237008B1 (en) 1986-03-14 1987-03-09 Device for the continuous casting of quickly solidifying materials

Country Status (6)

Country Link
US (1) US4721154A (en)
EP (1) EP0237008B1 (en)
JP (1) JPS62220251A (en)
CH (1) CH671534A5 (en)
DE (2) DE3617608A1 (en)
ES (1) ES2012464B3 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113142B2 (en) * 1987-02-10 1995-12-06 三菱電機株式会社 Manufacturing method of phosphor bronze sheet
DE3706636A1 (en) * 1987-03-02 1988-09-15 Vacuumschmelze Gmbh Method for monitoring the thickness of a cast product solidifying on a moving cooling surface
US4917170A (en) * 1988-09-20 1990-04-17 Olin Corporation Non-preheated low thermal conductivity substrate for use in spray-deposited strip production
US4966224A (en) * 1988-09-20 1990-10-30 Olin Corporation Substrate orientation in a gas-atomizing spray-depositing apparatus
US4945973A (en) * 1988-11-14 1990-08-07 Olin Corporation Thermal conductivity of substrate material correlated with atomizing gas-produced steady state temperature
US4938278A (en) * 1988-09-20 1990-07-03 Olin Corporation Substrate for use in spray-deposited strip
US4926927A (en) * 1988-09-20 1990-05-22 Olin Corporation Vertical substrate orientation for gas-atomizing spray-deposition apparatus
US4977950A (en) * 1989-03-13 1990-12-18 Olin Corporation Ejection nozzle for imposing high angular momentum on molten metal stream for producing particle spray
US4901784A (en) * 1989-03-29 1990-02-20 Olin Corporation Gas atomizer for spray casting
US4907639A (en) * 1989-03-13 1990-03-13 Olin Corporation Asymmetrical gas-atomizing device and method for reducing deposite bottom surface porosity
US4925103A (en) * 1989-03-13 1990-05-15 Olin Corporation Magnetic field-generating nozzle for atomizing a molten metal stream into a particle spray
US5626183A (en) * 1989-07-14 1997-05-06 Fata Hunter, Inc. System for a crown control roll casting machine
EP0407978B1 (en) * 1989-07-14 1995-12-20 Hunter Engineering Company, Inc. Roll casting machine crown control
US5201360A (en) * 1990-08-17 1993-04-13 Sundwiger Eisenhutte Maschinenfabrik Casting wheel for a single-roll casting machine
DE4126079C2 (en) * 1991-08-07 1995-10-12 Wieland Werke Ag Belt casting process for precipitation-forming and / or tension-sensitive and / or segregation-prone copper alloys
FR2696166B1 (en) * 1992-09-28 1994-11-18 Escher Wyss Ag Band guide cylinder.
US5368659A (en) * 1993-04-07 1994-11-29 California Institute Of Technology Method of forming berryllium bearing metallic glass
US5288344A (en) * 1993-04-07 1994-02-22 California Institute Of Technology Berylllium bearing amorphous metallic alloys formed by low cooling rates
US5411075A (en) * 1993-08-31 1995-05-02 Aluminum Company Of America Roll for use in casting metal products and an associated method
FR2742683B1 (en) * 1995-12-21 1998-03-06 Usinor Sacilor CONTINUOUS CASTING ROTATING DEVICE
US6789602B2 (en) 2002-02-11 2004-09-14 Commonwealth Industries, Inc. Process for producing aluminum sheet product having controlled recrystallization
AU2003233611A1 (en) * 2002-05-20 2003-12-12 Liquidmetal Technologies, Inc. Foamed structures of bulk-solidifying amorphous alloys
AU2003254319A1 (en) 2002-08-05 2004-02-23 Liquidmetal Technologies Metallic dental prostheses made of bulk-solidifying amorphous alloys and method of making such articles
AU2003258298A1 (en) * 2002-08-19 2004-03-03 Liquidmetal Technologies Medical implants
US20060102315A1 (en) * 2002-09-27 2006-05-18 Lee Jung G Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
CN1327990C (en) * 2002-09-27 2007-07-25 学校法人浦项工科大学校 Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
AU2003287682A1 (en) * 2002-11-18 2004-06-15 Liquidmetal Technologies Amorphous alloy stents
WO2004047582A2 (en) * 2002-11-22 2004-06-10 Liquidmetal Technologies, Inc. Jewelry made of precious amorphous metal and method of making such articles
WO2005034590A2 (en) * 2003-02-21 2005-04-14 Liquidmetal Technologies, Inc. Composite emp shielding of bulk-solidifying amorphous alloys and method of making same
WO2004083472A2 (en) 2003-03-18 2004-09-30 Liquidmetal Technologies, Inc. Current collector plates of bulk-solidifying amorphous alloys
USRE44425E1 (en) * 2003-04-14 2013-08-13 Crucible Intellectual Property, Llc Continuous casting of bulk solidifying amorphous alloys
USRE44426E1 (en) * 2003-04-14 2013-08-13 Crucible Intellectual Property, Llc Continuous casting of foamed bulk amorphous alloys
CN101081429B (en) * 2004-01-13 2012-09-05 明柱文 L, R, C method and device for casing metal section bar such as amorphous, ultracrystallite, micro crystal, etc.
EP1805337B8 (en) 2004-10-15 2011-01-12 Crucible Intellectual Property, LLC Au-base bulk solidifying amorphous alloys
US20090114317A1 (en) * 2004-10-19 2009-05-07 Steve Collier Metallic mirrors formed from amorphous alloys
DE102004061080A1 (en) * 2004-12-18 2006-06-22 Sms Demag Ag Method and device for strip casting of metals
GB2439852B (en) 2005-02-17 2009-06-10 Liquidmetal Technologies Inc Antenna structures made of bulk-solidifying amorphous alloys
US8418746B2 (en) * 2005-07-25 2013-04-16 Zhuwen Ming L, R, C method and equipment for continuous casting amorphous, ultracrystallite and crystallite metallic slab or strip
DE102006021772B4 (en) * 2006-05-10 2009-02-05 Siemens Ag Method of making copper-chrome contacts for vacuum switches and associated switch contacts
CN103909239B (en) * 2014-03-13 2016-01-20 郭瑞 A kind of preparation facilities of amorphous alloy and method
US11371108B2 (en) 2019-02-14 2022-06-28 Glassimetal Technology, Inc. Tough iron-based glasses with high glass forming ability and high thermal stability
CN110076308A (en) * 2019-05-30 2019-08-02 燕山大学 A kind of amorphous alloy conticaster and its continuous casing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712366A (en) * 1971-10-12 1973-01-23 Jones & Laughlin Steel Corp Method of cooling drum type strip casting apparatus
NZ180524A (en) * 1975-04-15 1978-12-18 Alcan Res & Dev Liquid support for and cooling of reuerse surfaces of belts used in continuous casting of metal strip
CH613884A5 (en) * 1976-04-13 1979-10-31 Escher Wyss Ag
US4142571A (en) * 1976-10-22 1979-03-06 Allied Chemical Corporation Continuous casting method for metallic strips
US4268564A (en) * 1977-12-22 1981-05-19 Allied Chemical Corporation Strips of metallic glasses containing embedded particulate matter
US4193440A (en) * 1978-09-01 1980-03-18 Alcan Research And Development Limited Belt-cooling and guiding means for the continuous belt casting of metal strip
JPS571547A (en) * 1980-06-04 1982-01-06 Hitachi Ltd Rotary ring-one side belt type continuous casting device
FR2486838A1 (en) * 1980-07-18 1982-01-22 Saint Gobain Rech METHOD AND APPARATUS FOR MANUFACTURING CAST DUMPED THIN RIBBONS ON A CONTINUOUS DEFROSTING SUBSTRATE AND PRODUCTS OBTAINED
JPS57190753A (en) * 1981-05-19 1982-11-24 Nippon Kokan Kk <Nkk> Cooling drum for production of amorphous or fine crystalline metal
DE3423834A1 (en) * 1984-06-28 1986-01-09 Mannesmann AG, 4000 Düsseldorf METHOD AND DEVICE FOR CONTINUOUSLY POURING METAL MELT, IN PARTICULAR STEEL MELT

Also Published As

Publication number Publication date
CH671534A5 (en) 1989-09-15
ES2012464B3 (en) 1990-04-01
DE3617608A1 (en) 1987-09-17
DE3617608C2 (en) 1990-07-19
JPS62220251A (en) 1987-09-28
EP0237008A1 (en) 1987-09-16
US4721154A (en) 1988-01-26
DE3761244D1 (en) 1990-02-01

Similar Documents

Publication Publication Date Title
EP0237008B1 (en) Device for the continuous casting of quickly solidifying materials
DE2550140C2 (en) Device for casting abrasive sheets from molten oxide abrasive
DE2759736C2 (en) Use of a slot nozzle and a heat sink
DE3873541T2 (en) DEVICE AND METHOD FOR DIRECTLY CASTING METAL STRIP.
CH625438A5 (en) Method and apparatus for the production of a metal strip
CH657382A5 (en) METHOD FOR REGULATING THE SPACE OF MAGNETIC SYSTEM AND TARGET PLATE IN A cathode assembly FOR KATODENZERSTAEUBUNGSANLAGEN.
CH682893A5 (en) Roll and plastic-casting machine with a roller.
DE2703169C2 (en) Process for the production of metal powder and device for carrying out the process
EP0111728A2 (en) Method of and device for producing products in the shape of strips or foils
DE4138655C2 (en) Outflow regulator for tundish
EP0028686B1 (en) Cooling apparatus, especially for ingot and billet strands
DE3116277A1 (en) CRYSTALIZER
DE3440236C2 (en)
DE1805300B2 (en) DEVICE FOR THE PRODUCTION OF GRIDS FOR ACCUMULATORS
DE3207010A1 (en) METAL SHEET CONTINUOUS DEVICE
DE3801085C2 (en)
DE4039959C1 (en)
DE4334405C2 (en) Transport device
DE19814988C2 (en) Casting process for a thin metal strip
DE19815010C1 (en) Continuous casting of one- or two-side clad thin metal strip
EP1827735B1 (en) Method and device for continuous casting of metals
EP0045365A1 (en) Means for introducing molten metal into a continuous-casting mould having travelling walls
EP0707508B1 (en) Process and device for the separation of substances by crystallization of molten material
EP1064113B1 (en) Method and device for homogenizing a molten metal film
CH666840A5 (en) Metal or metallic oxide tape, strip, or foil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19881115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 3761244

Country of ref document: DE

Date of ref document: 19900201

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 87103349.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030304

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030310

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030311

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030314

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030320

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *SULZER-ESCHER WYSS A.G.

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040310