EP0236354B1 - Procede de decapage acide de produits en acier inoxydable - Google Patents

Procede de decapage acide de produits en acier inoxydable Download PDF

Info

Publication number
EP0236354B1
EP0236354B1 EP19860904835 EP86904835A EP0236354B1 EP 0236354 B1 EP0236354 B1 EP 0236354B1 EP 19860904835 EP19860904835 EP 19860904835 EP 86904835 A EP86904835 A EP 86904835A EP 0236354 B1 EP0236354 B1 EP 0236354B1
Authority
EP
European Patent Office
Prior art keywords
bath
pickling
stainless steel
pickled
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19860904835
Other languages
German (de)
English (en)
Other versions
EP0236354A1 (fr
Inventor
Bernard Bousquet
Bernard Chetreff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugine SA
Original Assignee
Ugine Aciers de Chatillon et Guegnon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9323241&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0236354(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ugine Aciers de Chatillon et Guegnon filed Critical Ugine Aciers de Chatillon et Guegnon
Publication of EP0236354A1 publication Critical patent/EP0236354A1/fr
Application granted granted Critical
Publication of EP0236354B1 publication Critical patent/EP0236354B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Definitions

  • the field of the present invention is that of surface treatments and more specifically of the acid pickling of stainless steel products.
  • the acid pickling of stainless steels is usually carried out with fluonitric baths, in which the use of nitric acid has the disadvantage of causing the formation of nitrous vapors polluting the atmosphere and soluble nitrates polluting the liquid effluents.
  • J.H.G. MONYPENNY indicates pp. 183 - 184 that, to minimize the problem of vapors from fluonitric pickling baths, stainless steel sheets were used for pickling baths containing 6 to 12% of 90% solution of ferric sulfate and 1.5 to 3% hydrofluoric acid and this for example at 70 - 80 ° C for descaling a hot rolled sheet.
  • the initial concentration of ferric iron in the preceding baths is thus approximately 16.5 to 33 g / I.
  • the tests of the applicant have shown that, when successive samples of stainless steel sheet are scoured in such baths, the speed and the quality of the pickling deteriorate rapidly. These acid pickling baths are therefore not satisfactory as such for serial or continuous pickling of stainless steel products.
  • document DE-C-899 890 published in 1953, describes a process for regenerating an HF / Fe 3+ pickling bath of steels by adding nitrites, part of these nitrites being able to be replaced by l oxygen introduced into the bath by means of air injection.
  • document GE-A-2 000 196 describes a process for controlling the composition of a pickling bath for stainless steels containing HF and ferric sulphate, in which the REDOX potential of the bath is maintained within a chosen interval by addition of hydrogen peroxide and sulfuric acid.
  • one or more pickling baths are used, initially containing HF 10 at 35 g / I and Fe 3+ > 20 g / I, and during the pickling operation (s) the Fe 3+ content of this bath or these baths is kept at least 20 g / I thanks to an oxidation of the bath or baths comprising one or more air injections total flow between 1 and 8 Nm 3 per m 2 of pickled stainless steel and per hour of pickling of each pickled surface element. Air injections of greater total flow have proved to be of no interest, the saturation of the bath with oxygen in the air being undoubtedly reached and the additional air flows no longer apparently serving only to stir the bath, and this in a way eventually excessive.
  • the concentration of ferric iron in the bath can be calculated as the difference between the concentration of total iron, determined for example by atomic absorption, and the concentration of Fe2 + measured by its oxidation to Fe 3+ in the presence of permanganate KMn0 4 .
  • Adequate aeration of the pickling bath typically by air injection, allows the quality of pickling to be maintained during successive pickling or continuous pickling of stainless steel products by regenerating Fe 3+ .
  • the total volume of air injected into the pickling bath essentially depends on the amount of pickled stainless steel, which quantity itself is proportional to the pickled surface and the duration of pickling of this surface.
  • the total flow rate of air injected into the pickling bath of the invention is typically between 2 and 5 Nm 3 per m 2 d '' pickled stainless steel and per hour of pickling of each pickled surface element. So that the pickling bath is adequately aerated, it is then advisable to inject a good part of this volume of air, typically typically at least half of this volume, with nozzles directed towards the bottom of the bath at the lower half. from this bath.
  • the injected air is preferably preheated to a temperature close to that of the bath, ie typically between 35 and 60 ° C.
  • the refills are carried out as usual, and, rather than determining the concentration of the bath, it is practical to determine the REDOX potential of the bath and to set it between 0 and +800 mV and preferably between +100 and +300 mV by acting if necessary on the oxidation of the bath.
  • the reference REDOX potential is chosen according to the grade and surface condition of the strip and readjusted, if necessary, based on surface condition observations after pickling.
  • the REDOX potential is measured between a platinum electrode and an Ag / AgCI reference electrode or with fixed potential, reproducible and with zero irreversibility power.
  • a device for measuring this REDOX potential can be suitably sealed so as to allow continuous measurements in the bath.
  • an oxidation means temporarily and / or locally supplementing the action of the air to return more quickly to the desired Fe 3+ concentration or at the set REDOX potential, so as to find good pickling.
  • strong oxidant for example hydrogen peroxide or potassium permanganate, is then used as a complementary means of oxidizing the bath. It is still possible in certain cases to introduce an oxygen injection or to increase the air flow.
  • the Applicant has found that it was then possible to modify the solubility of the sludge, or precipitated from the spent bath, by adjusting the REDOX potential of the bath during pickling.
  • the "sludge" is not very soluble when the bath has been adjusted below +100 mV or above +300 to 350 mV, and their solubility is greatly improved between +100 mV and +300 mV, and more particularly between +190 mV and +260 mV, the optimal bath control being 220 ⁇ 20 mV.
  • ferric fluoride or ferric sulphate or ferric chloride For the preparation of the pickling bath, use is generally made of ferric fluoride or ferric sulphate or ferric chloride, with a ferric iron concentration of between 20 and 40 g / l, with a preference for ferric fluoride, so as to have only one acid radical in the bath.
  • This air injection here was of the order of 1 1 / min, that is to say very in excess with respect to the useful flow rate.
  • Consistent pickling tests were carried out in the laboratory of several hundred samples similar to the samples in test series No. 1, always in the same pickling solution of initial composition HF 20 g / I, with periodic recharging. on the one hand in order to conserve 20 g / I and on the other hand in H 2 0 2 to the minimum necessary taking into account the concentration of iron in the solution, this with injection of air into the pickling bath.
  • the total dissolved iron concentration, the cumulative consumption of and the cumulative consumption of hydrogen peroxide H 2 0 2 were respectively monitored as a function of the number of pickled samples, each for 2 min. It has been observed that up to 275 to 300 pickled samples, corresponding to 25 to 27 g / I of dissolved iron, the consumption of HF and H 2 0 2 are fairly high and roughly proportional to the number of pickled samples, and beyond that consumption of HF and H 2 0 2 becomes very low. Thus, when the concentration of dissolved iron becomes greater than 25 g / l, the consumption of concentrated HF at 70% jumps surprisingly from 7 ml per 100 pickled samples to 0.3 ml per 100 pickled samples.
  • the oxygen in the air injected into the bath acts as an ion regenerator (Fe 3 +) according to the equilibrium reaction (C) already indicated, by moving this equilibrium in direction 3 of the formation of Fe 3 +, the pH of the solution being favorable and of the order of 2 as a result of the HF concentration. If this reaction (C) is adjusted so that it allows a regeneration of Fe2 + to Fe 3+ fast enough to always have Fe 3+ > 20 to 25 g / I, there is almost no need for H 2 0 2 . And consumption is surprisingly much lower than for lower concentrations of iron and therefore Fe 3 +.
  • the bath contained 20 g / l of and initially 25 g / l of Fe 3+ , coming from ferric fluoride dissolved in the bath. Air was injected into the bath mainly with nozzles spaced 2 to 3 m apart and directed downwards with an inclination of 15 ° with respect to the vertical, the air being released at the end of these nozzles towards the bottom of the tray and 15 cm from this bottom.
  • the total flow rate of air injected into the bath was 100 Nm 3 / h, 2/3 of which towards the bottom and in the vicinity of this bottom with the nozzles which have just been described.
  • the bath temperature was 40 to 45 ° C. The bath was run by measuring and adjusting its REDOX potential above +150 mV.
  • the total flow of injected air is therefore: or 3.1 Nm 3 per m 2 of pickled stainless steel and per hour of pickling of each pickled surface element.
  • the baths contained 25 g / I of HF and initially 20 g / I of Fe 3 +. Air was injected with nozzles with a layout similar to that of Example 1 with a total flow rate for each tank of 80 m 3 / h and a pressure of 0.2 MPa, ie a flow rate of approximately 160 Nm 3 / h.
  • the bath temperature was 50 to 55 ° C.
  • the bath was controlled by measuring and adjusting its REDOX potential above +200 mV. Additions of hydrogen peroxide were planned as a complementary means of oxidation to readjust the REDOX potential when it had become too low. We were able to operate for periods of several days without using this additional oxidation means and while retaining a potential of +200 to +300 mV with a good quality of pickling.
  • the injected air flow here is 4 Nm 3 per m 2 of pickled stainless steel and per hour of pickling of each pickled surface element.
  • the complex formed is of the FeF 3 , 3H 2 0 type. It has been found that this compound was soluble neither in water at 20 ° C. nor in an aqueous solution of 20 g of per liter at 20 ° C. hydrolyzes). On the other hand, at 50 ° C, it is moderately soluble: at 31 g / I in water and at 38 g / I in 20 g / I. This dissolution, unstable on cooling, is not satisfactory.
  • This type of "mud” can be recycled in a new bath, according to the method described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Detergent Compositions (AREA)

Abstract

Procédé de décapage de produits en acier inoxydable, dans lequel on utilise un bain de décapage de composition initiale: HF 10 à 50 g/l; fer ferrique (Fe3+) dissous >= 15 g/l; eau: le solde; à une température comprise entre 15 et 70oC, caractérisé en ce que, pendant la ou les opérations de décapage, on maintient la teneur en fer ferrique du bain à au moins 15 g/l par oxydation du bain comportant au moins une ou des injections d'air de débit total supérieur ou égal à 1 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé. Le procédé de l'invention s'applique particulièrement au décapage industriel de tôles et bandes en acier inoxydable, dans lequel il permet d'éviter l'emploi d'acide nitrique et les pollutions qui en résultent.

Description

  • Le domaine de la présente invention est celui des traitements de surface et plus précisément du décapage acide des produits en acier inoxydable.
  • Exposé du problème
  • Le décapage acide des aciers inoxydables est effectué habituellement avec des bains fluonitriques, dans lesquels l'utilisation d'acide nitrique a pour inconvénient d'engendrer la formation de vapeurs nitreuses polluant l'atmosphère et de nitrates solubles polluant les effluents liquides.
  • Dans le contexte du décapage acide en continu de tôles en acier inoxydable, la demanderesse a cherché à mettre au point un procédé de décapage modifié qui, tout en restant industriellement économique, permette de limiter ou mieux d'éviter de telles pollutions.
  • Etat de la technique connu
  • Dans son ouvrage "STAINLESS IRON AND STEEL" (CHAPMAN & HALL Ltd, London 1951), J.H.G. MONYPENNY indique pp. 183 - 184 que, pour minimiser le problème des vapeurs des bains de décapage fluonitriques, on a utilisé pour le décapage de tôles en acier inoxydable des bains contenant 6 à 12 % de solution à 90 % de sulfate ferrique et 1,5 à 3 % d'acide fluorhydrique et ceci par exemple à 70 - 80° C pour le décalaminage d'une tôle laminée à chaud. La concentration initiale en fer ferrique des bains précédents est ainsi d'environ 16,5 à 33 g/I Les essais de la demanderesse ont montré que, lorsqu'on décape des échantillons successifs de tôle en acier inoxydable dans de tels bains, la vitesse et la qualité du décapage se dégradent rapidement. Ces bains de décapage acide ne sont donc pas satisfaisants tels quels pour le décapage en série ou en continu de produits en aciers inoxydables.
  • Par ailleurs, le document DE-C-899 890, publié en 1953, décrit un procédé de régénération d'un bain de décapage HF/Fe3+ des aciers par addition de nitrites, une partie de ces nitrites pouvant être remplacée par de l'oxygène introduit dans le bain au moyen d'une injection d'air. De son côté, le document GE-A-2 000 196 décrit un procédé de contrôle de la composition d'un bain de décapage des aciers inoxydables contenant HF et du sulfate ferrique, dans lequel le potentiel REDOX du bain est maintenu dans un intervalle choisi par addition d'eau oxygénée et d'acide sulfurique. Des essais industriels de décapage de bandes en acier inoxydable par des bains contenant de l'acide fluorhydrique et de l'eau oxygénée ont été faits par la demanderesse, qui a observé des emballements en température des bains ainsi qu une importante consommation d'eau oxygénée rendant le procédé très coûteux par rapport au procédé de décapage fluonitrique des aciers inoxydables. Dans ce procédé, le remplacement de l'acide nitrique par l'eau oxygénée ne semble donc pas convenir pour une exploitation industrielle.
  • Exposé de l'inventiuon
  • L'invention a pour objet un procédé de décapage de produits en acier inoxydable dans lequel, comme il est connu, on utilise un bain de décapage de composition initiale
    • HF 10 à 50 g/l
    • Fer ferrique (Fe3+) dissous > 15 g/1
    • Eau : le solde

    à une température comprise entre 15 et 70°C, et dans lequel, de façon nouvelle, pendant la ou les opérations de décapage, on maintient la teneur en fer ferrique du bain à au moins 15 g/I par oxydation du bain comportant au moins une ou des injections d'air de débit total supérieur ou égal à 1 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé, ou bien une aération équivalente par circulation à l'air libre.
  • Pour la pratique industrielle, et en particulier pour le décapage répétitif ou en continu de produits en aciers inoxydables dans au moins un grand bac on utilise typiquement un ou plusieurs bains de décapage contenant initialement HF 10 à 35 g/I et Fe3+ > 20 g/I, et pendant la ou les opérations de décapage on maintient la teneur en Fe3+ de ce bain ou de ces bains à au moins 20 g/I grâce à une oxydation du ou des bains comportant une ou des injections d'air de débit total compris entre 1 et 8 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé. Des injections d'air de débit total plus important se sont révélées sans intérêt, la saturation du bain en oxygène de l'air étant sans doute atteinte et les débits d'air supplémentaires ne servant plus apparemment qu'à agiter le bain, et cela d'une façon éventuellement excessive.
  • L'oxygène de l'air introduit semble intervenir dans le procédé de l'invention comme oxydant régénérant Fe2+ en Fe3+, alors que Fe3+ constitue un oxydant agissant sur le métal de base pour le dissoudre. Les réactions essentielles pourraient être les suivantes
    • - réaction de dissolution:
      Figure imgb0001
      équilibre presque totalement déplacé dans le sens 1 dans les conditions normales du décapage;
    • - autre réaction de dissolution:
      Figure imgb0002
      également possible en milieu oxydant, ce qui est le cas;
    • - oxydation de Fe2+ par aération de la solution décapante, éventuellement complétée par un autre moyen d'oxydation:
      Figure imgb0003
      équilibre fortement déplacé dans le sens 3 si la solution est correctement oxydée et dans le cas du pH du bain de décapage qui est compris entre 1 et 3 environ.
  • La concentration en fer ferrique du bain peut être calculée comme la différence entre la concentration en fer total, déterminée par exemple par absorption atomique, et la concentration en Fe2+ dosé par son oxydation en Fe3+ en présence de permanganate KMn04. Une aération convenable du bain de décapage, typiquement par injection d'air, permet le maintien de la qualité du décapage au cours des décapages successifs ou du décapage en continu des produits en acier inoxydable en régénérant Fe3+.
  • Le volume total d'air injecté dans le bain de décapage dépend essentiellement de la quantité d'acier inoxydable décapée, quantité elle-même proportionnelle à la surface décapée et à la durée de décapage de cette surface. Pour le décapage ainsi considéré, et d'après les essais et les mises au point industrielles déjà effectuées, le débit total d'air injecté dans le bain de décapage de l'invention est typiquement compris entre 2 et 5 Nm3 par m2 d'acier inoxydable décapé et par heure de décapage de chaque élément de surface décapée. De façon que le bain de décapage soit convenablement aéré, il convient d'injecter alors une bonne partie de ce volume d'air, soit typiquement au moins la moitié de ce volume, avec des buses dirigées vers le fond du bain à la moitié inférieure de ce bain. L'air injecté est de préférence préchauffé à une température voisine de celle du bain, soit typiquement entre 35 et 60° C.
  • Pour la conduite industrielle du bain de décapage, on effectue les recharges en comme il est habituel, et, plutôt que de déterminer la concentration en du bain, il est pratique de déterminer le potentiel REDOX du bain et de le régler entre 0 et +800 mV et de préférence entre +100 et +300 mV en agissant si nécessaire sur l'oxydation du bain. Le potentiel REDOX de référence est choisi suivant la nuance et l'état de surface de la bande et réajusté, si nécessaire, d'après les observations d'état de surface après décapage.
  • Le potentiel REDOX est mesuré entre une électrode de platine et une électrode de référence Ag/AgCI ou à potentiel fixe, reproductible et à puissance d'irréversibilité nulle. Un dispositif de mesure de ce potentiel REDOX peut être convenablement étanché de façon à permettre des mesures en continu dans le bain.
  • Selon la concentration en Fe3+ constatée, ou de façon plus commode selon la valeur du potentiel REDOX, on peut avoir besoin d'un moyen d'oxydation complétant temporairement et/ou localement l'action de l'air pour revenir plus rapidement à la concentration en Fe3+ désirée ou au potentiel REDOX de consigne, de façon à retrouver un bon décapage. On utilise alors comme moyen complémentaire d'oxydation du bain au moins une addition d'oxydant fort, par exemple de l'eau oxygénée ou du permanganate de potassium. Il est encore possible dans certains cas d'introduire une injection d'oxygène ou d'augmenter le débit de l'air.
  • Dans le cas fréquent industriellement où d'importantes quantités de produits inoxydables sont décapées avec un même bain, on ajoute de préférence au bain sous forme d'additions constantes ou répétitives de petites quantités d'eau oxygénée, additions représentant typiquement en moyenne 0,1 à 0,4 1 de H202 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé. On peut utiliser de façon équivalente un autre oxydant tel que le permanganate de potassium déjà cité. Dans le procédé de l'invention, l'oxygène de l'air injecté est l'oxydant principal et produit typiquement 90 % de l'action d'oxydation.
  • La demanderesse a constaté qu'il était alors possible de modifier la solubilité des boues, ou précipités du bain usé, en réglant le potentiel REDOX du bain pendant le décapage. Les "boues" sont peu solubles lorsque le bain a été réglé au-dessous de +100 mV ou au-dessus de +300 à 350 mV, et leur solubilité est fortement améliorée entre +100 mV et +300 mV, et plus particulièrement entre +190 mV et +260 mV, un réglage optimal de conduite du bain étant 220 ± 20 mV.
  • Pour un bain usé ayant ainsi décapé des bandes en acier inoxydable avec un potentiel REDOX compris entre 200 et 240 mV, et contenant environ 60 g/1 de fer sous forme de "boues" de fluorures précipités, le recyclage de ces boues dans un bain neuf peut se faire comme suit on aspire le liquide du bain usé, puis on envoie de l'eau chaude (40 à 60°C) sur les boues pour les solubiliser, puis on ajuste la teneur en par addition de HF libre (15 à 20 g/I) et on agite. On injecte ensuite un peu d'eau oxygénée pour ajuster le potentiel à environ +220 mV et on obtient un bain neuf. Cette possibilité de recycler les boues est particulièrement intéressante sur le plan industriel. Comme le montreront les exemples 3 à 5, il semble que cette dissolution favorable des boues soit liée à la précipitation d'un fluorure mixte de fer, formé majoritairement entre +100 mV et +300 mV et plus spécialement entre + 190 mV et +260 mV.
  • Pour la préparation du bain de décapage, on utilise en général du fluorure ferrique ou du sulfate ferrique ou du chlorure ferrique, avec une concentration en fer ferrique comprise entre 20 et 40 g/I, avec une préférence pour le fluorure ferrique, de façon à avoir un seul radical acidedans le bain.
  • Le procédé de décapage de l'invention est appliqué aux tôles ou bandes en acier inoxydable avec typiquement les concentrations initiales en et les températures de décapage suivantes:
    • - aciers inoxydables ferritiques : HF 10 à 25 g/I, 35 à 50° C.
    • - aciers inoxydables austenitiques 20 à 35 g/I, 40 à 60° C.
  • Outre la résolution du problème de pollution posé, le procédé de décapage de l'invention fournit en exploitation industrielle d'importants avantages:
    • - le réglage de la qualité du bain est d'autant plus commode et précis que la majeure partie de l'oxydation est produite par la ou les injections d'air;
    • - le réglage du niveau du potentiel d'oxydation réduction permet d'obtenir des "boues" réutilisables directement sous forme de bain neuf.
    Essais et exemples . Série d'essais n° 1
  • Il avait pour but de tester qualitativement l'effet d'une injection d'air associée ou non avec une injection complémentaire d'eau oxygénée. Les essais de décapage ont été effectués sur des échantillons d'acier inoxydable ferritique à 17 % Cr type AISI 430 laminés à chaud, grenaillés et décapés électrolytiquement, ayant la forme d'éprouvettes rectangulaires 50 x 25 x 3 mm.
  • Les conditions de décapage de ces échantillons étaient les suivantes:
    • - concentration en HF : 20 g/l
    • . volume du bain : 250 ml
    • . temps d'immersion de l'échantillon dans le bain: 2 minutes
    • . concentration initiale en fer dissous (fluorure ferrique) variant de 0 à 60 g/l
    • . concentration en H2O2 de 0 à 5 g/I
    • . injection d'air ou non dans la solution
    • température : 45°C.
  • Cette injection d'air était ici de l'ordre de 1 1/mn, c'est-à-dire très en excès par rapport au débit utile.
  • Pour chaque condition, on a décapé successivement 3 à 5 échantillons. L'appréciation de la qualité du décapage obtenu a été effectuée qualitativement d'après un examen à la loupe binoculaire à grossissement 25 en donnant une note de "0" à "5":
    • . "0" : pas de décapage
    • . "1" : début de décapage, irrégulier
    • . "3" décapage acceptable, assez régulier
    • . "5" : décapage de très bonne qualité.
  • Les principales notes obtenues, correspondant aux 30 échantillons de diverses conditions, sont résumées dans le TABLEAU 1 ci-dessous:
    Figure imgb0004
  • Ces essais montrent que, sans addition d'eau oxygénée, l'injection d'air améliore ici la qualité du décapage entre 5 et 30 g/I de Fe3+ dissous et que, la qualité du décapage est alors "acceptable" à partir de 15 à 20 g/I de Fe3+ et "bonne" à partir de 25 à 30 g/I de Fe3+. Associée à une petite addition de 2 g/I d'eau oxygénée, l'injection d'air permet d'obtenir ici un très bon décapage dès 10 g/I de Fe3+. Au niveau de 60 g/I de Fe3+ la brièveté des essais ne permet pas d'observer un effet d'usure des bains, et l'uniformité de la note "5" dans les divers cas ne permet pas de conclusion pratique autre que celle d'une condition initiale satisfaisante.
  • . Série d'essais n° 2
  • On a procédé en laboratoire à des tests de décapage consécutifs de plusieurs centaines d'échantillons semblables aux échantillons de la série d'essais n° 1, toujours dans la même solution de décapage de composition initiale HF 20 g/I, avec des rechargements périodiques d'une part en pour conserver 20 g/I et d'autre part en H202 au minimum nécessaire compte tenu de la concentration en fer dans la solution, cela avec injection d'air dans le bain de décapage.
  • On a suivi respectivement la concentration totale en fer dissous, la consommation cumulée de et la consommation cumulée d'eau oxygénée H202 en fonction du nombre d'échantillons décapés, chacun pendant 2 mn. On a observé que jusqu'à 275 à 300 échantillons décapés, correspondant à 25 à 27 g/I de fer dissous, les consommations en HF et H202 sont assez élevées et à peu près proportionnelles au nombre d'échantillons décapés, et que au-delà les consommations en HF et en H202 deviennent très faibles. Ainsi, lorsque la concentration en fer dissous devient supérieure à 25 g/I, la consommation en HF concentré à 70 % passe de façon surprenante de 7 ml par 100 échantillons décapés à 0,3 ml par 100 échantillons décapés.
  • Les hypothèses d'explication sont les suivantes l'oxygène de l'air injecté dans le bain agit comme régénérateur d'ions (Fe3+) selon la réaction d'équilibre (C) déjà indiquée, en déplaçant cet équilibre dans le sens 3 de la formation de Fe3+, le pH de la solution étant favorable et de l'ordre de 2 par suite de la concentration en HF. Si l'on règle cette réaction (C) pour qu'elle permette une régénération de Fe2+ en Fe3+ suffisamment rapide pour avoir toujours Fe3+ > 20 à 25 g/I, il n'y a presque plus besoin d'H202. Et la consommation en est de façon surprenante beaucoup plus faible que pour les concentrations plus faibles en fer et donc en Fe3+.
  • Exemple n° 1 de décapage selon l'invention
  • Les conditions suivantes ont été trouvées satisfaisantes pour le décapage en continu de bandes en acier inoxydable ferritique à 17 % Cr de 1 m de large. Les bandes étaient décapées dans un bac de 16 m de long x 2 m de large contenant environ 30 000 1 de bain de décapage acide, elles défilaient dans ce bain à la vitesse de 20 m/mn et étaient ensuite brossées sous eau.
  • Le bain contenait 20 g/I de et au départ 25 g/I de Fe3+, venant de fluorure ferrique dissous dans le bain. De l'air était injecté dans le bain principalement avec des buses espacées de 2 à 3 m et dirigées vers le bas avec une inclinaison de 15° par rapport à la verticale, l'air se dégageant en bout de ces buses vers le fond du bac et à 15 cm de ce fond. Le débit total d'air injecté dans le bain était de 100 Nm3/h, dont les 2/3 vers le fond et au voisinage de ce fond avec les buses qui viennent d'être décrites. La température du bain était de 40 à 45° C. La conduite du bain était faite par mesure et réglage de son potentiel REDOX au-dessus de +150 mV. Des ajouts d'eau oxygénée étaient prévus pour correction rapide de ce potentiel s'il devenait trop faible. En pratique, on a pu fonctionner jusqu'à 3 jours de suite avec un potentiel REDOX resté satisfaisant sans ajout de H202. En outre, on a remarqué que le décapage était encore satisfaisant au niveau d'un potentiel REDOX de +100 mV.
  • En 1 heure, la surface totale de bande décapée est de 20x2x1x60 = 2400 m2/h et le temps de décapage de chaque élément de surface est de 16/20 = 0,8 mn = 0,8/60 h. Le débit total d'air injecté est donc:
    Figure imgb0005
    soit 3,1 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé.
  • Exemple n° 2 de décapage selon l'invention
  • II concerne le décapage en continu de bandes en acier inoxydable austenitique de 1,25 m de large, d'épaisseur 0,8 mm. Après traitement dans des bains électrolytiques, les bandes étaient décapées dans deux bacs successifs de mêmes dimensions que celui de l'exemple 1 contenant environ 30 000 I de bain de décapage, elles défilaient dans ces bains à 40 m/mn donnant un temps de séjour dans chaque bain de 0,4 mn.
  • Les bains contenaient 25 g/I de HF et au départ 20 g/I de Fe3+. De l'air était injecté avec des buses de disposition semblable à celle de l'exemple n° 1 avec un débit total pour chaque bac de 80 m3/h et une pression de 0,2 MPa soit un débit de environ 160 Nm3/h. La température du bain était de 50 à 55°C.
  • La conduite du bain était faite par mesure et réglage de son potentiel REDOX au-dessus de +200 mV. Des ajouts d'eau oxygénée étaient prévus comme moyen complémentaire d'oxydation pour réajuster le potentiel REDOX lorsqu'il était devenu trop bas. On a pu fonctionner pendant des périodes de plusieurs jours sans utiliser ce moyen d'oxydation complémentaire et en conservant un potentiel de +200 à +300 mV avec une bonne qualite de décapage.
  • Le débit d'air injecté est ici de 4 Nm3 par m2 d'acier inoxydable décapé et par heure de décapage de chaque élément de surface décapé.
  • Exemple n° 3 de décapage selon l'invention
  • On a décapé des bandes en acier inoxydable austenitique avec les modifications suivantes par rapport à l'exemple n° 2:
    • HF 35 g/I
    • Potentiel REDOX +350 à +400 mV
    • Fer dissous : 60 g/I dont environ 80 % de Fe3.
  • Le complexe formé est du type FeF3, 3H20. On a constaté que ce composé n'était soluble ni dans l'eau à 20°C, ni dans une solution aqueuse de 20 g de par litre à 20°C (il s'y hydrolyse). Par contre à 50°C, il est moyennement soluble: à 31 g/I dans l'eau et à 38 g/I dans 20 g/I. Cette dissolution, instable au refroidissement, n'est pas satisfaisante.
  • Exemple n° 4 de décapage selon l'invention
  • Mêmes conditions de décapage sauf potentiel REDOX +50 à +80 mV. Fe2+ représente environ 80 % du fer dissous, et le complexe formé est du type FeF2, nH20. Les mêmes essais de dissolution que dans l'exemple 3 ont été faits. Ce composé est peu soluble, la seule dissolution relevée est de 13 g/I dans le cas de HF 20 g/I à 50° C.
  • Exemple n° 5 de décapage selon l'invention
  • Les conditions de décapage correspondent à celles de l'exemple n° 2, à l'exception du potentiel REDOX réglé à +220 mV ±20 mV (mesurés entre une électrode de platine et une électrode de référence Ag/AgCl). Fe3+ représente 70 à 80 % du fer dissous, et le composé majoritaire formé semble être du type : Fe2F5, 7 H20. Les essais de dissolution ont fourni les résultats suivants, en g dissous par litre:
    • Solubilité à 20°C Solubilité à 50°C
    • dans l'eau dans solution dans l'eau dans solution
    • HF 20 g/l HF 20 g/l
    • 22,3 26 53 61
  • Ce type de "boue" peut être recyclé dans un bain neuf, selon la méthode décrite précédemment.

Claims (13)

1. Procédé de décapage de produits en acier inoxydable, dans lequel on utilise un bain de décapage de composition initiale:
HF 10 à 50 g/l
Fer ferrique (Fe3+) dissous > 15 g/I
Eau : le solde

à une température comprise entre 15 et 70°C, caractérisé en ce que, pendant la ou les opérations de décapage, on maintient la teneur en fer ferrique du bain à au moins 15 g/l par oxydation du bain comportant au moins une ou des injections d'air de débit total supérieur ou égal à 1 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé.
2. Procédé selon la revendication 1, dans lequel on utilise un bain de décapage contenant initialement HF 10 à 35 g/I et Fe3+ ≽20 g/I, caractérisé en ce que pendant la ou les opérations de décapage on maintient la teneur en Fe3+ à au moins 20 g/I grâce à une oxydation du bain comportant une (ou des injections d'air de débit total compris entre 1 et 8 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé.
3. Procédé selon la revendication 2, caractérisé en ce que on injecte au total 2 à 5 Nm3 d'air par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé et en ce que, sur ces 2 à 5 Nm3 par m, et par h, on en injecte au moins la moitié vers le fond du bain à la moitié inférieure de ce bain.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, pour assurer une concentration suffisante en Fe3+, on mesure le potentiel REDOX du bain et on le règle entre 0 et +800 mV en agissant si nécessaire sur l'oxydation du bain.
5. Procédé selon la revendication 4, caractérisé en ce que on règle le potentiel REDOX du bain entre + 100 et +300 mV.
6. Procédé selon la revendication 5, caractérisé en ce que on règle le potentiel REDOX du bain entre + 190 et +260 mV.
7. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que on prépare le bain de décapage en utilisant du fluorure ferritique, avec une concentration initiale en fer ferrique de 20 à 40 g/l.
8. Procédé selon l'une quelconque des revendications 2, 3, 5 ou 6, caractérisé en ce qu'on utilise comme moyen complémentaire d'oxydation du bain de l'eau oxygénée ou du permanganate de potassium.
9. Procédé selon l'une quelconque des revendications 2, 3, 5 ou 6, caractérisé en ce qu'on utilise comme seul moyen complémentaire d'oxydation du bain 0,1 à 0,4 1 d'eau oxygénée H2O2 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé.
10. Procédé selon l'une quelconque des revendications 1 à 3, dans le cas du décapage de tôles ou bandes en acier inoxydable ferritique, dans lequel la concentration initiale en HF du bain de décapage est de 10 à 25 g/I et la température de décapage est comprise entre 35 et 50° C.
11. Procédé selon l'une quelconque des revendications 1 à 3, dans le cas du décapage de tôles ou bandes en acier inoxydable austenitique, dans lequel la concentration initiale en HF du bain de décapage est de 20 à 35 g/I et la température du bain de décapage est comprise entre 40 et 60° C.
12. Procédé de décapage de produits en acier inoxydable, au moyen d'un bain de décapage contenant initialement HF 10 à 35 g/I et Fe3+ ≽20 g/I, et de recyclage des boues précipitées dans le bain de décapage usé, caractérisé en ce que successivement:
a) pendant la ou les opérations de décapage, on maintient la teneur en Fe3+ à au moins 20 g/I grâce à une oxydation du bain comportant une ou des injections d'air de débit total compris entre 1 à 8 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé et éventuellement une ou plusieurs additions d'oxydant fort, le potentiel REDOX du bain étant réglé entre + 100 et +300 mV en agissant si nécessaire sur l'oxydation du bain;
b) on aspire le liquide du bain usé, puis on envoie de l'eau chaude sur les boues pour les solubiliser, puis on ajuste la teneur en HF par addition de HF libre et on agite. On injecte ensuite de l'eau oxygénée de façon à ajuster le potentiel entre +200 et +240 V, obtenant alors un bain de décapage neuf.
13. Procédé selon la revendication 12, caractérisé en ce que
a1) les injections d'air ont un débit total compris entre 2 et 5 Nm3 par m2 d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé;
a2) on utilise comme seules additions d'oxydant fort 0,1 à 0,4 I d'eau oxygénée H202 par m2, d'acier inoxydable décapé et par h de décapage de chaque élément de surface décapé;
a3) on règle le potentiel REDOX du bain de décapage entre + 190 et +260 V.
b) pour le recyclage des boues du bain de décapage usé, on utilise de l'eau chaude à 40 à 60°C.
EP19860904835 1985-09-19 1986-07-28 Procede de decapage acide de produits en acier inoxydable Expired EP0236354B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8514220 1985-09-19
FR8514220A FR2587369B1 (fr) 1985-09-19 1985-09-19 Procede de decapage acide de produits en acier inoxydable

Publications (2)

Publication Number Publication Date
EP0236354A1 EP0236354A1 (fr) 1987-09-16
EP0236354B1 true EP0236354B1 (fr) 1989-07-12

Family

ID=9323241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860904835 Expired EP0236354B1 (fr) 1985-09-19 1986-07-28 Procede de decapage acide de produits en acier inoxydable

Country Status (10)

Country Link
EP (1) EP0236354B1 (fr)
JP (1) JPS62501981A (fr)
BR (1) BR8606873A (fr)
CA (1) CA1272980A (fr)
DE (1) DE3664340D1 (fr)
ES (1) ES2000222A6 (fr)
FI (1) FI81126C (fr)
FR (1) FR2587369B1 (fr)
MX (1) MX168028B (fr)
WO (1) WO1987001739A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843240A (en) * 1995-10-18 1998-12-01 Novamax Itb S.R.L. Process for stainless steel pickling and passivation without using nitric acid
DE19850524C2 (de) * 1998-11-03 2002-04-04 Eilenburger Elektrolyse & Umwelttechnik Gmbh Nitratfreies Recycling-Beizverfahren für Edelstähle
US6554908B1 (en) 1999-05-03 2003-04-29 Henkel Kommanditgesellschaft Auf Aktien Process for pickling stainless steel in the absence of nitric acid and in the presence of chloride ions

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650303B1 (fr) * 1989-07-26 1993-12-10 Ugine Aciers Chatillon Gueugnon Procede de decapage en bain acide de produits metalliques contenant du titane ou au moins un element chimique de la famille du titane
US5338367A (en) * 1989-07-26 1994-08-16 Ugine, Aciers De Chatillon Et Gueugnon Pickling process in an acid bath of metallic products containing titanium or at least one chemical element of the titanium family
FR2673200A1 (fr) * 1991-02-25 1992-08-28 Ugine Aciers Procede de surdecapage de materiaux en acier tels que les aciers inoxydables et les aciers allies.
IT1245594B (it) * 1991-03-29 1994-09-29 Itb Srl Processo di decapaggio e di passivazione di acciaio inossidabile senza acido nitrico
FR2683551B1 (fr) * 1991-11-07 1994-09-16 Ugine Sa Procede de decapage de materiaux en acier en continu sur une ligne de traitement.
IT1255655B (it) * 1992-08-06 1995-11-09 Processo di decapaggio e passivazione di acciaio inossidabile senza impiego di acido nitrico
IT1255855B (it) * 1992-10-12 1995-11-17 Cesare Pedrazzini Processo di decapaggio e di passivazione per lamiere di titanio in nastro, senza impiego di acido nitrico.
FR2721328B1 (fr) * 1994-06-15 1996-09-06 Ugine Sa Procédé de décapage de matériaux métalliques, notamment en acier allié, en acier inoxydable ou en alliage de titane, par une solution du type contenant des ions ferriques en milieu acide.
FR2745301B1 (fr) * 1996-02-27 1998-04-03 Usinor Sacilor Procede de decapage d'une piece en acier et notamment d'une bande de tole en acier inoxydable
FR2772050B1 (fr) * 1997-12-10 1999-12-31 Imphy Sa Procede de decapage d'acier et notamment d'acier inoxydable
GB9807286D0 (en) * 1998-04-06 1998-06-03 Solvay Interox Ltd Pickling process
JP6031606B2 (ja) * 2012-07-31 2016-11-24 ポスコPosco オーステナイト系ステンレス冷延鋼板を製造するための高速酸洗プロセス
CN109328245A (zh) * 2017-05-31 2019-02-12 天佑科技有限责任公司 为清除在不锈钢管道及构筑物焊接部位的剥落和铁锈而进行的酸洗及形成钝化膜的处理剂
IT201900006672A1 (it) 2019-05-10 2020-11-10 Condoroil Stainless Srl Unita' per il decapaggio elettrolitico interno ed esterno di tubi in acciaio inossidabile
KR102300834B1 (ko) 2019-11-21 2021-09-13 주식회사 포스코 스테인리스강 산세용 이온성 액체 및 이를 이용한 스테인리스강의 산세방법
JP7176137B2 (ja) * 2020-01-09 2022-11-21 Primetals Technologies Japan株式会社 鋼板の酸洗方法及び酸洗装置
IT202000005848A1 (it) 2020-03-19 2021-09-19 Tenova Spa Processo per decapare e/o passivare un acciaio inossidabile.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2474526A (en) * 1940-06-15 1949-06-28 Monsanto Chemicals Picking of stainless steels
US2564549A (en) * 1945-07-02 1951-08-14 Albert R Stargardter Pickling treatment
DE899890C (de) * 1952-03-18 1953-12-17 Deutsche Edelstahlwerke Ag Verfahren zum Regenerieren von Beizbaedern
JPS549120A (en) * 1977-06-24 1979-01-23 Tokai Electro Chemical Co Method of controlling acid cleaning liquid for stainless steel
JPS57194262A (en) * 1981-05-26 1982-11-29 Mitsubishi Gas Chem Co Inc Descaling method for stainless steel
DE3222532A1 (de) * 1982-06-16 1983-12-22 Arno 5042 Erftstadt Kuhlmann Verfahren und mittel zum sauren beizen von austenitischen edelstaehlen
FR2551465B3 (fr) * 1983-09-02 1985-08-23 Gueugnon Sa Forges Procede de decapage acide des aciers inoxydables et solution acide pour sa mise en oeuvre
EP0188975B8 (fr) * 1985-01-22 2002-01-09 Ugine S.A. Procédé pour le décapage acide des aciers, et notamment des aciers inoxydables

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843240A (en) * 1995-10-18 1998-12-01 Novamax Itb S.R.L. Process for stainless steel pickling and passivation without using nitric acid
DE19850524C2 (de) * 1998-11-03 2002-04-04 Eilenburger Elektrolyse & Umwelttechnik Gmbh Nitratfreies Recycling-Beizverfahren für Edelstähle
US6554908B1 (en) 1999-05-03 2003-04-29 Henkel Kommanditgesellschaft Auf Aktien Process for pickling stainless steel in the absence of nitric acid and in the presence of chloride ions

Also Published As

Publication number Publication date
FI81126C (fi) 1990-09-10
FI872187A0 (fi) 1987-05-18
DE3664340D1 (en) 1989-08-17
FR2587369A1 (fr) 1987-03-20
FR2587369B1 (fr) 1993-01-29
FI872187A (fi) 1987-05-18
MX168028B (es) 1993-04-29
EP0236354A1 (fr) 1987-09-16
BR8606873A (pt) 1987-11-03
CA1272980A (fr) 1990-08-21
FI81126B (fi) 1990-05-31
JPS62501981A (ja) 1987-08-06
ES2000222A6 (es) 1988-01-16
WO1987001739A1 (fr) 1987-03-26
JPH0420996B2 (fr) 1992-04-07

Similar Documents

Publication Publication Date Title
EP0236354B1 (fr) Procede de decapage acide de produits en acier inoxydable
US5154774A (en) Process for acid pickling of stainless steel products
EP0188975B1 (fr) Procédé pour le décapage acide des aciers, et notamment des aciers inoxydables
JP3128202B2 (ja) 金属の処理方法
US5690748A (en) Process for the acid pickling of stainless steel products
RU2583500C2 (ru) Травление нержавеющей стали в окислительной электролитической ванне с кислотой
KR960001599B1 (ko) 크롬함유 스텐레스강의 전해 산세척(pickling) 방법
JP2010115620A (ja) 廃水処理方法及び廃水処理装置
CA3043664A1 (fr) Procede et appareil de nitrification de solutions aqueuses a forte teneur en ammoniac
JPH04104896A (ja) 排水の管理処理方法
EP0522946B1 (fr) Procédé de dénitrification de l'eau utilisant du fer métallique et installation pour sa mise en oeuvre
US3694334A (en) Acid pickling of stainless steels
JP6616583B2 (ja) 有機酸溶液分解システム及び有機酸溶液分解方法
Azzerri et al. Potentiostatic pickling: a new technique for improving stainless steel processing
DE2709722A1 (de) Verfahren zur entgiftung nitrit- und/oder cyanidhaltiger waessriger loesungen
EP1552038B1 (fr) Procede economique de retablissement du potentiel d'oxydation d'une solution de decapage
KR920002413B1 (ko) 스텐레스 강 제품의 산세척 방법
JP2966180B2 (ja) ステンレス焼鈍鋼帯の電解デスケーリング方法
JPS61100657A (ja) 生物学的アンモニア濃度測定装置
JP3823357B2 (ja) 硝化活性測定装置および硝化方法
EP0494563B1 (fr) Procédé d'électroextraction du zinc
SU742493A1 (ru) Раствор дл электрохимического полировани металлов
EP0162491A1 (fr) Procédé pour inhiber la corrosion d'une masse métallique au contact d'un bain acide contenant des ions ferriques
JPH028795B2 (fr)
EP1980650A1 (fr) Composition de décapage exempte de nitrates et de peroxydes, et procédé mettant en oeuvre une telle composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHETREFF, BERNARD

Inventor name: BOUSQUET, BERNARD

17Q First examination report despatched

Effective date: 19880811

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3664340

Country of ref document: DE

Date of ref document: 19890817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;UGINE S.A.

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86904835.5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050712

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050714

Year of fee payment: 20

Ref country code: DE

Payment date: 20050714

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20050718

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050725

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060727

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed